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Abstract
We study the integrability of an eight-parameter family of three-dimensional spher-
ically confined steady Stokes flows introduced by Bajer and Moffatt. This volume-
preserving flowwas constructed tomodel the stretch–twist–foldmechanism of the fast
dynamo magnetohydrodynamical model. In particular we obtain a complete classifi-
cation of cases when the system admits an additional Darboux polynomial of degree
one. All but one such case are integrable, and first integrals are presented in the paper.
The case when the system admits an additional Darboux polynomial of degree one
but is not evidently integrable is investigated by methods of differential Galois theory.
It is proved that the four-parameter family contained in this case is not integrable
in the Jacobi sense, i.e. it does not admit a meromorphic first integral. Moreover, we
investigate the integrability of other four-parameter STF systems using the samemeth-
ods. We distinguish all the cases when the system satisfies necessary conditions for
integrability obtained from an analysis of the differential Galois group of variational
equations.
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1 Introduction

1.1 Origin of STF Systems

One of the important problems of geo- and astrophysics is an explanation of the
origin of magnetic fields of stars and planets. The dynamo model provides a widely
accepted explanation. Let us consider the liquid iron in the outer core of the Earth
or an ionized gas in a star. An external magnetic field operates on the particles of
electrically conducting liquid flowingwith velocity u by the electromotive force u×B
which generates a current. But according to Ampère’s law, whenever a current flows, a
magnetic field is generated. Conditions under which an induced magnetic field and an
inducing field are the same are especially interesting, and are studied in the dynamo
theory, where we say that a dynamo is self-excited and produces a magnetic field
in a continuous way. To describe these complex phenomena, we use equations of
magnetohydrodynamics, see e.g. Childress and Gilbert (1995) or Childress (1992).
However, in this kinematic approach to the dynamo theory, we assume that a velocity
field u is known. Its properties are crucial when one wants to explain how a flowing
conductive liquid can generate the magnetic field, because the magnetic field is frozen
into this fluid.

In the case of the so-called fast dynamo, a heuristic explanation of the mechanism
was proposed by Vainshtein and Zeldovich (1972). The growth of the magnetic field is
generated by an iterated sequence of three processes, i.e. stretch, twist and fold (STF),
acting on the flux tube created by a small bundle of lines of the magnetic field. On
the basis of this explanation, scientists started to construct dynamical systems called
STF systems describing a steady-state velocity field u(x) which mimics these three
processes and is subject to certain constraints. We usually assume that u(x) should
satisfy the incompressibility condition ∇ · u = 0, and the boundedness of flows to
unity sphere x · x = 1 with the boundary condition x · u = 0. The streamlines in
the first STF model proposed in Moffatt and Proctor (1985) were unbounded, which
was an undesirable property of the system. The authors tried to correct this defect by
multiplying the vector potential of the obtained velocity field u(x) by the exponential
term e−r/R that forces the streamlines to return to the interior of the sphere with
radius r = √

x · x = R. Results of numerical simulations of dynamics of this type
modified the velocity field; in particular, its multi-fractal properties were investigated
in Vainshtein et al. (1996b).

Amore elegant remedywas proposed in Bajer (1989) and Bajer andMoffatt (1990).
The authors extended the velocity field considered in Moffatt and Proctor (1985),
adding to it the appropriate additional potential field such that the two required con-
ditions were satisfied. As a result, they obtained the following differential system

ẋ1 = αx3 − 8x1x2,
ẋ2 = − 3 + 11x21 + 3x22 + x23 + βx1x3,
ẋ3 = −αx1 + 2x2x3 − βx1x2.

⎫
⎬

⎭
(1.1)
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The properties of the system (1.1)were investigated inmanys articles. The condition
of incompressibility∇ ·u = 0 means that the system preserves the volume in its phase
space and ismanifested by the absence of strange attractors.However, such systems can
still exhibit a rich variety of structures with chaotic and regular orbits intricately inter-
spersed among one another, see e.g. Chapter 7 in Lakshmanan and Rajasekar (2003).
Bajer and Moffatt (1990) observed that for α = β = 0, the system (1.1) is integrable
with first integrals I1 = x1x43 and I2 = x−3

3 (x21 + x22 + x23 − 1), and it is chaotic for
small values of α. Lyapunov exponents and the power spectrum of (1.1) were analysed
by Aqeel and Yue (2013). Additionally, Yue and Aqeel (2013) detected Smale’s horse-
shoe chaos using the Shil’nikov criterion for the existence of a heteroclinic trajectory.
Vainshtein et al. (1996a) considered the system (1.1) with β = 0 and with small values
of α as a small perturbation of the integrable system corresponding to α = 0.

Let u0(x) denote the vector field given by the right-hand sides of (1.1). It has
zero divergence and can be considered as a velocity field of an incompressible fluid.
Moreover, the unit ball

B3 =
{
x ∈ R

3 | x21 + x22 + x23 < 1
}

is invariant with respect to its flow, and the vector field u0(x) is tangent to the boundary
∂B3, which is the unit sphere S

2. In fact, polynomial F0 = x21 + x22 + x23 − 1 is a
Darboux polynomial of u0(x), as it satisfies the equality

Lu0(F0) = 6x2F0, (1.2)

where Lv denotes the Lie derivative along vector field v. Thus, sphere S
2 which

coincides with level set F0(x) = 0 is also invariant with respect to the flow generated
by u0(x). Hence, considering u0(x) as the velocity of a fluid, the system (1.1) describes
a steady flow inside a unit ball. As was pointed out by Bajer and Moffatt (1990), this
is the first example of a steady Stokes flow in a bounded region exhibiting chaos. The
fact that the system (1.1) is chaotic for generic values of parameters is clearly visible
on the Poincaré cross-sections in Fig. 1 containing large chaotic regions.

The system (1.1) is contained in a wider multi-parameter family of three-
dimensional quadratic systems satisfying incompressibility and boundedness condi-
tions proposed in Bajer and Moffatt (1990), of the form

ẋ = (1 − 2x · x) a + (a · x) x + (ω + Jx) × x, (1.3)

where a,ω ∈ R
3 are constant vectors and J is a symmetric matrix. We also call it the

STF system. The vector field u(x) defined by the right-hand side of (1.3) satisfies

∇u(x) = 0 and LuF0 = (− 2a · x) F0, (1.4)

for arbitrary values of parameters a,ω and J . Thus, it is a divergence-free vector field,
and the unit ball B3 and the unit sphere S

2 are invariant with respect to its flow. In
fact, this is the most general polynomial vector field of degree two having these two
properties.
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Fig. 1 Example of Poincaré cross-sections for the system (1.1) with cross-plane y = 0

Note that Eq. (1.1) is just a special case of the system (1.3) corresponding to
parameters

a = (0,− 3, 0), ω = (0, α, 0), J =
⎡

⎣
− 2

3β 0 5
0 1

3β 0
5 0 1

3β

⎤

⎦ . (1.5)

It is also worth mentioning that some experimental realizations of the STF flows
have been conducted, see e.g. Fountain et al. (1998, 2000).

1.2 The Canonical Form of STF System

In this subsection we rewrite the considered system (1.3) in an equivalent form that
is useful for further analysis. Let A ∈ SO(3, R) be a rotation matrix and let x �→
y = Ax be the corresponding change of variables. Then the transformed vector field
ũ( y) = Au(AT y) has the form

ũ ( y) = (1 − 2 y · y) ã + (̃a · x) x + (ω̃ + J̃ y
)× y, (1.6)

where
ã = Aa, ω̃ = Aω, J̃ = AJ AT. (1.7)

Using the invariance property u(x), we can assume that matrix J is diagonal J =
diag(J1, J2, J3), and then

Jx × x = [(J2 − J3)x2x3, (J3 − J1)x3x1, (J1 − J2)x1x2]
T .

123



Journal of Nonlinear Science (2020) 30:1607–1649 1611

Hence, we introduce new parametersm1 = J2− J3,m2 = J3− J1 andm3 = J1− J2 =
−m1 − m2. Using these, we can write J in the form

J = 1

3
diag(m3 − m2,m1 − m3,m2 − m1). (1.8)

Thus, system (1.3) can be written as

ẋ = (1 − 2x · x)a + (a · x)x + ω × x + KW , (1.9)

where W = (x2x3, x1x3, x1x2) and K = diag(m1,m2,m3). In further analysis we
will use this form of the STF flow which depends on eight parameters: components of
vectors a, ω, and m1,m2.

Let us also note that this system is invariant with respect to simultaneous cyclic
permutations of variables (x1, x2, x3) �→ π(x) = (x3, x1, x2) and parameters a �→
π(a), ω �→ π(ω), and (m1,m2,m3) �→ π(m) = (m3,m1,m2).

Remark 1.1 Let

A =
⎡

⎣
v 0 u
u 0 −v

0 1 0

⎤

⎦ , (1.10)

where

u = 1√
2

√
1 − γ , v = 1√

2

√
1 + γ , γ = β

√
100 + β2

. (1.11)

Then one can check that the change x �→ Ax transforms the system (1.1) to the form
of (1.3) with a = (0, 0,− 3), ω = (0, 0, α) and

J1 = −1

6

[

β − 3
√

100 + β2

]

, J2 = −1

6

[

β + 3
√

100 + β2

]

, J3 = β

3
.

This gives

m1 = −1

2

[

β +
√

100 + β2

]

, m2 = 1

2

[

β −
√

100 + β2

]

, (1.12)

which satisfy the relation
m1m2 = 25. (1.13)

1.3 Main Problem

Let us note that investigations of the system (1.1), which is a two-parameter family of
general SFT system (1.3), were performed in two directions. Apart from the results
showing that for generic values of parameters (α, β) ∈ R

2 the system (1.1) is chaotic,
investigations of integrability have been carried out. Bao andYang (2014) proved that if
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α �= 0, then the system (1.1) does not admit aDarbouxfirst integral.Nishiyama (2014a)

proved that if α ∈ R
+\Λ, where Λ = { 24√

65
, 4
√

6
5 , 4

√
21
17

}
, and β = 1, or α = 1,

β ∈ R
+\{2√23, 8

√
5, 16

√
2}, the system has no real meromorphic first integral.

Later, Nishiyama (2014b) showed that the system does not admit a meromorphic
first integral for an arbitrary α > 0 and β = 1. These non-integrability results were
obtained by means of the Ziglin theory combined with differential Galois theory.
Yagasaki and Yamanaka (2017) formulated necessary conditions for the integrability
of systems with orbits which are homo- or heteroclinic to unstable equilibria. Using
these, they proved that if the system (1.1) admits a real meromorphic first integral,
then

√
25 − α(α ± β) ∈ Q.

On the other hand, the strongest results describing chaotic behaviour of the system
(1.1)were obtained byNeishtadt et al. (1999, 2003) by considering small perturbations
of integrable case when α = 0. Themechanism of destruction of an adiabatic invariant
caused by the separatrix crossings, scatterings and captures by resonances results in
mixing and transport in large parts of the phase space. Although the dynamics of the
system are close to hyperbolic, the system is not ergodic, as one can find stable periodic
orbits surrounded by stability islands.

In order to perform investigations of the general STF flow (1.3) using methods
similar to those of Neishtadt et al. (1999, 2003), we must identify the parameter
values for which the system is integrable.

