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Abstract
We consider conformally invariant energies W on the group GL+(2) of 2×2-matrices
with positive determinant, i.e., W : GL+(2) → R such that

W (A F B) = W (F) for all A, B ∈ {a R ∈ GL+(2) | a ∈ (0,∞), R ∈ SO(2)},

where SO(2) denotes the special orthogonal group and provides an explicit formula
for the (notoriously difficult to compute) quasiconvex envelope of these functions. Our
results, which are based on the representation W (F) = h

(
λ1
λ2

)
of W in terms of the

singular values λ1, λ2 of F , are applied to a number of example energies in order to
demonstrate the convenience of the singular-value-based expression compared to the

more common representation in terms of the distortion K := 1
2

‖F‖2
det F . Applying our

results, we answer a conjecture by Adamowicz (in: Atti della Accademia Nazionale
dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei.
Serie IX. Matematica e Applicazioni, vol 18(2), pp 163, 2007) and discuss a connec-
tion between polyconvexity and the Grötzsch free boundary value problem. Special
cases of our results can also be obtained from earlier works by Astala et al. (Elliptic
partial differential equations and quasiconformal mappings in the plane, Princeton
University Press, Princeton, 2008) and Yan (Trans AmMath Soc 355(12):4755–4765,
2003). Since the restricted domain of the energy functions in question poses additional
difficulties with respect to the notion of quasiconvexity compared to the case of glob-
ally defined real-valued functions, we also discuss more general properties related to
the W 1,p-quasiconvex envelope on the domain GL+(n) which, in particular, ensure
that a stricter version of Dacorogna’s formula is applicable to conformally invariant
energies on GL+(2).
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1 Introduction

A recent contribution (Martin et al. 2017) introduced a number of criteria for gen-
eralized convexity properties (including quasiconvexity) of so-called conformally
invariant functions (or energies) on the group GL+(2) of 2× 2-matrices with positive
determinant, i.e., functions W : GL+(2) → R with

W (Z1 F Z2) = W (F) for all Z1, Z2 ∈ CSO(2), (1.1)

where

CSO(2) := R
+ · SO(2) = {a R ∈ GL+(2) | a ∈ (0,∞), R ∈ SO(2)}

denotes the conformal special orthogonal group.1 This requirement can equivalently
be expressed as

1 Note that this invariance property needs to be distinguished from the concept of (nearly) conformal
energies (Iwaniec and Lutoborski 1996; Yan 1997), i.e., functions W ≥ 0 such that W (F) = 0 if and only
if F ∈ CSO(2), e.g., W (F) = ‖F‖2 − 2 det F . Instead of invariances of the argument, these energies
are characterized by a global “potential well” containing the unbounded set CSO(2) and can merely be
considered “conformally invariant in F = 1”.
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W (R1F) = W (F) = W (F R2), W (aF) = W (F) for all R1, R2 ∈ SO(2),

a ∈ (0,∞), (1.2)

i.e., left- and right-invariance under the special orthogonal group SO(2) and invariance
under scaling. In nonlinear elasticity theory, where F = ∇ϕ represents the so-called
deformation gradient of a deformation ϕ, the former two invariances correspond to
the objectivity and isotropy of W , respectively. In this context, an energy W satisfying
W (aF) = W (F) is more commonly known as isochoric and is often additively
coupled (Richter 1949; Charrier et al. 1988) with a volumetric energy term of the form
f (det F) for some convex function f : (0,∞) → R.
In this contribution,we consider the quasiconvex envelopes of conformally invariant

energies on GL+(2). Based on our previous results, we provide an explicit formula
that allows for a direct computation of the quasiconvex (as well as the rank-one convex
and polyconvex) envelope for this class of functions. We also discuss different ways
of expressing conformally invariant energies, including representations based on the
singular values of F , i.e., the eigenvalues of

√
FT F , in order to highlight the difficulties

which arise from focusing on the seemingly more simple representation in terms of

the distortion K = 1
2

‖F‖2
det F .

Our main result (Theorem 3.1) has been tested against a numerical algorithm for
computing the polyconvex envelope (Bartels 2005) for a range of parameters, yielding
agreement up to computational precision. In two special cases, we show that our results
completelymatch previous developments ofAstala et al. (2008) andYan (2001, 2003).
We also present direct finite element simulations of the microstructure using a trust-
region–multigrid method (Conn et al. 2000; Sander 2012) which shows consistent
results. In Sect. 5, we answer two questions by Adamowicz (2007) and discuss a
related relaxation result by Dacorogna and Koshigoe (1993).

1.1 Conformal and Quasiconformal Mappings

Energy functions of the form (1.1) are intrinsically linked to conformal geometry and
geometric function theory (Astala et al. 2008). A mapping ϕ : � → R

2 is called
conformal if and only if ∇ϕ(x) ∈ CSO(2) on � or, equivalently,

∇ϕT∇ϕ = (det∇ϕ) · 1,

Footnote 1 continued

In a planar minimization problem subject to the homeomorphic boundary condition ϕ|∂� = ϕ0, the 2-
harmonic Dirichlet energy I (ϕ) = ∫� 1

2 ‖∇ϕ‖2 dx is sometimes referred to as a conformal energy as well.
Indeed,

I (ϕ) =
∫

�

1

2
‖∇ϕ‖2 dx ≥

∫

�
det∇ϕ(x) dx =

∫

�
det∇ϕ0 dx,

and equality holds if and only if ϕ is conformal, due to Hadamard’s inequality and the fact that det∇ϕ is
a null Lagrangian. However, the energy density W (F) = 1

2 ‖F‖2 is neither conformally invariant in the
sense of (1.1) nor (nearly) conformal in the above sense.
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where 1 ∈ GL+(2) denotes the identity matrix. If R2 is identified with the complex
plane C, then ϕ is conformal if and only if ϕ : � ⊂ C → C is holomorphic and the
derivative is non-zero everywhere. Although the Riemannmapping theorem states that
any non-empty, simply connected open planar domain can be mapped conformally to
the unit disc, conformal mappings exhibit aspects of rigidity (Faraco and Zhong 2005)
that make them too restrictive for many interesting applications. In particular, since
the Riemann mapping is uniquely determined by prescribing the function value
for three points, conformal mappings are not able to satisfy arbitrary boundary con-
ditions.

A significantly larger and more flexible class is given by the so-called quasiconfor-
mal mappings, i.e., functions ϕ : � → R

2 that satisfy the uniform bound

‖K‖∞ := ess sup
x∈�

K(∇ϕ(x)) ≤ L for some L ≥ 1, (1.3)

where K denotes the distortion function (Iwaniec and Onninen 2009; Astala et al.
2010) or outer distortion (Iwaniec and Onninen 2011)

K : GL+(2) → R, K(F) := 1

2

‖F‖2
det F

=
∑2

i, j=1 F2
i j

2 det F
. (1.4)

Due to Hadamard’s inequality, K(F) ≥ 1 for all F ∈ GL+(2). In particular, if (1.3)
is satisfied with L = 1, then K(∇ϕ) ≡ 1, which implies that ϕ is conformal.

The classical Grötzsch free boundary value problem (Grötzsch 1928) (cf. Sect. 5)
is to find and characterize quasiconformal mappings of rectangles into rectangles that
minimize the maximal distortion ‖K‖∞ and map faces to corresponding faces, i.e., to
solve the minimization problem

‖K(∇ϕ)‖∞ → min, ϕ : [0, a1] × [0, 1] → [0, a2] × [0, 1],
ϕ([0, a1] × {0}) = [0, a2] × {0}, ϕ([0, a1] × {1}) = [0, a2] × {1},
ϕ({0} × [0, 1]) = {0} × [0, 1], ϕ({a1} × [0, 1]) = {a2} × [0, 1].

