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Abstract

The stochastically forced vorticity equation associated with the two dimensional incompressible

Navier-Stokes equation on Dδ := [0, 2πδ]× [0, 2π] is considered for δ ≈ 1, periodic boundary conditions,

and viscocity 0 < ν � 1. An explicit family of quasi-stationary states of the deterministic vorticity

equation is known to play an important role in the long-time evolution of solutions both in the presence

of and without noise. Recent results show the parameter δ plays a central role in selecting which of the

quasi-stationary states is most important. In this paper, we aim to develop a finite dimensional model

that captures this selection mechanism for the stochastic vorticity equation. This is done by projecting

the vorticity equation in Fourier space onto a center manifold corresponding to the lowest eight Fourier

modes. Through Monte Carlo simulation, the vorticity equation and the model are shown to be in agree-

ment regarding key aspects of the long-time dynamics. Following this comparison, perturbation analysis

is performed on the model via averaging and homogenization techniques to determine the leading order

dynamics for statistics of interest for δ ≈ 1.

1 Introduction

Consider the 2D incompressible Navier-Stokes equation,

∂u

∂t
= ν∆u− (u · ∇)u−∇p

∇ · u = 0,

(1.1)

on the possibly asymmetric torus (x, y) ∈ Dδ := [0, 2πδ]× [0, 2π] with δ ≈ 1, periodic boundary conditions,

and viscosity 0 < ν � 1. To obtain the equivalent vorticity formulation of the equation, take the curl of

the vector field u and set ω = (0, 0, 1) · (∇× u) to find

∂tω = ν∆ω − u · ∇ω, u =

(
∂y(−∆−1)

−∂x(−∆−1)

)
ω. (1.2)

The relation between u and ω is known as the Biot-Savart law. The periodic boundary conditions

insure
∫
Dδ
ω = 0, and therefore ∆−1ω is well-defined.
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Adding random forcing to the system allows to account for stochasticity/genericity in the system, see

for example [17, 5, 16]. In particular, we add a stochastic forcing term to (1.2) to obtain the stochastic 2D

vorticity equation,

∂tω = ν∆ω − u · ∇ω +
∂W
∂t

, u =

(
∂y(−∆−1)

−∂x(−∆−1)

)
ω. (1.3)

The noise is white in time, colored in space, and takes the form, for ~k = (k1, k2) 6= (0, 0),

W(t, x, y) =
√

2ν
∑

~k∈K⊂Z2\{(0,0)}

σ~ke
i(k1x/δ+k2y)β~k(t), (1.4)

with spatial correlation σ~k and K to be commented on below. Here β(t) = {β~k(t)} is a collection of i.i.d.

Wiener processes.

Notice that with the noise (1.4), the equation (1.3) is now stochastic. To insure the random vorticity

remains real valued for all times t ≥ 0, the following complex conjugacy conditions are imposed, σ̄~k = σ−~k
and β̄~k = β−~k. Additional assumptions are often placed on the noise coefficients, σ~k, to insure certain

smoothness properties of solutions. In particular, we assume that there exist fixed positive constants C0

and α0 such that |σ~k| ≤ C0e
−α0|~k|2 so that solutions will then be analytic in space [14]. Since the boundary

conditions force solutions of the deterministic equation to satisfy
∫
Dδ
ω = 0, we choose σ(0,0) = 0 so this

property is preserved. Note that if σ~k = 0 for all ~k ∈ Z2 then (1.3) reduces to the deterministic vorticity

equation.

Although an L2 energy estimate shows solutions of (1.2) have a time-asymptotic rest state of zero,

certain quasi-stationary states, known as bars and dipoles, rapidly attract nearby solutions and correspond

to transient structures that play a key role in the long-time evolution of solutions [1, 2, 6, 8, 9, 12, 19, 20].

These quasi-stationary states are members of an explicit family of functions given by,

ω(x, y, t) = e−
ν
δ2
t[a1 cos(x/δ) + a2 sin(x/δ)] + e−νt[a3 cos(y) + a4 sin(y)]. (1.5)

If δ = 1, then any member of this family is an exact solution to the deterministic vorticity equation.

If δ 6= 1, then (1.5) remains a solution if and only if a1 = a2 = 0 or if a3 = a4 = 0. These members, which

only depend on one spatial variable, are called bar states, and they are also known as unidirectional or

Kolmogorov flow. The x- and y-bar states are members of this family given by

ωxbar(x, t) = e−
ν
δ2
t sin(x/δ), ωybar(y, t) = e−νt sin y,

or similarly with sine replaced by cosine. The associated velocity fields are given by

uxbar(x, t) = −δe−
ν
δ2
t

(
0

cos(x/δ)

)
, uybar(y, t) = e−νt

(
cos y

0

)
,

respectively. The dipoles are also members of the family (1.5) and are given by

ωdipole(x, y, t) = e−
ν
δ2
t sin(x/δ) + e−νt sin y,

or similarly with sine replaced by cosine, with velocity field

udipole(x, y, t) =

(
e−νt cos y

−δe−
ν
δ2
t cos(x/δ)

)
.
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For illustration, contour plots for the bar and dipole states for fixed t = 0 on the symmetric torus

(δ = 1) are shown in Figure 1.

(a) x-bar: ωxbar = sin(x) (b) y-bar: ωybar = sin(y) (c) Dipole: ωdipole = sin(x) + sin(y)

Figure 1: Contour plots of the three quasi-stationary states on the symmetric torus

When ν = 0, equation (1.1) becomes the Euler equation. It is reasonable to expect that stationary

solutions of the Euler equation could play an critical role in the evolution of the Navier-Stokes equation for

0 < ν � 1. However, there are infinitely many stationary solutions, including the bars and dipoles, and so

it is not immediately clear how to determine which would be most important. In [20], entropy arguments

and extensive numerical studies were conducted in the case δ = 1 and suggested that the bars and dipoles

should be the two most important stationary solutions of the Euler equations. Although both states were

observed after initial transient periods in the evolution of the Navier-Stokes equation, interestingly the

dipole seemed to emerge for a large class of initial data, whereas the bar states only emerged for a special

class of initial data. Subsequent work, again for the deterministic system, showed that indeed the bar

states attract nearby solutions at a rate much faster than the background global decay rate, confirming

their importance as quasi-stationary states. Results in the case δ = 1 can be found in [2, 9] and results

for more general values of δ are in [12, 19]. The stochastic system (1.3) was numerically analyzed in [6]

where, after an initial transient period, metastable switching between the bars and dipoles was seen, with

the dipole being dominant for δ = 1 and the bar states being dominant for δ 6= 1.

In this paper we develop a low dimensional model that captures how the dominant quasi-stationary

state in the stochastically forced Navier-Stokes equation is selected by the aspect ratio of the spatial

domain, δ. Among the existing results, those that most greatly motivate this paper can be found in [1]

and [6]. The results of the latter paper [6], briefly described above, to our knowledge were the first to

suggest that δ could provide such a selection mechanism. The former paper [1] was our previous work

focusing on the deterministic vorticity equation, (1.2), in which we derived a finite-dimensional model that

captured the selection mechanism via the parameter δ. We now seek to use that same finite-dimensional

model, but with the addition of noise, to numerically investigate the selection mechanism for the stochastic

equation (1.3). Indeed, one can see from the sample paths of Figure 6a, that individual sample paths

exhibit transitions between x-bar and y-bar states, as it has also been observed in [6].

