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Abstract

In this paper we consider the stochastic dynamics of a finite system of particles in
a finite volume (Kac-like particle system) which annihilate with probability α ∈ (0, 1)
or collide elastically with probability 1 − α. We first establish the well-posedness of the
particle system which exhibits no conserved quantities. We rigorously prove that, in some
thermodynamic limit, a suitable hierarchy of kinetic equations is recovered for which
tensorized solution to the homogenous Boltzmann with annihilation is a solution. For
bounded collision kernels, this shows in particular that propagation of chaos holds true.
Furthermore, we make conjectures about the limit behaviour of the particle system when
hard-sphere interactions are taken into account.
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1 Introduction

1.1 The kinetic annihilation equation

In a kinetic framework, the behavior of a system of particles which annihilate with prob-
ability α ∈ (0, 1) or collide elastically with probability 1 − α can be described (in a spatially
homogeneous situation) by the so-called velocity distribution f(t, v) which represents the prob-
ability density of particles with velocity v ∈ R

d (d > 2) at time t > 0. The time-evolution of
the one-particle distribution function f(t, v), v ∈ R

d, t > 0 satisfies the following

∂tf(t, v) = (1− α)Q(f, f)(t, v) − αQ−(f, f)(t, v) (1.1)

where Q = Q+ − Q− is the quadratic Boltzmann collision operator. The gain part Q+ and
loss part Q− are defined by the bilinear symmetrized forms

Q+(g, f)(v) =
1

2

∫

R3×S2

B(v − v∗, ω)
(
g′∗f

′ + g′f ′∗
)
dv∗ dω,

Q−(g, f)(v) =
1

2

∫

R3×S2

B(v − v∗, ω) (g∗f + gf∗) dv∗dω,

where we have used the shorthands f = f(v), f ′ = f(v′), g∗ = g(v∗) and g′∗ = g(v′∗) with
post-collisional velocities v′ and v′∗ parametrized by

v′ = v − [(v − v∗) · ω]ω and v′∗ = v∗ + [(v − v∗) · ω]ω, ω ∈ S
2. (1.2)

The equation above has been introduced recently in [5, 8, 9, 24, 36, 42] as a peculiar kinetic
model aiming to test the relevance of non-equilibrium statistical mechanics for systems of
reacting particles. Such systems of reacting particles are particularly challenging in particular
because the lack of collisional invariants make the derivation of suitable hydrodynamics non
trivial, even at a formal level. Notice indeed that the kinetic equation (1.1) is highly disspative
since any reasonable solution f(t, v) to (1.1) is such that its mass and kinetic energy

n(t) =

∫

R3

f(t, v)dv, E(t) =

∫

R3

f(t, v)|v|2dv

2



are decreasing in time, i.e.

d

dt
n(t) = −α

∫

Rd

Q−(f, f)(t, v)dv 6 0, while
d

dt
E(t) = −α

∫

Rd

|v|2Q−(f, f)(t, v)dv 6 0.

(1.3)
Because of this, the only possible long time behaviour for f(t, v) is

lim
t→∞

f(t, v) = 0.

The long time behavior of solutions to (1.1) has been studied, at a mathematical level, in the
recent papers [3, 4, 1] providing the existence, uniqueness and stability of suitable self-similar
profile associated to (1.1) which captures its asymptotic behaviour for long time in a more
accurate way.

With the aforementioned contributions, the qualitative behaviour of solutions to (1.1) is
by now quite well understood but a rigorous derivation of the equation from a physically
grounded model of interacting particles is still missing. Filling this blank is the purpose of
the present paper.

1.2 Justification of the kinetic model (1.1): Kac-like system

As we discussed in the previous section, the goal of this paper is to provide a physical
ground to the spatially homogeneous Boltzmann equation with annihilation (1.1). In order to
do this, we provide an approximating Kac-like particle system from which we aim to recover
(1.1) in a suitable scaling limit where the number of particles, as well as the volume, goes to
infinity but the number density is finite.

In particular, one of the main question in the justification of the model is to prove the
validity of the so-called “Boltzmann’s molecular chaos assumption” (Stosszahlansatz ). More
specifically, the unkown f(t, v) of Eq. (1.1) represents the distribution of a typical particle with
velocity v at time t > 0 and, as well-known, the right-hand side of (1.1) is a bilinear operator
which models the change of velocity of a particle – due to collisions with another particle or
annihilation. In particular, the loss part Q− of the collision operator takes into account the
disappearance of particles with velocity v due to the encounter with particles with velocities v∗.
Typically, the involved distribution appearing there, should be the joint distribution f2(v, v∗)
of finding 2 particles with velocities (v, v∗). In (1.1), this joint distribution is replaced by the
tensorized distribution f(v)⊗ f(v∗) which is related to some no-correlation assumption.

Proving the propagation of chaos is roughly speaking, justifying this no-correlation as-
sumption and it is a very challenging problem for collisional kinetic equation whose story can
be traced back to Boltzmann himself. The literature on the subject is extremely wide: we
mention the seminal paper by O. E. Lanford [25] concerning the derivation of the spatially
inhomogeneous Boltzmann equation from a particles system in the Boltzmann-Grad limit, see
also the more recent contributions [15, 37]. We also mention the recent analysis of the cor-
relation error for Boltzmann equation in [38] which, as [25], works in the grand canonical

ensemble formalism which is the one adopted here.
For the spatially homogeneous case the justification of kinetic equations from a particles

system is usually performed through a so-called mean-field limit following the program
suggested by M. Kac who, in a seminal paper [20], proposed a first attempt of clarifying
some aspects of the transition from an N -particle system to a one-particle kinetic description.
In this paper (see also the modification of the model in [21]), he introduced a fundamental
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stochastic particle model which consists in a system of N particles with associated velocities
VN = (v1, . . . , vN ) ∈ R

3N , whose dynamics is the following stochastic process: at a random
time chosen accordingly to a Poisson process, pick a pair of particles, say i and j, and perform
the transition

vi, vj → v′i, v
′
j ,

where v′i, v
′
j are given in (1.4). The forward Kolmogorov equation associated to this Kac’s

stochastic model is then called the master equation whose unknown FN (t,VN ) represents the
density of particles having the velocities VN ∈ R

3N at time t > 0 and the proof of propagation
of chaos for the spatially homogeneous Boltzmann equation consists in showing that marginals
of FN (t, VN ) converge (as N → ∞) to tensorization of the solution to the Boltzmann equation.
This question has been addressed in a series of papers, the first ones dealing with bounded
collision kernels and culminating in the contribution [30] where the propagation of chaos was
obtained in a quantitative way for general initial data and both hard-sphereand maxwellian
molecules. We refer to [30] for an account of the literature on the subject. We just aim
to mention here that suitable modifications of original Kac’s stochastic model have been
proposed in the literature to handle different kinds of kinetic-like equations, including the
Landau equation [13, 29] or models with quantum interactions [7]. The literature for mean
field limit for Vlasov-like equations (including 2D Euler vortex model) is even more abundant,
we mention here only [41, 19, 14] among important contributions to the field.

To take into account the annihilation of particles, we introduce here a modification of
the original Kac model which, in particular, includes the possibility of mass dissipation. We
can already mention here that the scaling limit we shall perform is not stictly speaking of
mean-field type but has rather to be seen as a thermodynamic limit. More precisely,
we consider an N -particle system in a region D with finite volume Λ = |D| whose state
space is R

3N . The evolution is the following. Suppose that we have two clocks that at an
exponential time pick a pair of particles. At a first collection of times {tk}k>1 which are
separated exponentially at rate r1 = (1 − α)r with independent increments tk − tk−1 two
particles (say i and j) are chosen, uniformly and at random, to collide. This gives the jump
process VN = {v1, . . . , vi, . . . , vj , . . . , vN} → V

i,j
N = {v1, . . . , v′i, . . . , v′j , . . . , vN} where

v′i = vi − [(vi − vj) · ω]ω and v′j = vj + [(vi − vj) · ω]ω (1.4)

are the outgoing velocities arising from an elastic collision with scattering vector ω. While,
at a second collection of times {t̃k}k>1 which are separated exponentially at rate r2 = αr two
particles (say i and j) are chosen uniformly and at random annihilate, disappearing from the
system.

The probability of such a transition is assumed to be a function of the modulus of the
relative velocities of the two particles involved in the collision and of the angle between their
relative velocity and the unit scattering vector ω ∈ S

2 (see Section 1.3).
The master equation for this model is the Kolmogorov equation associated to the Markov

process we are considering. We now describe it with more details. Since we want to describe
a finite system of particles, contained in a finite volume D ⊂ R

3, whose number N is not
fixed through time, it appears convenient to use the grand canonical ensemble formalism
for which the sample space is defined as

Ω =
∞⋃

N=0

(
N,PN (R

3)
)
⊂ N× P(R3), (1.5)
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where PN (R
3) is the family of subsets of R3 with cardinality N . The sample set Ω is there-

fore the set of all the pairs (N,ωN ) where N ∈ N and ωN is any finite subset of N three
dimensional vectors v1, v2, · · · , vN . For every time t > 0 the probability distribution of each
state (N, (v1, . . . , vN )) ∈ Ω is

1

N !
ΨN (t, v1, . . . , vN )

where {ΨN (t)}N∈N is a sequence of non negative functions ΨN (t) = ΨN (t, ·), each of them
defined on PN (R

3) and normalized according to

∞∑

N=0

1

N !

∫

R3

dv1 · · ·
∫

R3

dvNΨN (t, v1, · · · , vN ) = 1. (1.6)

The functions ΨN (t, v1, . . . , vN ) are assumed to be symmetric with respect to any permutation
of the indices 1, . . . , N and no restrictions are imposed on the range of velocity values.

For any N ∈ N and VN = (v1, . . . , vN ) ∈ R
3N , t > 0, ΨN (t,VN ) = ΨN (t, v1, . . . , vN )

is the velocity distribution function of the N -particle configuration (v1, . . . , vN ). The evolu-
tion equation for the velocity distribution function ΨN (t,VN ), i.e. the forward Kolmogorov
equation for the stochastic process described above, is the following master equation:

∂tΨN (t,VN ) = (1− α)
∑

16i<j6N

∫

S2

BΛ(vi − vj , ω)
[
ΨN

(
t,V i,j

N

)
−ΨN (t,VN )

]
dω

+
α

2

∫

R3

dvN+1

∫

R3

dvN+2

∫

S2

BΛ(vN+1 − vN+2, ω)ΨN+2 (t,VN , vN+1, vN+2) dω

− α
∑

16i<j6N

∫

S2

BΛ(vi − vj , ω)ΨN (t,VN ) dω, (1.7)

supplemented with initial datum ΨN (0,VN ) ∈ L1(R3N ). Here, for any scattering vector
ω ∈ S

2, we denoted by

V
i,j
N = (v1, . . . , vi−1, v

′
i, vi+1, . . . , vj−1, v

′
j , vj+1, . . . , vN )

where
v′i = vi − [(vi − vj) · ω]ω and v′j = vj + [(vi − vj) · ω]ω

are the post-collisional velocities.
The collision kernel BΛ is a suitable modification of the kernel B in (1.1) which takes into

account the fact that, in (1.7), particles are enclosed in a bounded region D ⊂ R
3 with finite

volume Λ = |D| whereas, in (1.1), they are distributed in the whole space R
3 (see Assumption

1.5). More precisely, even if both (1.1) and (1.7) are spatially homogeneous, spatial effects are
implicitly taken into account: the spatially homogeneous assumption in (1.7) means that the
distribution function ΨN (t, x1, . . . , xN , v1, . . . , vN ) of N particles at time t > 0 having position
(x1, . . . , xN ) ∈ DN with velocities v1, . . . , vN ∈ R

3N is the same for all xi ∈ D which allows
to drop the dependency with respect to the space variables x1, . . . , xN . Similar considerations
hold for (1.1).

Remark 1.1. Notice that the first term on the right hand side of (1.7) is the usual term
of the standard Kac master equation. This means that, neglecting the annihilation, i.e. for
α = 0, we would obtain only this term. The third one on the right hand side of (1.7) is the
loss term due to particle annihilation, while the second one takes into account the gain term
due to particle annihilation and we have the factor 1

2 to avoid double counting.
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1.3 About the collision kernel and the initial distribution

Our general assumption on the collision kernel B appearing in (1.1) is the following

Assumption 1.2. The collision kernel B(·, ·) is a measure and nonnegative mapping B :
R
3 × S

2 → R
+ for which there exist γ ∈ [0, 1] and CB > 0 such that

ΣB(v − v∗) 6 CB|v − v∗|γ , ∀v, v∗ ∈ R
3 (1.8)

where we denote by ΣB the collision frequency:

ΣB(z) =

∫

S2

B(z, ω)dω, z ∈ R
3.

Remark 1.3. The case

B(v − v∗, ω) = 2 |S2|−1 |(v − v∗) · ω| = 1
2π |(v − v∗) · ω|

corresponding to hard-sphere interactions is the model usually considered in the physics litera-
ture [16, 28, 42]. Here and in (1.2), the dot symbol · denotes the usual inner product between
three dimensional vectors. In this case

ΣB(v − v∗) = |v − v∗|, v, v∗ ∈ R
3.

The case ΣB constant, say ΣB(v − v∗) = 1, corresponds to the so-called Maxwellian inter-
actions for which γ = 0 and

B(v − v∗, ω) =
1

2π

|(v − v∗) · ω|
|v − v∗|

, v 6= v∗ ∈ R
3, ω ∈ R

3.

Notice that, in this case, the kinetic annihilation equation (1.1) is equivalent to the classical
Boltzmann equation (for which α = 0), see [3] and references therein for details.