For example, we found that if a = 0, then the system (1.3) simplifies to

ẋ = (ω + Jx) × x, (1.14)

and it is integrable with two quadratic first integrals

F1 = 2ω · x − m2x
2
1 + m1x

2
3 , F2 = x · x. (1.15)

Let us note that system (1.14) coincides with the Zhukovski–Volterra gyrostat
(Basak 2009). Thus, for small values of a, one can consider the STF system as a
perturbation of an integrable Zhukovski–Volterra gyrostat. This enables the possibility
to investigate chaotic behaviour for small values of ‖a‖, and it seems that this fact has
not been explored until now.

The aim of this paper is to study the integrability of the general STF flow (1.3).
More precisely, our goal is to distinguish the parameter values for which the dynamics
is regular and the considered system is integrable. However, all known methods for
studying integrability give only the necessary conditions for integrability. Thus, it is
better to say that our main goal is to distinguish parameter values for which the system
is not integrable. Nevertheless, considering a specific family of STF systems, we found
the necessary and sufficient conditions for its integrability.

To the best of our knowledge, apart from a preliminary analysis in Bajer and Mof-
fatt (1990), the integrability of (1.3) has not yet been investigated. Thus, our main
goal is to initiate such an investigation. Here we underline again that the formulated
problem is very hard because the system depends on many parameters. Our attempt
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is to distinguish as many cases as possible for which investigation of the integrability
can be performed effectively.

For analysis of the integrability, we use the differential Galois framework. Here,
two facts are important. In the context of this paper, integrability means integrability in
the Jacobi sense. Thus, we do not use the criteria for integrability of non-Hamiltonian
systems developed by Ayoul and Zung (2010). In fact, we know only one article
when differential Galois methods were specifically used to investigate integrability in
the Jacobi sense (Przybylska 2008). Moreover, in this paper we propose to combine
differential Galois tools with the Darboux method for studying integrability. This
idea is general in the sense that it can be applied to studying the integrability of an
arbitrary polynomial system. That is, to apply the differential Galois methods, we need
a particular solution of the considered system. To find it we perform a direct search
for Darboux polynomials. Then we restrict the search for a particular solution to the
common zero level of Darboux polynomials. In the case of the STF system, we already
have one Darboux polynomial F0 = x21 + x22 + x23 − 1. Hence, if F1 is an additional
Darboux polynomial, then their common level

Γ :=
{
x ∈ R

3 | F0(x) = F1(x) = 0
}

, (1.16)

if non-empty, is a union of phase curves of the system. An analysis of variational
equations along selected phase curves gives obstructions for the integrability. These
are expressed in terms of properties of the differential Galois group of the variational
equations.

In the general case, when the system admits several Darboux polynomials, we can
try to find a first integral using the Darboux method.

Simply trying to perform the action described above for the STF flow, we quickly
face serious difficulties. Again, because of the large number of parameters, the direct
search for Darboux polynomials, even with a help of computer algebra systems, must
be restricted to polynomials of low degree. Moreover, it appeared that the existence
of just one additional Darboux polynomial almost always gives rise to a first integral
of the system. This is why we restricted our search to Darboux polynomials of first
degree, and we found all the cases when the STF system admits such a polynomial.
The proof of this fact is purely analytic.

Thanks to the above result, we have found cases dependent on six parameters for
which the differential Galois methods can be used, i.e. we know a particular solution
of the system. However, an investigation of this case with all admissible parameters
leads to intractable complexities. This is why we restrict our study to some cases with
certain restrictions on parameters.

2 Results

In this section we collect the main results of our paper. They are naturally divided into
two parts.
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The first involves the determination of cases when the general STF system (1.9)
admits a linear Darboux polynomial. Although this was a preliminary step in our
investigations, it unexpectedly gave, among other things, quite a large list of integrable
cases.

The second part of our results contains theorems which give necessary or necessary
and sufficient conditions for the integrability of distinguished families of the STF
system obtained by an application of the differential Galois methods.

2.1 STF Systemwith Linear Darboux Polynomials

Finding all Darboux polynomials of a given system is difficult because we do not know
the upper bound for the degree of this polynomial. Moreover, even if we fix the degree
of the Darboux polynomial we search for, the problem is difficult because it reduces to
a system of non-linear polynomial equations. The difficulty grows significantly when
the systems considered depend on parameters.

As we mentioned above, the general STF system (1.9) has Darboux polynomial
F0(x), and the problem is to find all values of parameters for which other Darboux
polynomials exist. Even if we limit ourselves to linear Darboux polynomials, finding
all of them for a multi-parameter STF system is not trivial. In fact, we have to find all
solutions of a system of 10 quadratic polynomial equations dependent on 16 variables.

The results of the search for an additional linear Darboux polynomial in variables
can be summarized in the following theorem.

Theorem 2.1 The STF system (1.9) has a Darboux polynomial of degree one only in
the cases listed below and in conjugated cases obtained by a cyclic permutation of
the parameters and variables.

Case Ia: If m1 = m2 = 0 and a · ω = 0, then there are three Darboux polynomials

F1 = a3x2 − a2x3 − ω1, F2 = a1x3 − a3x1 − ω2, F3 = a2x1 − a1x2 − ω3,

P1 = P2 = P3 = a1x1 + a2x2 + a3x3.
(2.1)

Case Ib: If m1 = m2 = 0 and ω = λa, then there are two Darboux polynomials

Fε
1 = − (a2‖a‖ + iεa1a3) x1 + (a1‖a‖ − iεa2a3) x2 + iε(a21 + a22)x3,

Pε
1 = a1x1 + a2x2 + a3x3 + iελ‖a‖, (2.2)

where ε2 = 1.
Case IIa: If

m1a
2
2 = m2a

2
1 , a · ω = ω3m1

a2
a1

, a1 �= 0,

and m2
1 +m2

2 �= 0 and a21 + a22 �= 0, then there is one Darboux polynomial

F1 = −ω3 + a2x1 − a1x2, P = a · x − m1
a2
a1

x3. (2.3)
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Case IIb: If a1 = a2 = 0, ω3 = 0 and m2
1 + m2

2 �= 0, then

Fε
1 = ε

√
m1m2x1+m1x2+ −m1ω1 + ε

√
m1m2ω2

a3 + ε
√
m1m2

, Pε
1 = (

a3 + ε
√
m1m2

)
x3.

(2.4)
In this case, if additionally a3 + ε

√
m1m2 = 0, then it must be −m1ω1 +

ε
√
m1m2ω2 = 0 and

Fε
1 = ε

√
m1m2x1 + m1x2 (2.5)

is a first integral of the system.
Case IIc: If a1 = a2 = 0, ω1 = ω2 = 0 and m2 = −m1 and ω3 �= 0, then the two

polynomials

Fε
1 = − iεx1 + x2, Pε

1 = − iεω3 + (a3 + iεm1) x3

are Darboux polynomials.
Case III: If a1 = m1 = 0 and ω = (ω1,−αa3, αa2), then there is one Darboux

polynomial

F1 = −α + x1, P1 = a2x2 + a3x3. (2.6)

All of the above cases exceptCase IIa are integrable. Since the STF flow preserves
a volume in the phase space for the integrability, just one first integral is necessary;
see explanations about the integrability in the Jacobi sense at the beginning of Sect. 3.
Knowing Darboux polynomials, one can effectively construct first integrals using
properties of Darboux polynomials recapitulated in Proposition 3.1. In particular,
when cofactors are linearly dependent over Z, a rational first integral can be built. The
STF system reduced to a fixed level of a first integral has an integrating factor (3.3)
that enables us to find the second first integral using formula (3.4). This procedure is
called the last Jacobi multiplier method and is briefly described in Sect. 3. Finding an
explicit form of this first integral, however, can be difficult.

In Case Ia, polynomials of degree four F0F2
i , or rational functions Fi/Fj , where

Fi are given in (2.1), are first integrals, and one can choose two that are functionally
independent e.g.

I1 = F0F
2
3 = (a2x1 − a1x2 − ω3)

2
(
x21 + x22 + x23 − 1

)
,

I2 = F1
F2

= a3x2 − a2x3 − ω1

a1x3 − a3x1 − ω2
. (2.7)

In Case Ib, since the Darboux polynomial F+
1 F−

1 has the cofactor 2a · x (see
Eq. (2.2)), I1 = F+

1 F−
1 F0 is a first integral that after division by constant a21 + a22

takes the final form
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I1 =
[(

a22 + a23

)
x21 +

(
a21 + a23

)
x22 +

(
a21 + a22

)
x23 − 2a1x1 (a2x2 + a3x3)

−2a2a3x2x3
] (

x21 + x22 + x23 − 1
)

.

In Case IIa, as well as in the conjugated cases obtained by a cyclic permutation of
the parameters, the integrability of the system is an open question.

In Cases IIb and IIc, it holds that a1 = a2 = 0, and the Darboux polynomial F0
has the cofactor P0 = − 2a3x3. Thus, the Darboux polynomial F1 = F+

1 F−
1 has the

cofactor P1 = 2a3x3, and the product I1 = F0F1 is a polynomial first integral of the
system. In Case IIb, first integral I1 = F0F1 takes the form

I1 =
[
m2 (ω2 + a3x1)

2 + m2
1m2x

2
2 − m1

(
(ω1 − m2x1)

2

−2 (a3ω1 + m2ω2) x2 + a23x
2
2

)] (
x21 + x22 + x23 − 1

)
.

(2.8)

Moreover, one can construct the second first integral I2 which is functionally inde-
pendent of I1 and is of the Darboux type

I2 = (F+
1 )a3−

√
m1m2

(F−
1 )a3+

√
m1m2

, (2.9)

where F±
1 are given in (2.4).

In the special subcase of Case IIb, the second first integral built by means of the
last Jacobi multiplier and functionally independent of (2.5) is

I ε
2 = m1 (ω2 + m1x2)

(
x21 + x23

)
− m1x1 (2ω1 + 3m2x1) x2

− ε
√
m1m2x1

(
x1 (ω1 + m2x1) + m1

(
− 2 + x21 + 4x22 + x23

))
.

(2.10)

In Case IIc, the explicit form of the first integral I1 = F0F1 is

I1 =
(
x21 + x22

) (
x21 + x22 + x23 − 1

)
. (2.11)

The second first integral can be constructed by means of the last Jacobi multiplier as

I2 = a3
2

arctan

(
x2
x1

)

+ m1

4
ln(x21 + x22 )

−ω3

4

∫ x21 dz
√

(z + x22 )
(− z2 + (1 − 2x22 )z + x22 (1 − x22 ) − I1

) , (2.12)

where I1 is given in (2.11). The integral in the last term defines an elliptic integral,
see Section 230 in Byrd and Friedman (1971).
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In Case III system is integrable with polynomial first integral I1 = F2
1 F0 =

(x1 − α)2(x21 + x22 + x23 − 1).
We can find the second first integral just by applying the Jacobi last multiplier

method. However, it is instructive to note that in the considered case, the system
admits an exponential factor H of the form

H = exp

[
ω1 − αm2 − a3x2 + a2x3

m2(x1 − α)

]

. (2.13)

This satisfies the equation LuH = − (a2x2 + a3x3)H , so

I2 = HF1 = (x1 − α) exp

[
ω1 − αm2 − a3x2 + a2x3

m2(x1 − α)

]

is a first integral of the system.