(1.5)

A much more involved problem has been solved by Teichmüller (1944) and Alberge
(2015). The classical Teichmüller problem is to find and characterize quasiconformal
solutions to

‖K(∇ϕ)‖∞ → min, ϕ ∈ W 1,2(B1(0);R2), ϕ(x)|∂ B1(0) = x, ϕ(0) = (0,−b)T

(1.6)

for 0 < b < 1 on the unit ball B1(0) ⊂ R
2. According to Strebel’s Theorem (Strebel

1978) (cf. Lui et al. 2015, Theorem 2.7), any solution ϕ to (1.6) is a so-called Teich-
müller map, i.e., K(ϕ) is constant on B1(0) \ {(0,−b)T }. An approximate solution
to (1.6) for b = 0.8 is presented in Fig. 1, showing that while the determinant varies
throughout the unit disc, the distortion K remains almost constant excluding a small
area around the shifted center point.
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K

Fig. 1 Finite element approximation of a minimizer ϕ of
∫
�|K(∇ϕ)|100dx , subjected to a forced downward

displacement of the circle center by b = 0.8. The coloring shows the values of det(∇ϕ) (left) and the
distortionK(∇ϕ) (right) in the deformed configuration, i.e., with the grid points displaced by ϕ. The result
approximates a Teichmüller map, with K almost constant outside a small neighborhood around the center

Computational approaches for calculating extremal quasiconformalmappings (with
direct applications in engineering) are discussed, e.g., inWeber et al. (2012). However,
the analytical difficulties posed by this problem also motivate the study of integral
generalizations of (1.6), i.e.,

∫

B1(0)
�(K(∇ϕ)) dx → min, ϕ ∈ W 1,2(B1(0);R2),

ϕ(x)|∂ B1(0) = x, ϕ(0) = (0,−b)T ,

where � : [1,∞) → [0,∞) is assumed to be strictly increasing. Further general-
izing the domain, boundary condition and additional constraints, we obtain a more
classical problem in the calculus of variations: the existence and uniqueness of map-
pings between planar domains with prescribed boundary values that minimize certain
integral functions of K, i.e., the minimization problem

∫

�

�(K(∇ϕ)) dx → min, ϕ ∈ W 1,2(�;R2), ϕ
∣∣
∂�

= ϕ0
∣∣
∂�

(1.7)

for given � : [1,∞) → R and ϕ0 : � → R
2. Since K(a R ∇ϕ) = K(∇ϕ a R) =

K(∇ϕ) for alla > 0 and all R ∈ SO(2), the distortion functionK is conformally invari-
ant, and indeed every conformally invariant energy W on GL+(2) can be expressed in
the form W (F) = �(K(F)), see Martin et al. (2017).

However, the mapping F �→ K(F) is non-convex. Without additional restrictions
on �, it is therefore difficult to establish results regarding the existence or regularity
of minimizers. It is generally believed (Astala et al. 2008, Conjecture 21.2.1, p. 599)
that for “well-behaved” functions �, e.g., if � is smooth, strictly increasing and
convex, any solution to the minimization problem (1.7) is a C1,α-diffeomorphism;
this would contrast typical regularity results for more general problems in the calculus
of variations (including nonlinear elasticity), where only partial regularity (e.g., C1,α

up to a set of measure zero) can be expected. Note that the existence of minimizers
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follows from the polyconvexity (Dacorogna 2008; Charrier et al. 1988; Ball 1976) of
the mapping F → �(K(F)).

In this contribution, we are interested in cases where � is not well behaved in the
above sense; more specifically, we allow for some lack of convexity and monotonicity
of �. Our results demonstrate that the common representation W (F) = �(K(F)) of
an arbitrary conformally invariant function W on GL+(2) is neither ideal nor “natural”
as far as convexity properties of W are concerned. Instead, by introducing the linear
distortion (or (large) dilatation Weber et al. 2012)

K (F) = |F|2
det F

= λmax(
√

FT F)

λmin(
√

FT F)
= K(F) +

√
K(F)2 − 1 = earcoshK(F),

i.e. K = 1

2

(
K + 1

K

)
,

where |F| = sup‖ξ‖=1‖F ξ‖R2 denotes the operator norm (i.e., the largest singu-
lar value) of F , we can equivalently express any conformally invariant energy W as
W (F) = h(K (F)) for some h : [1,∞) → R. Although the representation in terms
of the distortion function K is preferable for numerical approaches to relaxation of
conformally invariant energies (since K is differentiable on all of GL+(2)), the repre-
sentation in terms of K turns out to be muchmore convenient and suitable with respect
to convexity properties of W .

In particular, our results (cf. Remark 3.3) will allow us to easily generalize a con-
sequence of a theorem by Astala et al. (2008, Theorem 21.1.3, p. 591), stating that for
F0 ∈ GL+(2) and � = B1(0) and any strictly increasing � : [1,∞) → [0,∞) with
sublinear growth,

inf

{∫

B1(0)
�(K(∇ϕ)) dx, ϕ ∈ W 1,2(B1(0);R2), ϕ

∣∣
∂ B1(0)

(x) = F0 x

}
= π ·�(1).

(1.8)
Note that the corresponding minimization problem has no solution unless F0 ∈
CSO(2), cf. Corollary 4.4.

Equality (1.8) represents a specific relaxation result. The need for relaxation meth-
ods arises from the analysis of non-quasiconvex problems forwhich energyminimizers
might not exist even under affine linear boundary conditions. In such cases, the corre-
sponding infimization problem is directly related to the quasiconvex envelope QW of
the energy W : If a Borel measurable function W : Rn×n → R is locally bounded and
bounded below, then (Dacorogna 2008; Šilhavý 2001; Pedregal 2000; Šilhavý 1997)

QW (F0) = inf

{
1

|�|
∫

�

W (∇ϕ) dx, ϕ ∈ W 1,∞(�;R2), ϕ
∣∣
∂�

(x) = F0 x

}
(1.9)

for any domain � ⊂ R
2 with Lebesgue measure |�| such that |∂�| = 0. In par-

ticular, if QW (F0) < W (F0) for some F0 ∈ GL+(2), then the equilibrium state of
the homogeneous deformation ϕ(x) = F0 x is unstable; in this case, it is possible
that there are infimizing sequences with highly oscillating gradients which converge
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weakly (presuming appropriate coercivity conditions), but whose weak limit is not a
minimizer.

In continuum mechanics, this phenomenon is further related to the occurrence of
microstructure in a body: If W represents an elastic energy potential, then the modeled
material shows an energetic preference to develop finer and finer spatially modulated
deformations at fixed averaged deformation F0 x . In engineering applications, these
are typically shear bands or laminate structures which are encountered, for example,
in shape-memory alloys.

Note that Eq. (1.9), known asDacorogna’s formula (Dacorogna 2008), is not imme-
diately applicable to conformally invariant energy functions due to the determinant
constraint, i.e., the restriction of the energy W to the domain GL+(2). Furthermore, the
set of admissible functions for minimization problems of the form (1.7) is typically not
contained in W 1,∞(�;R2). In order to establish our relaxation results for conformally
invariant energy functions, we will therefore first consider some fundamental proper-
ties related to quasiconvexity and the more general notion of W 1,p-quasiconvexity for
the special case of functions defined on the domain GL+(n).

2 Generalized Convexity on the Domain GL+(n)

The notion of quasiconvexity was originally introduced byMorrey (1952) exclusively
for real-valued functions on a matrix space Rm×n . In particular, Morrey did not state
a corresponding definition for extended-real-valued functions (i.e., those attaining the
value +∞) or functions on restricted domains. Motivated by numerous applications
(including nonlinear elasticity theory) which require certain constraints to be posed on
the gradient of admissiblemappings, such generalizations of quasiconvexity have often
been considered in the past, leading to multiple definitions throughout the literature
(Müller 1999; Conti 2008; Ball and Murat 1984; Ball 2002; Conti and Dolzmann
2015) which often differ in minor details, especially with respect to requirements of
regularity and boundedness.

In order to precisely state our relaxation results,which concern real-valued functions
on the domain GL+(2), we will therefore first discuss a number of basic properties
related to the quasiconvexity and the relaxation of a function W : GL+(n) → R.
The exact notions of convexity used here and throughout are stated by the following
definition; some well-known basic results related to these convexity properties are
provided in “Appendix A”.

Definition 2.1 Let n ∈ N and p ∈ [1,∞].
1) A function W : Rn×n → R ∪ {+∞} is called

i) rank-one convex if for all F1, F2 ∈ R
m×n with rank(F2 − F1) = 1,

W ((1 − t)F1 + t F2) ≤ (1 − t) W (F1) + t W (F2) for all t ∈ [0, 1] ;

ii) polyconvex if there exists a convex function P : Rτ(n) → R∪{+∞} such that

W (F) = P(adj(F)) for all F ∈ R
n×n ;

123



2892 Journal of Nonlinear Science (2020) 30:2885–2923

here

adj : Rn×n → R
τ(n), adj(F) = (F, adj2(F), . . . , adjn(F))

with τ(n) :=
n∑

i=1

(
n

i

)2

,

where adjk(F) denotes the matrix of all (k × k)–minors of F ;
iii) W 1,p-quasiconvex (Ball and Murat 1984) if for every bounded open set � ⊂

R
n with |∂�| = 0,

∫

�

W (F + ∇ϑ(x)) dx ≥ |�| · W (F) (2.1)

for all F ∈ R
n×n and all ϑ ∈ W 1,p

0 (�;Rn) for which the integral in (2.1)
exists;

iv) quasiconvex if W is W 1,∞-quasiconvex.