Remark 1.4. In the sequel, for most of the paper, we will consider a general collision kernel B
satisfying Assumption 1.2. We will have to restrict to bounded collision frequency ΣB only in
the last part of the paper to recover the uniqueness of the solution to the annihilated Boltzmann
hierarchy and, as such, the propagation of chaos for (1.1). This is a severe restriction but we
notice that assuming ΣB to be bounded, i.e. γ = 0, we cover more general situation than the
Maxwellian interactions case.

We observe that, under the growth condition (1.8), it is possible to show that the model
(1.7) is well posed (cf. Section 2, Theorem 2.3) under suitable assumptions on the collision ker-
nel B and on the initial data. More precisely, we will assume the following volume dependence
of the collision kernel:

Assumption 1.5. Let be Λ = |D| > 0 with D ⊂ R
3. We set

BΛ(z, ω) =
1

Λ
B(z, ω) ∀z ∈ R

3, ω ∈ S
2,

where B is the collision kernel satisfying Assumption 1.2.
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The volume dependence of BΛ required in Assumption 1.5 takes into account the fact that
the collision rate decreases as the proportion of the volume occupied by the particles, with
respect to the total volume Λ, increases. We adopted the simplest scenario for which the
dependence is inversely proportional to Λ, namely 1

Λ .
We now make precise our assumption on the initial datum for (1.7): to justify the propa-

gation of chaos, we will start with well-prepared initial data which are already tensorized:

Assumption 1.6. We assume that the initial datum {ΨN (0)}N>1 is given by

ΨN (0,VN ) =

{
N0!f0(v1) . . . f0(vN0) =: N0!f

⊗N0
0 (VN0) if N = N0

0 if N 6= N0

(1.9)

for some N0 > 1 and some non negative probability distribution f0 satisfying
∫

R3

f0(v)dv = 1,

∫

R3

|v|2f0(v)dv = E0 <∞ and
∫

R3

|v|3 f0(v)dv <∞. (1.10)

Actually, for simplicity, we shall assume that

N0 = 2n0, n0 > 1.

1.4 Main results

Our main result concerns the limit of the finite particle system, when the volume Λ, and
the initial number of particles N0 go to infinity in such a way that:

lim
Λ, N0→+∞

N0

Λ
= 1 ∈ (0,+∞). (1.11)

As already observed, this limit has to be interpreted as a thermodynamic limit (see [39,
Chapters 2 & 3]). Setting for simplicity

ε = Λ−1,

we introduce then the rescaled correlation functions

f εℓ (t,Vℓ) =
∞∑

N=ℓ

εℓ

(N − ℓ)!

∫

R3(N−ℓ)

ΨN (t,VN )dvℓ+1 . . . dvN , ℓ > 1. (1.12)

Our first main result can be summarized as follows:

Theorem 1.7. For any ε > 0 and N0 ∈ N even, let {f εℓ (t)}ℓ=1,...,N0 be the rescaled correlation
functions associated to the unique solution {ΨN (t)}N to (1.7) with initial datum (1.9). Then,
for any ℓ > 1 and any t > 0, there exists some positive measure µℓ(t) ∈ M(R3ℓ) and a
subsequence (still denoted {f εℓ (t)}ε>0,N0∈N) such that

lim
ε→0, N0→+∞

εN0→1

〈
f εℓ (t),Φℓ

〉
ℓ
=
〈
µℓ(t),Φℓ〉ℓ ∀Φℓ ∈ C0(R3ℓ).

Moreover, the family {µℓ(·)}ℓ>1 is a weak solution to some suitable Annihilated Boltzmann
Hierarchy of equations. Here, M(R3ℓ) denotes the space of signed Radon measures on R

3ℓ.
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We refer to Sections 4 – 5 for the definition of the Annihilated Boltzmann Hierarchy
(cf. (5.1)) and a more precise statement, as well as the proof, of Theorem 1.7(cf. Propositions
4.6 and Theorem 5.4). Moreover, we notice that the Annihilated Boltzmann Hierarchy admits
as peculiar solution the tensorized function

{
f⊗ℓ(·)

}
ℓ
, i.e.

f⊗ℓ(t,Vℓ) = f(t, v1) . . . f(t, vℓ), Vℓ = (v1, . . . , vℓ) ∈ R
3ℓ ; t > 0, ℓ > 1,

where f(t) is the unique solution to (1.1).
We further notice that, strictly speaking, Theorem 1.7 does not provide a justification of

(1.1) since the measure solution µℓ(t) may differ from the peculiar solution f(t)⊗ℓ. However,
for bounded cross-sections, one can prove that the Annihilated Boltzmann Hierarchy admits a
unique solution, yielding a validation of (1.1), which is the content of our second main result:

Theorem 1.8 (Propagation of Chaos). Assume that ΣB is bounded, i.e. there exists CB > 0
such that ∫

S2

B(v − v∗, ω)dω 6 CB ∀v, v∗ ∈ R
3.

For any ε > 0 and N0 ∈ N even, let {f εℓ (t)}ℓ=1,...,N0 be the rescaled correlation functions
associated to the unique solution {ΨN (t)}N to (1.7) with initial datum (1.9). Then, for any
ℓ > 1, we have

f εℓ (t) −→
N0→∞,ε→0
N0ε→1

f(t)⊗ℓ

in the weak-⋆ topology of M(R3ℓ) and f(t) is the unique solution to (1.1). The above conver-
gence is uniform with respect to t in any compact set.

Though very partial, the above result is, up to our knowledge, the first rigorous mathemati-
cal justification of the kinetic equation (1.1). This result is restricted to bounded cross-sections
and it would be of course more satisfactory to prove it for hard-sphere interactions. We ex-
plain in Section 6 the main difficulty we face in proving such a result. We wish nevertheless
to emphasize that the high dissipative nature of (1.1) makes the analysis quite challenging.

While the study of mean-field limit for spatially homogeneous equations reached already
a mature level and the literature on this topic is very vast (as discussed in Section 1.2), the
mathematical literature on dissipative kinetic-like equations is rather scarse. We mention here
the paper [31], in the spirit of [30], concerning the propagation of chaos for the inelastic Boltz-
mann equation (when the energy is dissipated but not the mass). In [31] suitable reservoirs
are added to prevent too strong dissipation. The model with strong dissipation where mass
is decreasing (and therefore, at particles level, the number of particles is non constant) which
received more attention is the Smoluchowski equation for coalescing particles. Probabilistic
approaches to the justification of Smoluchowski equation from a particle system have been
discussed in [17], [34] and [10]. For an analytical approach based on a suitable adaptation of
the BBGKY Hierarchy, which is the inspiration for the present work, we refer to [11]. Notice
here that, for the kinetic annihilation model considered here (cf. (1.1)–(1.7)), probabilistic
treatment does not seem easy to adapt since (1.1) does not exhibit any conserved quantity.
We mention also some recent contributions on the derivation of a linear version of the Smolu-
chowski equation from a mechanical particle system (cf. [35, 33]) and the monograph [22] for
a comprehensive study of Smoluchowski or Boltzmann equation.

As mentioned earlier, our approach is inspired by [11] in particular for what concerns the
use of suitable hierarchies of equations, the BBGKY Hierarchy and the Annihilated Boltzmann
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Hierarchy. The proof of Theorem 1.7 is obtained through a suitable compactness argument.
The novelty of the approach, with respect to [11], is that we work here with measure solutions
to the involved hierarchies. The main advantage of dealing with such a functional framework
is that weak compactness is, somehow, equivalent to tightness and relies on some suitable esti-
mates for the mass and the energy (uniformly with respect to the parameters N, ε). The proof
of such weak compactness and partial convergence results are given in Section 4, Proposition
4.6. Then, one can prove that any limiting point of the family of rescaled correlation functions
{f εℓ (t)}ε>0,N0∈N has to be measure solution to some suitable Annihilated Boltzmann Hierarchy
introduced in Section 5. As it is well known for this kind of problem, the major difficulty is to
prove the uniqueness of solution to such limit hierarchy (see [2] and [30, Section 8]). We are
able to prove such uniqueness result for bounded collision kernel, resulting in Theorem 1.8.
The extension of Theorem 1.8 to unbounded collision kernel – mainly the hard-sphere colli-
sion kernel – is the project of future work by the authors. The present contribution somehow
paving the ground to the rigorous derivation of (1.1). We discuss in Section 6 several possible
paths to handle hard-sphere interactions and the technical difficulties associated to them. We
can already anticipate that, for hard-sphere kernels, the exact rate of mass dissipation is not
known and it appears difficult then to provide a suitable modification of (1.1) where a suitable
reservoir would prevent the convergence to zero of f(t, v) (as in [31]). Another related diffi-
culty is that it does not seem possible to adapt the approach introduced in [2] and revisited
in [30, Section 8] and based upon De Finetti’s Theorem since we are not dealing here with
probability measures. We refer to Section 6 for more details.

The organization of the paper is the following. In Section 2 we introduce the notations
and function spaces we are dealing with in the sequel. We also prove the well-posedness of the
N -particle system associated to (1.7) owing to suitable substochastic semigroups techniques
(see Theorem 2.3). In Section 3 we define the (rescaled) correlation functions and the BBGKY
hierarchy associated to (1.7) while, in Section 4, we establish our main compactness result and
the convergence part of Theorem 1.7. In Section 5, we derive the limiting hierarchy ABH and
prove the second part of Theorem 1.7, namely the fact that any limit point of the sequence
of rescaled correlation functions is a suitable solution to this limiting hiearchy. We also prove
Theorem 1.8 in Section 5 which relies on some uniqueness result for the hierarchy. Section 6
describes the possible extension of the present results to the more relevant case of hard-sphere
interactions, including several perspectives and discussions on the difficulties associated to this
kind of interactions. In Appendix A, we prove a technical result concerning the semigroup
generation properties used in Section 2.

2 Well-posedness of the many-particles system (1.7)

2.1 Notations and function spaces.

For any k > 2, unless otherwise specified, we will always assume that the functions Φk =
Φ(Vk), depending on k velocities v1, . . . , vk, are symmetric with respect to permutations, i.e.

Φk(vπ(1), . . . , vπ(k)) = Φk(v1, . . . , vk) for any permutation π ∈ Sk

where Sk is the permutation group of the set {1, . . . , k}. For any k > 1, we denote by M (R3k)
the space of (bounded) signed Radon measures over R3k endowed with the total variation norm

‖µ‖1,k :=
∫

R3k

|µ| (dVk).

9



When no ambiguity can occur, we simply use ‖µ‖1 for the above total variation norm. We
see then L1(R3k) as a (closed) subspace of M (R3k) and still denote by ‖f‖1 the norm of a
function f ∈ L1(R3k). We refer to [6, 12] for results and terminology about Radon measures.
We notice that M (R3k) – endowed with the ‖ · ‖1 norm is an AL-space (i.e a Banach lattice
whose norm is additive on the positive cone), see [40, Example 3, p. 218]. The positive cone of
M (R3k) will be denoted by M+(R3k). As we did for the functions Φk = Φ(Vk), we also assume
that the measures we consider in the sequel are symmetric with respect to permutations, i.e.
µ ◦ π−1 = π for any permutation π ∈ Sk.

For any k > 1, we denote by Cb(R3k) (resp. C0(R3k)) the space of continuous and bounded
functions (resp. vanishing at infinity) over R

3k endowed with the sup-norm.
Given k > 1 and ℓ ∈ {1, . . . , k}, we define the marginal operator

Πℓ : µk ∈ M (R3k) 7−→ Πℓ µk :=

∫

R3(k−ℓ)

µk(·,dvℓ, . . . ,dvk) ∈ M (R3ℓ)

i.e. Πℓµk is defined in weak-form as

〈Πℓµk,Φℓ〉ℓ =
∫

R3k

Φℓ(Vℓ)µk(dVk), ∀Φℓ ∈ C0(R3ℓ).

Given a measurable non-negative mapping gk : R
3k → R

+ and µk ∈ M (R3k) we define the
“product” gk(·)µk as the (possibly unbounded) Borel measure over R

3k defined by

〈gk(·)µk,Φk〉k =
∫

R3k

gk(Vk)Φk(Vk)µk(dVk), ∀Φk ∈ C0(R3k).

2.2 Reformulation of the problem (1.7)

It will be convenient to reformulate (1.7) in a more compact form. We introduce, for any
N > 1, the generalized collision frequency

σN : VN = (v1, . . . , vN ) ∈ R
3N 7−→ σN (VN ) =

∑

16i<j6N

∫

S2

B(vi − vj , ω)dω (2.1)

and, introducing the functional space

L1
N (R

3N ) =

{
f ∈ L1(R3N ) ; ‖f‖L1

N
(R3N ) :=

∫

R3N

f(VN)σN (VN )dVN <∞
}

we can define the following operators:

GN : L1
N (R

3N ) −→ L1(R3N )

ΦN 7−→ GN (ΦN )(VN ) =
∑

16i<j6N

∫

S2

B(vi − vj , ω)ΦN

(
V
i,j
N

)
dω

(2.2)

and let ΓN+2 : L1
N+2(R

3N+6) −→ L1(R3N ) be defined by

ΓN+2(ΦN+2)(VN ) =

∫

R3

dvN+1

∫

R3

dvN+2

∫

S2

B(vN+1 − vN+2, ω)ΦN+2 (t,VN , vN+1, vN+2) dω

(2.3)
for any ΦN+2 ∈ L1

N+2(R
3N+6) and any VN ∈ R

3N .

One can easily check that for any nonnegative ΦN ∈ L1
N (R

3N ) and ΦN+2 ∈ L1
N+2(R

3N+6)
it holds:

10



i) ‖GN [ΦN ]‖L1(R3N ) = ‖ΦN‖L1
N
(R3N );

ii) ‖ΓN+2[ΦN+2]‖L1(R3N ) 6
2

(N + 1)(N + 2)
‖ΦN+2‖L1

N+2(R
3N+6).