2.2 Integrability of Distinguished Families of the STF System

In Case IIa given in the previous section, the STF system depends on six parameters.
The intersection of sphere F0(x) = 0 with plane F1(x) = 0, where F1(x) is given
by (2.3) in R

3, is, if not empty, a small circle on the sphere. It is just a phase curve
we look for in order to apply the differential Galois methods to study integrability. In
general, the sphere F0(x) = 0 and plane F1(x) = 0 have a non-empty intersection
in C

3 which gives us a phase curve of the complexified STF system. Hence, our idea
concerning finding a particular solution of the system was successfully applied. In
fact, it gave us more than we expected. When trying to apply the differential Galois
techniques for the Case IIa family, we encountered serious problems. When working
with a seven-parameter family, we did not find a good way to cope with the complexity
of calculation. Moreover, the difficulties were of a fundamental nature. In the best
case, using the differential Galois method, we can obtain necessary conditions for
integrability that depend on five or four parameters. In fact, these conditions are not
usable. This is why we decided to consider a family of the STF system in Case IIa
with the additional assumption ω = 0. We obtained the necessary and sufficient
integrability conditions formulated in this theorem.

Theorem 2.2 Assume thatω = 0 anda21m2 = a22m1. Then the STF system is integrable
if and only if either a1 = a2 = 0, or m1 = m2 = 0, or a1 = m1 = 0, or a2 = m2 = 0.

The first integrals in the four cases mentioned in the above theorem are constructed
using Darboux polynomials and using the last Jacobi multiplier method.

• If a1 = a2 = 0, then we are inCase IIb. Formulae for the two additional Darboux
polynomials (2.4) simplify to

Fε
1 = ε

√
m1m2 x1 + m1x2, Pε

1 = (a3 + ε
√
m1m2)x3,
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and for the first integral (2.8) to

I1 = F+1
1 F−1

1 F0 =
(
m1x

2
2 − m2x

2
1

) (
x21 + x22 + x23 − 1

)
.

The second first integral built bymeans of the last Jacobimultiplier and after taking
the exponent becomes

I2 = 1

m2x21 − m1x22
exp

{
2a3√
m1

√
m2

arctanh

(√
m2 x1√
m1 x2

)}

.

One can simplify it using the formula arctanh x = 1
2 ln

x+1
1−x to the form

I2 =
(
1 + 2

√
m2 x1√

m1 x2−√
m2 x1

) a3√
m1

√
m2

m2x21 − m1x22
.

• If m1 = m2 = 0, then we are in Case Ia with additional Darboux polynomials
(2.1) and two functionally independent first integrals (2.7).

• If a1 = m1 = 0, we are in Case III, where an additional Darboux polynomial
given in (2.6) simplifies to F1 = x1 with the cofactor P1 = a2x2 + a3x3. The
corresponding first integral is

I1 = F2
1 F0 = x21

(
x21 + x22 + x23 − 1

)
.

The second first integral built by means of the last Jacobi multiplier is

I2 = a2x3 − a3x2
x1

+ m2 ln |x1|, (2.14)

where | · | denotes the absolute value.
• If a2 = m2 = 0, an additional Darboux polynomial is F1 = x2 with the cofactor

P1 = a1x1 + a3x3. The corresponding first integral is

I1 = F2
1 F0 = x22

(
x21 + x22 + x23 − 1

)
,

and the second first integral built by means of the last Jacobi multiplier takes the
form

I2 = a1x3 − a3x1
x2

+ m1 ln |x2|.

This case can be obtained from the previous one by the change of variables x1 ↔
x2.
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Let us note that in all integrable cases, the first integral I1 is polynomial and global,
but the second first integral obtained from the last Jacobi multiplier method is not
meromorphic. The dynamics of divergence-free three-dimensional systems with one
global first integral is described in Section 3 of (Lerman and Yakovlev 2019). Phase
space of such systems is foliated by means of levels of its global first integral. In the
case when a global first integral has only a finite number of critical levels, its non-
critical levels are always a 2-torus, but the linearization of the flow on these tori is not
always possible.

The second analysed family of STF systems can be considered as a direct general-
ization of the system (1.1). That is, we consider the system (1.9) with the following
parameters

a = (0, 0, a3) ω = (0, 0, ω3), a3ω3 �= 0. (2.15)

We denote the corresponding vector field by ug(x). According to Remark 1.1, for
the system (1.1) we have m1m2 = 25, ω3 = α and a3 = − 3. Thus, ug(x) is a
two-parameter generalization of the system (1.1).

To describe the obtained results, we introduce the following parameters

μ1 = m1

ω3
, μ2 = m2

ω3
, ω = ω3

a3
. (2.16)

With these parameters, and after rescaling of time t �→ a3t , the explicit form of the
system corresponding to ug(x) reads

ẋ1 = −ωx2 + ωμ1x2x3 + x1x3,
ẋ2 = ωx1 + ωμ2x3x1 + x2x3,
ẋ3 = 1 + ωμ3x1x2 + x23 − 2

(
x21 + x22 + x23

)
,

⎫
⎬

⎭
(2.17)

where we defined μ3 = − (μ1 + μ2).
We divide the whole range of parameters (μ1, μ2) into disjoint sets as shown in

Figs. 2 and 3. Our investigation of the integrability of the system (2.17) is performed
separately in each of these regions. Let us first note that in the case μ3 = 0, i.e. where
μ2 = −μ1, the system (2.17) is integrable with the first integral

I =
(
x21 + x22

) (
x21 + x22 + x23 − 1

)
. (2.18)

Thus, in our further analysis, we exclude cases where μ2 = −μ1.
The results of our analysis are split into five theorems. To formulate the first of

these, we define the hyperbolas

H =
{
(μ1, μ2) ∈ R

2 | 3μ1μ2 + μ1 − μ2 + 1 = 0
}

, (2.19)

and
H′ =

{
(μ1, μ2) ∈ R

2 | 3μ1μ2 − μ1 + μ2 + 1 = 0
}

. (2.20)
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Fig. 2 Regions A, B and B′ on
the plane of parameters (μ1, μ2)

Fig. 3 Regions C, D, D′ and E

on the plane of parameters
(μ1, μ2). The dotted lines in
region D denote hyperbolas
H3,1,H5,3,H1,1, and the lines
in region D′ denote hyperbolas
H′

1,1,H
′
5,3,H

′
3,1, respectively,

counting from the top

Theorem 2.3 Assume that μ1μ2 ≤ 0 i.e. (μ1, μ2) ∈ A ∪ B ∪ B′ in Fig. 2. If the
system (2.17) is integrable, then either

1. μ1 + μ2 = 0, or
2. (μ1, μ2) ∈ H, μ2 < 0, and

ω2 = 4m2

(μ1 − 1)(μ2 + 1)
(2.21)

for an integer m, or
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Fig. 4 Example of Poincaré cross-sections for the system (2.17) with parameters (μ1, μ2) lying on hyper-
bolas H− ⊂ B orH′− ⊂ B′, cross-plane y = 0

3. (μ1, μ2) ∈ H′, μ2 > 0, and

ω2 = 4m2

(μ1 + 1)(μ2 − 1)
(2.22)

for an integer m.

The cases specified in points 2 and 3 of Theorem 2.3 with parameters (μ1, μ2) ∈
H− or (μ1, μ2) ∈ H′− and satisfying (2.21) or (2.22), respectively, seem to be non-
integrable. In Fig. 4a we present a Poincaré cross-section for the system (2.17) with
parameters (μ1, μ2) = (

3,− 1
2

) ∈ H− ⊂ B and ω = 4, satisfying (2.21) for m = 2.
Similarly, Fig. 4b shows a Poincaré cross-section corresponding to the parameters
(μ1, μ2) = (− 11, 3

8

) ∈ H′− ⊂ B′ and ω = 4, satisfying (2.22) for m = 5. Most of
both these Poincaré cross-sections fill scattered points obtained from intersections of a
few chaotic orbits with the cross plane y = 0. Also visible are two regions filled with
closed quasi-periodic orbits around central points corresponding to stable periodic
solutions.

The analysis of cases with μ1μ2 > 0 is split into four cases. Region C on the
(μ1, μ2) plane is defined by

(μ1 + 1)(μ2 − 1) ≤ 0 and (μ1 − 1)(μ2 + 1) ≤ 0 and μ1μ2 > 0, (2.23)

see Fig. 3.

Theorem 2.4 Assume that (μ1, μ2) ∈ C. If the system (2.17) is integrable, then μ1 =
μ2 = μ and ωμ ∈ Z.

In the cases specified in Theorem 2.4, Poincaré cross-sections do not give a clear
suggestion concerning the integrability, see Fig. 5a, and its magnification around an
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(a) (b)

Fig. 5 Example of a Poincaré cross-section for the system (2.17) with (μ1, μ2) =
(
1
2 , 1

2

)
∈ C and ω = 2

satisfying μω = 1; cross-plane y = 0

unstable periodic solution inFig. 5b.Calculationswere carried out for the system (2.17)
with parameters μ1 = μ2 = μ = 1

2 and ω = 2 satisfying μω = 1 ∈ Z. Actually,
whenwe compare these Poincaré cross-sectionswith Fig. 6a andwith itsmagnification

in Fig. 6b obtained for the system (2.17) with parameters μ1 = μ2 = μ =
√

2
3 and

ω = 3
2

√
3
2 , we do not see a large difference in the regularity of the trajectories, although

in this caseμω = 3
2 /∈ Z. The global Poincaré cross-sections shown in Figs. 5a and 6a

have very regular structures built by means of quasi-periodic orbits. But the fact that
we do not see chaos in the global scale does not mean that the system is regular. We
can expect that in the neighbourhood of an unstable periodic orbit chaotic zones exist,
but magnifications in Figs. 5b and 6b do not show them.

Region D in Fig. 3 is defined by the following inequalities

(μ1 + 1)(μ2 − 1) < 0 and (μ1 − 1)(μ2 + 1) ≥ 0 and μ1μ2 > 0. (2.24)

We also define a family of hyperbolas

Hk,l =
{
(μ1, μ2) ∈ R

2 | 4l2μ1μ2 = k2(μ1 − 1)(μ2 + 1)
}

, (2.25)

parameterized by two odd integers k, l ∈ Z.

Theorem 2.5 Assume that (μ1, μ2) ∈ D. If the system (2.17) is integrable, then
(μ1, μ2) ∈ Hk,l and

ω2μ1μ2 = k2

16
(2.26)

for certain odd integers k, l ∈ Z.
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(a) (b)

Fig. 6 Example of a Poincaré cross-section for the system (2.17) with parameters (μ1, μ2) =(√
2
3 ,

√
2
3

)

∈ C and ω = 3
2

√
3
2 for which μω = 3

2 /∈ Z, cross-plane y = 0

In region D′ determined by inequalities

(μ1 + 1)(μ2 − 1) ≥ 0 and (μ1 − 1)(μ2 + 1) < 0 and μ1μ2 > 0, (2.27)

we define a family of hyperbolas

H′
k,l =

{
(μ1, μ2) ∈ R

2 | 4l2μ1μ2 = k2(μ1 + 1)(μ2 − 1)
}

, (2.28)

parameterized by two odd integers k, l ∈ Z, see Fig. 3.

Theorem 2.6 Assume that (μ1, μ2) ∈ D′. If the system (2.17) is integrable, then
(μ1, μ2) ∈ H′

k,l and

ω2μ1μ2 = k2

16
(2.29)

for certain odd integers k, l ∈ Z.