The rest of the paper is organized as follows. In §2 we review the finite-dimensional model originally

derived in [1] and the theoretical results of that work regarding the selection mechanism in the deterministic

setting. In addition, we also add noise to that model to obtain the stochastic differential equation (SDE)
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model that is the focus of this current work. In §3, to determine the validity of the SDE model, we compare

statistics related to a direct simulation of the stochastic vorticity equation (1.3) with those of the SDE.

We demonstrate numerically that the statistics of the two equations agree in all cases, δ > 1, δ < 1 and

δ = 1. In particular, solutions to both systems evolve towards an x-bar, y-bar, and dipole in the three

respective cases. In §4, we further examine the SDE model by viewing it as a perturbation in the limit

as |δ2 − 1| and ν converge to zero. We show that, after appropriate time-space rescalings, the system can

be viewed as a slow-fast system and classical averaging and homogenization techniques apply. Via the

backward Kolmogorov equation, a system of PDEs that governs the leading order dynamics of a key order

parameter, E[Zred(t)], defined in (2.7), is derived. This gives us an additional formal approximation to

the expected value of the order parameter, which we can use to show the selection of the quasi-stationary

state. Numerically solving the PDEs allows us to approximate the evolution of E[Zred(t)] for values of δ

close to 1, at least on some initial finite interval of time. Conclusions and future directions then follow in

§5.

2 Fourier space representation and model reduction

Due to the form of the family of solutions (1.5), it is most convenient to express the stochastic vorticity

equation in Fourier space. Hence, letting

ω(x, y) =
∑

~k 6=(0,0)

ω̂~ke
i(k1x/δ+k2y), ω̂~k =

1

4π2δ

∫
Dδ

ω(x, y)e−i(k1x/δ+k2y)dxdy,

we obtain, for ~j, ~k and ~l 6= (0, 0), the following system of infinitely many coupled SDEs,

˙̂ω~k = − ν

δ2
|~k|2δω̂~k − δ

∑
~l

〈~k⊥,~l〉
|~l|2δ

ω̂~k−~lω̂~l +
√

2νσ~kβ̇~k

= − ν

δ2
|~k|2δω̂~k −

δ

2

∑
~j+~l=~k

〈~j⊥,~l〉

(
1

|~l|2δ
− 1

|~j|2δ

)
ω̂~jω̂~l +

√
2νσ~kβ̇~k,

(2.1)

where

|~k|2δ = k2
1 + δ2k2

2,
~k⊥ = (k2,−k1). (2.2)

Viewing the system in Fourier space allows us to use the relative energy in certain modes to mea-

sure the proximity of solutions to an x-bar, y-bar, or dipole state. The x-bar states, e−
ν
δ2
t cos(x/δ) and

e−
ν
δ2
t sin(x/δ), correspond to solutions with energy only in the ~k = (±1, 0) modes and the y-bar states,

e−νt cos(y) and e−νt sin(y), correspond to solutions with energy only in the ~k = (0,±1) modes. Solutions

with energy in both the ~k = (±1, 0) and ~k = (0,±1) modes correspond to the dipole state. These four

modes are the lowest in the system and will be referred to as the “low modes”. They correspond to modes

with the lowest value of |~k|δ defined by (2.2). Any mode ω̂~k with |~k| > max{1, δ2} will from here on be

referred to as a “high mode”.

To measure the relative energy in the low modes, we define the stochastic order parameter,

Zvort(t) :=
|ω̂(1,0)(t)|2

|ω̂(1,0)(t)|2 + |ω̂(0,1)(t)|2
, (2.3)
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where ω̂(1,0) and ω̂(0,1) solve (2.1). Due to the condition, ω̂(k1,k2) = ¯̂ω(−k1,−k2), the relative energy in all of

the low modes can be captured by Zvort(t). The value of Zvort(t), bounded between 0 and 1, corresponds

to the proximity of the solution to an x-bar, y-bar or dipole state. If the dynamics drive Zvort(t) to increase

to 1, there is more energy in ω̂(1,0) relative to ω̂(0,1), indicating the system is in an x-bar state. Conversely

if Zvort(t) falls toward 0, the system would be observed to be in a y-bar state. If Zvort(t) instead stays

near 1/2, the system is in a dipole state with relative energy in the low modes comparable in magnitude.

The finite dimensional system that we will use to model (2.1) will be defined in terms of the lowest

eight Fourier modes, which for notational convenience we denote as

ω1 := ω̂(1,0), ω2 := ω̂(−1,0), ω3 := ω̂(0,1), ω4 := ω̂(0,−1),

ω5 := ω̂(1,1), ω6 := ω̂(−1,1), ω7 := ω̂(1,−1), ω8 := ω̂(−1,−1). (2.4)

The variables ω1,2,3,4 correspond to the low modes, while ω5,6,7,8 represent the role of all the high

modes. Since the solution ω(x, y) of (2.1) is real valued, the following complex conjugacy relationship

must still hold,

ω1 = ω̄2, ω3 = ω̄4, ω5 = ω̄8, ω7 = ω̄8. (2.5)

Thus the reduced model will be an eight dimensional approximation to the dynamics of (2.1). To

derive the model, we apply a center manifold reduction to (2.1) with σ~k = 0 for all ~k to obtain an eight-

dimensional deterministic ODE, which is the model studied in [1], and then add noise back to that system

to obtain the final eight-dimensional SDE model we study here.

To carry out the center manifold reduction onto the lowest eight modes, assume for ω̂~k with ~k /∈
{(±1, 0), (0,±1), (±1,±1)} =: K0, that there exists a smooth function H(ω1, . . . , ω8;~k) such that the

eight-dimensional manifold defined by

M = {ω̂ : ω̂~k = H(ω1, . . . , ω8;~k), ~k /∈ K0}

is invariant for the deterministic dynamics of (2.1) with σ~k = 0 for all ~k. We refer to this as a center

manifold because it is defined in terms of the lowest eight modes, which have the weakest linear decay

rates. Based on this assumption, one can then in principle compute the coefficients of the Taylor expansion

of H(·,~k) to any order for each ~k by taking the derivative of each of the low modes in two ways (via the

function H and (2.1) with σ~k=0
) and equating coefficients. See [1] for the details of the derivation.

The reduction is local and will only be valid in a size O(ν) neighborhood of zero due to the small

spectral gaps for the operator ν∆. Additionally, while the existence of a finite dimensional (inertial) model

of the system (2.1) that describes the global dynamics cannot be expected [21], the model still provides

meaningful insight into the role δ plays in selecting the dominant quasi-stationary state for small initial

conditions. For additional examples in which similar reductions of the Navier-Stokes equation to a finite

dimensional model have been used to understand global dynamics see [7, 15].