2) A function W : GL+(n) → R is called rank-one convex [polyconvex/W 1,p-quasi-
convex/quasiconvex] if the function

Ŵ : Rn×n → R ∪ {+∞}, Ŵ (F) =
{

W (F) if F ∈ GL+(n),

+∞ if F /∈ GL+(n),

is rank-one convex [polyconvex/W 1,p-quasiconvex/quasiconvex].
3) A function W : GL+(n) → R is called convex if there exists a convex function

Ŵ : Rn×n → R such that Ŵ (F) = W (F) for all F ∈ GL+(n).

Remark 2.2 It is well known (Müller 1999) that it is already sufficient for W 1,p-
quasiconvexity of W that the required inequality (2.1) holds on a single bounded open
set � ⊂ R

n with |∂�| = 0. Furthermore, it is easy to show that for p ≥ n, inequality
(2.1) only needs to hold for all F ∈ GL+(n) and all ϑ ∈ W 1,p

0 (�;Rn) such that
det(F + ∇ϑ) > 0 a.e. for a function W : GL+(n) → R to be W 1,p-quasiconvex.
In a more general setting, this requirement (which incorporates the constraint on
the determinant into the set of admissible variations) is also known as orientation-
preserving W 1,p-quasiconvexity (Koumatos et al. 2015). In the following, we will use
it as the main characterization of W 1,p-quasiconvexity.

Remark 2.3 The specific definition of convexity employed here takes into account
that the domain GL+(n) is not convex. It is common practice to define convexity
of a function W : D → R via the existence of a convex extension of the function
to the convex hull conv(D) of the domain (Ball 1976; Rockafellar 1970); note that
conv(GL+(n)) = R

n×n .

Differing generalized definitions of quasiconvexity include, for example, additional
requirements of regularity or boundedness (Dacorogna and Marcellini 1997; Ball and
Murat 1984; Wagner 2009; Koumatos et al. 2015) posed on W . Note that although
we omit such further requirements in the definition, for some of our results (notably
Theorem 3.1) we do assume W to be (locally) bounded.
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Remark 2.4 Throughout the literature, the exact definition of polyconvexity for func-
tions on the domain GL+(n) differs slightly as well. In particular (Mielke 2005; Conti
and Dolzmann 2015), a polyconvex function Ŵ : Rn×n → R ∪ {+∞} is sometimes
assumed to be lower semicontinuous on all of Rn×n , which corresponds to the addi-
tional growth condition W (F) → +∞ as det W → 0.

The relation between polyconvexity and quasiconvexity is well known even for
extended-real-valued functions (Dacorogna 2008, Theorem 5.3), but will be stated
explicitly in the following lemma in order to ensure compatibility with the precise
definitions employed here.

Lemma 2.5 Let p ∈ [n,∞]. If W : GL+(n) → R is polyconvex, then W is W 1,p-
quasiconvex for any p ∈ [n,∞].
Proof If W is polyconvex, then there exists a convex function P : Rτ(n) → R∪{+∞}
such that W (F) = P(adj(F)) for all F ∈ GL+(n). Furthermore, P is finite-valued on
the set (cf. Ball 1976)

M := conv(adj(GL+(n))) = {X ∈ R
τ(n) | Xτ(n) > 0},

andwe can assumewithout loss of generality that P(X) = +∞ for all X /∈ M , i.e., that
the effective domain dom P := {F ∈ R

τ(n) | W (F) < +∞} is given by dom P = M
and thus convex and open. Thus for any ϑ ∈ W 1,p

0 (�;Rn), due to Jensen’s inequality

(cf. Lemma A.2; note that adj(F + ϑ) ∈ L
p
n (�;Rn) ⊂ L1(�;Rn) for p ≥ n) and

Lemma A.3,

1

|�|
∫

�

W (F + ϑ(x)) dx = 1

|�|
∫

�

P(adj(F + ϑ(x))) dx

≥ P

(
1

|�|
∫

�

adj(F + ϑ(x))

)
= P(adj(F)) = W (F).

��
While it is well known that quasiconvexity implies rank-one convexity for finite-

valued functions (Morrey 1952; Ball 1976; Dacorogna 2008), this implication no
longer holds in the generalized, extended-real-valued case (Ball and Murat 1984;
Dacorogna 2008). It is, however, still valid for functions which are locally bounded
above on the effective domain GL+(n), i.e., bounded on every compact subset of
GL+(n).2

Again, while this result seems to be applied ubiquitously throughout the literature,
we will state it here explicitly (following an analogous classical proof (Dacorogna
2008) for the real-valued case), accounting for the specific given definition of W 1,p-
quasiconvexity.

Lemma 2.6 If W : GL+(n) → R is quasiconvex and locally bounded above on
GL+(n), then W is rank-one convex.

2 The requirement of local boundedness on GL+(n) does not exclude the growth condition W (F) → +∞
as det F → 0 and is, for example, satisfied if W is upper semicontinuous.
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Proof Let W be quasiconvex and locally bounded above on GL+(n), and assume that
W is not rank-one convex. Then there exist F1, F2 ∈ GL+(n) and t ∈ (0, 1) such that
rank(F2 − F1) = 1 and tW (F1) + (1− t)W (F2) < W (F) for F = t F1 + (1− t)F2.
Let � ⊂ R

n be open and bounded with sufficiently smooth boundary. According
to Lemma A.6, for any ε > 0, there exist open sets �1,�2 ⊂ � and a mapping
ϕ ∈ W 1,∞(�;Rn) such that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∣
∣ |�1| − t |�| ∣∣ ≤ ε,

∣
∣ |�2| − (1 − t)|�| ∣∣ ≤ ε,

ϕ(x) = Fx on ∂�,

dist(∇ϕ(x), conv({F1, F2})) ≤ ε a.e. in �,

∇ϕ(x) =
{

F1 if x ∈ �1,

F2 if x ∈ �2.

(2.2)

Due to the openness and rank-one convexity of GL+(n), property (2.2)3 ensures that
∇ϕ(x) ∈ GL+(n) for all sufficiently small ε > 0.

Let ϑ(x) = ϕ(x) − Fx . Then ϑ ∈ W 1,∞
0 (�;Rn) and, due to (2.2)3 and the

assumption that W is locally bounded above, there exists C > 0 such that W (F +
∇ϑ(x)) = W (∇ϕ(x)) ≤ C a.e. on � for sufficiently small ε > 0. We thus find

∫

�
W (F + ∇ϑ(x)) dx =

∫

�1

W (F + ∇ϑ(x)) dx +
∫

�2

W (F + ∇ϑ(x)) dx

+
∫

�\(�1∪�2)
W (F + ∇ϑ(x)) dx

≤ |�1| · W (F1) + |�2| · W (F2) + |� \ (�1 ∪ �2)| · C

≤ (t |�| + ε) · W (F1) + ((1 − t) |�| + ε) · W (F2) + 2 ε C

= |�| · (t W (F1) + (1 − t) W (F2)) + ε · (W (F1) + W (F2) + 2C)

≤ |�| · (t W (F1) + (1 − t) W (F2)) + 4 ε C

and hence, letting ε → 0,

1

|�| ·
∫

�

W (F + ∇ϑ(x)) dx ≤ t W (F1) + (1 − t) W (F2) < W (F)

in contradiction to the quasiconvexity of W . ��
Note that the proof of Lemma 2.6 relies solely on two properties of the set GL+(n),

namely its rank-one convexity and its openness. By amuchmore involved proof, Conti
(Conti 2008) has shown that an analogous result holds on the (rank-one convex, but
not open) domain SL(n). On the other hand, a classical example (Ball andMurat 1984,
Example 3.5) of a quasiconvex but not rank-one convex function is given by

W (F) =
{
0 if F = 0 or F = F0,

+∞ otherwise,
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for some F0 ∈ R
n×n with rank(F0) = 1; note that the effective domain of W is clearly

not rank-one convex.

Remark 2.7 Since convexity of W : GL+(n) → R trivially implies that W is polycon-
vex, Lemmas 2.5 and 2.6 establish the chain of implications

convexity �⇒ polyconvexity �⇒ W 1,p-quasiconvexity �⇒ rank-one convexity (2.3)

for any p ∈ [n,∞], provided that W is locally bounded above on GL+(n). These
implications are, of course, well known to hold for any finite-valued function on the
domain R

n×n .

For dimension n ≥ 3, it is also well known that the reverse holds for none of
the implications in (2.3); in his now famous result, Šverák (1992) showed that rank-
one convexity does not imply quasiconvexity with a counterexample consisting of a
non-isotropic, non-objective polynomial of order four. In the two-dimensional case
discussed here, however, the question whether rank-one convexity is equivalent to
quasiconvexity, known as the remaining part of Morrey’s conjecture (Morrey 1952),
is still unanswered (Morrey 1952; Astala et al. 2012) and is considered one of the
major open problems in the calculus of variations (Ball 1987, 2002; Neff 2005).