The cases specified in Theorems 2.5 and 2.6 seem to be non-integrable. Figure 7a
presents a Poincaré cross-section for the system (2.17) with parameters (μ1, μ2) =
( 9
8 ,

1
3

) ∈ H3,1 ⊂ D, and ω =
√

3
2 satisfying (2.26). Similarly, Fig. 7b shows a

Poincaré cross-section for the system (2.17) with parameters (μ1, μ2) = ( 1
3 ,

9
8

) ∈
H′

3,1 ⊂ D′, and ω =
√

3
2 , satisfying the condition (2.29). Both these Poincaré cross-

sections are mainly created by scattered points due to chaotic trajectories with two
regions filled with closed quasi-periodic orbits surrounding certain period orbits.

Most difficult for the analysis is the case when (μ1, μ2) ∈ E in Fig. 3. This is
why the necessary conditions given in this theorem are not optimal. Here, region E is
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Fig. 7 Examples of Poincaré cross-sections for the system (2.17) with parameters lying on hyperbolas
Hk,l ⊂ D and H′

k,l ⊂ D′, cross-plane y = 0

defined by the following inequalities

(μ1 + 1)(μ2 − 1) ≥ 0 and (μ1 − 1)(μ2 + 1) > 0 and μ1μ2 > 0. (2.30)

Theorem 2.7 Assume that (μ1, μ2) ∈ E. If ω
√

μ1μ2 ∈ C\ 1
2Z and

ω
√

(μ1 + 1)(μ2 − 1) /∈ Q and ω
√

(μ1 − 1)(μ2 + 1) /∈ Q, (2.31)

then the system (2.17) is not integrable.

Let us checkwhat happenswhenweconsider the system (2.17) satisfying conditions
mentioned in Theorem 2.4, i.e. μ1 = μ2 = μ and μω ∈ Z, but when (μ1, μ2) ∈ E.
Then the Poincaré cross-section given in Fig. 8 for the values of parameters (μ1, μ2) =( 3
2 ,

3
2

) ∈ E and ω = 2
3 , satisfying μω = 1, shows an evident macroscopic chaotic

region.

3 Tools andMethods

Let us make the notion of integrability precise in the context of this paper. Since the
system is divergence-free, it is natural to use integrability in the Jacobi sense.

Definition 3.1 An n-dimensional system ẋ = v(x) is integrable in the Jacobi
sense if and only if it admits (n − 2) functionally independent first integrals
f1(x), . . . , f(n−2)(x), and an invariant n-form ω = ρ(x)dx1 ∧ · · · ∧ dxn .
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Fig. 8 Example of a Poincaré
cross-section for the
system (4.52) with

(μ1, μ2) =
(
3
2 , 3

2

)
∈ E and

ω = 2
3 , cross-plane y = 0

The invariance ω in the above definition means that

Lv(ω) = div(ρ(x)v(x)) = 0.

As the STF system is divergence-free, i.e. ρ = 1, its integrability in the Jacobi sense
means that it possesses a first integral.

A system integrable in the Jacobi sense is integrable by quadratures. In fact, tak-
ing the first integrals f1(x), . . . , f(n−2)(x) as new variables, we can assume that the
transformation

y1 = x1, y2 = x2, yi+2 = fi (x), 1 ≤ i ≤ n − 2, (3.1)

is invertible, at least locally. In new variables, the system reduces to two equations

ẏ1 = w1(y1, y2), ẏ1 = w2(y1, y2), (3.2)

with right-hand sides dependent on (n−2) parameters. System (3.2) has an integrating
factor

μ(y1, y2) = ρ(x( y))
∂(x1, . . . , xn)

∂(y1, . . . , yn)
, (3.3)

so

fn−1 =
∫

μ(y1, y2) [w2(y1, y2)dy1 − w1(y1, y2)dy2] (3.4)

is the remaining first integral, which allows us to determine phase curves of the system,
and with one more quadrature allows us to determine the time evolution along them.

Let us recall basic definitions and facts concerningDarbouxpolynomials.Wedenote
by C[x] = C[x1, . . . , xn] the ring of complex polynomials of n variable x, and by
C(x) the field of rational functions. Let v(x) = (v1(x), . . . , vn(x)) ∈ C[x]n be a
polynomial vector field and let Lv be the corresponding Lie derivative.
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Polynomial F ∈ C[x] is called a Darboux polynomial of v(x) if LvF = PF for
a certain polynomial P ∈ C[x], which is called the cofactor of F . We collect basic
properties of Darboux polynomials in the following proposition.

Proposition 3.1 1. If Fi are Darboux polynomials, LvFi = Pi Fi , for i = 1, . . . , k,
then their product F = F1 · · · Fk is a Darboux polynomial with a cofactor P =
P1 + · · · + Pk, i.e. LvF = PF.

2. If F is a Darboux polynomial, then its irreducible factors are also Darboux poly-
nomials.

3. If F1, . . . , Fk are Darboux polynomials and their cofactors satisfy

k∑

i=1

αi Pi (x) = 0 (3.5)

for certain numbers α1, . . . , αk ∈ C, then F = Fα1
1 · · · Fαk

k is a first integral of
v(x).

4. If F1, . . . , Fk areDarboux polynomialswith the same cofactor P, then an arbitrary
linear combination

F =
k∑

i=1

αi Fi (x), αi ∈ C, i = 1, . . . , k (3.6)

is a Darboux polynomial with the cofactor P.

A very nice and concise exposition of this subject can be found in Nowicki (1994).
To prove non-integrability of the STF system,we need strong necessary integrability

conditions that can be effectively applied.We use obstructions formulated bymeans of
the properties of the differential Galois group of variational equations obtained from
the linearization of the STF system along certain known particular solutions. For a
detailed exposition of the differential Galois theory, see e.g. Kaplansky (1976) and
Morales Ruiz (1999). To find a necessary particular solution, an additional Darboux
polynomial or a manifold invariant with respect to the STF flow can be useful. We will
apply the following theorem, which follows from Corollary 3.7 in Casale (2009).

Theorem 3.1 Assume that a complex meromorphic system ẋ = v(x), x ∈ C
n is

integrable in the Jacobi sensewithmeromorphic first integrals andwith ameromorphic
invariant n-form. Then the identity component of the differential Galois group of
variational equations along a particular phase curve is solvable.Moreover, the identity
component of the normal variational equations is Abelian.

Our paper is the first application of this general criterion for the integrability in the
Jacobi sense. The applicability of this theorem is dependent on the knowledge of a
particular solution and the possibility of determining the differential Galois group of
variational equations along this particular solution.

For the investigated system, we found particular solutions, so the problem is to
determine the differential Galois group of variational equations. Here we underline
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that for a parameterized system, this problem is very hard and, in fact, is unsolvable,
see Theorem 1 in Boucher (2000).

The crucial step in our investigation is the proper reduction of the variational equa-
tion to the second-order equation of second-order and rational coefficients. There is a
canonical recipe for how to perform this. The fact that we succeeded in reducing the
variational equations to the Riemann P equation gave us the possibility of proving
our main theorem. It was equally important to find necessary and sufficient conditions
for which the differential Galois group of the Riemann P equation has an Abelian
identity component, as the well-known Kimura theorem only gives the necessary and
sufficient conditions for solvability of this group.

4 Proofs

4.1 Proof of Theorem 2.1

Preliminary analysis Let F be a Darboux polynomial linear in variables and let P
be its cofactor. We can write them in the form

F(x) = f0 + f · x, P(x) = p0 + p · x, f , p ∈ C
3, f0, p0 ∈ C, (4.1)

and we can assume that f �= 0. The polynomial R = LuF − PF has degree two. Its
homogeneous terms Ri of degree i are as follows

R0(x) = f · a − p0 f0, (4.2a)

R1(x) = [ f × ω − p0 f − f0 p
] · x, (4.2b)

R2(x) =(a · x)( f · x) − 2(x · x)( f · a) + f · (Jx × x) − ( p · x)( f · x). (4.2c)

As, by assumption, R(x) vanishes identically, all its coefficients vanish so that we
obtain the following system of polynomial equations:

f · a = p0 f0, (4.3a)

f × ω = p0 f + f0 p, (4.3b)

(a − p) f T + f (a − p)T − 4(aT f ) Id3 +[ f̂ , J] = 0, (4.3c)

where

f̂ =
⎡

⎣
0 − f3 f2
f3 0 − f1

− f2 f1 0

⎤

⎦ , (4.4)

and [·, ·] denotes the commutator of matrices. Hence, we have a system of 10 polyno-
mial equations for 15 variables. Taking into account two independent rescalings, we
can reduce the number of variables to 13.

Equation (4.3c) can be rewritten in the form

2a · f = fi (ai − pi ), (4.5)
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fimi =(p j − a j ) fk + (pk − ak) f j , (4.6)

where (i, j, k) is a cyclic permutation of (1, 2, 3).
The starting point of our analysis is two equations R1( f ) = 0 and R2( f ) = 0.

Their explicit forms are

p0( f · f ) + f0( f · p) = 0, (4.7)

( f · f )
[
(a + p) · f

] = 0. (4.8)

Note also that from (4.5) we get

6a · f = f · (a − p). (4.9)

Proposition 4.1 Let F(x) and P(x) of the form (4.1) be a Darboux polynomial and
the respective cofactor of (1.3). Then f · a = 0, and f · p = 0. Moreover,

1. if f · f �= 0, then p0 = 0 and ω · p = 0,
2. if p0 �= 0, then f0 = 0, f · f = 0 and f · ω = 0.

Proof There are two cases.
If f · f �= 0, then directly from Eqs. (4.8) and (4.9) we obtain that f · a = 0, and

f · p = 0.
If f · f = 0, then from (4.7) it follows that either f0 = 0, or f · p = 0. But, if

f0 = 0, then by (4.3a) f · a = 0, and then by (4.9), f · p = 0. If f · p = 0, then (4.9)
implies that f · a = 0.

In this way we have proved that f · a = 0, and f · p = 0.
To prove point 1 of the Proposition, we note that if f · f �= 0, then from (4.7) we

get p0 = 0, because f · p = 0. Next, from Eq. (4.3b) we obtain

f × ( f × ω) = f ( f · ω) − ω( f · f ) = f0 f × p, (4.10)

so, taking the scalar product of both sides with p we get ( p · ω)( f · f ) = 0. As
f · f �= 0 by assumption, we obtain p · ω = 0.
Nowwe prove point 2. As f · a = 0, Eq. (4.3a) implies that if p0 �= 0, then f0 = 0.

Similarly, because f · p = 0, from Eq. (4.7) it follows that p0 �= 0 implies f · f = 0.
From Eq. (4.3b), with f0 = 0, we have

0 = f × ( f × ω) = f ( f · ω) − ω( f · f ) = f ( f · ω), (4.11)

so ( f · ω) = 0 because f �= 0. ��
We recapitulate the above considerations in the following.

Corollary 4.1 System (1.3) with a �= 0 has a Darboux polynomial F = f0 + f · x
with cofactor P = p0 + p · x if

fi (ai − pi ) = 0 for i = 1, 2, 3, (4.12)
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f · a = 0, f · p = 0 f0 p0 = 0, (4.13)

and
f × ω = p0 f + f0 p, (4.14)

and
fimi = (p j − a j ) fk + (pk − ak) f j , (4.15)

where (i, j, k) is a cyclic permutation of (1, 2, 3).

We split our further analysis into three disjoint cases corresponding to the number
of non-vanishing components of vector f = ( f1, f2, f3). We assume that a �= 0,
a,ω ∈ R

3, and m1,m2 ∈ R. Under these assumptions, our analysis is complete.