Adding independent (real) Brownian motions W1,3,5,7 to each equation of the resulting ODE model
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leads to our final SDE model

ω̇1 = − ν

δ2
ω1 +

1

δ(1 + δ2)
[ω3ω7 − ω̄3ω5] +

3δ6

2ν(4 + δ2)(1 + δ2)2
ω1(|ω5|2 + |ω7|2) +

√
2νσ1Ẇ1

ω̇3 = −νω3 +
δ3

(1 + δ2)
[ω̄1ω5 − ω1ω̄7] +

3δ2

2ν(1 + 4δ2)(1 + δ2)2
ω3(|ω5|2 + |ω7|2) +

√
2νσ3Ẇ3

ω̇5 = −ν 1 + δ2

δ2
ω5 −

δ2 − 1

δ
ω1ω3 −

δ6(3 + δ2)

2ν(4 + δ2)(1 + δ2)
ω5|ω1|2 −

1 + 3δ2

2νδ2(1 + 4δ2)(1 + δ2)
ω5|ω3|2 +

√
2νσ5Ẇ5

ω̇7 = −ν 1 + δ2

δ2
ω7 +

δ2 − 1

δ
ω1ω̄3 −

δ6(3 + δ2)

2ν(4 + δ2)(1 + δ2)
ω7|ω1|2 −

1 + 3δ2

2νδ2(1 + 4δ2)(1 + δ2)
ω7|ω3|2 +

√
2νσ7Ẇ7.

(2.6)

Note that (2.6) with σ1,3,5,7 = 0 corresponds to the ODE model derived in [1]. To compare the

dynamics of this model to that of Zvort(t), defined in (2.3), we define the analogous order parameter for

the SDE model,

Zred(t) :=
|ω1(t)|2

|ω1(t)|2 + |ω3(t)|2
, (2.7)

which again is used to determine towards which quasi-stationary state the system trends. Here, ω1(t)

and ω3(t) are solutions to the reduced system (2.6). The Monte Carlo simulation of the reduced model

finds that the dominant quasi-stationary state depends on the aspect ratio of Dδ in the same way as

the deterministic model, studied in detail in [1]. The main result there, which describes the selection of

quasi-stationary states in (2.6) with σ1,3,5,7 = 0, can be described by the following theorem.

Theorem 2.1. [1, Theorem 3.4] For δ ∈
(√

2
3 ,
√

3
2

)
, under the dynamics of (2.6) with σ1,3,5,7 = 0, if

δ > 1, then Zred(t) → 1, indicating evolution to an x-bar state. Conversely if δ < 1, then Zred(t) → 0,

indicating evolution to a y-bar state. For δ = 1, there exists a one-dimensional center manifold of fixed

points in the phase space that determines the asymptotic limit of Zred(t). This center manifold is foliated

with co-dimension one stable manifolds in which solutions converge to the corresponding fixed point. Exactly

one of these manifolds corresponds to each of the limits Zred(t)→ 1 and Zred(t)→ 0. Thus, generic initial

conditions are seen to evolve to the dipole state.

Remark 2.2. The order parameter considered in [1] was instead the ratio R(t) = |ω1(t)|2/|ω3(t)|2. The-

orem 2.1 frames the result in terms of the order parameter Zred(t). The choice to now consider Zred(t) is

for convenience with regards to numerical simulation due to its being bounded between 0 and 1.

Remark 2.3. A straightforward computation shows that, for any δ, the set {Im(ω1) = Im(ω3) = Im(ω5) =

Im(ω7) = 0} is invariant under the dynamics of (2.6) with σ1,3,5,7 = 0. Since the real subsystem is invariant

in the deterministic setting, we simulate the reduced model where the modes, ω1,3,5,7, as well as the Wiener

processes, W1,3,5,7, are all real valued.

3 Numerical simulation of the vorticity equation and reduced model

This section provides simulations of the vorticity equation (2.1) and of the reduced model (2.6). Via Monte

Carlo simulation, the average evolution of the order parameters Zvort(t) and Zred(t) will be plotted for

several values of δ near 1. It will be seen that the reduced model captures the selection of the quasi-

stationary states via the parameter δ. In particular, in both models, for a particular value of δ ≈ 1, the
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system’s selection of its dominant quasi-stationary state is consistent with the motivating results, given by

Theorem 2.1. In particular, the system selects, as the dominant quasi-stationary state, a dipole for δ = 1,

an x-bar for δ > 1, and a y-bar for δ < 1.

The simulation of (2.1) is done via a spectral method which includes Fourier modes ω̂~k with ~k ∈ K :=

{~k = (k1, k2) ∈ Z2 : 0 ≤ |k1|, |k2| ≤ 64 and (k1, k2) 6= (0, 0)}; see [13]. A condition of exponential decay is

imposed on the noise coefficients σ~k seen in (1.4),

|σ~k| ≤ e
−α0|~k|2 . (3.1)

Similar to [6], simulations are conducted with
∑
{~k∈K} e

−α0| ~K|2 = 1. For our set K, this means α0 ≈
0.349. Time was finely discretized and a tamed semi-implicit Euler-Maruyama method was implemented

to simulate the stochastically forced reduced system.

We verify the selection of the dominant quasi-stationary state using Monte Carlo simulation where

the average path over N trials is plotted. Individual runs will be denoted by Zivort(t) and Zired(t), for

i = 1, . . . N , with corresponding averages given by

Z̄vort(t) =
1

N

N∑
i=1

Zivort(t), Z̄red(t) =
1

N

N∑
i=1

Zired(t).

Similarly, we define the empirical variances to be

Vvort(t) =
1

N − 1

N∑
i=1

(Zivort(t)− Z̄vort(t))2, Vred(t) =
1

N − 1

N∑
i=1

(Zired(t)− Z̄red(t))2.

It will also be useful to plot the time averages of these Monte Carlo averages. To produce a meaningful

average we introduce a “burn-in time”, tburn, and ignore the initial period during which Z̄vort(t) and Z̄red(t)

have not yet stabilized. Define this time average for any function f(t) defined on tburn ≤ t ≤ T to be

A(f, tburn) :=
1

T − tburn

∫ T

tburn

f(t) dt.

3.1 Vorticity Equation

Plotted in Figures 2-4 are Z̄vort(t), the time average A(Z̄vort, tburn), and the 95% confidence intervals

defined via

CI±(t) = Z̄vort(t)± 1.96 ∗
√
Vvort(t)

N
.

Also included are average contour plots for the vorticity. We use N = 200 and for each trial use zero

initial conditions and ν = 0.001. For δ = 1, Figure 2a shows Z̄vort(t) remains near 1/2 for the duration

of the simulation. We use a burn-in time of tburn = 0 when computing the time average since on the

symmetric domain it is clear there is no transient initial period. In Figure 2b, the average contour plot for

each individual trial are themselves averaged over the N = 200 trials, reflecting a dipole.
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(a) Z̄vort(t) with 95% confidence interval. (b) Average contour plot of vorticity.

Figure 2: Vorticity aligns on average as a dipole for δ = 1.