2.1 Envelopes and Relaxation of Energy Functions

For each of the generalized notions of convexity given in Definition 2.1, we can define
a corresponding envelope of a function on GL+(n) which is bounded below.

Definition 2.8 For n ∈ N and p ∈ [1,∞], let W : GL+(n) → R be bounded below.
Then the convex, polyconvex, W 1,p-quasiconvex, quasiconvex and rank-one convex
envelope of W are given by

CW (F) = sup{w(F) | w : GL+(n) → R convex , w(X) ≤ W (X) for all X ∈ GL+(n)},
PW (F) = sup{w(F) | w : GL+(n) → R polyconvex , w(X) ≤ W (X) for all X ∈ GL+(n)},

Q pW (F) = sup{w(F) | w : GL+(n) → R W 1,p-quasiconvex , w(X) ≤ W (X) for all X ∈ GL+(n)},
QW (F) = sup{w(F) | w : GL+(n) → R quasiconvex, w(X) ≤ W (X) for all X ∈ GL+(n)},
RW (F) = sup{w(F) | w : GL+(n) → R rank-one convex , w(X) ≤ W (X) for all X ∈ GL+(n)},

respectively.

Among the most important properties of generalized convex envelopes is their
relation to the relaxation of an energy.

Definition 2.9 Let � ⊂ R
n be open and bounded with |∂�| = 0. For n ∈ N and

p ∈ [1,∞], let W : GL+(n) → R be bounded below. Then the quasiconvex relaxation
and the W 1,p-quasiconvex relaxation of W are given by

Q∗W (F) = inf

{
1

|�|
∫

�

W (∇ϕ) dx, ϕ ∈ W 1,∞(�;Rn), ϕ
∣
∣
∂�

(x) = F x, det∇ϕ > 0 a.e.

}
,
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Q∗
pW (F) = inf

{
1

|�|
∫

�

W (∇ϕ) dx, ϕ ∈ W 1,p(�;Rn), ϕ
∣
∣
∂�

(x) = F x, det∇ϕ > 0 a.e.

}
,

respectively.

Remark 2.10 In the literature (Rindler 2018; Conti and Dolzmann 2015; Bartels et al.
2004), the term “quasiconvex envelope” is sometimes applied to Q∗W instead of
QW . The relaxation Q∗

pW of an energy density W : GL+(n) → R should also not
be confused with the relaxation of the energy functional

∫
�

W (∇ϕ(x) dx , i.e., the
“weakly lower semicountinuous envelope” given by (Rindler 2018)

I ∗(ϕ) = sup{ Î (ϕ) | Î weakly lower semicontinuous, Î ≤ I },

where each Î is a functional on an appropriate space of admissible functions. Previous
results (Conti and Dolzmann 2015) establishing the equalities

I ∗(ϕ) =
∫

�

Q∗W (∇ϕ(x)) dx =
∫

�

QW (∇ϕ(x)) dx

require additional conditions to be posed on W .

Definition 2.9 is independent of the particular choice of�.Moreover, byDefinitions
2.8 and 2.9, QW = Q∞W and Q∗W = Q∗∞W .

Furthermore, under suitable assumptions, the correspondingquasiconvex relaxation
of a (finite-valued) function W : Rn×n → R is equal to its quasiconvex envelope, i.e.,

QW (F) = Q∗W (F)

= inf

{
1

|�|
∫

�

W (∇ϕ) dx, | ϕ ∈ W 1,∞(�;Rn), ϕ
∣∣
∂�

(x) = F x

}
, (2.4)

an equality known as Dacorogna’s formula (Dacorogna 1982). If W attains the value
+∞, on the other hand, equality (2.4) has only been established for certain special
cases (Dacorogna and Marcellini 1997; Conti and Dolzmann 2015). However, if the
effective domain of W is given by GL+(n), the generalized convex envelopes can still
provide upper and lower estimates for the relaxation.

Proposition 2.11 For n ∈ N, let p ∈ [n,∞] and let W : GL+(n) → R be bounded
below and locally bounded above on GL+(n). Then

CW (F) ≤ PW (F) ≤ Q pW (F) ≤ Q∗
pW (F) ≤ RW (F) (2.5)

for all F ∈ GL+(n).

Proof The inequalities CW (F) ≤ PW (F) ≤ Q pW (F) follow immediately from the
implications in (2.3). Furthermore, for anyW 1,p-quasiconvex functionw : GL+(n) →
R with w ≤ W on GL+(n), we find

Q∗
pW (F) = inf

{
1

|�|
∫

�

W (∇ϕ) dx, ϕ ∈ W 1,p(�;R2), ϕ
∣∣
∂�

(x) = F x, det∇ϕ > 0 a.e.

}
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≥ inf

{
1

|�|
∫

�

w(∇ϕ) dx, ϕ ∈ W 1,p(�;R2), ϕ
∣
∣
∂�

(x) = F x, det∇ϕ > 0 a.e.

}

= w(F),

thus

Q pW (F) = sup{w(F) | w : GL+(n) → R is W 1,p-quasiconvex with w ≤ W }
≤ Q∗

pW (F)

for all F ∈ GL+(n).
It remains to show that Q∗

pW (F) ≤ RW (F). Let ε > 0. According to Lemma A.5,
there exist t1, . . . , tm ∈ [0, 1] and F1, . . . , Fm ∈ GL+(n) with

∑m
i=1 ti = 1 and∑m

i=1 ti Fi = F such that (ti , Fi ) satisfy the (Hm)-condition (see Definition A.4) and

m∑

i=1

ti W (Fi ) ≤ RW (F) + ε̃.

Let � ⊂ R
n be open and bounded with sufficiently smooth boundary. According to

Corollary A.8, there exist M ∈ N and F1, . . . , F M ∈ R
n×n with

rank(F j+1 − F j ) = 1 for all j ∈ {1, . . . , M − 1}

such that for every ε > 0, there exist a (piecewise affine) mapping ϕ ∈ W 1,∞(�;Rn)

and disjoint open sets �1, . . . , �m ⊂ � such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∣∣ |�i | − ti |�| ∣∣ ≤ ε,

ϕ(x) = Fx on ∂�,

dist
(
∇ϕ(x),

⋃M−1

j=1
conv({F j , F j+1})

)
≤ ε a.e. in �,

∇ϕ(x) = Fi if x ∈ �i

(2.6)

for all i ∈ {1, . . . , m}.Due to the openness and rank-one convexity ofGL+(n), property
(2.6)3 ensures that ∇ϕ(x) ∈ GL+(n) for all sufficiently small ε > 0.

Let ϑ(x) = ϕ(x) − Fx . Then ϑ ∈ W 1,∞
0 (�;Rn) and, due to (2.6)3 and the

assumption that W is locally bounded above, there exists C > 0 such that W (F +
∇ϑ(x)) = W (∇ϕ(x)) ≤ C a.e. on � for sufficiently small ε > 0. We thus find

∫

�

W (F + ∇ϑ(x)) dx

=
m∑

i=1

∫

�i

W z(F + ∇ϑ(x)) dx +
∫

�\(⋃m
i=1 �i)

W (F + ∇ϑ(x)) dx

≤
m∑

i=1

|�i | · W (Fi ) + |� \
(

m⋃

i=1

�i

)

| · C ≤
m∑

i=1

(|�| ti + ε) W (Fi ) + m ε C

123



2898 Journal of Nonlinear Science (2020) 30:2885–2923

= |�| ·
m∑

i=1

ti W (Fi ) + ε ·
(

m∑

i=1

W (Fi ) + m C

)

≤ |�| ·
m∑

i=1

ti W (Fi ) + 2m ε C

and hence, for ε → 0,

Q∗
p(F) = inf

{
1

|�|
∫

�

W (∇ϕ) dx, ϕ ∈ W 1,p(�;R2), ϕ
∣∣
∂�

(x) = F x, det∇ϕ > 0 a.e.

}

≤ 1

|�|
∫

�

W (F + ∇ϑ(x)) dx ≤
m∑

i=1

ti W (Fi ) ≤ RW (F) + ε̃

for any ε̃ > 0, which establishes the remaining inequality Q∗
p(F) ≤ RW (F). ��

In particular, the inequalities (2.5) provide upper and lower bounds3 on the quasi-
convex envelope and the relaxed energy in terms of the polyconvex and the rank-one
convex envelope, respectively. However, while a number of numerical methods are
available to approximate RW (Dolzmann 2004; Bartels 2004; Oberman and Ruan
2017) as well as PW (Dolzmann 1999; Kruzık 1998; Bartels 2005; Aranda and Pedre-
gal 2001), it is difficult to analytically compute either of the envelopes RW , PW or
QW for a given energy W in general, although explicit representations have been
found for a number of particular functions, including the St.Venant–Kirchhoff energy
(Le Dret and Raoult 1995) and several challenging problems encountered in engineer-
ing applications (Cesana and DeSimone 2011; Albin et al. 2009). Further examples
can be found in (Dacorogna 2008, Chapter 6).