Case I: Let us assume that fi �= 0 for i = 1, 2, 3. Then, Eq. (4.12) imply that p = a,
and in turn, from Eq. (4.15) we obtain m1 = m2 = m3 = 0.

If f · f �= 0, then by Proposition 4.1 p · ω = a · ω = 0 and p0 = 0. Therefore,
in this case we take an arbitrary f �= 0 such that f · a = 0, and then Eqs. (4.15),
(4.12) and (4.13) are fulfilled. It remains to solve Eq. (4.14) for f0. By taking the
scalar product of both sides (4.14) with a, we obtain

f0 = 1

a · a a · ( f × ω). (4.16)

To summarize, if f · f �= 0 and f · a = 0, then F = f0 + f · x with f0 given above
is a Darboux polynomial of (1.3), and P = a · x is its cofactor. Note that the cofactor
does not depend on a choice of f . Thus, we have a family of Darboux polynomials
parameterized by a complex vector f which is orthogonal to vector a. As all these
Darboux polynomials have the same cofactor, they form a two-dimensional complex
linear space, see point 4 in Proposition 3.1. Each element of this vector space can be
written as a linear combination of the following three polynomials

F1 = a3x2 − a2x3 − ω1,

F2 = a1x3 − a3x1 − ω2,

F3 = a2x1 − a1x2 − ω3. (4.17)

Compare this with formula (2.1).
Assume now that p0 �= 0; then by Proposition 4.1 we have f0 = 0 and f · f = 0.

It is easy to show that f · f = 0 if and only if f = b + ic, with b, c ∈ R
3 such that

b · b = c · c and b · c = 0. As f · a = 0, we have a · b = 0 and a · c = 0. Thus, a real
vector perpendicular to b and c is parallel to a. Hence, because f · ω = 0, we have
ω = λa for a certain λ ∈ R. It remains to determine p0. When multiplying Eq. (4.3b)
by b, we obtain

iλa · (b × c) = p0b · b. (4.18)

To summarize, if f · f �= 0 and f · a = 0, then F = f · x is a Darboux polynomial
of (1.3), and P = p0 + a · x with p0 defined above is its cofactor. In fact, the above
formulae define a family of Darboux polynomials for the given parameters of the

123



1630 Journal of Nonlinear Science (2020) 30:1607–1649

system. To show this we assume that for a given a and ω = λa, f 0 = b0 + ic0
satisfies f 0 · f 0 = 0 and a · f 0 = 0. Then f (s) = b(s) + ic(s) where

b(s) = cos(s)b0 + sin(s)

‖a‖ (a × b0) ,

c(s) = cos(s)c0 + sin(s)

‖a‖ (a × c0) , (4.19)

satisfies f (s) · f (s) = 0 and a · f (s) = 0 for all s ∈ R. Moreover

p0 = iλ
a · (b(s) × c(s)

b(s) · b(s) for all s ∈ R. (4.20)

Hence, for arbitrary s ∈ R, F(s) = f (s) · x is a Darboux polynomial of the system
and P = p0 + a · x is its cofactor.

To give explicit forms of vectors b and c, we assume that a1 �= 0. Then, we can set

b0 = (− a2, a1, 0), c0 = 1

‖a‖ (a × b0), (4.21)

and p0 = iλ‖a‖. Substituting these formulas into (4.19) gives F(s) = f (s) · x =
e−is

‖a‖ F
+
1 , where F+

1 is given in (2.2). Since F+
1 is a complex Darboux polynomial,

its complex conjugation is also a Darboux polynomial F−
1 = F

+
1 with the cofactor

P−
1 = P

+
1 .

Case II:Herewe assume that two components of f are different fromzero. Let f1 f2 �=
0 and let f3 = 0. Then, by (4.12) we get p1 = a1 and p2 = a2. Equations (4.15)
reduce to the following system

m1 f1 − (p3 − a3) f2 = 0,

− (p3 − a3) f1 + m2 f2 = 0.
(4.22)

As a homogeneous system for ( f1, f2) it has a non-zero solution if

m1m2 = (p3 − a3)
2. (4.23)

We can assume that m1m2 �= 0. In fact, if m1 = 0, then p3 = a3 and m2 = 0, so this
is the case considered in the previous subsection.

We split our further analysis into two parts with results collected in two lemmas.

Lemma 4.1 Assume that the STF system has a Darboux polynomial F = f0 + f1x1 +
f2x2 with f1 f2 �= 0 and m2

1 + m2
2 �= 0. If a21 + a22 �= 0. Then,

F = −ω3 + a2x1 − a1x2, (4.24)
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and the parameters of the system satisfy the conditions

m1a
2
2 = m2a

2
1 , a · ω = ω3m1

a2
a1

. (4.25)

The cofactor of F is

P = a · x − m1
a2
a1

x3. (4.26)

Proof As f · a = a1 f1 + a2 f2 = 0 and f1 f2 �= 0, we have a1a2 �= 0 and we can
assume that f = (a2,−a1, 0). Next, from (4.22) we obtain

m1a
2
2 = m2a

2
1, (4.27)

and
p3 = a3 − m1

a2
a1

= a3 − m2
a1
a2

. (4.28)

As f · f = a21 + a22 �= 0, from Proposition 4.1 we obtain that p0 = 0, and then
condition p · ω = 0 reads

a · ω = ω3m1
a2
a1

. (4.29)

Finally, Eq. (4.14) simplify to

− a1ω3 = f0a1, −a2ω3 = f0a2, a1ω1 + a2ω2 = f0 p3. (4.30)

Hence, f0 = −ω3, and then the last equation in (4.30) coincides with (4.29). ��
Lemma 4.2 Assume that a1 = a2 = 0 m2

1 + m2
2 �= 0. If a STF system has a Darboux

polynomial F = f0 + f1x1 + f2x2 with f1 f2 �= 0 then either

1. ω3 = 0 and
Fε
1 = f ε

0 + ε
√
m1m2x1 + m1x2, ε2 = 1, (4.31)

where

f ε
0 = −m1ω1 + ε

√
m1m2ω2

a3 + ε
√
m1m2

, (4.32)

are Darboux polynomials with cofactors

Pε
1 = (a3 + ε

√
m1m2)x3. (4.33)

In this case if a3 + ε
√
m1m2 = 0, then m1ω1 − ε

√
m1m2ω2 = 0 and Fε

1 =
ε
√
m1m2x1 + m1x2 are first integrals of the system.

2. or ω3 �= 0 and then ω1 = ω2 = 0 and m2 = −m1. In this case there are two
Darboux polynomials

Fε
1 = − iεx1 + x2, (4.34)

with the corresponding cofactors

Pε
1 = − iεω3 + (a3 + iεm1)x3. (4.35)
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Proof Since, by assumption, a1 = a2 = 0, we have also p1 = p2 = 0. Next, from
Eq. (4.22) we determine two values for p3

p3 = a3 + ε
√
m1m2. (4.36)

From the same equation we conclude that up to a multiplicative constant, f1 =
ε
√
m1m2 and f2 = m1. Vector f is isotropic if f 21 + f 22 = m1(m1+m2) = −m1m3 =

0. Let us first assume that m3 �= 0. Then, f · f �= 0 and, by Proposition 4.1, p0 = 0
but we still have to solve Eq. (4.14), which now reduce to equations

m1ω3 = 0, ε
√
m1m2ω3 = 0, −m1ω1 + ε

√
m1m2ω2 = f0

(
a3 + ε

√
m1m2

)
,

(4.37)
which give ω3 and

f0 = −m1ω1 + ε
√
m1m2ω2

a3 + ε
√
m1m2

. (4.38)

If a3+ε
√
m1m2 = 0, then the third equation in (4.37) gives−m1ω1+ε

√
m1m2ω2 = 0

and the second statement in point 1 of the lemma follows.
If m3 = 0, i.e. m2 = −m1, we cannot claim that p0 = 0. But in this case we can

set ε
√
m1m2 = iεm1. Now, Eqs. (4.13) and (4.14) reduce to the following system:

f0 p0 = 0, p0 = − iεω3, −m1 (ω1 − iεω2) = f0 (a3 + iεm1) . (4.39)

Hence, if p0 = 0, then ω3 = 0 and Fε
1 and Pε

1 are given by formulae (4.31) and (4.33)
with m2 = −m1.

On the other hand, if p0 �= 0, i.e. ω3 �= 0, then necessarily f0 = 0, and the third
equation in (4.39) implies that ω1 = ω2 = 0. As f0 = 0, we rescale Fε

1 dividing it by
m1 in order to obtain (4.34). ��
Case III:Herewe assume that f1 �= 0 and f2 = f3 = 0. Thus, from equation f ·a = 0
we get a1 = 0, and similarly, p1 = 0. Then, from Eq. (4.6) we obtain immediately
m1 = 0, p2 = a2 and p3 = a3. Now Eq. (4.14) read

f1 p0 = 0, − f1ω3 = a2 f0 f1ω2 = a3 f0. (4.40)

Thus, p0 = 0, and from the last two equations we deduce that ω2a2 + ω3a3 = 0.
Because, by assumption, a �= 0, we can set (ω2, ω3) = α(− a3, a2), and taking
f1 = 1, we obtain f0 = −α.
To conclude, if a1 = m1 = 0 and ω = (ω1,−αa3, αa2), then the system has the

Darboux polynomial F1 = x1 − α with the cofactor P1 = a2x2 + a3x3.
Collecting the results obtained for all the above cases gives the statement of Theo-

rem 2.1.

4.2 Proof of Theorem 2.2

Proof In the previous section we showed that if the STF system possesses a linear
Darboux polynomial, then it is integrable, with the exception of the families distin-
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guished in Lemma 4.1. These families depend generically on six real parameters, and
there is no reasonable way to effectively and completely investigate their integrability.
This is why we decided to investigate certain subfamilies which depend on a smaller
number of parameters. Thus, in Theorem 2.2, we consider the STF system satisfying
the two conditions ω = 0 and a21m2 = a22m1.

Taking into account the thesis of Theorem 2.2, we can assume that a1a2 �= 0 and
m1m2 �= 0.

With the specified restrictions on parameters, the STF system possesses one addi-
tional Darboux polynomial F1 with the corresponding cofactor P1 given by

F1 = a2x1 − a1x2, P1 = a1x1 + a2x2 + a3x3 − a2
a1

m1x3. (4.41)

We first set a1 = a sin α and a2 = a cosα, a =
√

a21 + a22 . Next, we rotate
coordinates x = A y in such a way that the Darboux polynomial F1 becomes a new
coordinate ⎡

⎣
x1
x2
x3

⎤

⎦ =
⎡

⎣
cosα sin α 0

− sin α cosα 0
0 0 1

⎤

⎦

⎡

⎣
y1
y2
y3

⎤

⎦ . (4.42)

The transformed system reads

ẏ1 = ay1 [y2 + (2c − s)y3] ,

ẏ2 = − γ y1y3 − a
(
− 1 + 2y21 + y22 − sy2y3 + 2y23

)
,

ẏ3 = γ y1y2 + a
[
s(y21 − y22 ) + y2y3 − c

(
− 1 + 3y21 + y22 + y23

)]
,

(4.43)

where parameters c and s are defined by a3 = ac, a3 + m1 cot α = as, and

γ = 1

m1

[
m2

1 − a2(c − s)2
]
.