The simulations exhibited in Figures 3a and 3b show that, for δ = 1.1, the order parameter increases

initially and the average contour plot looks like that of an x-bar state. In Figure 3a, tburn = 100 is used

when computing the time average.

(a) Z̄vort(t) with 95% confidence interval. (b) Contour plot of vorticity.

Figure 3: Vorticity aligns on average as an x-bar for δ = 1.1.

Lastly for δ < 1 the simulations exhibited in Figures 4a and 4b show that, for δ = 0.9, the order

parameter decreases over an initial period of time and the average contour plot looks like that of a y-bar

state. Here we again set tburn = 100.
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(a) Z̄vort(t) with 95% confidence interval. (b) Average contour plot of vorticity.

Figure 4: Vorticity aligns on average as a y-bar for δ = 0.9.

Provided in Figure 5 are plots of Z̄vort(t) for δ = 1.10, δ = 1.0 and δ = 0.90 averaged over N = 1000

trials. This is to show that as the number of trials increase, the variance is decreasing without changing the

mean behavior. The variances all remain generally between 0.06-0.08. While the variance does decrease,

the limiting value of Z̄vort(t) remains relatively unchanged compared to what is seen when averaging over

N = 200 trials.

(a) δ = 1.10 (b) δ = 1.0 (c) δ = 0.90

Figure 5: Plot of Z̄vort(t) and of 95% confidence level error bars with N = 1000 trials and ν = 0.001.

For completeness, see also the discussion in §5, we also include in Figure 6 a simulation with ν = 0.001

that represents a single sample path for δ = 1.04, the value of δ for which transitions among the quasi-

stationary states were observed in [6].
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(a) An individual trajectory transitions among quasi-

stationary states. (b) On average, the system is close to an x-bar state.

Figure 6: A single trajectory and the Monte Carlo average Z̄vort(t) for δ = 1.04.

Figure 6a shows that individual trajectories exhibit transitions between quasi-stationary states, vis-

iting the dipole and both bar states, as also observed in [6] for the same value of δ. However Figure 6b

shows that E[Zvort(t)] picks the dominant state. We now compute the time average of a randomly selected

individual trial, given by A(Zvort, tburn), to confirm that it tracks the Monte Carlo average, Z̄vort(t). Figure

7 shows two things. First, for the given values of δ, a sample path may experience many transitions among

the quasi-stationary states. Second, the time average of the sample path does eventually track the Monte

Carlo average.

(a) δ = 1.10 (b) δ = 1.0 (c) δ = 0.90

Figure 7: Comparing individual time average of a sample path with Monte Carlo average

3.2 Reduced Model

We now turn our attention to the reduced model (2.6). We confirm numerically that the reduced model

captures the qualitative dynamics of the full vorticity equation with regard to the dominant quasi-stationary

state.

As we mentioned in Remark 2.3 we will be working with the real system in which ω1,3,5,7, as well as

the Wiener processes, W1,3,5,7, are all real valued. This leads to the following system which serves as the
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acting reduced model in the upcoming simulations.

ω̇1 = − ν

δ2
ω1 +

1

δ(1 + δ2)
[ω3ω7 − ω3ω5] +

3δ6

2ν(4 + δ2)(1 + δ2)2
ω1(ω2

5 + ω2
7) +

√
2νσ1Ẇ1

ω̇3 = −νω3 +
δ3

(1 + δ2)
[ω1ω5 − ω1ω7] +

3δ2

2ν(1 + 4δ2)(1 + δ2)2
ω3(ω2

5 + ω2
7) +

√
2νσ3Ẇ3

ω̇5 = −ν 1 + δ2

δ2
ω5 −

δ2 − 1

δ
ω1ω3

− δ6(3 + δ2)

2ν(4 + δ2)(1 + δ2)
ω5ω

2
1 −

1 + 3δ2

2νδ2(1 + 4δ2)(1 + δ2)
ω5ω

2
3 +
√

2νσ5Ẇ5

ω̇7 = −ν 1 + δ2

δ2
ω7 +

δ2 − 1

δ
ω1ω3

− δ6(3 + δ2)

2ν(4 + δ2)(1 + δ2)
ω7ω

2
1 −

1 + 3δ2

2νδ2(1 + 4δ2)(1 + δ2)
ω7ω

2
3 +
√

2νσ7Ẇ7.

(3.2)

To be consistent with the spatial decay of the noise in the simulations of the stochastically forced

vorticity equation (2.1), given by (3.1), we choose

σ1,3 = e−α0 and σ5,7 = e−2α0 .

First we aim to establish that the reduced model (3.2) can serve as a good approximation to the

vorticity equation with noise, (2.1), for δ ≈ 1. Second, it will be established that the selection of the bar

or dipole state that dominates is consistent with the results of [1] for the deterministic equation: x-bar for

δ > 1, y-bar for δ < 1, and dipole for δ = 1.

Figure 8 shows numerical evidence supporting that the dynamics of the order parameter, governed

by the reduced system (3.2), follows the same trend as when the full vorticity equation is simulated.

Figure 8: Simulation of Z̄red(t) with noise for ν = 0.001.

The plots of these Monte Carlo simulations (averaged over N = 200 trials) show that the trend

toward the appropriate quasi-stationary state is captured by the reduced model. Starting with zero initial

conditions, when the noise is added, the simulations show that for δ > 1, the order parameter increases

toward 1, indicating evolution to an x-bar state. Conversely, for δ < 1, the order parameter decreases
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toward a value corresponding to a y-bar state. Finally, when δ = 1, Z̄red(t) remains near 1/2 indicating

the system is in a dipole state. Figures 9a-9e serve to compare the evolution of Z̄vort(t) and Z̄red(t)taken

over N = 200 trials, for values of δ close to 1. The bars denote the error for the 95% confidence intervals

for Z̄vort (bold) and Z̄red (thin).

(a) δ = 0.90 (b) δ = 0.95 (c) δ = 1.0

(d) δ = 1.05 (e) δ = 1.10

Figure 9: Comparing Z̄vort(t) and Z̄red(t) averaged over N=200 trials with ν = 0.001. Corresponding 95

% confidence error bars are also included.

One can see that Z̄vort(t) and Z̄red(t) both trend in the same direction, with similar variances (typically

between 0.06-0.08 for 0 ≤ t ≤ 2000). Furthermore, their respective confidence intervals begin to converge

until they overlap. Indeed the model can be used to determine towards which quasi-stationary state the

system evolves for a given value of δ.

4 Perturbation Analysis

Motivated by the numerics from §3, this section investigates the expected behavior of Zred(t) as δ → 1 while

viewing the problem as a perturbation from the δ = 1 and ν = 0 case. Using the backward Kolmogorov

equation associated to (3.2), the goal is to derive a system of PDE that will provide insight on how the

expected value of Zred(t), to leading order, depends on values of δ close to 1. To do this we pose the

problem as a perturbation of the spatial domain, setting δ2 = 1 + ε0ε. Here, 0 < ε � 1 acts as the small

perturbation parameter and ε0 = ±1 determines which dimension of the torus is longer. Following known

homogenization techniques, see for example [18], we scale (3.2) in a way that reveals a slow-fast system

of SDE. Then, we write the backward Kolmogorov equation to reach the ultimate goal of determining

12



equations that govern the limiting evolution of E[Zred(t)] as ε→ 0 once the fast variables are averaged out.