More general methods for computing the quasiconvex envelope are often based on
the observation that RW = PW and thus RW = QW for certain classes of energy
functions W . In many such cases, even the equality RW = CW holds (Dacorogna and
Koshigoe 1993; Raoult 2010), i.e., the generalized convex envelopes are all identical
to the classical convex envelope of W , cf. “Appendix C”.

Yan (1997) showed that non-constant rank-one convex conformal energy functions
(cf. Footnote 1 for the distinction between conformally invariant and conformal energy
functions) defined on all of Rn×n for n ≥ 3 must grow at least with power n

2 , which
implies that the quasiconvex envelope of a conformal energy W on R

3×3 must be
constant if W exhibits sublinear growth.4 The results given in the following show that
an analogous property holds for conformally invariant energies on GL+(2).

3 Examples of functions where PW < QW were examined, for example, by Gangbo (1993).
4 This result is essentially sharp: Müller et al. (1999, Theorem 1.2) have shown that there exists a nontrivial
quasiconvex conformal energy functionW : R2×2 → Rwith a constant c+ > 0 such that for all F ∈ R

2×2,

0 ≤ W (F) ≤ c+ (1 + ‖F‖) and W (F) = 0 ⇐⇒ F ∈ CSO(2).
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2.2 Convexity Properties of Conformally Invariant Functions

In order to state criteria for the convexity properties discussed above in the special
case of conformally invariant functions on GL+(2), we consider a number of different
representations available to express such functions.

Lemma 2.12 (Martin et al. 2017, Lemma 3.1 and Lemma 4.4) Let W : GL+(2) → R

be conformally invariant. Then there exist uniquely determined functions g : (0,∞)×
(0,∞) → R, h : (0,∞) → R and � : [1,∞) → R such that

W (F) = g(λ1, λ2) = h

(
λ1

λ2

)
= h(K (F)) = �(K(F)) (2.7)

for all F ∈ GL+(2) with (not necessarily ordered) singular values λ1, λ2, where

K (F) = max{λ1,λ2}
min{λ1,λ2} , K(F) := 1

2
‖F‖2
det F and ‖ . ‖ denotes the Frobenius matrix norm

with ‖F‖2 =∑2
i, j=1 F2

i j . Furthermore,

h(x) = h

(
1

x

)
, g(x, y) = g(y, x) and g(ax, ay) = g(x, y) (2.8)

for all a, x, y ∈ (0,∞).

Conversely, if the requirements (2.8) are satisfied for otherwise arbitrary functions
g : (0,∞) × (0,∞) → R, h : (0,∞) → R or � : [1,∞) → R, then (2.7) defines a
conformally invariant function W .

Note that h is already uniquely determined by its values on [1,∞) and recall that
K ≥ 1, with K (∇ϕ) = 1 if and only if ϕ is conformal.

The following proposition summarizes the main results from Martin et al. (2017)
and completely characterizes the generalized convexity of conformally invariant func-
tions on GL+(2).

Proposition 2.13 (Martin et al. 2017, Theorem 3.3) Let W : GL+(2) → R be
conformally invariant, and let g : (0,∞) × (0,∞) → R, h : (0,∞) → R and
� : [1,∞) → R denote the uniquely determined functions with

W (F) = g(λ1, λ2) = h

(
λ1

λ2

)
= �(K(F))

for all F ∈ GL+(2) with singular values λ1, λ2, where K(F) = 1
2

‖F‖2
det F . Then the

following are equivalent:

i) W is polyconvex,
ii) W is quasiconvex,

iii) W is rank-one convex,
iv) g is separately convex,
v) h is convex on (0,∞),

vi) h is convex and non-decreasing on [1,∞).
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Furthermore, if h is twice continuously differentiable, then i)–vi) are equivalent to

vii) (x2 − 1) (x + √
x2 − 1)� ′′(x) + � ′(x) ≥ 0 for all x ∈ (1,∞). ��

In the following, we will mostly rely on the implications vi) �⇒ i) and iii) �⇒
vi) in Proposition 2.13. We briefly remark that the former follows directly from the
polyconvexity (Ghiba et al. 2015) of the mapping F �→ K (F) on GL+(2), whereas
the latter can be obtained by considering the mapping

t �→ h(t) = W (diag(t, 1)) = W (1 + (t − 1) diag(1, 0)),

which is convex on (0,∞) if W is rank-one convex and thus, in particular, monotone
on [1,∞) due to symmetry considerations (Martin et al. 2017).

Note that in terms of the representation function h, the convexity criteria can be
expressed in a remarkably simple way, especially when compared to vii), i.e., the
representation in terms of the classical distortionK. In particular, while monotonicity
and convexity of� are sufficient for the considered properties (recall that the mapping
F �→ K(F) itself is polyconvex (Dacorogna 2008; Hartmann and Neff 2003) on
GL+(2)), convexity of the energy with respect to K is not a necessary condition; for
example, if W : GL+(2) → R is given by

W (F) = K (F) = max{λ1, λ2}
min{λ1, λ2} = λmax

λmin
= K(F) +

√
K(F)2 − 1 = earcosh(K(F))

for all F ∈ GL+(2) with singular values λmax ≥ λmin, then W is polyconvex due to
the convexity of t �→ h(t) = max{t, 1

t } on (0,∞), whereas the representing function

� : [1,∞) → R with �(x) = x + √
x2 − 1 is monotone increasing but not convex.

Example 2.14 Consider the isochoric, conformally invariant St.Venant–Kirchhoff-
type energy function

W : GL+(2) → R, W (F) =
∥∥∥

FT F

det F
− 1

∥∥∥
2 =

(
λ1

λ2
− 1

)2

+
(

λ2

λ1
− 1

)2

= 4(K(F)2 − K(F)), (2.9)

where 1 denotes the identity matrix. This energy W can be expressed in the form (2.7)
with

g(x, y) =
(

x

y
− 1

)2
+
( y

x
− 1
)2

, h(t) = (t − 1)2 +
(
1

t
− 1

)2
, �(x) = 4(x2 − x).

Since h : (0,∞) → R is convex, the planar isochoric St.Venant–Kirchhoff energy is
quasiconvex according to Proposition 2.13, while, e.g., the non-conformally-invariant
term ‖FT F − 1‖2 = (λ1 − 1)2 + (λ2 − 1)2 is not, cf. “Appendix C”.

In order to apply Proposition 2.13 to the computation of generalized convex
envelopes, the following simple invariance property of the rank-one convex envelope
will be required.
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Lemma 2.15 If W : GL+(n) → R is conformally invariant, then RW is conformally
invariant.

Proof It is well known that the left- and right-SO(2)-invariance is preserved by the
rank-one convex envelope (Buttazzo et al. 1994; Dacorogna and Koshigoe 1993; Le
Dret and Raoult 1994), so due to the characterization (1.2) of conformal invariance it
remains to show that RW (aF) = RW (F) for all a > 0 and all F ∈ GL+(2).

We use the characterization RW (F) = limk→∞ Rk W (F) of the rank-one convex
envelope (Dacorogna 2008, Theorem 6.10), where R0W (F) = W (F) and

Rk+1W (F) := inf
{

t Rk W (F1) + (1 − t) Rk W (F2) | t ∈ [0, 1], t F1 + (1 − t) F2 = F,

rank(F1 − F2) = 1
}
,

and show by induction that Rk W (aF) = Rk W (F) for all k ≥ 0. First, we find
R0W (aF) = W (aF) = W (F) = R0W (F), so assume that Rk W (F) = Rk W (aF)

for some k ≥ 1. For any ε > 0, choose F1, F2 ∈ GL+(2) and t ∈ [0, 1] with
t F1+(1−t)F2 = F and rank(F1−F2) = 1 such that t Rk W (F1)+(1−t)Rk W (F2) ≤
Rk+1W (F) + ε. Then, since t aF1 + (1 − t) aF2 = aF and rank(aF1 − aF2) = 1,

Rk+1W (aF) ≤ t Rk W (aF1) + (1 − t) Rk W (aF2) = t Rk W (F1) + (1 − t) Rk W (F2)

≤ Rk+1W (F) + ε,

thus Rk+1W (aF) ≤ Rk+1W (F). Analogously, we find Rk+1W (F) ≤ Rk+1W (aF)

and thereby RW (aF) = limk→∞ Rk W (aF) = limk→∞ Rk W (F) = RW (F). ��

By direct computation, it is also easy to see that Q∗
pW is conformally invariant if

W : GL+(n) → R is conformally invariant: The scaling invariance of Q∗
pW follows

directly from the equality

Q∗
pW (a F) = inf

ϑ∈W 1,p
0 (�,Rn)

1

|�|
∫

�

W (a F + ∇ϑ) dx

= inf
ϑ∈W 1,p

0 (�,Rn)

1

|�|
∫

�

W

(
a

(
F + 1

a
∇ϑ

))
dx

= inf
ϑ∈W 1,p

0 (�,Rn)

1

|�|
∫

�

W

(
F + 1

a
∇ϑ

)
dx

= inf
ϑ̃∈W 1,p

0 (�,Rn)

1

|�|
∫

�

W (F + ∇ϑ̃) dx = Q∗
pW (F)

holding for any a > 0 and all F ∈ GL+(n), and the left- and right-SO(n)-invariance
of Q∗

pW can be deduced in a similar way.
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3 Main Result on the Quasiconvex Envelope

We can now state our main result.