A particular solution is given by the intersection of the sphere F0 = y21 + y22 +
y23 − 1 = 0 with the plane F1 = y1 = 0, so it is the great circle y22 + y23 = 1. We
parameterize it in the following way

y2 = 1

2

(

x(t) + 1

x(t)

)

, y3 = 1

2i

(

x(t) − 1

x(t)

)

, (4.44)

where function x(t) satisfies the differential equation

ẋ = a

2

[
(1 − is)x2 − (1 + is)

]
.
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The variational equations for this particular solution have the form

⎡

⎣
Ẏ1
Ẏ2
Ẏ3

⎤

⎦ = 1

β

⎡

⎣
b11 0 0
b21 b22 b23
b31 b32 b33

⎤

⎦

⎡

⎣
Y1
Y2
Y3

⎤

⎦ , (4.45)

where

b22 = −m1

[
s(1 − x2) + 2i(1 + x2)

]
, b23 = am1

[
4(1 − x2) + is

(
1 + x2

)]
,

b32 = − iam1

[
2c + 2s − i + (2c + 2s + i)x2

]
,

b33 = am1

[
i + 2c + (i − 2c)x2

]
, β = am1x

[
s − i + (s + i)x2

]
.

The explicit formof entries bi1 is irrelevant for our further considerations. The equation
for Y1 separates from the other equations. Thus, we can assume that Y1 = 0, and then
equations for Y2 and Y3 form a closed system called a normal variational system. If
we choose

Y = Y2 + iY3

as a dependent variable, and

z = 1

d
x2, d = 1 − s2 + 2is

s2 + 1

as an independent variable, then we obtain the second-order differential equation

d2Y

dz2
+ p(z)

dY

dz
+ q(z)Y = 0 (4.46)

with rational coefficients

p(z) =1 + ic + 2d + d2 − icd2

2d(z − 1)
− 1 + ic(1 + d)

2dz
,

q(z) = − 1 + ic + 2d + d2 − icd2

2d(z − 1)2
+ 1 + ic(1 + d)

2dz(z − 1)
.

(4.47)

The reduced form of this equation

w′′ + r(z)w = 0, r(z) = q(z) − 1

2
p′(z) − 1

4
p(z)2, (4.48)

is obtained by means of the transformation

Y = w exp

[

−1

2

∫ z

z0
p(s) ds

]

. (4.49)
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The coefficient r(z) in (4.48) has the form

r(z) = 1

4

[
1 − ρ2

z2
+ 1 − σ 2

(z − 1)2
+ ρ2 + σ 2 − τ 2 − 1

z(z − 1)

]

, (4.50)

where

ρ = 1 + 1

2d
+ i

(1 + d)c

2d
= 1

2
+ cs + 1

s2 + 1
+ i

c − s

s2 + 1
,

τ = 2 + d

2
− i

(1 + d)c

2
= 3

2
+ cs + 1

s2 + 1
− i

c − s

s2 + 1
,

σ = 2 + 1 + d2

2d
− i

(d2 − 1)c

2d
= 1 + 2(cs + 1)

s2 + 1
. (4.51)

Equation (4.48) has three regular singular points at z = 0, z = 1 and z = ∞, so it is a
Riemann P equation. To prove non-integrability of the STF system by Theorem 3.1,
we must show that the identity component of the differential Galois group of Eq.
(4.48) is not Abelian. The facts concerning the differential Galois group of a general
Riemann P equation are collected in “Appendix B” section.

In the above notation, ρ, σ and τ are the differences of exponents at singular points.
From (4.51) we have ρ−σ +τ = 1, so by LemmaB.1, the equation and its differential
Galois are reducible. Next, by LemmaB.4, if the identity component of the differential
Galois group is Abelian, then either all the exponents are rational or the difference of
the exponents at one point is an integer, and this singularity is not logarithmic.

Let us check the first possibility. Conditions ρ, σ ∈ Q imply that c = s. Recall that
c = a3

a , and s = b
a = a3

a + a2m1
a1a

. Thus, we obtain condition a2m1 = 0. However, the
assumptions of the theorem exclude this case.

As ρ and τ are not real numbers, for the second possibility we have only one choice,
namely, that the difference of exponents σ at z = 1 is an integer.

In order to apply LemmaB.5,wemust calculate all the exponents at all singularities.

If we assume that σ = n ∈ N, then c = n−3+(n−1)s2

2s , and the exponents are

{e0,1, e0,2} =
{

(2 + n)s + i(n − 3)

4s
,
(2 − n)s − i(n − 3)

4s

}

,

{e1,1, e1,2} =
{
n + 1

2
,
1 − n

2

}

,

{e∞,1, e∞,2} =
{

− (4 + n)s + i(3 − n)

4s
,
ns + i(3 − n)

4s

}

.

We calculate all the sums mentioned in Lemma B.5

e1,1 + e0,1 + e∞,1 = n

2
+ i

n − 3

2s
, e1,1 + e0,2 + e∞,1 = 0,

e1,1 + e0,1 + e∞,2 = n + 1, e1,1 + e0,2 + e∞,2 = n + 2

2
+ i

3 − n

2s
.
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Note that none of these sums belongs to the set 〈n〉 defined as

〈n〉 :=
{

∅ if n = 0,

{1, . . . , n} otherwise.

This means that the singularity z = 1 is logarithmic.
To summarize, the identity component of the differential Galois group of the vari-

ational equation is solvable, but not Abelian. Hence, the system is not integrable; this
finishes our proof. ��

4.3 Proof of Theorems 2.3–2.7

In this section we prove theorems concerning the non-integrability of the systems

ẋ1 = −ωx2 + ωμ1x2x3 + x1x3,
ẋ2 = ωx1 + ωμ2x3x1 + x2x3,
ẋ3 = 1 + ωμ3x1x2 + x23 − 2

(
x21 + x22 + x23

)
,

⎫
⎬

⎭
(4.52)

where we defined μ3 = − (μ1 + μ2).
The system (4.52) has a particular phase curve defined by

x1 = 0, x2 = 0, ẋ3 = 1 − x23 . (4.53)

The variational equations for this curve have the form

⎡

⎣
Ẋ1

Ẋ2

Ẋ3

⎤

⎦ =
⎡

⎣
x3 ω(μ1x3 − 1) 0

ω(μ2x3 + 1) x3 0
0 0 −2x3

⎤

⎦

⎡

⎣
X1
X2
X3

⎤

⎦ . (4.54)

Only a subsystem for two first variables is relevant for further consideration.

[
Ẋ1

Ẋ2

]

=
[

x3 ω(μ1x3 − 1)
ω(μ2x3 + 1) x3

] [
X1
X2

]

= A(t)X . (4.55)

This is a normal variational system. It can be rewritten as a second-order equation,
although this procedure is not unique. To find an optimal reduction, we can derive
the second-order differential equation for variable Z = c1X1 + c2X2 with arbitrary
constant coefficients c1 and c2. We achieve this by the elimination of X1 and X2 from
the equations

Z = cTX, Ż = cTA(t)X Z̈ = cT Ȧ(t)X + cTA(t)2X . (4.56)

The obtained equation
Z̈ + a(t)Ż + b(t)Z = 0 (4.57)
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has complicated coefficients. For further analysis, it is crucial to choose coefficients
c in such a way that the obtained equation has the simplest form. For the problem
considered here, a generic choice of coefficients c = [c1, c2]T leads to an equation
with four regular singular points. However, we note that for all the values of the
problem parameters except the case μ2 = −μ1, we can reduce the system to an
equation with three regular singular points, i.e. to the Riemann P equation. To achieve
this, we choose the independent variable

z := 1

2
(x3(t) + 1) (4.58)

and set
w(z) = z(z − 1)X(z) (4.59)

as a dependent variable, where

X := √
μ2X1 + √

μ1X2.

Here, we assume that ω �= 0. Then, w(z) satisfies the equation

w′′ + 1

4

[
1 − ρ2

z2
+ 1 − σ 2

(z − 1)2
+ ρ2 + σ 2 − τ 2 − 1

z(z − 1)

]

w = 0, (4.60)

where

ρ2 = ω2(μ1+1)(μ2−1), σ 2 = ω2(μ1−1)(μ2+1), τ 2 = (
1 − 2ω

√
μ1

√
μ2
)2

.

(4.61)
This is the Riemann P equation; see “Appendix B” section. The differential Galois
group of this equation is denoted by G, and its identity component by G◦. The dif-
ferences of exponents ρ and σ are real or imaginary, depending on the values taken
by μ1 and μ2, and the analysis of G◦ splits into parts related to particular regions of
(μ1, μ2)-plane. We first consider the case when parameters belong to the region A

defined by the following three inequalities

(μ1 + 1)(μ2 − 1) ≤ 0, (μ1 − 1)(μ2 + 1) ≤ 0, μ1μ2 ≤ 0, (4.62)

see Fig. 2.

Lemma 4.3 If (μ1, μ2) ∈ A, then the identity component of the differential Galois
group of Eq. (4.60) is not Abelian, except the case μ1 = μ2 = 0.

Proof If (μ1, μ2) ∈ A, then ρ, σ ∈ iR, and τ = 1 − 2iω
√−μ1μ2 with Im τ =

− 2ω
√−μ1μ2, see formulae (4.61).

Assume that (μ1, μ2) ∈ A\{(0, 0)}, and that the group G◦ is Abelian. Then, by the
Kimura Theorem B.1, either this group is reducible (case A of this theorem), or the
differences of exponents (ρ, σ, τ ) belong to an item of the table given for case B.

We show that case B does not occur for the considered domain of the parameters.
It is impossible that ρ, σ, τ ∈ R. In fact, if ρ, σ ∈ R, then ρ = σ = 0, and this is
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possible only for (μ1, μ2) = (1,− 1) or (μ1, μ2) = (− 1, 1), but for these two values
τ = 1 − iω /∈ R. In this way we have excluded items 2 − 15 in the table of case B.
If (ρ, σ, τ ) belong to the first item in this table, any two of these numbers belong to
1
2 + Z. Thus, either ρ ∈ 1

2 + Z or σ ∈ 1
2 + Z. However, this is impossible.

Thus, if G◦ is Abelian, then it is reducible (case A of the Kimura theorem). By
Lemma B.4, it is possible in only two cases. Either ρ, τ and σ are rational, but we
have already shown that this is impossible, or one of these numbers is an integer and
the corresponding singularity is not logarithmic. The case ρ ∈ Z implies that ρ = 0
and the singularity z = 0 is logarithmic. Similarly, if σ ∈ Z, then σ = 0 and the
singularity z = 1 is logarithmic.

Thus, the only possibility is that τ ∈ Z, but this immediately implies that τ = 1
and μ1μ2 = 0.

Assume that μ2 = 0 and μ1 �= 0. Then, τ = 1 and ρ, σ ∈ iR. Moreover, either
ρ �= 0, or σ �= 0. Now, the necessary and sufficient condition for case A of the
Kimura theorem implies that either ρ + σ = 0, or ρ − σ = 0. This implies that
ρ2 = σ 2, but this is possible only if μ1 = 0. However, we have excluded the case
with (μ1, μ2) = (0, 0).