With these notations, we can rewrite (1.7) as

∂tΨN (t,VN ) +
1

Λ
σN (VN )ΨN (t,VN ) =

(1− α)

Λ
GN [ΨN ](t,VN )

+
α

2Λ
ΓN+2[ΨN+2](t,VN ) N > 1,VN ∈ R

3N .

(2.4)

Let us introduce, for any N > 1, the (unbounded) operator

LN : D(LN ) ⊂ L1(R3N ) → L1(R3N )

with domain D(LN ) = L1
N (R

3N ) and defined by

LN (ΦN ) = (1− α)GN [ΦN ]− σNΦN , ΦN ∈ D(LN ). (2.5)

The general properties of LN are listed in the following Proposition whose proof is postponed
to Appendix A:

Proposition 2.1. For any N > 1, (LN ,D(LN )) is the generator of a strongly continuous
semigroup of contractions (SN (t))t>0 in L1(R3N ). Moreover, for any t > 0, one has

∫ t

0
‖SN (s)ΦN‖L1

N
(R3N ) ds 6

1

α
‖ΦN‖L1(R3N ) ∀ΦN ∈ L1(R3N ). (2.6)

Using (2.5) we can rewrite (2.4) as

∂tΨN (t,VN ) =
1

Λ
LN [ΨN ](t,VN ) +

α

2Λ
ΓN+2[ΨN+2](t,VN ). (2.7)

Thanks to Proposition 2.1, seeing the factor 1
Λ as a time scaling, we can write the solution to

(2.7) with initial datum ΨN (0) in terms of the Duhamel’s formula

ΨN (t) = SN
(
t

Λ

)
ΨN(0) +

α

2Λ

∫ t

0
SN
(
t− s

Λ

)
ΓN+2[ΨN+2(s)]ds. (2.8)

2.3 A priori estimates

We establish here several a priori estimates for the solution to (1.7). We consider a
sequence {ΨN (t)}N of nonnegative functions with

ΨN ∈ C1([0,+∞);L1(R3N )) ∀N > 1

which satisfies (1.7) for any N > 1. We introduce then, for every N ∈ N, the function

Ψ(t,N) =
1

N !

∫

R3N

ΨN (t,VN )dVN (2.9)
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which represents the probability that at time t the system is constituted by N particles. We
observe that the natural normalization (1.6) holds true for any time, i.e.

∞∑

N=0

Ψ(t,N) = 1 (2.10)

where we notice that the factor 1/N ! in definition (2.9) is needed to compensate for counting
all the N ! physically equivalent ways of arranging the velocities v1, . . . , vN .

Due to our choice of the initial datum we have

Ψ(0, N) =: Ψ0(N) = δN0(N), (2.11)

where δm is the Dirac counting measure on N. Equation (2.11) just means that at t = 0
our system has exactly N0 particles and it follows that at t = 0 property (2.10) is trivially
satisfied. We now show that (2.10) holds for any positive t > 0 as well:

Proposition 2.2. Assume that the mapping t > 0 7→ ∑∞
N=1ΨN (t) belongs to C1([0,∞)).

Then, for any t > 0, it holds

ΨN (t) = 0 ∀N > N0 + 1 (2.12)

and
∞∑

N=1

Ψ(t,N) = 1. (2.13)

Proof. The proof is an adaptation of the argument proposed in [11, Theorem 2.1]. More
precisely, for any k > 1, we compute the time derivative of

∑∞
N=kΨ(t,N). By (1.7) we get

d

dt

∞∑

N=k

Ψ(t,N) = −1

2

∞∑

N=k

N(N − 1)

N !

∫

R3N

dVN

∫

S2

BΛ(vN−1 − vN , ω)ΨN (t,VN ) dω

+
(1− α)

2

∞∑

N=k

N(N − 1)

N !

∫

R3N

dVN

∫

S2

BΛ(vN−1 − vN , ω)ΨN

(
t,V N−1,N

N

)
dω

+
α

2

∞∑

N=k

1

N !

∫

R3N+6

dVN+2

∫

S2

BΛ(vN+1 − vN+2, ω)ΨN+2(t,VN+2)dω,

(2.14)

where we used the symmetry of ΨN(t) with respect to any permutation of the indices to write

∑

16i<j6N

∫

R3N

dVN

∫

S2

BΛ(vi − vj , ω)ΨN (t,VN ) dω =

N(N − 1)

2

∫

R3N

dVN

∫

S2

BΛ(vN−1 − vN , ω)ΨN (t,VN ) dω

and

∑

16i<j6N

∫

R3N

dVN

∫

S2

BΛ(vi − vj , ω)ΨN

(
t,V i,j

N

)
dω =

N(N − 1)

2

∫

R3N

dVN

∫

S2

BΛ(vN−1 − vN , ω)ΨN

(
t,V N−1,N

N

)
dω.
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We observe that for any i, j ∈ {1, . . . , N} we have

∫

R3

dvi

∫

R3

dvj

∫

S2

BΛ(vi−vj , ω)ΨN (t,VN ) dω =

∫

R3

dvi

∫

R3

dvj

∫

S2

BΛ(vi−vj , ω)ΨN

(
t,V i,j

N

)
dω.

Then, equation (2.14) yields

d

dt

∞∑

N=k

Ψ(t,N) = −α
2

∞∑

N=k

N(N − 1)

N !

∫

R3N

dVN

∫

S2

BΛ(vN−1 − vN , ω)ΨN (t,VN ) dω

+
α

2

∞∑

N=k

1

N !

∫

R3N+6

dVN+2

∫

S2

BΛ(vN+1 − vN+2, ω)ΨN+2(t,VN+2)dω,

= −α
2

∞∑

N=k+2

1

(N − 2)!

∫

R3N

dVN

∫

S2

BΛ(vN−1 − vN , ω)ΨN (t,VN ) dω

+
α

2

∞∑

N=k

1

N !

∫

R3N+6

dVN+2

∫

S2

BΛ(vN+1 − vN+2, ω)ΨN+2(t,VN+2)dω

Performing the change of indices N → N − 2 in the first sum, one finds

d

dt

∞∑

N=k

Ψ(t,N) = −α
2

1

(k − 2)!

∫

R3k

dVℓ

∫

S2

BΛ(vℓ − vk−1, ω)Ψℓ(t,Vℓ)dω

− α

2

1

(k − 1)!

∫

R3k+3

dVℓ+1

∫

S2

BΛ(vℓ+1 − vℓ, ω)Ψℓ+1(t,Vℓ+1)dω 6 0.

(2.15)

In particular, applying (2.15) and choosing k = N0 + 1, we obtain

∞∑

N=N0+1

Ψ(t,N) 6
∞∑

N=N0+1

Ψ(0, N) = 0 ∀t > 0

since Ψ
0(N) = 0 for any N 6= N0. Using that Ψ(t,N) is nonnegative for any t > 0 and any

N > 1, we get (2.12). The proof of (2.13) follows directly from (2.15) applied to k = 1 which
yields

d

dt

∞∑

N=1

Ψ(t,N) = 0

and the conclusion follows since
∑∞

N=1 Ψ
0(N) = 1.

We can now prove the well-posedness of the Cauchy problem associated to (1.7) (cf. (2.7)).
We establish the following:

Theorem 2.3. For any n0 > 1 let N0 = 2n0 and let the initial datum (ΨN (0))N>1 be given
by (1.9). Then, there exists a unique solution {ΨN (t)}N>1, t>0 to (1.7) such that

ΨN ∈ C1([0,+∞);L1(R3N )) ∀N > 1
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and such that the mapping t > 0 7→
∑∞

N=1 Ψ(t,N) belongs to C1([0,∞)). Such a solution
satisfies (2.12) and (2.13) and is given by




ΨN0(t) = SN0

(
t
Λ

)
ΨN0(0) t > 0

ΨN0−1(t) = 0 t > 0

ΨN0−2(t) =
α

Λ

∫ t

0
SN0−2

(
t− s

Λ

)
ΓN0 [ΨN0(s)]ds

=
α

Λ

∫ t

0
SN0−2

(
t− s

Λ

)
ΓN0 [SN0

( s
Λ

)
ΨN0(0)]ds

ΨN0−3(t) = 0

ΨN0−4(t) =
α

Λ

∫ t

0
SN0−4

(
t− s

Λ

)
ΓN0−2[ΨN0−2(s)]ds

=
α2

Λ2

∫ t

0
ds

∫ s

0
SN0−4

(
t

Λ

)
ΓN0−2

[
SN0−2

(
s− τ

Λ

)
ΓN0 [SN0

( τ
Λ

)
ΨN0(0)]

]
dτ

...

ΨN0−2k(t) =
α

Λ

∫ t

0
SN0−2k

(
t− s

Λ

)
ΓN0−2k+2[ΨN0−2k+2(s)]ds ∀k ∈ {1, . . . , n0}.

(2.16)

Moreover, for any T > 0, it holds

∫ T

0
‖ΨN (t)‖L1

N
(R3N )dt 6

Λ

α
N0! ∀N = N0 − 2k , k ∈ {0, . . . , n0}. (2.17)

Proof. We introduce the class S of sequences {ΦN (·)}N>1 such that

ΦN ∈ C1([0,+∞);L1(R3N )) N > 1

and the mapping t > 0 7−→∑∞
N=1 Φ(t,N) belongs to C1([0,∞)) where

Φ(t,N) =
1

N !

∫

R3N

ΦN (t,VN )dVN ∀t > 0.

According to Proposition 2.2, any solution {ΨN (t)}N>1, t>0 to (1.7) (with initial datum given
by (1.9)) which belongs to the class S is such that ΨN (t) = 0 for any N > N0. Then,
Duhamel’s formula (2.8) implies that any solution ΨN (t) satisfies (2.16). It remains to prove
that, indeed, the sequence {ΨN (t)}N>1, t>0 given by (2.16) belongs to the class S and that
the solution is unique within this class. To prove the first claim, we first prove that ΨN (t) ∈
L1(R3N ) for any t > 0 and any N ∈ N. Clearly, the difficulty stems from the fact that σN is
unbounded. Let us fix T > 0. One has

∫ T

0
‖ΨN0(t)‖L1

N0
dt =

∫ T

0

∥∥∥∥SN0

(
t

Λ

)
ΨN0(0)

∥∥∥∥
L1
N0

dt

6
Λ

α
‖ΨN0‖L1(R3N0 ) =

N0! Λ

α

(2.18)
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according to (2.6). Now, for any k ∈ {1, . . . , n0}, using (2.16), we have

∫ T

0
‖ΨN0−2k(t)‖L1

N0−2k
dt

6
α

Λ

∫ T

0
dt

∫ t

0

∥∥∥∥SN0−2k

(
t− s

Λ

)
ΓN0−2k+2[ΨN0−2k+2(s)]

∥∥∥∥
L1
N0−2k

ds

=
α

Λ

∫ T

0
ds

∫ T

s

∥∥∥∥SN0−2k

(
t− s

Λ

)
ΓN0−2k+2[ΨN0−2k+2(s)]

∥∥∥∥
L1
N0−2k

dt

6
α

Λ

∫ T

0
ds

∫ T

0

∥∥∥SN0−2k

( τ
Λ

)
ΓN0−2k+2[ΨN0−2k+2(s)]

∥∥∥
L1
N0−2k

dτ.

Applying again (2.6) we obtain

∫ T

0
‖ΨN0−2k(t)‖L1

N0−2k
dt 6

∫ T

0
‖ΓN0−2k+2[ΨN0−2k+2(s)]‖L1(R3(N0−2k+2) dt

6

∫ T

0
‖ΨN0−2k+2(s)‖L1

N0−2k+2
dt ∀k ∈ {1, . . . , n0}.

By finite induction and, using (2.18), this clearly yields (2.17). In particular, using the fact
that (SN (t))t>0 is a contraction semigroup in L1(R3N ), one deduces directly from (2.17) that

‖ΨN+2(t)‖L1 6

∫ t

0
‖ΓN [ΨN (s)]‖L1

N
ds 6 CN ∀N 6 N0

which shows that ΨN (t) ∈ L1
N (R

3N ) for any t > 0. Moreover, by virtue of (1.10), the initial
datum Ψ0

N0
∈ D(LN0) = L1(R3N0)∩L1

N0
(R3N0 . Thus, by classical semigroup theory ΨN0(t) =

SN0(t)Ψ
0
N0

∈ C1([0,∞), L1(R3N0). By (1.7), it follows that ΨN ∈ C1([0,+∞);L1(R3N )) for
any N 6 N0. Moreover, since the sum

∑
N>1Ψ(·, N) is actually finite, it also belongs to

C1([0,+∞)). This shows that the constructed solution {ΨN (t)}N>1, t>0 belongs to the class
S . It remains to prove the uniqueness of the solution to (1.7) within this class. In order
to do this, let us consider two solutions

{
Ψ1
N (t)

}
N>1, t>0

and
{
Ψ2
N (t)

}
N>1, t>0

of (1.7), both

belonging to the class S and such that Ψ1
N (0) = Ψ2

N (0) = Ψ0
N given by (1.9). We set

ΦN (t) = Ψ1
N (t)−Ψ2

N (t) for any t > 0 and any N > 0. Arguing exactly as above one deduces
from Duhamel’s formula (2.8) that

∫ T

0
‖ΦN (t)‖L1

N
dt 6

1

Λ

∫ T

0
‖ΦN+2(t)‖L1

N+2
dt ∀T > 0.

Since (2.12) implies that ΦN (t) = 0 for any N > N0 + 1, this shows that ΦN (t) = 0 for any
N > 0 and the solution is unique in the class S .

3 Correlation Functions and BBGKY hierarchy

For any fixed ℓ ∈ N, we define the ℓ-particle correlation function fℓ(v1, . . . , vℓ, t) at time t
as

fℓ(v1, . . . , vℓ, t) =

∞∑

N=ℓ

1

(N − ℓ)!