Theorem 3.1 Let W : GL+(2) → R be conformally invariant, bounded below and
locally bounded on GL+(2), and let h : [1,∞) → R denote the function uniquely
determined by

W (F) = h(K (F)) = h

(
λmax

λmin

)
(3.1)

for all F ∈ GL+(2) with ordered singular values λmax ≥ λmin. Then for any p ∈
[2,∞],

RW (F) = Q∗
pW (F) = Q pW (F) = PW (F) = CM h

(
λmax

λmin

)
for all F ∈ GL+(2),

(3.2)
where CM h : [1,∞) → R denotes the monotone-convex envelope given by

CM h(t) := sup
{

p(t) | p : [1,∞) → R monotone increasing and convex

with p(s) ≤ h(s) ∀ s ∈ [1,∞)
}

and

Q∗
pW (F)

= inf

{
1

|�|
∫

�

W (∇ϕ) dx | ϕ ∈ W 1,p(�;R2), ϕ
∣∣
∂�

(x) = F x, det∇ϕ > 0 a.e.

}
.

Proof Let w(F) := CM h
(

λmax
λmin

)
. Due to the convexity and monotonicity of CM h and

the implication vi) �⇒ i) in Proposition 2.13, the mapping w : GL+(2) → R is
polyconvex. Therefore, since

w(F) = CM h

(
λmax

λmin

)
≤ h

(
λmax

λmin

)
= W (F),

we find w(F) ≤ PW (F) for all F ∈ GL+(2). Since PW (F) ≤ QW (F) ≤
Q∗

pW (F) ≤ RW (F), cf. Proposition 2.11, it only remains to show that RW (F) ≤
w(F) in order to establish (3.2).

According to Lemma 2.15, RW is conformally invariant, thus according to Lemma
2.12 there exists a uniquely determined h̃ : [1,∞) → R such that RW (F) = h̃

(
λmax
λmin

)

for all F ∈ GL+(2) with singular values λmax ≥ λmin. Due to the rank-one convexity
of RW and the implication iii) �⇒ vi) in Proposition 2.13, the function h̃ is convex
and non-decreasing. Since

h̃(t) = RW (diag(t, 1)) ≤ W (diag(t, 1)) = h(t)
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as well, we find h̃(t) ≤ CM h(t) for all t ∈ [1,∞) and thus

RW (F) = h̃

(
λmax

λmin

)
≤ CM h

(
λmax

λmin

)
= w(F)

for all F ∈ GL+(2). ��
Remark 3.2 If h is monotone increasing, then CM h = Ch, i.e., the monotone-convex
envelope (which is the largest convex non-decreasing function not exceeding h) is
identical to the (classical) convex envelope Ch of h on [1,∞). More generally, it is
easy to see that if h attains its minimum at some t0 ∈ [1,∞), then CM h(t) = h(t0)
for all t ≤ t0 and CM h(t) = Ch(t) for all t ≥ t0. In particular, if h is continuous, then
computing the monotone-convex envelope CM h can easily be reduced to the simple
one-dimensional problem of finding the convex envelope Ch̃ of the function

h̃ : [1,∞) → R, h̃(t) =
⎧
⎨

⎩

min
s∈[1,∞)

h(s) if t ≤ min argmin h,

h(t) otherwise,

where min argmin h = min{s ∈ [1,∞) | h(s) = min h}, cf. Fig. 2.
Remark 3.3 If � : [1,∞) → R is strictly monotone with sublinear growth, then both
these properties hold for the function h : [1,∞) → R with �(K(F)) = h

(
λmax
λmin

) =:
W (F) as well, which implies

QW = CM h = Ch ≡ h(1) = �(1).

For this special case, we directly recover the earlier result (1.8) originally due to Astala
et al. (2008).

Remark 3.4 The monotone-convex envelope of h : [1,∞) → R can also be obtained
by “reflecting” the graph of the function at t = 1 and taking the classical convex
envelope: if ĥ : R → R denotes the extension of h to R defined by

ĥ(t) :=
{

h(t) if t > 1,

h(1 − t) if t ≤ 1,

then CM h = Cĥ|R[1,∞)
, cf. Fig. 2 and “Appendix B”.

4 Specific Relaxation Examples and Numerical Simulations

Theorem 3.1 can be used to explicitly compute the quasiconvex envelope for a sub-
stantial class of functions. In the following, a number of explicit relaxation examples
will be considered and some of our analytical results will be compared to numerical
simulations.
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1

h(t)

CMh(t)

t 1

ĥ(t)

Ch(t)Cĥ(t)

t

Fig. 2 Left: Example of a monotone-convex envelope. Right: The monotone-convex envelope CM h of
h : [1, ∞) → R can be obtained by restricting the convex envelope Cĥ of a suitably extension ĥ : R → R

of h back to [1, ∞)

4.1 The Deviatoric Hencky Energy

First, consider the (planar) deviatoric Hencky strain energy (Hencky 1929; Neff et al.
2016) WdH : GL+(2) → R,

WdH(F) = 2 ‖dev2 logU‖2 = 2 ‖dev2 log
√

FT F‖2

=
⎡

⎣log

⎛

⎝ ‖F‖2
2 det F

+
√

‖F‖4
4 (det F)2

− 1

⎞

⎠

⎤

⎦

2

=
[
log
(
K(F) +

√
K(F)2 − 1

)]2 = arcosh2(K(F)),

where devn X := X − 1
n tr(X) · 1 is the deviatoric (trace-free) part of X ∈ R

n×n and

logU denotes the principal matrix logarithm of the right stretch tensor U := √
FT F .

The energy WdH can be expressed as

WdH(F) = log2
(

λ1

λ2

)
= log2(K (F)).

Since the representing function h : [1,∞) → R with h(t) = log2(t) is monotone, we
find CM h = Ch and thus

CM h(t) = Ch(t) = 0 for all t ∈ [1,∞)

due to the sublinear growth of h. Therefore, according to Theorem 3.1,

RWdH = QWdH = PWdH ≡ 0.

Remark 4.1 Interestingly, the deviatoric Hencky strain energy itself is directly related
to the conformal group CSO(n): Let distgeod(·, ·) denote the geodesic distance on
the Lie group GL+(n) with respect to the canonical left-invariant Riemannian metric
(Martin and Neff 2016; Mielke 2002). Then the distance of F ∈ GL+(n) to the special
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orthogonal group SO(n) ⊂ GL+(n) is given by Neff et al. (2016, Theorem3.3)

dist2geod(F,SO(n)) = min
R̃∈SO(n)

dist2geod(F, R̃) = ‖logU‖2. (4.1)

The deviatoric Hencky strain energy can therefore be characterized by the equality

dist2geod(F,CSO(n)) = min
A∈CSO(n)

dist2geod(F, A) = min
R̃∈SO(n)
a∈(0,∞)

dist2geod(F, a R̃)

(∗)= min
a∈(0,∞)

min
R̃∈SO(n)

dist2geod

(
F

a
, R̃

)

(4.1)= min
a∈(0,∞)

∥∥
∥log

U

a

∥∥
∥
2

= min
a∈(0,∞)

‖(logU ) − log(a)1‖2 = ‖devn logU‖2,

where (∗) holds due to the left-invariance of the metric.

4.2 The Squared Logarithm ofK

Similarly, consider

Wlog(F) = (logK)2 = log2
(
1

2

(
λ1

λ2
+ λ2

λ1

))
, i.e. h(t) = log2

(
1

2

(
t + 1

t

))
.

Since h is again monotone on [1,∞) with sublinear growth (cf. Fig. 3), we find

CM h(t) = Ch(t) = 0 for all t ∈ [1,∞)

and thus

RWlog = QWlog = PW ≡ 0.

Note that due to the sublinear growth of the representation K �→ (logK)2, this result
can also be obtained by Eq. (1.8), cf. Remark 3.3.