First, for ease of notation, rename the dependent variables as follows,

p̃ := Re(ω1), q̃ := Re(ω3), r̃ := Re(ω5), s̃ := Re(ω7).

Now (3.2) can be expressed as

˙̃p = − ν

δ2
p̃+

1

δ(1 + δ2)
q̃(s̃− r̃) +

3δ6

2ν(4 + δ2)(1 + δ2)2
p̃(|r̃|2 + |s̃|2) +

√
2νσ1Ẇ1

˙̃q = −νq̃ +
δ3

(1 + δ2)
p̃(r̃ − s̃) +

3δ2

2ν(1 + 4δ2)(1 + δ2)2
q̃(|r̃|2 + |s̃|2) +

√
2νσ3Ẇ3 (4.1)

˙̃r = −ν 1 + δ2

δ2
r̃ − δ2 − 1

δ
p̃q̃ − δ6(3 + δ2)

2ν(4 + δ2)(1 + δ2)
r̃|p̃|2 − 1 + 3δ2

2νδ2(1 + 4δ2)(1 + δ2)
r̃|ỹ|2 +

√
2νσ5Ẇ5

˙̃s = −ν 1 + δ2

δ2
s̃+

δ2 − 1

δ
p̃q̃ − δ6(3 + δ2)

2ν(4 + δ2)(1 + δ2)
s̃|p̃|2 − 1 + 3δ2

2νδ2(1 + 4δ2)(1 + δ2)
s̃|q̃|2 +

√
2νσ7Ẇ7.

Before inserting the Taylor expansions in ε for the coefficients with δ2 = 1 + ε0ε, we first scale (4.1)

appropriately to obtain a clear slow-fast system. As in [1], the low modes represented by p̃ and q̃ correspond

to the slow variables while the high modes, r̃ and s̃, represent the fast variables. Below, we give a more

general version of the scaled equations for just the p̃ (analogous to q̃) and r̃ (analogous to s̃) equations.

We use the following space-time and parameter scalings: ν = εµν0, p̃ = εξp, q̃ = εξq, r̃ = εηr, s̃ = εηs,

and τ = εγt. To simplify the scaled equations, we will relate µ, ξ, η and γ to put the resulting system in

a more desirable form. We neglect the ε dependence of p, q, r and s for readability. Below, the “prime”

notation denotes differentiation with respect to the scaled time variable, τ .

p′ = εµ−γ(−ν0

δ2
p) + εη−γ

1

δ(1 + δ2)
q(s− r) + ε2η−µ−γ

3δ6

2ν0(4 + δ2)(1 + δ2)2
p(r2 + s2) + ε

µ−γ
2
−ξ√2ν0σ1W

′
5(τ)

r′ = εµ−γ(−ν0
1 + δ2

δ2
r)− ε2ξ−γ−η δ

2 − 1

δ
(pq)− ε2ξ−µ−γ 1

ν0

(
δ6(3 + δ2)

2(4 + δ2)(1 + δ2)
rp2 +

1 + 3δ2

2(1 + 4δ2)(1 + δ2)
rq2

)
+ ε

µ−γ
2
−η√2ν0σ5W

′(τ)

Now set 2η = µ + γ, 2ξ = µ − γ ⇒ γ = µ − 2ξ, with 0 < γ < ξ < µ
2 < η < µ. Then the fully scaled

system (still neglecting Taylor expansions of δ in ε for now) becomes

p′ = ε2ξ(−ν0

δ2
p) + εξ

1

δ(1 + δ2)
q(s− r) +

3δ6

2ν0(4 + δ2)(1 + δ2)2
p(|s|2 + |s|2) +

√
2ν0σ1W

′
1(τ)

q′ = ε2ξ(−ν0q) + εξ
δ3

(1 + δ2)
p(r − s) +

3δ2

2ν0(1 + 4δ2)(1 + δ2)2
q(|r|2 + |s|2) +

√
2ν0σ3W

′
3(τ) (4.2)

r′ = ε2ξ
(
−ν0

1 + δ2

δ2
r

)
− ε3ξ−2η δ

2 − 1

δ
pq − ε2(ξ−η)

(
δ6(3 + δ2)

2ν0(4 + δ2)(1 + δ2)
r|p|2 +

1 + 3δ2

2ν0δ2(1 + 4δ2)(1 + δ2)
r|q|2

)
+εξ−η

√
2ν0σ5W

′
5(τ)

s′ = ε2ξ
(
−ν0

1 + δ2

δ2
s

)
+ ε3ξ−2η δ

2 − 1

δ
pq − ε2(ξ−η)

(
δ6(3 + δ2)

2ν0(4 + δ2)(1 + δ2)
s|p|2 − 1 + 3δ2

2ν0δ2(1 + 4δ2)(1 + δ2)
s|q|2

)
+εξ−η

√
2ν0σ7W

′
7(τ).

For the scaled SDE (4.2), let bε = (bεp, b
ε
q, b

ε
r, b

ε
s) denote the drift vector and Σε(p, q, r, s;σ1, σ3, σ5, σ7)

denote the diffusion matrix so that (4.2) can be expressed, for X ε = (p, q, r, s) and dW
dτ =

(
dW1
dτ ,

dW3
dτ ,

dW5
dτ ,

dW7
dτ

)
,
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as
dX ε

dτ
= bε + ΣεdW

dτ
. (4.3)

Now replacing the δ coefficients appearing in (4.2) with their Taylor expansions for δ2 = 1 + ε0ε up

to O(ε3), the drift vector is given by (still supressing ε dependence of p, q, r, s),

bεp =
1

ν0

(
3

40
+ εε0

27

200
+ ε2

117

4000
− ε0ε3

123

5000

)
p(r2 + s2)

+εξ
(

1

2
− ε0

2
ε+

7

16
ε2 − 3ε0

8
ε3
)
q(s− r)− ε2ξν0(1− ε0ε+ ε2 − ε0ε3)p (4.4)

bεq =
1

ν0

(
3

40
− 3

50
ε0ε+

117

4000
ε2 − 93

20000
ε0ε

3

)
q(r2 + s2)

+εξ
(

1

2
+
ε0
2
− 1

8
ε2
)
p(r − s)− ε2ξν0q

bεr = ε2(ξ−η) 1

ν0

[
−1

5
r(p2 + q2)− ε0ε

1

100
r(51p2 − 31q2)− ε2 373

1000
r(p2 + q2)− ε0ε3

1

10000
r
(
379p2 − 4109q2

)]
−ε2ξν0(2− ε0ε+ ε2 − ε0ε3)r − ε3ξ−2η

(
ε0ε−

1

2
ε2 +

3

8
ε0ε

3

)
pq

bεs = ε2(ξ−η) 1

ν0

[
−1

5
s(p2 + q2)− ε0ε

1

100
s(51p2 − 31q2)− ε2 373

1000
s(p2 + q2)− ε0ε3

1

10000
s
(
379p2 − 4109q2

)]
−ε2ξν0(2− ε0ε+ ε2 − ε0ε3)s+ ε3ξ−2η

(
ε0ε−

1

2
ε2 +

3

8
ε0ε

3

)
pq

and the diffusion matrix by

Σε(p, q, r, s;σ1, σ3, σ5, σ7) =


√

2ν0σ1 0 0 0

0
√

2ν0σ3 0 0

0 0 εξ−η
√

2ν0σ5 0

0 0 0 εξ−η
√

2ν0σ7

 . (4.5)