∫

R3

dvℓ+1· · ·
∫

R3

dvNΨN (VN , t). (3.1)
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For ℓ = 0 we set f0 ≡ 0. Notice that, for N = ℓ, the above integral is meaningless and it is
intended simply as Ψℓ(Vℓ, t), i.e.

fℓ(Vℓ, t) = Ψℓ(Vℓ, t) +
∞∑

N=ℓ+1

1

(N − ℓ)!

∫

R3

dvℓ+1· · ·
∫

R3

dvN ΨN (VN , t).

We collect here some general properties of the correlation functions fℓ. At any time t the
expected (or mean) number of particles N(t) defined as

N(t) =

∞∑

N=0

NΨ(t,N), (3.2)

with Ψ(t,N) given as in (2.9), satisfies

N(t) =

∫

R3

f1(v1, t)dv1. (3.3)

The function f1 is then the density function associated to the average number of particles.
More generally, one may also define

Nk(t) =

∞∑

N=1

N(N − 1) . . . (N − k + 1)Ψ(t,N), (3.4)

and then

Nk(t) = ‖fk(t)‖L1(R3k). (3.5)

The functions fℓ’s will be called correlation functions since they satisfy properties (3.3),
(3.5) and their definition is similar to that of the classical correlation functions in statistical
mechanics. The correlation function fℓ(t) = fℓ(t,Vℓ) satisfies the following

Proposition 3.1 (BBGKY Hierarchy). Let fℓ(t) = fℓ(t,Vℓ) be defined as in (3.1). For
any ℓ ∈ {1, . . . , N0} we have that fℓ(t,Vℓ) satisfies

∂tfℓ(t,Vℓ) =
∑

16i<j6ℓ

∫

S2

BΛ(vi − vj , ω)
[
(1− α)fℓ

(
t,V i,j

ℓ

)
− fℓ (t,Vℓ)

]
dω

+

ℓ∑

i=1

∫

R3

dvℓ+1

∫

S2

BΛ(vi − vℓ+1, ω)
[
(1− α)fℓ+1

(
t,V i,ℓ+1

ℓ+1

)
− fℓ+1 (t,Vℓ+1)

]
dω.

(3.6)

Proof. The proof is obtained by direct inspection, exploiting the fact that ΨN (t) is symmetric.
Namely, using the definition (3.1), a straightforward computation from (2.4) shows that for
any ℓ 6 N0 the function fℓ satisfies

∂tfℓ(Vℓ, t) =−
∞∑

N=ℓ

1

(N − ℓ)!

∑

16i<j6N

∫

R3(N−ℓ)

dVN,ℓ

∫

S2

BΛ(vi − vj , ω)ΨN (t,VN ) dω

+ (1− α)

∞∑

N=ℓ

1

(N − ℓ)!

∑

16i<j6N

∫

R3(N−ℓ)

dVN,ℓ

∫

S2

BΛ(vi − vj , ω)ΨN

(
t,V i,j

N

)
dω

+
α

2

∞∑

N=ℓ

1

(N − ℓ)!

∫

R3(N+2−ℓ)

dVN+2,ℓ

∫

S2

BΛ(vN+1 − vN+2, ω)ΨN+2 (t,VN+2) dω

:= A1 +A2 +A3 (3.7)
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where we used the notation, valid for any N > 1, k ∈ {1, . . . , N},

VN,k := (vk+1, . . . , vN ).

The first term on the right hand side of (3.7) gives the following contributions

A1 =−
∑

16i<j6ℓ

∫

S2

BΛ(vi − vj, ω)fℓ (t,Vℓ) dω

−
∞∑

N=ℓ

(N − ℓ)

(N − ℓ)!

ℓ∑

i=1

∫

R3

dvℓ+1

∫

S2

BΛ(vi − vℓ+1, ω)dω

∫

R3(N−ℓ−1)
ΨN (t,VN ) dVN,ℓ+1

− 1

2

∞∑

N=ℓ

(N − ℓ)(N − ℓ− 1)

(N − ℓ)!

∫

R3(N−ℓ)
dVN+2,ℓ+2

∫

S2

BΛ(vℓ+1 − vℓ+2, ω)ΨN (t,VN ) dω

=: A1,1 +A1,2 +A1,3 (3.8)

where we divided the sum with respect to i and j into three parts, 1 6 i < j 6 ℓ, 1 6 i 6
ℓ, ℓ + 1 6 j 6 N and ℓ + 1 6 i < j 6 N . Moreover, we used the symmetry of ΨN (t) with
respect to any permutation of the indices to write

N∑

j=ℓ+1

∫

R3(N−ℓ)

dVN,ℓ

∫

S2

BΛ(vi − vj , ω)ΨN (t,VN ) dω

= (N − ℓ)

∫

R3(N−ℓ)
dVN,ℓ

∫

S2

BΛ(vi − vℓ+1, ω)ΨN (t,VN ) dω

= (N − ℓ)

∫

R3

dvℓ+1

∫

S2

BΛ(vi − vℓ+1, ω)

∫

R3(N−ℓ−1)

dVN,ℓ+1ΨN (t,VN ) dω

and
∑

ℓ+16i<j6N

∫

R3(N−ℓ)

dVN,ℓ

∫

S2

BΛ(vi − vj, ω)ΨN (t,VN ) dω

=
(N − ℓ)(N − ℓ− 1)

2

∫

R3(N−ℓ)

dVN,ℓ

∫

S2

BΛ(vℓ+1 − vℓ+2, ω)ΨN (t,VN ) dω

=
(N − ℓ)(N − ℓ− 1)

2

∫

R3

dvℓ+1

∫

R3

dvℓ+2

∫

S2

BΛ(vℓ+1 − vℓ+2, ω)dω ×

×
∫

R3(N−ℓ−2)

ΨN (t,VN ) dVN,ℓ+2.

Using Fubini’s theorem and Definition (3.1) we obtain

A1,2 = −
∞∑

N=ℓ+1

(N − ℓ)

(N − ℓ)!

ℓ∑

i=1

∫

R3

dvℓ+1

∫

S2

BΛ(vi − vℓ+1, ω)dω

∫

R3(N−ℓ−1)

ΨN (t,VN ) dVN,ℓ+1

= −
ℓ∑

i=1

∫

R3

dvℓ+1

∫

S2

BΛ(vi − vℓ+1, ω)dω
∞∑

N=ℓ+1

1

(N − (ℓ+ 1))!

∫

R3(N−ℓ−1)

ΨN (t,VN ) dVN,ℓ+1

= −
ℓ∑

i=1

∫

R3

dvℓ+1

∫

S2

BΛ(vi − vℓ+1, ω)fℓ+1 (t,Vℓ+1) dω

(3.9)
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and

A1,3 = −1

2

∞∑

N=ℓ+2

(N − ℓ)(N − ℓ− 1)

(N − ℓ)!

∫

R3

dvℓ+1

∫

R3

dvℓ+2

∫

S2

BΛ(vℓ+1 − vℓ+2, ω)dω

∫

R3(N−ℓ−2)

ΨN (t,VN ) dVN,ℓ+2

= −1

2

∫

R3

dvℓ+1

∫

R3

dvℓ+2

∫

S2

BΛ(vℓ+1 − vℓ+2, ω)fℓ+2 (t,Vℓ+2) dω. (3.10)

Therefore, using (3.9) and (3.10), we obtain that A1, i.e. the first term on the right hand side
of (3.7), gives the following contribution

A1 =−
∑

16i<j6ℓ

∫

S2

BΛ(vi − vj , ω)fℓ (t,Vℓ) dω

−
ℓ∑

i=1

∫

R3

dvℓ+1

∫

S2

BΛ(vi − vℓ+1, ω)fℓ+1 (t,Vℓ+1) dω

− 1

2

∫

R3

dvℓ+1

∫

R3

dvℓ+2

∫

S2

BΛ(vℓ+1 − vℓ+2, ω)fℓ+2 (t,Vℓ+2) dω. (3.11)

By analogous computations we get that A2, i.e. the second term on the right hand side of
(3.7), yields

A2 =(1− α)
∑

16i<j6ℓ

∫

S2

BΛ(vi − vj , ω)fℓ

(
t,V ij

ℓ

)
dω

+ (1− α)
ℓ∑

i=1

∫

R3

dvℓ+1

∫

S2

BΛ(vi − vℓ+1, ω)fℓ+1

(
t,V i,ℓ+1

ℓ+1

)
dω

+
(1− α)

2

∫

R3

dvℓ+1

∫

R3

dvℓ+2

∫

S2

BΛ(vℓ+1 − vℓ+2, ω)fℓ+2

(
t,V ℓ+1,ℓ+2

ℓ+2

)
dω. (3.12)

We now look at the third term on the right hand side of (3.7), i.e. A3. Due to the symmetry
of ΨN (t) with respect to any permutation of the indeces it holds

A3 =
α

2

∞∑

N=ℓ

1

(N − ℓ)!

∫

R3(N−ℓ)

dVN,ℓ

∫

R3

dvN+1

∫

R3

dvN+2

×
∫

S2

BΛ(vN+1 − vN+2, ω)ΨN+2 (t,VN+2) dω

=
α

2

∫

R3

dvℓ+1

∫

R3

dvℓ+2

∫

S2

BΛ(vℓ+1 − vℓ+2, ω)fℓ+2 (t,Vℓ+2) dω. (3.13)

Putting together (3.11), (3.12) and (3.13) we conclude that the hierarchy solved by the corre-
lation functions {fℓ(t)}ℓ is exactly (3.6).

4 BBGKY hierarchy for the rescaled correlation functions

4.1 Weak formulation for the BBGKY hierarchy

As discussed in the previous sections, we are interested in the limit of the finite particle
system, when the volume Λ and the initial number of particles N0 go to infinity in such a way
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that:

lim
Λ, N0→+∞

N0

Λ
= ̺0 ∈ (0,+∞), (4.1)

or, equivalently, using the notation ε = Λ−1 as we did in the Introduction,

N0 ε −→ 1 as N0 → ∞ and ε→ 0+.

To investigate the limiting behavior of the particle system, we first recall that the rescaled
correlation functions {f εℓ (t)}N0

ℓ=1 are given by (see (1.12)):

f εℓ (t,Vℓ) := εℓ fℓ(t,Vℓ) =
∞∑

N=ℓ

εℓ

(N − ℓ)!

∫

R3

dvℓ+1· · ·
∫

R3

dvN ΨN (VN , t), t > 0, (4.2)

for any Vℓ = (v1, . . . , vℓ) ∈ R
3ℓ, ℓ = 1, . . . , N0.

Since the function f1 is the number density function (cf. Section 3) the rescaled function
f ε1 is the density function associated to the concentration of particles, i.e. it corresponds to
the number of particles per unit volume.

We proved in Proposition 3.1 that the correlation functions {fℓ(t)}k>1 satisfy the BBGKY
hierarchy (3.6). Analogously, the rescaled correlation functions {f εℓ (t)}N0

ℓ=1 satisfy a rescaled
version of the BBGKY hierarchy (3.6). It will be convenient to write such a rescaled hierarchy
in weak form – identifying each f εℓ with a Radon measure on R

3ℓ. In order to do this, let us
introduce the duality pairing as

〈
µℓ,Φℓ

〉
ℓ
=

∫

R3ℓ

Φℓ(Vℓ)µℓ(dVℓ)

for any (signed) Radon measure µℓ ∈ M (R3ℓ) and any test-function Φℓ ∈ Cb(R3ℓ). When
no ambiguity is possible, we simply denote the above pairing as

〈
µℓ,Φℓ

〉
(omitting the last

ℓ-index). We then identify f εℓ (t) with a positive Radon measure and write

f εℓ (t,dVℓ) := f εℓ (t,Vℓ)dVℓ.

A direct consequence of Proposition 3.1 is the following:

Proposition 4.1 (Rescaled BBGKY Hierarchy in weak form). For any ℓ ∈ {1, . . . , N0}
and any symmetric test function Φℓ ∈ Cb(R3ℓ), we have

〈
f εℓ (t),Φℓ

〉
ℓ
=
〈
f εℓ (0),Φℓ

〉
ℓ

+ ε
∑

16i<j6ℓ

∫ t

0
ds

∫

R3ℓ

f εℓ (s,dVℓ)

∫

S2

B(vi − vj , ω)
[
(1− α)Φℓ(V

i,j
ℓ )− Φℓ(Vℓ)

]
dω

+

ℓ∑

i=1

∫ t

0
ds

∫

R3(ℓ+1)

f εℓ+1(s,dVℓ+1)

∫

S2

B(vi − vℓ+1, ω)
[
(1− α)Φℓ(V̂ℓ

i,ℓ+1
)− Φℓ(Vℓ)

]
dω

(4.3)

where V̂ℓ
i,ℓ+1

= (v1, . . . , vi−1, v
′
i, vi+1, . . . , vℓ) with v′i = vi − [(vi − vℓ+1) · ω]ω.
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Proof. We first rewrite (3.6) for the rescaled correlation functions f εℓ (t). This gives the hier-
archy satisfied by f εℓ (t), i.e.

∂tf
ε
ℓ (t,Vℓ) = ε

∑

16i<j6ℓ

∫

S2

B(vi − vj , ω)
[
(1− α)f εℓ

(
t,V i,j

ℓ

)
− f εℓ (t,Vℓ)

]
dω

+

ℓ∑

i=1

∫

R3

dvℓ+1

∫

S2

B(vi − vℓ+1, ω)
[
(1− α)f εℓ+1

(
t,V i,ℓ+1

ℓ+1

)
− f εℓ+1 (t,Vℓ+1)

]
dω.