In a similar way we show that if μ1 = 0 and μ2 �= 0, then G◦ is not Abelian.
To summarize, we have shown that if (μ1, μ2) ∈ A\{(0, 0)}, thenG◦ is not Abelian.
It remains to be shown that if μ1 = μ2 = 0, then G◦ is Abelian. In this case

ρ = σ = iω and τ = 1, and the equation is reducible because ρ − σ + τ = 1. We
show that singularity z = ∞ is not logarithmic. In fact, we have τ1 = 0, τ2 = − 1 and
ρ1 = σ1 = 1

2 (1 + iω), ρ2 = σ2 = 1
2 (1 − iω). Thus, among the numbers

si j = ρi + σ j + τ1, for i, j = 1, 2 (4.63)

only s12 = s21 = 1 are integers. By Lemma B.5, this implies that the singularity is
not logarithmic, and thus the group G◦ is Abelian. ��

Now let us consider region B on the (μ1, μ2) plane. It is defined by

(μ1 + 1)(μ2 − 1) < 0, (μ1 − 1)(μ2 + 1) > 0, μ1μ2 ≤ 0, (4.64)

see Fig. 2. We also define hyperbola H given by

H =
{
(μ1, μ2) ∈ R

2 | 3μ1μ2 + μ1 − μ2 + 1 = 0
}

, (4.65)

and denote by H− = H ∩ B its component contained in B.

Lemma 4.4 For (μ1, μ2) ∈ B, the identity component of the differential Galois group
of Eq. (4.60) is Abelian if and only if (μ1, μ2) ∈ H− and

ω2 = 4m2

(μ1 − 1)(μ2 + 1)
, (4.66)

where m is a non-zero integer.
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Proof If (μ1, μ2) ∈ B, then τ = 1 − 2i
√−μ1μ2, ρ ∈ iR, ρ �= 0 and σ ∈ R.

Moreover, if μ1μ2 �= 0, then τ /∈ R.
Let us assume that the group G◦ is Abelian. Then, we proceed as in the previous

lemma.We first show that case B of the Kimura theorem is impossible. In fact, because
ρ /∈ R, only the first item in the table of case B is possible. Therefore, σ ∈ 1

2 + Z,
τ ∈ 1

2 + Z, but the last condition is impossible.
Thus, if G◦ is Abelian, then Eq. (4.60) is reducible. From the condition (B.7) for

this case we deduce that ρ = ± im τ . By squaring this equality, we obtain

(μ1 + 1)(μ2 − 1) = 4μ1μ2. (4.67)

This is exactly the hyperbolaH defined by (4.65) and one of its components denoted
byH− lies in region B.

As ρ is not rational, then either σ ∈ Z, or τ ∈ Z. If τ ∈ Z, then μ1μ2 = 0, and
from (4.67) we obtain a contradiction. Thus, σ ∈ Z. We can assume that σ = n > 0,
so σ1 = 1

2 (1 + n) > σ2 = 1
2 (1 − n). We also denote the remaining exponents

as ρ1 = 1
2 (1 + ρ), ρ2 = 1

2 (1 − ρ) and τ1 = 1
2 (− 1 + τ) τ2 = 1

2 (− 1 − τ). If
(μ1, μ2) ∈ H−, then ρ = 2iω

√−μ1μ2. Hence, ρ + τ = 1 for (μ1, μ2) ∈ H−. In
order to apply Lemma B.5, we must calculate four numbers

si j = σ1 + ρi + τ j , i, j = 1, 2. (4.68)

By this Lemma, the singularity z = 1 is not logarithmic if and only if one of these
numbers is an element of {1, 2, . . . , n}. But

s11 = 1

2
(n + 2), s22 = n

2
, (4.69)

and s12, s21 /∈ R. This proves our claim.
To finish the proof of the lemma, it is enough to rewrite the equality n2 = 4m2 = σ 2

in the form (4.66). ��
Let us consider region B′ on the (μ1, μ2) defined by

(μ1 + 1)(μ2 − 1) > 0, (μ1 − 1)(μ2 + 1) < 0, μ1μ2 ≤ 0, (4.70)

see Fig. 2. We also define curve H′ given by the equation

H′ =
{
(μ1, μ2) ∈ R

2 | 3μ1μ2 − μ1 + μ2 + 1 = 0
}

, (4.71)

and we denote its component contained in B as H′− = H′ ∩ B.

Lemma 4.5 For (μ1, μ2) ∈ B′, the identity component of the differential Galois group
of Eq. (4.61) is Abelian if and only if (μ1, μ2) ∈ H′− and

ω2 = 4m2

(μ1 + 1)(μ2 − 1)
, (4.72)
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where m is a non-zero integer.

The proof of this lemma is similar to the previous one, so we leave it to the reader.
Now, proof of Theorem 2.3 follows directly from Lemmas 4.3–4.5.
For the system (4.52) with parameters (μ1, μ2) ∈ C, see Eq. (2.23) and Fig. 3, we

can prove the following.

Lemma 4.6 For (μ1, μ2) ∈ C, the identity component of the differential Galois group
of Eq. (B.4) is Abelian if and only if μ1 = μ2 = μ and ωμ ∈ Z.

Proof If (μ1, μ2) ∈ C, then ρ, σ ∈ iR and τ ∈ R. Assume that the group G◦ is
Abelian. Then, the Kimura Theorem B.1 gives two possibilities. As in the previous
proofs, we first exclude case B of this theorem. If ρ ∈ R, then ρ = 0, and, similarly,
if σ ∈ R, then σ = 0, and this eliminates all the items in the table for case B. In fact,
for case B at least two of the numbers ρ, σ and τ are non-zero real numbers.

Thus, if G◦ is Abelian, then Eq. (4.60) is reducible. The necessary conditions (B.7)
for this case imply that ρ2 = σ 2, so μ1 = μ2 = μ. Moreover, the same conditions
require that τ = 1 − 2ωμ = m = 2n + 1 for a certain n ∈ Z. Thus, ωμ ∈ Z. To
prove that G◦ is Abelian in this case, it is enough to show that the infinity is not a
logarithmic singularity. We apply Lemma B.5. The exponents at infinity are τ1 = n
and τ2 = − (1 + n). We can assume that n > 0. Now, among numbers

si j = ρi + σ j + τ1, i, j = 1, 2, (4.73)

we have s12 = s21 = 1 + n. Hence, by Lemma B.5 the singularity is not logarithmic
and the group G◦ is Abelian. ��

Now, we consider region D in Fig. 3 defined by the following inequalities

(μ1 + 1)(μ2 − 1) < 0 and (μ1 − 1)(μ2 + 1) ≥ 0 and μ1μ2 > 0. (4.74)

We also define a family of hyperbolas

Hk,l =
{
(μ1, μ2) ∈ R

2 | 4l2μ1μ2 = k2(μ1 − 1)(μ2 + 1)
}

, (4.75)

parametrized by two odd integers k, l ∈ Z.

Lemma 4.7 Assume that (μ1, μ2) ∈ D. Then, the group G◦ is Abelian if and only if
(μ1, μ2) ∈ Hk,l and

ω2μ1μ2 = k2

16
, (4.76)

for certain odd integers k, l ∈ Z

Proof For (μ1, μ2) ∈ D, ρ ∈ iR, ρ �= 0, and σ, τ ∈ R.
Assume that the group G◦ is Abelian. Then, by the Kimura Theorem B.1, we have

two possibilities. However, case A of this theorem is impossible. In case B we have
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only one possibility, which is the first item in the table for this case:

σ = 1

2
+ s, and τ = 1

2
+ t (4.77)

for certain integers s and t . Let l = 2s + 1 and let k = 2t − 1. Then, eliminating ω

from the equations

σ 2 = ω2(μ1 − 1)(μ2 + 1) = l2

4
, τ = 1 − 2ω

√
μ1

√
μ2 = 1 + k

2
, (4.78)

we obtain an equation definingHk,l .Moreover, from the second of the above equations
we obtain (4.76). This ends our proof. ��

Theorem 2.5 follows directly from the above lemma.
Similar result holds true for region D′ defined in Eq. (2.27) and drawn in Fig. 3.

Lemma 4.8 Assume that (μ1, μ2) ∈ D′. Then, the identity component G◦ of the differ-
ential Galois group of the Eq. (B.4) is Abelian if and only if (μ1, μ2) ∈ H′

k,l defined
in Eq. (2.28), and

ω2μ1μ2 = k2

16
(4.79)

for certain odd integers k, l ∈ Z.

The proof of this lemma is similar to the proof of the previous one, and so we omit
it. This lemma proves Theorem 2.6.

We prove Theorem 2.7 by a contradiction. Thus, let us assume that the system is
integrable. Then the group G◦ is Abelian. Again, we recall the Kimura theorem. Case
A of this theorem cannot occur because ρ and σ are not rational so, by Lemma B.4,
the difference of exponents τ must be an integer, however, this is excluded by an
assumption. Case B of the Kimura theorem is also impossible, because ρ and σ are
not rational. Hence, G◦ is not Abelian. The contradiction proves the theorem.

5 Final Remarks

When we started our analysis of the Bajer–Moffatt system (1.3), we did not expect to
find many integrable cases. Thus, the fact that almost all the cases with a degree one
Darboux polynomial are integrable was a surprise. This is why we distinguished and
classified all the caseswhere theBajer–Moffatt system (1.3) has aDarboux polynomial
of degree one in variables.

In Lemma 4.1 we distinguish three families that admit a linear Darboux polynomial
F of the form (4.24). A common level F(x) = F0(x) = 0 gives a particular phase
curve, so we could potentially apply differential Galois methods to study the integra-
bility of these cases. However, there are two difficulties that block this idea. First of
all, necessary integrability conditions distinguish algebraic sets of codimension one in
the space of parameters. When the number of parameters is large, then it is practically
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impossible to distinguish all of them. Moreover, the variational equations for this case
does not reduce to the Riemann P equation, and this fact makes the problem even
more difficult.

The key point in the proofs of Theorems 2.3–2.7 is the reduction of the variational
equations to the Riemann P equation. Thanks to the Kimura theorem, we know all
the cases where the identity component of the differential Galois group is solvable.
Moreover, we supplement this analysis with a criterion, see Lemma B.4, which distin-
guishes cases where this group is Abelian. The system depends on three parameters;
however, only two of them, μ1 and μ2, play a crucial role. This is why we divided the
(μ1, μ2) plane into non-overlapping regions, and we performed our analyses in each
of these regions separately.

Most interesting are the cases where the system satisfies the necessary conditions
for integrability. In the parameter space (μ1, μ2, ω), they form surfaces. If a system
is integrable, then the parameters necessarily belong to one of these surfaces. How-
ever, numerical tests show that generically the system is not integrable in these cases.
Moreover, although we performed additional searches using the direct method, we did
not find integrable cases.

The most peculiar case corresponds to a two-dimensional plane μ1 = μ2 in
(μ1, μ2, ω) space. We performed intensive numerical tests just looking for signs of
non-integrability, however without success. The Poincaré cross-sections are presented
in Figs. 5 and 6. They present behaviour of trajectories where a necessary condition
for integrability μω ∈ Z is fulfilled (see Fig. 5), as well as when it is not satisfied
(see Fig. 6). Magnifications of regions shown in these figures are small, but we have
searched for chaos in both cases in neighbourhoods of unstable periodic solutions of
size 10−5 −10−6 and we did not succeed. However, chaos appears immediately when
we leave region C, i.e. when we take μ1 = μ2 > 1, see Fig. 8. This strange behaviour
requires separate investigation.
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A Second-order Differential Equation with Rational Coefficients

Let us consider a second-order differential equation of the following form

y′′ = r(z)y, (A.1)

where r(z) is a rational function and the prime denotes differentiation with respect to
z. The differential Galois group G of this equation is a linear algebraic subgroup of
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SL(2, C). The following lemmadescribes all possible types ofG and relates these types
to the forms of the solutions of the Eq. (A.1), see Kovacic (1986) and Morales Ruiz
(1999).