With H(uε) denoting the Hessian matrix of uε, we now write the backward Kolmogorov equation for

(4.3), which is defined as

∂uε

∂τ
= bε · ∇uε +

1

2
Tr[(Σε)2H(uε)], in R4 × [0, T ]

uε(p, q, r, s, 0) = φ(p, q), on R4 × {0}.
(4.6)

The backward Kolmogorov equation has the useful property that the evolution of uε(X ε, τ) gives

uε(p, q, r, s, τ) = E [φ(pτ , qτ )| pτ (0) = p, qτ (0) = q, rτ (0) = r, sτ (0) = s] .

Thus one ultimately is interested in initializing (4.6) with φ(p, q) = Zred = p2

p2+q2
, but for now we

proceed with a general initial condition, φ. We seek a solution to (4.6) that takes the form

uε(p, q, r, s, τ) = u0(p, q, r, s, τ) + εu1(p, q, r, s, τ) + ε2u2(p, q, r, s, τ) + . . . (4.7)

and wish to find the limiting dynamics, uε as ε→ 0. As the goal is to identify the leading order expansion

for uε we determine a system of PDEs for u0, u1, and u2. We present now the calculations that lead to

the characterization of u0, u1, and u2, see (4.16).
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Define Lε to be the operator acting on the right hand side of (4.6), so that ∂uε

∂τ = Lεuε. Decomposing

Lε by powers of ε using the expressions for bε and Σε given in (4.4) and (4.5), we write

Lεuε = ε2(ξ−η)L0u
ε + ε2(ξ−η)+1L1u

ε + ε2(ξ−η)+2L2u
ε + ε2(ξ−η)+3L3u

ε

+ L4u
ε + εL5u

ε + ε2L6 + ε3L7u
ε

+ εξL8u
ε + εξ+1L9u

ε + εξ+2L10u
ε + εξ+3L11u

ε

+ ε2ξL12u
ε + ε2ξ+1L13u

ε + ε2ξ+2L14u
ε + ε2ξ+3L15u

ε

+ ε3ξ−2η+1L16u
ε + ε3ξ−2η+2L17u

ε + ε3ξ−2η+3L18u
ε.

A select few of the operators, Li, i = 1, . . . , 19, that are most important in computing the leading

order equations is provided in (4.8). A complete list of the expressions of the 19 operators can be found in

the appendix.

L0u = − 1

5ν0
(p2 + q2)

(
r
∂u

∂r
+ s

∂u

∂s

)
+ 2ν0

(
σ2

5

∂2u

∂r2
+ σ2

7

∂2u

∂s2

)
L1u = − ε0

100ν0
(51p2 − 31q2)

(
r
∂u

∂r
+ s

∂u

∂s

)
L4u =

3

40ν0
(r2 + s2)

(
p
∂u

∂p
+ q

∂u

∂q

)
+ 2ν0

(
σ2

1

∂2

∂p2
+ σ2

3

∂2

∂q2

)
(4.8)

L5u =
ε0
ν0

(r2 + s2)

(
27

200
p
∂u

∂p
− 3

50
q
∂u

∂q

)

L8u = −1

2
(r − s)

(
q
∂u

∂p
− p∂u

∂q

)
Now we choose explicit values for ξ and η to obtain a simpler, but still representative system: η = 2,

ξ = 1, hence µ = 3 (ν = εµν0 = ε3ν0). Note that this choice of parameters is not unique. Our goal is to

make a choice that makes the computations that follow tractable, preserves a clear slow-fast system in the

scaled equations (4.2) and results in a system that exhibits qualitatively the same behavior as the original

system in terms of the selection mechanism to x-bar, y-bar and dipole states depending on the values of

δ. With this choice, the generator Lε of the PDE becomes

Lεuε = ε−2L0u
ε + ε−1L1u

ε + (L2 + L4 + L16)uε + ε (L3 + L5 + L8 + L8)uε (4.9)

+ ε2 (L6 + L9 + L12 + L18)uε + ε3 (L7 + L10 + L13)uε + ε4 (L11 + L14)uε + ε5L15u
ε.

The ansatz given in (4.7) can now be inserted into the backward Kolmogorov equation (4.6) using

the expression of Lε given above in (4.9). Matching coefficients on both sides of the equation yields the

following leading order equations,

O(ε−2) : −L0u0 = 0 (4.10a)

O(ε−1) : −L0u1 = L1u0 (4.10b)

O(1) : −L0u2 = −∂u0

∂τ
+ L1u1 + (L2 + L4 + L16)u0 (4.10c)

O(ε) : −L0u3 = −∂u1

∂τ
+ L1u2 + (L2 + L4 + L16)u1 + (L3 + L5 + L8 + L17)u0. (4.10d)
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Equation (4.10a) implies u0 lies in the kernel of L0, which elliptic PDE theory tells us contains only

functions constant in r and s. Since L1 is also a differential operator in r and s only, (4.10b) implies that

u1 is constant in r and s as well. One can also see that u0 and u1 are in the kernel of each of L2,3,16,17 (see

appendix). Hence the leading order system given by (4.10a)-(4.10d) can be reduced to

O(ε−2) : −L0u0 = 0⇒ u0 = u0(p, q, τ) (4.11a)

O(ε−1) : −L0u1 = L1u0 ⇒ u1 = u1(p, q, τ) (4.11b)

O(1) : −L0u2 = −∂u0

∂τ
+ L4u0 (4.11c)

O(ε) : −L0u3 = −∂u1

∂τ
+ L1u2 + L4u1 + (L5 + L8)u0, (4.11d)

where L0, L1, L4, L5, and L8 are presented in (4.8). Let ρ∞(r, s; p, q) be the stationary density that

satisfies the adjoint problem

L∗0ρ∞(r, s; p, q) = 0.

Once ρ∞ is known we can integrate against the invariant measure to obtain the solvability conditions

for equations (4.11c) and (4.11d)

∂u0

∂τ
=

∫
R2

L4u0ρ
∞(r, s; p, q)drds (4.12)

∂u1

∂τ
=

∫
R2

(L1u2 + L4u1 + (L5 + L8)u0) ρ∞(r, s; p, q)drds.

Before we consider the integrals in (4.12), ρ∞ must be identified. The operator,

L0 =

(
− 1

5ν0
r(p2 + q2),− 1

5ν0
s(p2 + q2)

)
·
(
∂

∂r
,
∂

∂s

)
+

1

2

(
4ν0σ

2
5 0

0 4ν0σ
2
7

)(
∂2

∂r2

∂2

∂s2

)
,

corresponds to the backward Kolmogorov equation for the following system, parameterized by the fixed

(slow) variables p and q.