4.3 The Exponentiated Hencky Energy

Now, consider the exponentiated deviatoric Hencky energy (Neff et al. 2015a)

WeH : GL+(2) → R, WeH(F) = ek‖dev2 logU‖2

for some parameter k > 0. It has previously been shown (Neff et al. 2015b; Ghiba
et al. 2015; Martin et al. 2018) that WeH is polyconvex (and thus quasiconvex) for
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1 t

h(t)

1 t

h(t)

Fig. 3 Left: Visualization of WdH(F) = log2
( λ1
λ2

)
with h(t) = log2(t). Right: Visualization of Wlog(F) =

(logK)2 with h(t) = log2
( 1
2

(
t + 1

t

))

k ≥ 1
8 . For any 0 < k < 1

8 , we can explicitly compute the quasiconvex envelope:
since

WeH(F) = e
k log2

(
λ1
λ2

)
,

and since the mapping t �→ h(t) = ek log2(t) is monotone increasing on [1,∞), we
find

RWeH(F) = QWeH(F) = PWeH(F) = Ch
(λ1

λ2

)

for all F ∈ GL+(2) with singular values λ1, λ2.
In order to further investigate the behavior of this quasiconvex relaxation with finite

element simulations, we choose the particular value k = 0.11 < 1
8 and consider the

quasiconvex envelope QW (F) of

W (F) = h
(λ1

λ2

)
= e

0.11

(
log λ1

λ2

)2

= e0.11 [arcoshK(F)]2 .

Using Maxwell’s equal area rule (Šilhavý 1997, p. 319), we numerically compute the
monotone-convex envelope of h up to five decimal digits:

CM h(t) = Ch(t) ≈
⎧
⎨

⎩

h(t) if 1 ≤ t ≤ 2.65363,
0.872034 + 0.0898464 t if 2.65363 < t < 35.4998,
h(t) if 35.4998 ≤ t .

This explicit representation allows us to determine the set of all F ∈ GL+(2) with
QW (F) < W (F), known as the binodal region (Grabovsky and Truskinovsky 2016,
2019). In particular, the microstructure energy gap (cf. Fig. 4) between h and Ch is
maximal at λ1

λ2
≈ 12.0186 =: t0 with a value of 
 ≈ 0.0221558. We therefore choose
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1 t0

h′′ > 0

h′′ < 0

h′′ > 0

PW (F ) = QW (F )
= RW (F ) = CMh λ1

λ2

)

λ1
λ2

W (F ) = h λ1
λ2

“maximal
microstructure
energy gap”Δ

Fig. 4 Visualization of the maximal microstructure energy gap 
 between h and CM h for an energy W

which is not convex with respect to K (F) = λ1
λ2

, similar to the case WeH(F) = e
k log2(

λ1
λ2

)
for k < 1

8

homogeneous Dirichlet boundary conditions given by

F0 =
(√

t0 0
0 1√

t0

)

=
(√

12.0186 0
0 1√

12.0186

)

, (4.2)

such that K (F0) = t0 and thus 
 = W (F0) − Q∗W (F0), for the finite element
simulation. The energy level of the homogeneous solution is

I (ϕ0) =
∫

B1(0)
W (F0) dx = π · W (F0) ≈ 6.20155,

whereas the infimum of the energy levels of the microstructure solutions is

inf

{∫

B1(0)
W (F0 + ∇ϑ) dx | ϑ ∈ W 1,∞

0 (B1(0);R2)

}

= |B1(0)| · Q∗W (F0) = π (W (F0) − 
) ≈ 6.13194.

Figure 5 shows two numerical simulations of the microstructure on triangle grids
with different resolutions. The illustration shows the reference configuration, colored
according to the value of the determinant of the deformation gradient (plotting K

instead results in similar images). The energy level of the configuration on the left is
6.17149 on a grid with 294,912 vertices. Repeating the computation on a grid with one
additional step of uniform refinement leads to the configuration on the right, which
has an energy level of 6.16216.

Note that the values obtained for the energy level still differ significantly from
the expected value of 6.13194. It is unclear whether the discrepancy is solely due
to insufficient mesh resolution; further numerical investigations on more performant
hardware are planned for the future. The expected energy level was, however, obtained
numerically using a modification of an algorithm by Bartels (2005) for computing the
polyconvex envelope.
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Fig. 5 Microstructure for the energy W (F) = e0.11[arcoshK(F)]2 with boundary conditions F0 given
by (4.2) for two different mesh resolutions. Although the number of oscillations (laminates) is mesh-
dependent, macroscopic quantities like volume ratios are mesh-independent; these macroscopic features
are predicted by QW . Left: 294,912 grid vertices, energy level of 6.17149. Right: 1,179,648 vertices, energy
level of 6.16216

1 L K

ΨL(K)

1 l K

hl(K)

Fig. 6 Visualization of �L (K), the corresponding representation hl (K ) = �L

(
1
2

(
K + 1

K

))
and the

monotone-convex envelope of the restriction of hl to [1,∞)

4.4 An Energy Function Related to a Result by Yan

Lastly, we consider the energy function (cf. Fig. 6)

W (F) = �L(K(F)) = cosh(K(F) − L) − 1 = cosh

(
1

2

(
λ1

λ2
+ λ2

λ1

)
− L

)
− 1,

which penalizes the deviation of the distortion K from a prescribed value L ≥ 1.
According to Theorem 3.1, the quasiconvex envelope of W is given by

QW (F) =
{
0 if 1 ≤ K(F) ≤ L,

W (F) if L ≤ K(F).
(4.3)

Again, we want to further investigate the microstructure induced by W with numer-
ical simulations on � = B1(0). For our calculations, we consider the case L = 2. At
x0 = λ1

λ2
= 1, the microstructure energy gap between h and Ch is maximal with a

value of 
 ≈ 0.54308, hence we use homogeneous Dirichlet boundary values with
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Fig. 7 Microstructure for the energy W (F) = cosh(K(F) − 2) − 1 with boundary conditions F0 = 1 on
a grid with 294,912 vertices (deformed configuration). The coloring shows the distribution of det F

F0 = 1. The energy value of the homogeneous solution is

I (ϕ0) =
∫

B1(0)
W (F0) dx = π · W (F0) ≈ 1.70614,

whereas the energy level of the microstructure solution should, in the limit, approach

inf

{∫

B1(0)
W (F0 + ∇ϑ) dx | ϑ ∈ W 1,∞

0 (B1(0);R2)

}

= π · Q∗W (F0) = π (W (F0) − 
) = 0.

We again compute the microstructure using finite element simulations. It is inter-
esting to observe that the results of these simulations (cf. Figs. 7 and 8) significantly
differ from those encountered in the previous example, showing amore complex struc-
ture than the simple laminate in Fig. 5; note, however, that these numerical results do
not necessarily indicate that the energy infimum cannot be approximated by simple
laminates as well.

As expected, we obtain deformations with K very close to the value 2 throughout
the domain (Fig. 8). The energy levels obtained numerically are also very close to the
expected value of 0. Specifically, for meshes with 294 912 and 1 179 648 grid vertices,
the obtained energy levels are 2.533 · 10−3 and 1.369 · 10−3, respectively.

The quasiconvex envelope (4.3) and the observed microstructure are related to
an earlier result by Yan who, in two remarkable contributions (Yan 2001, 2003),
considered the Dirichlet problem

|∇ϕ|n = l det∇ϕ a.e. in � ⊂ R
n

for an arbitrary number l ≥ 1 under affine boundary conditions and obtained the
following existence result.
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Fig. 8 Microstructure for the energy W (F) = cosh(K(F) − 2) − 1 with boundary conditions F0 = 1 on
a grid with 1,179,648 vertices (deformed configuration). The coloring shows the distribution of K, which
is essentially constant except near the boundary

Theorem 4.2 (Yan 2003, Theorem 1.2) Let l ≥ 1. Given any affine map x �→ F0 x +b,
the Dirichlet problem

|∇ϕ|n = l det∇ϕ a.e. in �,

ϕ(x) = F0 x + b on ∂�

is solvable in W 1,n(�;Rn) if and only if |F0|n ≤ l det F0.

Since in the two-dimensional case |∇ϕ|2
det∇ϕ

= λmax
λmin

= K (∇ϕ), Yan’s result can be
stated in terms of the linear distortion K for n = 2.

Corollary 4.3 In the planar case n = 2, for any affine map x �→ F0 x +b, the Dirichlet
problem

K (∇ϕ) = l a.e. in �,

ϕ(x) = F0 x + b on ∂�

is solvable in W 1,2(�;R2) if and only if K (F0) ≤ l.

Furthermore, recalling that K = 1
2

(
K + 1

K

)
and letting L = 1

2

(
l + 1

l

)
, Corollary

4.3 can equivalently be expressed in terms of the distortion K.