(4.4)

Then, multiplying (4.4) by a test function Φℓ, integrating by parts and integrating in t ∈ [0, T ]
we obtain (4.3) in a straightforward way.

Remark 4.2. Notice that the above velocity vector V̂ℓ
i,ℓ+1

belongs to R
3ℓ but, somehow, is

deduced from Vℓ+1 since it also depends on vℓ+1.

Remark 4.3. We will refer to the family of equations (4.3) as BBGKY hierarchy by analogy
with the system arising in the framework of classical particle systems.

By (1.9), (1.10) and (4.2) it follows that, at time t = 0,

f εℓ (Vℓ, 0) = εℓ
(N0)!

(N0 − ℓ)!
f⊗ℓ0 (Vℓ), ℓ = 1, 2, . . . , N0, (4.5)

so that, for every ℓ > 1 we have:

lim
ε→0, N0→+∞

εN0→1

||f εℓ (0)− f⊗ℓ0 ||1 = 0 (4.6)

where we recall that ‖ · ‖1 is the total-variation norm in M (R3ℓ) (corresponding here to the
L1(R3ℓ)-norm). Moreover, assuming that suitable bounds hold for {f εℓ (t)}ℓ, it would follow
that (4.3) behaves as

d

dt

〈
f εℓ (t),Φℓ

〉
ℓ
= O(ε) +

ℓ∑

i=1

∫

R3(ℓ+1)
f εℓ+1(t,dVℓ+1)

∫

S2

B(vi − vℓ+1, ω)
[
(1− α)Φℓ(V̂ℓ

i,ℓ+1
)− Φℓ(Vℓ)

]
dω.

Therefore, we expect that any weak-⋆ limit {gℓ}ℓ of {f εℓ (t)}ℓ satisfies

d

dt

〈
gℓ(t),Φℓ

〉
ℓ
=

ℓ∑

i=1

∫

R3(ℓ+1)

gℓ+1(t,dVℓ+1)

∫

S2

B(vi − vℓ+1, ω)
[
(1− α)Φℓ(V̂ℓ

i,ℓ+1
)− Φℓ(Vℓ)

]
dω, ∀ℓ > 1. (4.7)

The above system of equations will be referred to as the annihilated Boltzmann hierarchy. It
is worth to notice that the difficulty is that, in the limit N0 → ∞ and ε → 0, the above
hierarchy is an infinite hierarchy (while the rescaled BBGKY hierarchy is actually finite since
ℓ ∈ {1, . . . , N0}). In order to prove this convergence, we first need to establish suitable a
priori estimates for the rescaled correlation functions {f εℓ (t)}ℓ.
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4.2 Energy estimates

We prove here the following estimates:

Proposition 4.4. For any ε > 0 and any ℓ > 1, we define the kinetic energy

Eε
ℓ (t) =

∫

R3ℓ

|v1|2f εℓ (t,dVℓ), t > 0

and the mass

̺εℓ(t) =

∫

R3ℓ

f εℓ (t,dVℓ), t > 0.

Then,
Eε
ℓ (t) 6 Eε

ℓ (0) and ̺εℓ(t) 6 ̺εℓ(0) ∀t > 0.

Proof. In order to prove the kinetic energy estimate, we choose the following test-functions:

Φℓ(Vℓ) = E(Vℓ) = ℓ−1
ℓ∑

j=1

|vj |2, Vℓ = (v1, . . . , vℓ) ∈ R
3ℓ

in the weak formulation of the BBGKY hierarchy (4.3). Strictly speaking, E does not belong
to Cb(R3ℓ) however, one can consider the truncated energy

Er(Vℓ) =
{
E(Vℓ) if E(Vℓ) 6 r

r if E(Vℓ) > r

for r > 0 – which belongs to Cb(R3ℓ) – and show that the following estimates are uniform with
respect to the truncation parameter r > 0. For simplicity, one proves the result directly for
E . We have:

d

dt
〈f εℓ (t), E〉 = ε

∑

16i<j6ℓ

∫

R3ℓ

f εℓ (t,dVℓ)

∫

S2

B(vi − vj , ω)
[
(1− α)E(V i,j

ℓ )− E(Vℓ)
]
dω

+
ℓ∑

i=1

∫

R3(k+1)

f εℓ+1(t,dVℓ+1)

∫

S2

B(vi − vℓ+1, ω)
[
(1− α)E(V̂ℓ

i,ℓ+1
)− E(Vℓ)

]
dω.

(4.8)

Notice that E(V i,j
ℓ ) = E(Vℓ) while

E(V̂ℓ
i,ℓ+1

) = ℓ−1


∑

j 6=i

|vj |2 + |v′i|2



= E(Vℓ) + ℓ−1 ((vi − vℓ+1) · ω)2 − 2ℓ−1 ((vi − vℓ+1) · ω) (vi · ω) .
Hence, we can rewrite (4.8) as

d

dt
〈f εℓ (t), E〉 = −αε

∑

16i<j6ℓ

∫

R3ℓ

E(Vℓ)f εℓ (t,dVℓ)
∫

S2

B(vi − vj , ω)dω

− α

ℓ∑

i=1

∫

R3(ℓ+1)
E(Vℓ)f εℓ+1(t,dVℓ+1)

∫

S2

B(vi − vℓ+1, ω)dω

+ (1− α)ℓ−1
ℓ∑

i=1

∫

R3(ℓ+1)

[
A+(vi, vℓ+1)−A−(vi, vℓ+1)

]
f εℓ+1(t,dVℓ+1)

(4.9)
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with

A+(v, v∗) =

∫

S2

B(v − v∗, ω) ((v − v∗) · ω)2 dω,

A−(v, v∗) = 2

∫

S2

B(v − v∗, ω) ((v − v∗) · ω) (v · ω) dω,

for any (v, v∗) ∈ R
6. Writing [(v − v∗) · ω]2 = [(v − v∗) · ω] [v · ω − v⋆ · ω], it follows

∫

R3(ℓ+1)

A+(vi, vℓ+1) f
ε
ℓ+1(t,dVℓ+1)

=

∫

S2

dω

∫

R3(ℓ+1)

B(vi − vℓ+1, ω) [(vi − vℓ+1) · ω] [vi · ω] f εℓ+1(t,dVℓ+1)

−
∫

S2

dω

∫

R3(ℓ+1)

B(vi − vℓ+1, ω) [(vi − vℓ+1) · ω] [vℓ+1 · ω] f εℓ+1(t,dVℓ+1)

i.e.
∫

R3(ℓ+1)

A+(vi, vℓ+1) f
ε
ℓ+1(t,dVℓ+1) =

1

2

∫

R3(ℓ+1)

A−(vi, vℓ+1) f
ε
ℓ+1(t,dVℓ+1)

−
∫

S2

dω

∫

R3(ℓ+1)
B(vi − vℓ+1, ω) [(vi − vℓ+1) · ω] [vℓ+1 · ω] f εℓ+1(t,dVℓ+1).

Now, since f εℓ+1(t) is symmetric, we can exchange the role of vi and vℓ+1 to get

∫

S2

dω

∫

R3(ℓ+1)

B(vi − vℓ+1, ω) [(vi − vℓ+1) · ω] [vℓ+1 · ω] f εℓ+1(t,dVℓ+1)

= −
∫

S2

dω

∫

R3(ℓ+1)

B(vi − vℓ+1, ω) [(vi − vℓ+1) · ω] [vi · ω] f εℓ+1(t,dVℓ+1)

= −1

2

∫

R3(ℓ+1)

A−(vi, vℓ+1)f
ε
ℓ+1(t,dVℓ+1)

i.e. ∫

R3(ℓ+1)

A+(vi, vℓ+1)f
ε
ℓ+1(t,dVℓ+1) =

∫

R3(ℓ+1)

A−(vi, vℓ+1)f
ε
ℓ+1(t,dVℓ+1).

Therefore, (4.9) becomes

d

dt
〈f εℓ (t), E〉 = −α ε

∑

16i<j6ℓ

∫

R3ℓ

E(Vℓ)f εℓ (t,dVℓ)
∫

S2

B(vi − vj , ω)dω

− α

ℓ∑

i=1

∫

R3(ℓ+1)

E(Vℓ)f εℓ+1(t,dVℓ+1)

∫

S2

B(vi − vℓ+1, ω)dω

so that
d

dt
〈f εℓ (t), E〉 6 0

which proves the result since 〈f εℓ (t), E〉 = Eε
ℓ (t) due to the symmetry of f εℓ (t). Using the same

argument above, it is possible to prove that

d

dt
̺εℓ(t) 6 0

by picking the test-function Φℓ(Vℓ) = 1 for all Vℓ in (4.3).
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Notice that, from our choice of the initial datum ΨN (0) (see (4.5)) one has

Eε
ℓ (0) = εℓ

(N0)!

(N0 − ℓ)!

∫

R3ℓ

|v1|2f⊗ℓ0 (Vℓ)dVℓ = εℓ
(N0)!

(N0 − ℓ)!
E0

while

̺εℓ(0) = εℓ
(N0)!

(N0 − ℓ)!
.

In particular,

lim
ε→0, N0→+∞
εN0→̺0

(
Eε
ℓ (0)

̺εℓ(0)

)
=

(
E0

1

)
.

This directly yields the following

Corollary 4.5. For any ε > 0 and N0 ∈ N even, let {f εℓ (t)}ℓ=1,...,N0 be the rescaled correlation
functions associated to the unique solution {ΨN (t)}N to (1.7) with initial datum (1.9). Then,

sup
t>0

Eε
ℓ (t) = sup

t>0

∫

R3ℓ

E(Vℓ)f εℓ (t,dVℓ+1) 6 (N0ε)
ℓE0 ∀ε > 0, N0 ∈ N, ℓ > 1

and

sup
t>0

̺εℓ(t) = sup
t>0

∫

R3ℓ

f εℓ (t,dVℓ+1) 6 (N0ε)
ℓ ∀ε > 0, N0 ∈ N, ℓ > 1.

4.3 Convergence result

On the basis of the above uniform estimate, we deduce from classical convergence Theorem
(see for instance [12, Theorems 1.40 & 1.41, p. 65-66]) the following convergence result:

Proposition 4.6. For any ε > 0 and N0 ∈ N even, let {f εℓ (t)}ℓ=1,...,N0 be the rescaled corre-
lation functions associated to the unique solution {ΨN (t)}N to (1.7) with initial datum (1.9).
Then, for any ℓ > 1 and any t > 0, there exists some positive measure µℓ(t) ∈ M(R3ℓ) and a
subsequence (still denoted {f εℓ (t)}ε>0,N0∈N) such that

lim
ε→0, N0→+∞

εN0→1

〈
f εℓ (t),Φℓ

〉
ℓ
=
〈
µℓ(t),Φℓ〉ℓ ∀Φℓ ∈ C0(R3ℓ). (4.10)

Moreover, the mapping t > 0 7→ µℓ(t) belongs to C([0, T ),M (R3ℓ)) for any T > 0 and

sup
t>0

∫

R3ℓ

E(Vℓ)µℓ(t,dVℓ) 6 E0 , sup
t>0

∫

R3ℓ

µℓ(t,dVℓ) 6 1.

Remark 4.7. In other words, up to extracting a subsequence, for any ℓ > 1, the family
of Radon measure {f εℓ (t)}ε>0,N0∈N converges weakly-⋆ towards some Radon measure µℓ(t) as
ε→ 0, N0 → +∞ with N0ε→ 1. Moreover, the (weak) limit µℓ(t) has mass and energy which
remain uniformly bounded in time.

Remark 4.8. We notice that, a priori, the choice of the converging subsequence depend on
ℓ > 1 but, using a diagonal argument, one can construct a common subsequence such that the
convergence (4.3) hold true for any ℓ > 1.
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Proof. The uniform bounds obtained in Corollary 4.5 imply in a straightforward way that, for
any ℓ > 1 and any compact set K ⊂ R

3ℓ,

sup
N0ε62

sup
t>0

f εℓ (t,K) <∞

and we conclude thanks to the well-known weak compactness criterium for measures [12,
Theorem 1.41].

Actually, we shall need to enlarge the set of test-functions for which the convergence (4.3)
holds true. More precisely, we introduce for all ℓ ∈ N the set

Ws
ℓ =

{
Φℓ ∈ C(R3ℓ) ; (E(Vℓ) + 1)−sΦℓ ∈ L∞(R3ℓ)

}
, s ∈ (0, 1).

Then, the following result holds.

Corollary 4.9. For any ε > 0 and N0 ∈ N even, let {f εℓ (t)}ℓ=1,...,N0 be the rescaled correlation
functions associated to the unique solution {ΨN (t)}N to (1.7) with initial datum (1.9). Then,
for any ℓ > 1 and any t > 0, the positive measure µℓ(t) ∈ M(R3ℓ) obtained in Proposition 4.6
satisfies

lim
ε→0, N0→+∞

εN0→1

〈
f εℓ (t),Φℓ

〉
ℓ
=
〈
µℓ(t),Φℓ〉ℓ ∀Φℓ ∈ Ws

ℓ . (4.11)

Moreover, the convergence is uniform with respect to t in any compact set.

Proof. Given s ∈ (0, 1), consider for any ε > 0 and N0 ∈ N the measure

νεℓ (t) = (1 + E(Vℓ))sf εℓ (t)
one deduces from the bounds in Corollary 4.5 that

sup
t>0

∫

R3ℓ

(1 + E(Vℓ))1−sνεℓ (t,dVℓ) 6 (N0ε)
ℓ(1 + E0),

i.e.

sup
t>0

sup
εN062

∫

R3ℓ

(1 + E(Vℓ))1−sνεℓ (t,dVℓ) 6 2ℓ(1 + E0).