˙̂r = − 1

5ν0
(p2 + q2)r̂ + σ5

√
2ν0Ẇ5

˙̂s = − 1

5ν0
(p2 + q2)ŝ+ σ7

√
2ν0Ẇ7.

These processes are independent Ornstein-Uhlenbeck processes and are therefore Gaussian. The equi-

librium (stationary) density which corresponds to ρ∞(r, s; p, q) is that of the bivariate Gaussian distribution

with

r ∼ N
(

0,
5ν2

0σ
2
5

p2 + q2

)
, s ∼ N

(
0,

5ν2
0σ

2
7

p2 + q2

)
.

Therefore the invariant joint density is

ρ∞(r, s, p, q) =
p2 + q2

10πν2
0σ5σ7

e
− p

2+q2

10ν20
( r

2

σ25
+ s2

σ27
)
.

To aid in the computations of the integrals given in (4.12), the following integral evaluations will be

useful and can be simply obtained through the mean and variance of the stationary distribution.∫
R2

(r2 + s2)ρ∞(r, s; p, q)drds =
5ν2

0

p2 + q2
(σ2

5 + σ2
7) (4.13a)∫

R2

(r − s)ρ∞(r, s; p, q)drds = 0. (4.13b)
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Next consider the solvability conditions (4.12) one at a time. From the u0 equation and the integral

(4.13a),

∂u0

∂τ
=

∫
R2

L4u0ρ
∞drds

= 2ν0

(
σ2

1

∂2u0

∂p2
+ σ2

3

∂2u0

∂q2

)
+

3

40ν0

(
p
∂u0

∂p
+ q

∂u0

∂q

)∫
R2

(r2 + s2)ρ∞(r, s; p, q)drds

= 2ν0

(
σ2

1

∂2u0

∂p2
+ σ2

3

∂2u0

∂q2

)
+

3ν0

8
(σ2

5 + σ2
7)

(
p

p2 + q2

∂u0

∂p
+

q

p2 + q2

∂u0

∂q

)
.

From this we obtain the effective equations for p and q for small ε after the fast variables r and s are

averaged out. The slow motion can hence be approximated, for 0 < ε� 1, by p̄ and q̄ governed by,

p̄′ =
3ν0

8
(σ2

5 + σ2
7)

p̄

p̄2 + q̄2
+ σ1

√
2ν0W

′
1

q̄′ =
3ν0

8
(σ2

5 + σ2
7)

q̄

p̄2 + q̄2
+ σ3

√
2ν0W

′
3. (4.14)

Since ε0 dependence does not appear in the first order equations, we will need to determine u1 to

see its effects. Consider the solvability condition for u1 in (4.12). Computing this integral requires us to

evaluate the following integrals.

I0 =

∫
R2

L5u0ρ
∞drds

I0′ =

∫
R2

L8u0ρ
∞drds

I1 =

∫
R2

L4u1ρ
∞drds

I2 =

∫
R2

L1u2ρ
∞drds.

In evaluating these, we see

I0 =

∫
R2

ε0
ν0

(
27

200
p
∂u0

∂p
− q∂u0

∂q

)
(r2 + s2)ρ∞(r, s; p, q)drds =

= 5ε0ν0(σ2
5 + σ2

7)

(
27

200

p

p2 + q2

∂u0

∂p
− q

p2 + q2

∂u0

∂q

)
I0′ =

∫
R2

−1

2

(
q
∂u0

∂p
− p∂u0

∂q

)
(r − s)ρ∞(r, s; p, q)drds = 0

I1 = 2ν0

(
σ2

1

∂2u1

∂p2
+ σ2

3

∂2u1

∂q2

)
+

3ν0

8
(σ2

5 + σ2
7)

(
p

p2 + q2

∂u1

∂p
+

q

p2 + q2

∂u1

∂q

)
I2 = −ε0

1

100ν0
(51p2 − 31q2)

∫
R2

(
r
∂u2

∂r
+ s

∂u2

∂s

)
ρ∞(r, s; p, q)drds. (4.15)

Since u2 depends on the fast variables, this final integral cannot yet be computed. It will eventually
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be handled numerically. Thus, formally, we have uε = u0 + εu1 + ε2u2 + . . . satisfying,

∂u0

∂τ
=

3ν0

8
(σ2

5 + σ2
7)

(
p

p2 + q2

∂u0

∂p
+

q

p2 + q2

∂u0

∂q

)
+ 2ν0

(
σ2

1

∂2u0

∂p2
+ σ2

3

∂2u0

∂q2

)
(4.16)

∂u1

∂τ
=

3ν0

8
(σ2

5 + σ2
7)

(
p

p2 + q2

∂u1

∂p
+

q

p2 + q2

∂u1

∂q

)
+ 2ν0

(
σ2

1

∂2u1

∂p2
+ σ2

3

∂2u1

∂q2

)
+ 5ε0ν0(σ2

5 + σ2
7)

(
27

200

p

p2 + q2

∂u0

∂p
− q

p2 + q2

∂u0

∂q

)
− ε0

100ν0
(51p2 − 31q2)

∫
R2

(
r
∂u2

∂r
+ s

∂u2

∂s

)
dρ∞

−L0u2 =
∂u0

∂τ
− L4u0

We shall consider the system (4.16) together with the initial conditions

u0(p, q, 0) = φ(p, q), u1(p, q, 0) = 0, and u2(p, q, r, s, 0) = 0.

The PDE for u0 immediately stands out as the backward Kolmogorov equation corresponding to the

system given in (4.14). Despite its simple looking form, the regularity at the origin of the coefficients on

the first derivative terms turn out to be a borderline case with regards to well posedness, see for example

Chapter III, Section 1 of [11]. Nevertheless, we proceed formally and solve for u0, u1, and u2 numerically

after providing the initial condition

φ(p, q, 0) =
p2

p2 + q2

so that uε(p, q, r, s, τ) = E[Zred(τ)|p0 = p, q0 = q, r0 = r, s0 = s]. The simulations of the system (4.16)

provide an approximation to the deterministic evolution of E[Zred(τ)] after averaging out the fast motion.

The simulations of the system (4.16) provided in this section were conducted via finite differences on the

domain (p, q, r, s, τ) ∈ [−5, 5]4 × [0, T ] with Neumann boundary conditions.

When ε = 0, which implies δ = 1, the system is unperturbed and u0(p, q, t) = E[Zred(τ)|p0 = p, q0 =

q]. In this case, the results of the simulation show that the expected value of the order parameter Zred(τ)

converges to 1/2 for any initial values p0 = p and q0 = q of (2.6), independent of r and s. This indicates

that the unperturbed system evolves to a dipole state, even if the initial state is close to an x- or y-bar

state. Figure 10 illustrates the evolution to a dipole for ε = 0 for several initial conditions (p, q) chosen

within the domain.