Lemma A.1 Let G be the differential Galois group of the Eq. (A.1). Then, one of the
four cases can occur.

1. G is reducible (it is conjugate to a subgroup of the triangular group); in this the case
Eq. (A.1) has an exponential solution of the form y = exp

∫
ω, where ω ∈ C(z),

2. G is conjugate with a subgroup of

DP =
{[

c 0
0 c−1

] ∣
∣
∣
∣ c ∈ C

∗
}

∪
{[

0 c
c−1 0

] ∣
∣
∣
∣ c ∈ C

∗
}

.

In this case the Eq. (A.1) has a solution of the form y = exp
∫

ω, where ω is
algebraic over C(z) of degree 2,

3. G is primitive and finite; in this case all the solutions of the Eq. (A.1) are algebraic,
4. G = SL(2, C) and the Eq. (A.1) has no Liouvillian solution.

We need a more precise characterization of case 1 in the above lemma. It is given
by the following lemma, see Lemma 4.2 in Singer and Ulmer (1993).

Lemma A.2 Let G be the differential Galois group of the Eq. (A.1) and assume that G
is reducible. Then, either

1. Equation (A.1) has a unique solution y such that y′/y ∈ C(z), and G is conjugate
to a subgroup of the triangular group

T =
{[

a b
0 a−1

]

| a, b ∈ C, a �= 0

}

.

Moreover, G is a proper subgroup of T if and only if there exists m ∈ N such that
ym ∈ C(z). In this case G is conjugate to

Tm =
{[

a b
0 a−1

]

| a, b ∈ C, am = 1

}

,

where m is the smallest positive integer such that ym ∈ C(z), or
2. Equation (A.1) has two linearly independent solutions y1 and y2 such that y′

i/yi ∈
C(z), then G is conjugate to a subgroup of the diagonal group

D =
{[

a 0
0 a−1

]

| a ∈ C, a �= 0

}

.

In this case, y1y2 ∈ C(z). Furthermore, G is conjugate to a proper subgroup ofD
if and only if ym1 ∈ C(z) for some m ∈ N. In this case, G is a cyclic group of order
m, where m is the smallest positive integer such that ym1 ∈ C(z).
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B Riemann P Equation

The Riemann P equation, see e.g. Whittaker and Watson (1935), is the most general
second-order differential equation with three regular singularities. If we place these
singularities, using homography, at z = 0, z = 1 and z = ∞, then it has the form

d2v

dz2
+
(
1 − ρ1 − ρ2

z
+ 1 − σ1 − σ2

z − 1

)
dv

dz

+
(

ρ1ρ2

z2
+ σ1σ2

(z − 1)2
+ τ1τ2 − ρ1ρ2 − σ1σ2

z(z − 1)

)

v = 0,

(B.1)

where (ρ1, ρ2), (σ1, σ2) and (τ1, τ2) are the exponents at the respective singular points.
These exponents satisfy the Fuchs relation

2∑

i=1

(ρi + σi + τi ) = 1.

We denote the differences of exponents by

ρ = ρ1 − ρ2, σ = σ1 − σ2, τ = τ1 − τ2.

It is convenient to transform the Eq. (B.1) to the reduced form

w′′ + 1

4

(
1 − ρ2

z2
+ 1 − σ 2

(z − 1)2
+ ρ2 + σ 2 − τ 2 − 1

z(z − 1)

)

w = 0. (B.2)

This can be done by the following change of a dependent variable

v(z) = w(z) exp

[

−1

2

∫ z

p(ζ ) dζ

]

, (B.3)

where

p(z) = 1 − ρ1 − ρ2

z
+ 1 − σ1 − σ2

z − 1
. (B.4)

For the reduced Eq. (B.2), the exponents at 0, 1 and ∞ are given by

ρ1,2 = 1

2
(1 ± ρ) , σ1,2 = 1

2
(1 ± σ) , τ1,2 = 1

2
(−1 ± τ) . (B.5)

Thus, the differences of the exponents do not change by the transformation to the
normal form.

The following lemma gives the necessary and sufficient condition for (B.1) to be
reducible. This is a classical, well-known fact, see Iwasaki et al. (1991).
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Lemma B.1 The Eq. (B.1) is reducible if and only there exist i , j , k ∈ {1, 2}, such that

ρi + σ j + τk ∈ Z. (B.6)

Equivalently, the Eq. (B.1) is reducible if and only if at least one number of

ρ + σ + τ, −ρ + σ + τ, ρ − σ + τ, ρ + σ − τ, (B.7)

is an odd integer.

The above lemma shows that the Riemann equation is reducible if and only if its
reduced form is reducible.

Note that, if only one of the differences ρ, σ and τ is not rational, then the equation
is not reducible. Thus, if it is reducible, then all these numbers are rational or one is
rational and the remaining two are not rational. A more precise characterization of
these cases is given in the following three lemmas.

Lemma B.2 Assume that the Eq. (B.2) is reducible and that its differential Galois
group G is not a subgroup of the diagonal group. Then the identity component of G is
Abelian if and only if ρ, σ and τ are rational.

Proof By assumptions, we are in the first case of Lemma A.2. If G = T, then G is
connected and non-Abelian. Thus, by the same lemma, G = Tm . Let v1(z) be the
exponential solution of (B.2). Up to a multiplicative constant, it is unique. Then, for
each g ∈ G, we have g(v1) = av1 for a certain non-zero a ∈ C. Again by Lemma A.2,
we know that there exists m ∈ N such that am = 1. Hence, g(vm1 ) = amvm1 = vm1 for
each g ∈ G. This implies that vm1 is a rational function. Moreover, we also know that

v1(z) = z−e0(z − 1)−e1 P(z), (B.8)

where P(z) is a polynomial, and e0 and e1 are exponents at 0 and 1, respectively. The
fact that v1(z)m is rational implies that me0 and me1 are integers. Thus, ρ and σ are
rational numbers, and in turn, τ is also rational. ��

We also need one fact concerning the monodromy group of the Eq. (B.1). This
group is generated by two matrices M0, M1 ∈ GL(2, C). These matrices correspond
to homotopy classes [γ0] and [γ1] of loops with one common point encircling once,
in the positive sense, singularities z = 0 and z = 1, respectively. Then, we have the
following lemma, see Lemma 4.3.5 on p. 90 in Iwasaki et al. (1991).

Lemma B.3 Assume that M0 and M1 are simultaneously diagonalizable. Then, at least
one of matrices M0, M1 or M0M1 is a scalar matrix.

Note that if M0 is a scalar matrix, then ρ is an integer. In fact, eigenvalues of M0 are
λk = e2π iρk . Thus, if M0 = cId2, then

c = e2π iρ1 = e2π iρ2 (B.9)

and so, ρ = ρ1 − ρ2 ∈ Z.
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If the difference of exponents at a singular point is an integer, then a local solution
around this singularity may contain a logarithm. Such a singularity is called logarith-
mic. If a singularity of an equation is logarithmic, then neither its monodromy nor
the differential Galois group is diagonalizable. Thus, we can formulate the following
lemma.

Lemma B.4 Assume that the Eq. (B.2) is reducible. Then, the identity component of
its differential Galois group is Abelian if either numbers ρ, σ and τ are rational, or
two of them are not rational and one is an integer and the corresponding singularity
is not logarithmic.

In the case of the Eq. (B.1), it is enough to know the exponents in order to deter-
mine which singularity is logarithmic. To formulate the next lemma, which gives the
necessary and sufficient conditions for a singularity of (B.1) to be logarithmic, we
introduce the following notation. For a non-negative integer m ∈ N0, we define

〈m〉 :=
{

∅ if m = 0,

{1, . . . ,m} otherwise.

For s ∈ {0, 1,∞} let es,1 and es,2 denote the exponents of the Eq. (B.1), ordered in
such a way that Re es,1 ≥ Re es,2. With the above notation, we have the following.

Lemma B.5 Let r ∈ {0, 1,∞}. Then r is a logarithmic singularity of the Eq. (B.1) if
and only if m := er ,1 − er ,2 ∈ N0, and

er ,1 + es,i + et, j /∈ 〈m〉, for i, j ∈ {1, 2}, (B.10)

where r , s, t are pairwise different elements of {0, 1,∞}.
For the proof, see Lemma 4.7 and its proof on pp. 91–93 in Iwasaki et al. (1991).
Assume that the Eq. (B.2) is reducible. We order the exponents in such a way that

ρ1 + σ1 + ρ1 = − k, k ∈ N0. (B.11)

We assume here that

ρ1 = 1

2
(1 + ρ) , σ1 = 1

2
(1 − σ) , τ1 = 1

2
(−1 − τ) . (B.12)

Then,
ρ − σ − τ = − (2k + 1) (B.13)

and so
ρ2 + σ2 + ρ2 = 1 + k. (B.14)

We assume that ρ = m ∈ N and σ, ρ /∈ Q. If z = 0 is not a logarithmic singularity,
then there exist i, j ∈ {1, 2} such that

ρ1 + σi + τ j ∈ 〈m〉. (B.15)
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For the Eq. (B.1), the necessary and sufficient conditions for solvability of the
identity component of its differential Galois group are given by the Kimura theorem
formulated in Kimura (1969), see also Morales Ruiz (1999).

Theorem B.1 (Kimura) The identity component of the differential Galois group of the
Eq. (B.1) is solvable if and only if

(A) at least one of the four numbers ρ + σ + τ , −ρ + σ + τ , ρ − σ + τ , ρ + σ − τ ,
is an odd integer, or

(B) the numbers ρ or −ρ and σ or −σ and τ or −τ take (in an arbitrary order)
values given in the following table

1 1/2 + l 1/2 + s Arbitrary complex number
2 1/2 + l 1/3 + s 1/3 + q
3 2/3 + l 1/3 + s 1/3 + q l + s + q even
4 1/2 + l 1/3 + s 1/4 + q
5 2/3 + l 1/4 + s 1/4 + q l + s + q even
6 1/2 + l 1/3 + s 1/5 + q
7 2/5 + l 1/3 + s 1/3 + q l + s + qeven
8 2/3 + l 1/5 + s 1/5 + q l + s + q even
9 1/2 + l 2/5 + s 1/5 + q l + s + q even
10 3/5 + l 1/3 + s 1/5 + q l + s + q even
11 2/5 + l 2/5 + s 2/5 + q l + s + q even
12 2/3 + l 1/3 + s 1/5 + q l + s + q even
13 4/5 + l 1/5 + s 1/5 + q l + s + q even
14 1/2 + l 2/5 + s 1/3 + q l + s + q even
15 3/5 + l 2/5 + s 1/3 + q l + s + q even

where l, s, q ∈ Z.

If the identity component G◦ of the differential Galois group G of the Eq. (B.1) is
solvable, but the equation is not reducible, i.e. if case A in the Kimura theorem does
not occur, then the differential Galois group is either an imprimitive finite group (that
corresponds to items 2–15 of the above table), or it is a subgroup ofDP group. In the
last case G can be either a finite subgroup DP or a whole DP group. The following
lemma gives a criterion for the distinction of these two cases.

Lemma B.6 Suppose the Eq. (B.1) is not reducible. Then, its differential Galois group
G is a subgroup ofDP group if and only if the differences of exponents at two singular
points are half integers. Moreover, G is a finite group if and only if the exponents at
the remaining singular point are rational.

The above lemma is just case (b) of Theorem 2.9 from Churchill (1999).
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