Given R > 0, the set KR = {Vℓ ∈ R
3ℓ ; E(Vℓ) 6 R} is a compact subset of R3ℓ and

sup
t>0

sup
εN062

νεℓ (t,R
2ℓ \ KR) 6 2ℓ(1 +E0)(1 +R)s−1.

Since s−1 < 0 and R > 0 can be chosen arbitrarily large, one sees that the family of measures
{νεℓ (t)}N0ε62 is tight for any t > 0. According to Prokhorov’s compactness Theorem (see [23,

Theorem 1.7.6, p. 41]), it is relatively compact for the weak topology of M (R3ℓ). Therefore,
there exists a subsequence, still denoted {νεℓ (t)}N0ε62, and a measure µℓ(t) such that

lim
ε→0, N0→+∞

εN0→1

〈
νεℓ (t),Ψℓ

〉
ℓ
=
〈
µℓ(t),Ψℓ〉ℓ ∀Ψℓ ∈ Cb(R3ℓ).

Choosing now Ψℓ(Vℓ) = (1 + E(Vℓ))−sΦℓ with Φℓ ∈ Ws
ℓ we obtain

lim
ε→0, N0→+∞

εN0→1

〈
f εℓ (t),Φℓ

〉
ℓ
=
〈
µℓ(t),Φℓ〉ℓ ∀Φℓ ∈ Ws

ℓ .

Since C0(R3ℓ) ⊂ Ws
ℓ , the uniqueness of the weak-⋆ limit implies that µℓ(t) = µℓ(t) and the

proof is achieved.
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5 The Annihilated Boltzmann hierarchy

We consider here the Annihilated Boltzmann Hierarchy in weak form. We first introduce
the functional space

X ⊂
∞∏

k=1

Msym(R
3k)

as the subspace of sequences ν∞ = {νk}k such that νk ∈ Msym(R
3k) for any k > 1, and such

that

‖ν‖X :=

∞∑

k=1

2−k‖νk‖1,k <∞

where ‖ · ‖1,k is the weighted total variation norm in M (R3k) given by

‖νk‖1,k = sup

{∣∣∣∣〈νk, (1 + | · |)Φk〉k
∣∣∣∣ ; Φk ∈ Cb(R3k)) ; ‖Φk‖∞ 6 1

}

= sup
Φk∈Cb(R3k)

‖Φk‖∞61

∫

R3k

(1 + |Vk|) |Φk(Vk)|νk(dVk).

Recall that we consider here only symmetric measures, i.e.
∫

R3k

Φk(Vk)νk(dVk) =

∫

R3k

Φk(Vσ(k))νk(dVk)

for any permutation σ of {1, . . . , k}.
We notice that (X , ‖ · ‖X ) is a Banach space. Notice that, if ν = {νk}k is such that

supk ‖νk‖1,k <∞ then ν ∈ X .
We now define the following notion of solutions to the Annihilated Boltzmann Hierarchy

that we will denote for shortness ABH in the sequel.

Definition 5.1 (Weak solution to the ABH ). Assume that B satisfy Assumption 1.2 with
γ ∈ [0, 1]. Given T > 0, we say that a family

ν∞ = {νk}k ∈ L∞([0, T ) ;X )

is a (weak) solution to the ABH if for any Φk ∈ C0(R3k), k > 1, the following identity holds:

〈νk(t),Φk〉k = 〈νk(0),Φk〉k +
k∑

i=1

∫ t

0
ds

∫

R3(k+1)
νk+1(s,dVk+1)×

×
∫

S2

B(vi − vk+1, ω)
[
(1− α)Φk(V̂k

i,k+1
)− Φk(Vk)

]
dω ∀t ∈ [0, T ). (5.1)

Remark 5.2. For any k > 1, α ∈ [0, 1) we introduce the operator

Γ
α
k;k+1 : Cb(R3k) → C(R3(k+1))

such that

Γ
α
k;k+1Φk(Vk+1) =

k∑

i=1

∫

S2

B(vi − vk+1, ω)
[
(1− α)Φk(V̂k

i,k+1
)− Φk(Vk)

]
dω
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for any Φk ∈ Cb(R3k). Notice that Γ
α
k;k+1Φk is continuous over R

3k+3 but no longer bounded
whenever γ > 0 since ΣB is unbounded. One can reformulate (5.1) as

〈νk(t),Φk〉k = 〈νk(0),Φk〉k +
∫ t

0
〈νk+1(s),Γ

α
k;k+1Φk〉k+1ds

∀t ∈ [0, T ), k > 1, Φk ∈ C0(R3k). (5.2)

The existence of a solution to the annihilated Boltzmann hierarchy is deduced from the
Cauchy theory of Eq. (1.1). More precisely, we have the following

Proposition 5.3. Let f0 be a non-negative probability distribution satisfying (1.10). Let be
α ∈ (0, 1) and let B satisfy Assumption 1.2 with γ ∈ [0, 1]. Then, ν∞ = {νk}k ∈ L∞([0,∞),X )
with

νk(t) = f(t)⊗k, t > 0, k > 1

is a solution to the ABH in the sense of Definition 5.1 with initial datum νk(0) = f⊗k0 for all
k > 1 where f(t) is the unique solution to (1.1) with initial datum f(0) = f0.

Proof. The existence and uniqueness of a solution f(t) to (1.1) with initial datum f(0) = f0
is granted from [3, Theorem 1.9]. Moreover, the solution f satisfies f ∈ C([0,∞) ; L1

2(R
3)) ∩

L1
loc((0,∞);L1

3(R
3)) where

L1
p(R

3) = {g ∈ L1(R3) ; ‖g‖L1
p
:=

∫

R3

|g(v)|
(
1 + |v|2

)p/2
dv <∞}, p > 0

and, additionally,
∫

R3

f(t, v)dv 6 1,

∫

R3

f(t, v)dv 6 E0, ∀t > 0.

Introducing, for any t > 0 and any k > 1, νk(t) = f⊗k(t), a direct inspection shows that
ν∞ = {νk}k ∈ X is a weak solution to (5.1). We now recall this argument following the
strategy proposed in [30]. We introduce Bα(f, g) = (1 − α)Q(f, g) − Q−(f, f) the nonlinear
annihilated Boltzmann operator. As in [30], we introduce also B

∗
α : ψ ∈ Cb(R3) 7→ B

∗(ψ) ∈
C(R6) through

B
∗
α(ψ)(v, v∗) =

∫

S2

B(v − v∗, ω)
[
(1− α)ψ(v′)− ψ(v)

]
dω

where v′ is the post-collisional velocity associated to the triple (v, v∗, ω). Notice that, if
f ∈ L1(R3) is given, the following identity holds:

〈f⊗f,B∗
α(ψ)〉2 =

∫

R3

f(v)dv

∫

R3

f(v∗)B
∗
α(ψ)(v, v∗)dv∗ =

∫

R3

ψ(v)Bα(f, f)dv = 〈Bα(f, f), ψ〉1.

Then, for Φk(Vk) = ϕ1(v1) . . . ϕk(vk), one has

Γ
α
k;k+1Φk(Vk+1) =

k∑

i=1


∏

j 6=i

ϕj(vj)


B

∗
α(ϕi)(vi, vk+1)

and, for a given f ∈ L1(R3),
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〈f⊗(k+1),Γαk;k+1Φk〉k+1 =

k∑

i=1

∫

R3(k−1)


∏

j 6=i

ϕj(vj)f(vj)


 dv1 . . . dvi−1dvi+1 . . . dvk

∫

R3

dvi

∫

R3

dvk+1f(vi)f(vk+1)B
∗
α(ϕi)(vi, vk+1)dvk+1

=

k∑

i=1

∫

R3(k−1)


∏

j 6=i

ϕj(vj)f(vj)


ϕi(vi)Bα(f, f)(vi)dVk

=
k∑

i=1


∏

j 6=i

∫

R3

ϕj(vj)f(vj)dvj



∫

R3

ϕi(vi)Bα(f, f)(vi)dvi

=

k∑

i=1


∏

j 6=i

〈f, ϕj〉1


 〈Bα(f, f), ϕi〉1

In particular, if f(t) = f(t, v) is the unique solution to the annihilated Boltzmann equation
(1.1), then f(t)⊗k satisfies, for all

Φk(Vk) = ϕ1(v1) . . . ϕk(vk) ϕi ∈ Cb(R3), i = 1, . . . , k. (5.3)

the following

d

dt
〈f(t)⊗k,Φk〉k =

k∑

i=1


∏

j 6=i

∫

R3

f(t, vj)ϕj(vj)dvj



∫

R3

∂tf(t, vi)ϕi(vi)dvi

=

k∑

i=1


∏

j 6=i

〈f(t), ϕj〉1


 〈Bα(f(t), f(t)), ϕi〉1

= 〈f(t)⊗(k+1),Γαk;k+1Φk〉k+1

which shows that f(t)⊗k satisifes (5.2) for tensorized test-function Φk of the form (5.3). We
observe that Stone-Weierstrass theorem guarantees that the class of tensorized test-functions
is dense in Cb(R3k). Therefore, we deduce that f(t)⊗k is a weak solution to ABH.

5.1 Solutions to the ABH as limit point of the rescaled correlation func-

tions

We show here that any weak limit constructed in Proposition 4.6 is actually a solution to
the Annihilated Boltzmann Hierarchy:

Theorem 5.4. For any ε > 0 and N0 ∈ N even, let {f εℓ (t)}ℓ=1,...,N0 be the rescaled correlation
functions associated to the unique solution {ΨN (t)}N to (1.7) with initial datum (1.9). Then,
any limit point of {f εℓ (t)}ℓ=1,...,N0 in the sense of (4.3) is a weak solution to ABH. More
precisely, if given ℓ > 1 and t > 1, µℓ(t) ∈ M(R3ℓ) is the limit of a subsequence (still denoted
{f εℓ (t)}ε>0,N0∈N) in the sense that

lim
ε→0, N0→+∞

εN0→1

〈
f εℓ (t),Φℓ

〉
ℓ
=
〈
µℓ(t),Φℓ〉ℓ ∀ℓ > 1, Φℓ ∈ C0(R3ℓ) (5.4)
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then, µ∞ = {µℓ(·)}ℓ ∈ L∞([0,∞),X ) is a solution to ABH in the sense of Definition 5.1.

Proof. The strategy – as explained in the introduction – is inspired by [30, Section 8]. Let
α ∈ (0, 1) and T > 0 be given. Define

µ∞(t) = {µℓ(t)}ℓ ∈
∞∏

ℓ=1

M
+(R3ℓ), t ∈ [0, T )

where, for any ℓ > 1 and any t ∈ [0, T ), µℓ(t) satisfies (4.3). We want to prove that µ∞ is a
weak solution to (5.1).
First Step: The fact that the mapping t ∈ [0, T ) 7→ µ∞(t) belongs to L∞([0, T ),X ) is deduced
directly from the estimate

sup
t>0

∫

R3ℓ

µℓ(t,dVℓ) = sup
t>0

‖µℓ(t)‖1,ℓ 6 1

obtained in Proposition 4.6. Notice that the second part of Proposition 4.6 actually asserts
that the mapping t ∈ [0, T ) 7→ µ∞(t) ∈ X is continuous.
Second Step: Our goal is to show that µ∞(t) satisfies (5.1). We first notice that, according to
(4.6), we have

µℓ(0) = f⊗ℓ0 ∀ℓ > 1.

We now fix t ∈ [0, T ) and Φℓ ∈ C0(R3ℓ). Recall from (4.3) that

〈
f εℓ (t),Φℓ

〉
ℓ
=
〈
f εℓ (0),Φℓ

〉
ℓ
+

∫ t

0
〈f εℓ+1(s),Γ

α
ℓ,ℓ+1Φℓ〉ℓ+1ds

+ ε
∑

16i<j6ℓ

∫ t

0
ds

∫

R3ℓ

f εℓ (s,dVℓ)

∫

S2

B(vi − vj, ω)
[
(1− α)Φℓ(V

i,j
ℓ )− Φℓ(Vℓ)

]
dω.

(5.5)

Clearly, the term on the left-hand side and the first term on the right-hand side converge
respectively to

〈
µℓ(t),Φℓ

〉
ℓ

and
〈
µℓ(0),Φℓ

〉
ℓ
. Let us consider the second-term on the right-

hand side, i.e.

Gεℓ :=
∫ t

0
〈f εℓ+1(s),Γ

α
ℓ,ℓ+1Φℓ〉ℓ+1ds.

One sees easily that

|Γαℓ,ℓ+1Φℓ(Vℓ+1)| 6 2‖Φℓ‖∞
ℓ∑

i=1

ΣB(vi − vℓ+1) 6 2‖Φℓ‖∞CB

ℓ∑

i=1

|vi − vℓ+1|γ

6 2CBℓ(ℓ+ 1)‖Φℓ‖∞E(Vℓ+1)
γ
2 ∀Vℓ+1 ∈ R

3(ℓ+1)

where we used Holder’s inequality for the last estimate. This shows that Γ
α
ℓ,ℓ+1Φℓ ∈ W

γ
2
ℓ+1

and therefore, using Corollary 4.9, we get that

lim
ε→0, N0→+∞

εN0→1

Gεℓ =
∫ t

0
〈µℓ+1(s),Γ

α
ℓ,ℓ+1Φℓ〉ℓ+1ds.
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We now investigate the third term in (5.5). We introduce, using the notations of Section 2.2,

L⋆ℓΦℓ(Vℓ) =
∑

16i<j6ℓ

∫

S2

B(vi − vj, ω)
[
(1− α)Φℓ(V

i,j
ℓ )− Φℓ(Vℓ)

]
dω

∀Vℓ ∈ R
3ℓ, Φℓ ∈ C0(R3ℓ),

so that the third term in the right-hand side of (5.5) is

Zε
ℓ := ε

∫ t

0
〈f εℓ (s),L⋆ℓΦℓ〉ℓds.