Figure 10: For ε = 0, E[Zred(τ)]→ 1/2
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We conclude this section by comparing the numerical approximation to E[Zred(τ)], given by uε(τ) to

the average path of the order parameter Zred(t), i.e. Z̄red(t), as computed via Monte Carlo simulation in

§3. Since the two models evolve on different timescales, we rescale τ so that our averaged PDE model

is evolving on the original timescale. As such, suppressing the spatial (p, q, r, s) dependency, let ûε(t) :=

u0(t/ε) + εu1(t/ε) = u0(τ) + εu1(τ) denote the O(ε) approximation to uε in the original timescale, and let

Z̄red(t) denote the Monte Carlo average path of the order parameter under the dynamics of (2.6) obtained

via the Monte Carlo simulations described in §3.

Since the Monte Carlo simulation of (2.6) used zero initial conditions, we plot the approximation

ûε(p, q, t) for (p, q) = (0.1, 0.1), close to the origin. With this choice, figures 11a and 11b show that in the

perturbed system, the O(ε) approximation to uε(τ) = E[Zred(τ)] evolves toward 0 or 1 depending on the

sign of ε̂ := ε0ε.

(a) Approximation evolves to an y-bar state for ε̂ = 0.1.

(b) Approximation evolves to an x-bar state for ε̂ =

−0.1.

Figure 11: Approximation follows the evolution of the Zred(t) for small ε.

Using these simulations with ν scaled, we now explore how the intervals on which ûε serves as a good

approximation to Z̄red(t) depend on the perturbation parameter. Figure 12 shows the relative error (RE)

given by

RE =
|ûε(t)− Z̄red(t)|

Z̄red(t)
.
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Figure 12: Relative Error |û
ε(t)−Z̄red(t)|
Z̄red(t)

.

On some initial interval of time, the PDE approximation, ûε indeed serves as a close approximation to

Z̄red(t). Furthermore, as expected, the smaller the perturbation parameter ε, the longer the approximation

is valid.

5 Concluding remarks and future directions

In this paper, we developed a finite dimensional SDE model that can be used to elucidate the dynamics

of the 2D Navier-Stokes vorticity equation with noise. Monte Carlo simulation of the reduced model

showed that the major qualatative property of the system, i.e. the dominant quasi-stationary state,

can be determined from the model. In particular, as has been observed numerically and rigorously, the

existence and attracting nature of these quasi-stationary states play an important role in the evolution

of the stochastic Navier-Stokes vorticity equation. Specifically, the aspect ratio of the periodic domain,

Dδ = [0, 2πδ]× [0, 2π], determines whether generic solutions evolve toward an x-bar state (δ > 1), a y-bar

state (δ < 1), or a dipole state (δ = 1).

Perturbation analysis then shows that the proposed reduced model can be viewed as a slow-fast system,

Subsequent averaging and homogenization methods show the leading order behavior as the perturbation

parameter δ ≈ 1 goes to δ = 1, in relation to how the viscocity parameter ν vanishes.

The numerical studies in §3 show that, on average, the system prefers to trend toward the appropriate

quasi-stationary state as determined by δ, see Figure 6b. However, one can see from the sample path plotted

in Figure 6a, individual sample paths do exhibit transitions between x-bar and y-bar states, as it has also

been observed in [6].

In regards to future directions, there are a number of interesting questions that one can ask and hope

to answer. To begin with, the perturbation analysis of §4 is formal and one would like to prove both

well-posedness of (4.16) and validity of the perturbation expansion.

In addition, the numerical studies of §3 suggest that while there are transitions at the individual

sample path level, the system tends to converge to the preferred state depending on whether δ < 1 or

δ > 1. One would like to make this mathematically rigorous. Furthermore, one could potentially use the
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reduced model of §2 to build a related large deviations theory describing probabilities of the system being

in, and exit times for leaving, one of the quasi-stationary states.

Furthermore, the form of the noise used in (1.4) and (4.1), with scaling factor
√
ν, is common in the

literature, see for example [16] and the references therein. One of the important questions in the literature

is the investigation of the convergence of the corresponding invariant measure as ν → 0 to that of the 2D

Euler equation, see [10]. The support of the limiting invariant measure (i.e. as ν → 0), is in general still

an open question, see [16], and it has been resolved in special cases in [3] and [4]. In our work, we study

the long time behavior of the vorticity equation as ν → 0 and in particular the selection mechanism for the

dominant quasi-stationary states. It is reasonable to expect that there is a relation between the selection

mechanism and the support of the limiting invariant measure. This is an intriguing question that is left

for future work and it is beyond the scope of this work.

6 Appendix

The complete list of operators in the Kolmogorov equation (4.6) is given by

L0u = − 1

5ν0
(p2 + q2)

(
r
∂u

∂r
+ s

∂u

∂s

)
+ 2ν0

(
σ2

5

∂2u

∂r2
+ σ2

7

∂2u

∂s2

)
L1u = − ε0

100ν0
(51p2 − 31q2)

(
r
∂u

∂r
+ s

∂u

∂s

)
L2u = − 373

1000ν0
(p2 + q2)

(
r
∂u

∂r
+ s

∂u

∂s

)
L3u = − ε0

1000ν0
(379p2 − 4109q2)

(
r
∂u

∂r
+ s

∂u

∂s

)

L4u =
3

40ν0
(r2 + s2)

(
p
∂u

∂p
+ q

∂u

∂q

)
+ 2ν0

(
σ2

1

∂2

∂p2
+ σ2

3

∂2

∂q2

)
L5u =

ε0
ν0

(r2 + s2)

(
27

200
p
∂u

∂p
− 3

50
q
∂u

∂q

)

L6u =
117

4000ν0
(r2 + s2)

(
p
∂u

∂p
+ q

∂u

∂q

)

L7u = − ε0
ν0

(r2 + s2)

(
123

5000
p
∂u

∂p
+

93

20000
q
∂u

∂q

)
L8u = −1

2
(r − s)

(
q
∂u

∂p
− p∂u

∂q

)
L9u =

ε0
2

(r − s)
(
q
∂u

∂p
+ p

∂u

∂q

)
(6.1)

L10u =
1

8
(r − s)

(
7

2
q
∂u

∂p
− p∂u

∂q

)
L11u = ε0

3

8
q(r − s)∂u

∂p
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L12u = −ν0

(
p
∂u

∂p
+ q

∂u

∂q
+ 2

(
r
∂u

∂r
+ s

∂u

∂s

))
L13u = ν0ε0

(
p
∂u

∂p
+ r

∂u

∂r
+ s

∂u

∂s

)
L14u = −ν0

(
p
∂u

∂p
+ r

∂u

∂r
+ s

∂u

∂s

)
L15u = ν0ε0

(
p
∂u

∂p
+ r

∂u

∂r
+ s

∂u

∂s

)
L16u = −ε0pq

(
∂u

∂r
− ∂u

∂s

)
L17u =

1

2
pq

(
∂u

∂r
− ∂u

∂s

)
L18u = −ε0

3

8
pq

(
∂u

∂r
− ∂u

∂s

)
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