As in the previous step, it is easy to show that

|L⋆ℓΦℓ(Vℓ)| 6 2‖Φℓ‖∞
∑

16i<j6ℓ

ΣB(vi − vj) 6 2CB‖Φℓ‖∞
∑

16i<j6ℓ

(|vi|γ + |vj |γ) .

Thus, using Young’s inequality, there is C(γ,B) > 0 such that

|L⋆ℓΦℓ(Vℓ)| 6 C(γ,B)ℓ2 [E(Vℓ) + 1] ‖Φℓ‖∞, Vℓ ∈ R
3ℓ.

Relying on the bounds provided in Corollary 4.5, we get

|Zε
ℓ | 6 ε tC(γ,B)ℓ2‖Φℓ‖∞ (E0 + 1) (N0ε)

ℓ

which results in limε→0,N0→+∞
εN0→1

Zε
ℓ = 0. We finally obtain that

〈
µℓ(t),Φℓ

〉
ℓ
=
〈
µℓ(0),Φℓ

〉
ℓ
+

∫ t

0
〈µℓ+1(s),Γ

α
ℓ,ℓ+1Φℓ〉ℓ+1ds

i.e. {µℓ(t)}ℓ is a solution to the annihilated Boltzmann hierarchy. This concludes the proof.

5.2 Uniqueness of a solution for ΣB bounded

We consider in this section the case in which

ΣB(v − v∗) =

∫

S2

B(v − v∗, ω)dω

is bounded. Then, we can prove that there is a unique solution to the ABH. This implies that
the propagation of chaos for (1.1) holds, yielding the proof of Theorem 1.8. Namely, we prove
the following

Theorem 5.5. Assume that ΣB is bounded, i.e. there exists CB > 0 such that
∫

S2

B(v − v∗, ω)dω 6 CB ∀v, v∗ ∈ R
3. (5.6)

Then, for any ̺0 > 0 and any ν∞(0) = (νℓ(0))ℓ ∈ X satisfying νℓ(0) ∈ M+(R3ℓ) and

‖νℓ(0)‖1,ℓ 6 ̺ℓ0, ∀ℓ > 1, (5.7)

there is at most one weak solution to the Annihilated Boltzmann Hierarchy (5.1) in the sense
of Definition 5.1.
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The proof will be based on the following Lemma

Lemma 5.6. Assume that ΣB is bounded. Then, for any k > 1 and any α ∈ [0, 1) the operator
Γ
α
k;k+1 : Cb(R3k) → C(R3(k+1)) defined in Remark 5.2 by

Γ
α
k;k+1Φk(Vk+1) =

k∑

i=1

∫

S2

B(vi−vk+1, ω)
[
(1− α)Φk(V̂k

i,k+1
)− Φk(Vk)

]
dω, ∀Φk ∈ Cb(R3k)

has its range in Cb(R3k+1) and is bounded, i.e.

Γ
α
k;k+1 ∈ B(Cb(R3k), Cb(R3(k+1)))

with
‖Γαk;k+1‖op := ‖Γαk;k+1‖B(Cb(R3k),Cb(R3(k+1))) 6 (2− α)k‖ΣB‖∞ ∀k > 1. (5.8)

Proof. Let k > 1 be given and Φk ∈ Cb(R3k)) be fixed. One has

∣∣Γαk;k+1Φk(Vk+1)
∣∣ 6

k∑

i=1

∫

S2

B(vi − vk+1, ω)
∣∣∣(1− α)Φk(V̂k

i,k+1
)− Φk(Vk)

∣∣∣ dω

6 (2− α)‖Φk‖∞
k∑

i=1

∫

S2

B(vi − vk+1, ω)dω, ∀Vk+1 ∈ R
3(k+1)

where ‖Φk‖∞ = supVk∈R3k |Φk(Vk)| . Therefore, under the assumption that ΣB is bounded by
some positive constant CB we deduce that

‖Γαk;k+1Φk‖∞ = sup
Vk+1∈R3k+3

∣∣Γαk;k+1Φk(Vk+1)
∣∣ 6 (2− α)k CB‖Φk‖∞

which is the desired result.

Proof of Theorem 5.5. We adapt here the proof of [11] given for coagulation equation. Let
ν∞(0) = (νk(0))k ∈ X be fixed and let ν(1),ν(2) be two solutions to (5.1) associated to the
initial datum ν∞(0). Using the formulation of the ABH given in (5.2) with Φk = 1 one sees
that, for any T > 0,

〈ν(i)k (t),1〉k = 〈νk(0),1〉k +
∫ t

0
〈ν(i)k+1(s),Γ

α
k;k+11〉k+1ds, t ∈ [0, T )

with Γ
α
k;k+11(Vk+1) = −α∑k

i=1 B(vi − vk+1, ω)dω 6 0 for any Vk+1 ∈ R
3k+1. Thus, for any

t > 0,

〈ν(i)k (t),1〉k 6 〈νk(0),1〉k , ∀t > 0, i = 1, 2.

Using that the measures ν
(1)
k (t) and ν

(2)
k (t) are nonnegative, the following estimate for the

total variation norm ‖ · ‖1,k follows:

‖ν(i)k (t)‖1,k 6 ‖νk(0)‖1,k ∀t > 0, ∀k > 1. (5.9)

On the other hand, using again the formulation (5.2), it holds

〈ν(1)k (t)− ν
(2)
k (t),Φk〉k =

∫ t

0
〈ν(1)k+1(s)− ν

(2)
k+1(s),Γ

α
k;k+1Φk〉k+1ds,
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for any t ∈ [0, T ), k > 1 and Φk ∈ C0(R3k). We set βk(t) = ν
(1)
k (t) − ν

(2)
k (t) for any t ∈ [0, T )

and any k > 1, and consider a sequence {Φk}k>1 with Φk ∈ C0(R3k) for any k > 1. One has

〈βk(t),Φk〉k =
∫ t

0
〈βk+1(s) , Γ

α
k;k+1Φk〉k+1ds, t ∈ [0, T ), ∀k > 1. (5.10)

According to Lemma 5.6, Γαk;k+1 ∈ B(Cb(R3k), Cb(R3k+1)) which allows to iterate the above
formula to get

〈βk(t),Φk〉k =
∫ t

0
ds

∫ s

0
〈βk+2(s1) , Γ

α
k+1;k+2Γ

α
k;k+1Φk〉k+2ds1

and, iterating again, for any n > 1, we get

〈βk(t),Φk〉k =
∫ t

0
ds

∫ s

0
ds1 . . .

∫ sn

0
〈βk+n+1(sn) , Γ

α
k+n;k+n+1Γ

α
k+n−1;k+n . . .Γ

α
k;k+1Φk〉k+n+1dsn+1.

Therefore, using now (5.8), we have

∥∥Γαk+n;k+n+1Γ
α
k+n−1;k+n . . .Γ

α
k;k+1Φk

∥∥
Cb(R3(k+n+1))

6 ((2− α)‖ΣB‖∞)n+1 (k + n)!

(k − 1)!
‖Φk‖Cb(R3k)

from which we deduce that

|〈βk(t),Φk〉k| 6
tn+2

(n+ 2)!
((2− α)‖ΣB‖∞)n+1 (k + n)!

(k − 1)!
‖Φk‖Cb(R3k) sup

s∈[0,t]
‖βk+n+1(s)‖1,k+n+1

where ‖ · ‖1,k+n+1 is the total variation norm on M (R3(k+n+1)). Thus, the sequence {βk}k
satisfies

‖βk(t)‖1,k 6
tn+2

(n+ 2)!
((2− α)‖ΣB‖∞)n+1 (k + n)!

(k − 1)!
sup

s∈[0,T )
‖βk+n+1(s)‖1,k+n+1 , (5.11)

for any t ∈ [0, T ), and for any k, n > 1. Using now (5.9), we have

sup
s∈[0,T )

‖βk+n+1(s)‖1,k+n+1 6 sup
s∈[0,T )

(
‖ν(1)k+n+1(s)‖1,k+n+1 + ‖ν(2)k+n+1(s)‖1,k+n+1

)

6 2‖νk+n+1(0)‖1,k+n+1 6 2̺n+1+k
0

where we used Assumption (5.7) for the last estimate. Inserting this in (5.11) this yields finally

‖βk(t)‖1,k 6 2
tn+2

(n+ 2)!
((2− α)‖ΣB‖∞)n+1 (k + n)!

(k − 1)!
̺k+n+1
0 , ∀k > 1,∀n > 1, t ∈ [0, T ).

Notice that (see [11, Eq. (3.11)])

(k + n)!

(n + 2)!(k − 1)!
6

2k+n

n+ 2
6 2k+n−1, ∀k, n > 1.
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Hence, picking T > 0 small enough so that

a := 2̺0T (2− α)‖ΣB‖∞ < 1,

we get
sup
t∈[0,T )

‖βk(t)‖1,k 6 2k−1T ̺k0 a
n+1 k > 1, n > 1

and, letting n→ ∞ this shows that

sup
t∈[0,T )

‖βk(t)‖1,k = 0,

yielding the uniqueness of the solution to ABH on the interval [0, T ) for this peculiar choice of
T = T (̺0, α). However, this procedure may be iterated since βk+1(s) = 0 for any s ∈ [0, T ),
k > 1, and it allows to write Eq. (5.10) as

〈βk(t),Φk〉k =
∫ t

T
〈βk+1(s) , Γ

α
k;k+1Φk〉k+1ds, t > T, ∀k > 1.

The same computations that lead to (5.11) now yield

‖βk(t)‖1,k 6
tn+2

(n+ 2)!
((2− α)‖ΣB‖∞)n+1 (k + n)!

(k − 1)!
sup

s∈[0,2T )
‖β1,k+n+1(s)‖1,k+n+1 ,

for any t ∈ [0, 2T ). Then, arguing as before, using (5.9) which is valid globally, we obtain that

sup
t∈[0,2T )

‖βk(t)‖1,k 6 2k−1T ̺k0 a
n+1, k > 1, n > 1.

Letting n→ ∞, we get supt∈[0,2T ) ‖βk(t)‖1,k = 0 and, iterating again, we obtain that, for any
k > 1

sup
t>0

‖βk(t)‖1,k = 0

which proves the global uniqueness of solution to ABH.

We now have all we need to prove Theorem 1.8.

Proof of Theorem 1.8. Combining Proposition 5.3 and Theorem 5.5, ν∞ = {νk}k ∈ L∞([0,∞),X )
given by

νk(t) = f(t)⊗k, t > 0, k > 1

is the unique solution to the ABH in the sense of Definition 5.1 associated to the initial datum
νk(0) = f⊗k0 , k > 1. We conclude then with Theorem 5.4.

6 Some perspectives towards the extension to hard-sphere col-

lision kernel

As already discussed in the Introduction, the restriction to kernels such that ΣB is bounded
– though not restrictive to the Maxwellian case – is a severe restriction on our result. The most
challenging case would consist in showing the propagation of chaos (Theorem 1.8) for hard-
sphere interactions. In this section we propose some conjectures in this direction, presenting
some intuition for the annihilated model (1.1) and explaining what appears to be the major
difficulty, as well as some possible paths to overcome it.
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6.1 Uniqueness for ABH: Failure of De Finetti’s approach

As we emphasized in the previous sections, the main obstruction in proving the propagation
of chaos for more general kernels than the ones satisfying (5.6) is in the proof of the uniqueness
of solutions to the Annihilated Boltzmann Hierarchy (5.1). Indeed, to recover the propagation
of chaos result, we need to prove the uniqueness of solutions of (5.1) with an initial datum of
the form νk(0) = fk0 , k > 1. In other words, the propagation of chaos would follow from the
following result which we formulate here as a conjecture:

Conjecture 6.1. Assume that the collision kernel B is of the form:

B(v − v∗, ω) =
1

2π
|(v − v∗) · ω| for (v, v∗) ∈ R

3 × R
3, ω ∈ S

2 (6.1)

and denote by Q the corresponding Boltzmann operator. Let f0 be a non-negative probability
distribution satisfying (1.10). Then, ν∞ = {νk}k ∈ L∞([0,∞),X ) with

νk(t) = f(t)⊗k, t > 0, k > 1

is the unique solution to the ABH in the sense of Definition 5.1 with initial datum νk(0) = f⊗k0

for all k > 1 where f(t) is the unique solution to (1.1) with initial datum f(0) = f0.

We notice that we rigorously proved this uniqueness result in the case of ΣB bounded, but
we have not been able yet to prove such uniqueness for kernels B such that ΣB is unbounded
as, for instance, in the case of hard-sphere interactions (6.1).

We recall that in the classical context, when there is no annihilation in the model (i.e.
α = 0), this problem found a very elegant solution (which can be traced back to [2]) using
as a powerful tool the De Finetti’s Theorem. (See also [41] for a first use of De Finetti’s
theorem in a kinetic framework). Indeed, when α = 0, the stochastic particle model (Kac’s
model), as well as the corresponding limit hierarchy (Boltzmann Hierarchy), is conservative.
In particular, any solution ν∞ to the Boltzmann hierarchy satisfies the following properties:

1. Conservation of mass, i.e.
∫

R3ℓ

νℓ(t,dVℓ) =

∫

R3ℓ

νℓ(0,Vℓ)dVℓ =

∫

R3ℓ

f ℓ0(Vℓ)dVℓ = ̺ℓ0, ∀t > 0, ℓ > 1

and there is no loss of generality then to assume that ̺0 = 1.

2. Compatibility, i.e
Πℓνℓ+1(t) = νℓ(t), ∀t > 0, ℓ > 1

where we recall that Πℓ is the marginalisation operator.

In the same way, the conservation of mass and the compatibility property are satisfied by the
(rescaled) correlation functions, i.e.

∫
R3ℓ f

ε
ℓ (t,Vℓ)dVℓ = ̺ℓ0 and

Πℓf
ε
ℓ+1(t,Vℓ) = f εℓ (t,Vℓ), ∀t > 0, ε > 0, ℓ > 1. (6.2)

As a consequence, by virtue of De Finetti’s Theorem (or Hewitt-Savage’s Theorem [18]),
one can associate any solution ν∞(t) of the Boltzmann Hierarchy to a unique probability
measure πt over the space of probability measures P(R3) such that

∫

P(R3)
p⊗ℓ πt(dp) = νℓ(t), ∀ℓ > 1, t > 0
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where, for any p ∈ P(R3), p⊗ℓ is the probability measure over R
3ℓ defined by

∫

R3ℓ

Φℓ(Vℓ)p
⊗ℓ(dVℓ) =

ℓ∏

j=1

∫

R3

φj(v)p(dv), ∀Φℓ =
ℓ
⊗
i=1
φi ∈ Cb(R

3ℓ)

i.e. Φℓ(Vℓ) = φ1(v1)φ2(v2) . . . φℓ(vℓ), φj ∈ Cb(R3). Notice that the class of Φℓ of this form is
dense in Cb(R

3ℓ) thanks to Stone-Weierstrass theorem.
In particular, the mapping t > 0 7−→ πt ∈ P(P(R3)) is a solution to the following hierarchy

of equations (see Eq. (5.2)):

∫

P(R3)
〈p⊗k,Φk〉kπt(dp) = 〈fk(0)⊗k,Φk〉k +

∫ t

0
ds

∫

P(R3)
〈p⊗(k+1),Γ0

k;k+1Φk〉k+1dπs(p)

∀t ∈ [0, T ), k > 1, Φk = φ1 ⊗ · · · ⊗ φk ∈ C0(R3k) (6.3)

where now Γ
0
k;k+1 is the operator corresponding to α = 0. Then, using again De Finetti’s

Theorem, it is possible to show that the above hierarchy of equations (6.3) has a unique
solution t > 0 7−→ πt ∈ P(R3) and this yields the desired uniqueness for the Boltzmann
Hierarchy in the case of no annihilation, i.e. α = 0. (See [2, 30] for details).

As soon as we introduce the kinetic annihilation, i.e. we consider α ∈ (0, 1], it appears
very difficult to adapt in a direct way the approach proposed for the Boltzmann Hierarchy.
We first observe that solutions to ABH are not probability measures because of the loss of
mass. We could expect that a suitable adaptation of De Finetti’s Theorem may hold for
compatible sequences in X rather than in

∏∞
k=1 P(R

3k) provided we have some control of the
dissipation of total mass. Nonetheless, even in this case and because of the mass dissipation,
the (rescaled) correlation functions f εℓ (t,Vℓ) are not even compatible, i.e. (6.2) is not valid for
α 6= 0. Consequently, we can not assume a priori that solutions to the ABH are compatible 1.
Therefore, it appears not clear at all how to adapt De Finetti’s argument to the case of non
compatible sequences.

6.2 Perturbative argument: the case α ≃ 0

Due to the difficulty raised from the previous discussion, it could be feasible that Conjecture
6.1 is too strong. It would be satisfactory to prove propagation of chaos not globally in time
but on a suitable time interval (as it appears for instance in Lanford’s result for the non
homogeneous Boltzmann equation, see [38] and the references therein) and for a moderate
annihilation. This leads us to reformulate Conjecture 6.1 in a weaker form as follows.

Conjecture 6.2. Assume that the collision kernel B is of the form:

B(v − v∗, ω) =
1

2π
| (v − v∗) · ω for (v, v∗) ∈ R

3 × R
3, ω ∈ S

2

and denote as Q the corresponding Boltzmann operator. Let f0 be a non-negative probability
distribution satisfying (1.10). Then, there exists α0 ∈ (0, 1] such that, for any α ∈ (0, α0),
there is Tα > 0 such that the Annihilated Boltzmann Hierarchy (5.1) admits a unique weak
solution

ν∞ = {νk}k ∈ L∞([0, Tα),X )

1Notice that the special solution νk(t) = f(t)⊗k is compatible and, since we expect it to be the unique
solution, we believe that solutions to (5.1) are compatible.
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with initial datum νk(0) = f⊗k0 for all k > 1. In particular, νk(t) = f(t)⊗k, for any t ∈
[0, Tα), k > 1 where f(t) is the unique solution to (1.1) with initial datum f(0) = f0.

It is interesting to observe that it seems likely that Conjecture 6.2 could be proved using a
perturbative argument, looking at the case α ≃ 0 as perturbation of the more handable case
α = 0. More precisely, it could be possible to exploit the fact that for α = 0 there is a unique
solution to the Boltzmann Hierarchy, as explained in Section 6.1, and obtain the uniqueness
of a solution to (5.1) for α small enough and for a possibly small time interval [0, Tα). For
instance, we could think to apply the perturbative argument not necessarily at the level of
the Annihilated Boltzmann Hierarchy but at the level of the hierarchy of equations (6.3) and
try to prove that, for α positive but small enough, the perturbed hierarchy

∫

P(R3)
〈p⊗k,Φk〉kπαt (dp) = 〈fk(0)⊗k,Φk〉k +

∫ t

0
ds

∫

P(R3)
〈p⊗(k+1),Γαk;k+1Φk〉k+1π

α
s (dp)

∀t ∈ [0, T ), k > 1, Φk = φ1 ⊗ · · · ⊗ φk ∈ C0(R3k) (6.4)

still admits a unique solution παt ≃ πt for α ≃ 0 (in a suitable sense to be clarified). Such
a solution παt has then to be interpreted in terms of (statistical) solutions to (5.1). To prove
this, we should exploit the fact that

Γ
α
k;k+1Φk ≃ Γ

0
k;k+1Φk, for α ≃ 0, k > 1.

Notice however that the implementation of this approach is again non trivial – essentially
because (5.1) does not admit a unique solution in the full space X but only in the subclass
of compatible sequences. As already observed, this subclass does not seem to be stable in the
limit α ≃ 0.

6.3 Self-similar variables

Let us consider a solution f = f(t, v) to (1.1) for some nonnegative initial datum f0 ∈
L1
3(R

d). It has been shown in [1, Proposition 1.2] that, introducing ψ(τ, ξ) through

f(t, v) = nf (t)(2Tf (t))
−3/2ψ

(
τ(t),

v − uf (t)√
2Tf (t)

)
(6.5)

with nf (t) =

∫

R3

f(t, v)dv, nf (t)uf (t) =

∫

R3

f(t, v)vdv, and

3nf (t)Tf (t) =

∫

R3

f(t, v)|v − uf (t)|2dv, τ(t) =
√
2

∫ t

0
nf (s)

√
Tf (s)ds, t > 0.

then it holds that ψ(τ, ξ) is the unique solution to

∂τψ(τ, ξ) +
(
Aψ(τ)−dBψ(τ)

)
ψ(τ, ξ) +Bψ(τ)divξ

(
(ξ − vψ(τ))ψ(τ, ξ))

= (1− α)Q(ψ,ψ)(τ, ξ) − αQ−(ψ,ψ)(τ, ξ)
(6.6)

with initial datum ψ(0, ξ) = (2Tf0)
3/2n−1

f0
f0
(√

2Tf0 ξ + uf0
)

and where Aψ(·),Bψ(·) and
vψ(·) are defined by




Aψ(τ)
Bψ(τ)

Bψ(τ)vψ(τ)


 = −α

2

∫

R3

Q−(ψ,ψ)(t, ξ)




5− 2|ξ|2
1− 2

3 |ξ|2
2ξ


 dξ, ∀τ > 0.

35



The interesting feature of the above equivalent kinetic annihilation model is that, in contrast
to (1.1), it is conservative, i.e.

∫

Rd

ψ(τ, ξ)




1
ξ
|ξ|2


 dξ =

∫

Rd

ψ(0, ξ)




1
ξ
|ξ|2


 dξ =




1
0
d
2


 ∀τ > 0. (6.7)

As observed in Section 6.1, the dissipation of mass for (1.1) is the main obstacle in obtaining
the uniqueness for ABH for more general kernel, using De Finetti’s approach. Due to the
equivalence between (6.6) and (1.1), a possible way to overcome this obstacle is to derive (6.6)
from a particle system. In this case, it would be possible to exploit the canonical ensemble
formalism (instead of the grand canonical approach followed in this paper) but the prize to pay
would be to derive a non-autonomous Kac’s model. Another technical difficulty seems to be
that, as it is apparent from the form of Aψ,Bψ, the above (6.6) is actually a trilinear equation
for the unknown ψ(τ, ξ). Attempts to derive trilinear kinetic equations from a particle system
seem highly technical.

A Properties of the semigroup (SN(t))t>0

We establish here, for a given N > 1, several properties of the C0-semigroup (SN (t))t>0

generated by LN . Since, in all this section, N > 1 is fixed, we will simply write Σ = σN ,
L = LN , S(t) = SN (t) and set d = 3N . Therefore, one has

Σ = Σ(VN) =
∑

16i<j6N

∫

S2

B(vi − vj, ω)dω =
∑

16i<j6N

|vi − vj | ∀VN = (v1, . . . , vN ) ∈ R
d.

We define for simplicity

L1 = L1(Rd) and L1
Σ = L1(Rd,Σ(V )dV ).

The multiplication operator

T : D(T ) ⊂ L1(Rd) → L1(Rd)

defined by
TΦ(VN ) = −Σ(VN )Φ(VN ) ∀Φ ∈ D(T ) = L1 ∩ L1

Σ

is the generator of a positive C0-semigroup (U0(t))t>0 in L1 given by

U0(t)Φ(VN ) = exp (−Σ(VN)t) Φ(VN ) VN ∈ R
d. (1.1)

Since x exp(−x) 6 1/e for any x > 0, one easily gets that

‖U0(t)Φ‖L1
Σ
6

1

et
‖Φ‖L1 ∀t > 0.

Moreover, for any Φ ∈ L1 and T > 0, one also has

∫ T

0
‖U0(t)Φ‖L1

Σ
dt =

∫ T

0
dt

∫

Rd

|Φ(VN )Σ(VN ) exp (−tΣ(VN))|dVN

=

∫

Rd

Σ(V ) |Φ(VN )|dVN
∫ T

0
exp (−tΣ(VN )) dt =

∫

Rd

|Φ(VN )| (1− exp(−TΣ(VN))) dVN
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so that ∫ T

0
‖U0(t)Φ‖L1

Σ
dt 6 ‖Φ‖L1 ∀Φ ∈ L1, T > 0. (1.2)

Moreover, for any λ > 0, the resolvent (λ− T )−1 of T satisfies

‖(λ− T )−1Φ‖L1
Σ
6 sup

VN∈Rd

Σ(VN )

λ+Σ(VN )
‖Φ‖L1 = ‖Φ‖L1 .

Let us introduce the linear operator K = (1− α)GN . Then, since

‖GNΦ‖L1 = ‖Φ‖L1
Σ

∀Φ ∈ L1
Σ, Φ > 0

it follows that
‖K(λ− T )−1Φ‖L1 6 (1− α)‖Φ‖L1 ∀λ > 0∀Φ ∈ L1.

Therefore, as soon as α ∈ (0, 1), one deduces from Desch’s Theorem (see for instance [26, 32])
that

L = LN = K + T, D(L) = D(T )

is the generator of a positive C0-semigroup (S(t))t>0 of contractions given by the Dyson-
Phillips expansion series:

S(t)Φ =

∞∑

j=0

Uj(t)Φ

with U0(t) defined by (1.1) and

Uj+1(t)Φ =

∫ t

0
Uj(t− s)KU0(s)Φds; Φ ∈ L1 ; j > 0.

It is easy to check that Uj(t) inherits the smoothing property (1.2), namely

Lemma A.1. For any T > 0 and any j > 0, one has

∫ T

0
‖Uj(t)Φ‖XΣ

dt 6 (1− α)j ‖Φ‖X ∀Φ ∈ X. (1.3)

Proof. We argue by induction. We observe that (1.2) establishes the wished property for
j = 0. For a given j > 0, let us assume (1.3) holds true. Then, from the definition of Uj+1(t)
one has

∫ T

0
‖Uj+1(t)Φ‖L1

Σ
dt 6

∫ T

0
dt

∫ t

0
‖Uj(t− s)KU0(s)Φ‖L1

Σ
ds

=

∫ T

0
ds

∫ T

s
‖Uj(t− s)KU0(s)Φ‖L1

Σ
dt

6

∫ T

0
ds

∫ T

0
‖Uj(τ)KU0(s)Φ‖L1

Σ
dτ.

For any s > 0, applying the induction hypothesis (1.3) to KU0(s)Φ one gets

∫ T

0
‖Uj+1(t)Φ‖L1

Σ
dt 6 (1− α)j

∫ T

0
‖KU0(s)Φ‖L1ds
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and, since ‖Kψ‖L1 6 (1− α)‖ψ‖L1
Σ

for any ψ ∈ L1
Σ, one gets

∫ T

0
‖Uj+1(t)Φ‖L1

Σ
dt 6 (1− α)j+1

∫ T

0
‖U0(s)Φ‖L1

Σ
ds.

Using again (1.2), one sees that (1.3) is satisfied by Uj+1(t) which achieves the proof.

Proof of Proposition 2.1. The proof of (2.6) is now a direct consequence of (1.3) since, for any
T > 0 and any Φ ∈ L1, the following inequality holds:

∫ T

0
‖S(t)Φ‖L1

Σ
dt 6

∞∑

j=0

∫ T

0
‖Uj(t)Φ‖L1

Σ
dt 6

∞∑

j=0

(1− α)j‖Φ‖L1 = α−1‖Φ‖L1 .

This gives the result.
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