Corollary 4.4 In the planar case n = 2 for any affine map x �→ F0 x +b, the Dirichlet
problem

‖∇ϕ‖2
2 det∇ϕ

= K(∇ϕ) = L a.e. in �,

ϕ(x) = F0 x + b on ∂�

is solvable in W 1,2(�;R2) if and only if ‖F0‖2
2 det F0

= K(F0) ≤ L.
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Using Corollary 4.4, it is possible to obtain (4.3) for p = 2 by directly computing
the relaxation of W (F) = �L(K(F)) = cosh(K(F) − L) − 1, i.e.,

Q∗
2W (F) = inf

{
1

|�|
∫

B1(0)
�L(K(∇ϕ)) dx | ϕ ∈ W 1,2(B1(0);R2), ϕ|∂ B1(0) = F x

}
.

For K(F) = L , the infimum value zero is already realized by the homogeneous
solution. For K(F) < L , although there is no homogeneous equilibrium solution,
there exist a deformation ϕ̂ ∈ W 1,2(�;R2) with ϕ̂|∂� = F x and K(∇ϕ̂) = L due
to Corollary 4.4. Then �L(K(∇ϕ̂)) = 0 and thus Q∗

2W (F) = 0 for all F ∈ GL+(2)
with K(F) ≤ L . Finally, since the mapping

F �→ Ŵ (F) :=
{

0 if K(F) ≤ L,

W (F) if K(F) ≥ L,

is convex and increasing with respect to K and thus polyconvex, it provides a lower
bound for the polyconvex envelope of W , from which it easily follows that PW =
Q∗

2W = Ŵ .

5 Connections to the Grötzsch Problem

Proposition 2.13 also negatively answers a conjecture by Adamowicz (2007, Con-
jecture 1), which (in the two-dimensional case) states that if a conformally invariant
energy W : GL+(2) → R with W (F) = �(K(F)) is polyconvex, then � is non-
decreasing and convex. A direct counterexample is given by W (F) = λmax

λmin
, which is

polyconvex due to criterion v) in Proposition 2.13 with h(t) = t for t ≥ 1, but the
representation W (F) = �(K(F)) = earcosh(K(F)) is not convex with respect toK(F).

Furthermore, criterion iv) in Proposition 2.13 reveals a direct connection between
the so-called Grötzsch property and quasiconvexity in the two-dimensional case.

Definition 5.1 (Adamowicz 2007) Let W : GL+(n) → R be conformally invariant.
Then W satisfies the Grötzsch property if for everyQ = [0, a1] × · · · × [0, an] ⊂ R

n

and every Q
′ = [0, a′

1] × · · · × [0, a′
n] ⊂ R

n , the functional

I : A → R, I (ϕ) =
∫

Q

W (∇ϕ) dx

attains its minimum at the affine mapping ϕ : Q → Q
′, ϕ(x) = (

a′
1

a1
x1, . . . ,

a′
n

an
xn);

here, the set A of admissible functions consists of all ϕ ∈ W 1,p
loc (Q;Q′), p ≥ n with

det∇ϕ > 0 that satisfy the Grötzsch boundary conditions, i.e., map each (n − 1)–
dimensional face of Q to the corresponding face of Q′.

Note that the boundary condition imposed in Definition 5.1 does not require the
admissiblemappings to be affine at the boundary, since each of the faces can bemapped
to the corresponding ones in an arbitrary (possibly nonlinear) manner.
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In the two-dimensional case, the representation of the energy in terms of the singular
values allows us to infer the quasiconvexity from theGrötzsch property in a particularly
straightforward way.

Proposition 5.2 Let W : GL+(2) → R be conformally invariant and satisfy the
Grötzsch property for all Q,Q′. Then W is polyconvex.

Proof Assume that W is not polyconvex. Then g : (0,∞)2 → R with W (F) =
g(λ1, λ2) is not separately convex according to criterion iv) in Proposition 2.13. There-
fore, there exist λ1, λ̂1, λ2 ∈ (0,∞) and t ∈ (0, 1) such that

tg(λ1, λ2) + (1 − t)g(̂λ1, λ2) < g(tλ1 + (1 − t )̂λ1, λ2).

Now, letQ = [0, 1]2 andQ′ = [0, tλ1 + (1− t )̂λ1] × [0, λ2], and define ϕ : Q → Q
′

by

ϕ(x) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
λ1 x1
λ2 x2

)

if x1 ≤ t,
(

λ̂1 x1 + t(λ1 − λ̂1)

λ2x2

)

if x1 > t .

Then ϕ satisfies the Grötzsch boundary conditions, ϕ ∈ W 1,p(Q;Q′) for all p ≥ 1
and
∫

Q

W (∇ϕ) dx =
∫

[0,t]×[0,1]
W (diag(λ1, λ2)) dx +

∫

[t,1]×[0,1]
W (diag(̂λ1, λ2)) dx

=
∫

[0,t]×[0,1]
g(λ1, λ2) dx +

∫

[t,1]×[0,1]
g(̂λ1, λ2) dx

= tg(λ1, λ2) + (1 − t)g(̂λ1, λ2)

< g(tλ1 + (1 − t )̂λ1, λ2) = W (F0) = W (F0) · |Q|,

where F0 = diag(tλ1 + (1 − t )̂λ1, λ2) is the boundary-compatible linear mapping
from Q to Q′. Therefore, W does not satisfy the Grötzsch condition. ��
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A Basic Results Related to Generalized Convexity

In order to avoid any ambiguities or lack of rigor arising from the consideration of
extended-real-valued functions, we recall some basic properties related to different
notions of convexity, stated in a form specifically applicable to the case of functions
on the domain GL+(n). First, we will require a version of Jensen’s inequality, an
essential result for classically convex functions.

Lemma A.1 For N ∈ N, let P : RN → R ∪ {+∞} be convex such that the effective
domain dom P := {y ∈ R

N | P(y) < +∞} is open. Then for any y0 ∈ dom P, there
exists (a subgradient) y∗

0 ∈ R
N such that

P(y) ≥ P(y0) + 〈y∗
0 , y − y0〉

for all y ∈ R
N .

Proof See (Rockafellar 1970, Theorem 23.4). ��
Lemma A.2 (Jensen’s inequality for extended-real-valued convex functions) Let
P : RN → R ∪ {+∞} be convex such that the effective domain dom P := {y ∈
R

N | P(y) < +∞} is open. Let � ⊂ R
n be open and bounded. Then for any

� ∈ L1(�;RN ),

P

(
1

|�|
∫

�

�(x) dx

)
≤ 1

|�|
∫

�

P(�(x)) dx (A.1)

whenever the right-hand side integral in (A.1) exists.

Proof Let y0 = 1
|�|
∫
�

�(x) dx ∈ R
N , and assume without loss of generality that

y0 ∈ dom P . Then due to the convexity of P , according to Lemma A.1, there exists
y∗
0 ∈ R

N such that

P(y) ≥ P(y0) + 〈y∗
0 , y − y0〉

for all y ∈ R
N . We therefore find

P(�(x)) ≥ P(y0) + 〈y∗
0 ,�(x) − y0〉

for all x ∈ � and thus

1

|�|
∫

�

P(�(x)) dx ≥ 1

|�|
∫

�

P(y0) + 〈y∗
0 ,�(x) − y0〉 dx

= P(y0) + 〈y∗
0 ,

1

|�|
∫

�

�(x) − y0 dx〉

= P(y0) + 〈y∗
0 ,

1

|�|
∫

�

�(x) dx − y0〉

= P(y0) + 〈y∗
0 , y0 − y0〉 = P

(
1

|�|
∫

�

�(x) dx

)
. ��
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Many properties related to polyconvexity, of course, heavily rely on the fact that
any minor of the Jacobian is a Null Lagrangian (Ball 1976), which is expressed by
the following property of the adjoint mapping (cf. Definition 2.1).

Lemma A.3 Let � ⊂ R
n be open and bounded, F ∈ R

n×n and ϑ ∈ W 1,p
0 (�;Rn).

Then

1

|�|
∫

�

adj(F + ∇ϑ(x)) dx = adj(F).

Proof See (Dacorogna 2008, Theorem 8.35 (ii)). ��

We will also require a number of fundamental results concerning the relation
between rank-one convexity and quasiconvexity which are needed for establishing
our main results. First, we consider a characterization of the rank-one convex enve-
lope, originally due to Dacorogna (1987), Dacorogna (2008), in terms of the so-called
(Hm)-condition.

Definition A.4 (Dacorogna 2008, Definition 5.14) Let m ∈ N, F1, . . . , Fm ∈ R
n×n

and t1, . . . , tm ∈ [0, 1] such that
∑m

i=1 ti = 1. Then (ti , Fi )1≤i≤m satisfy (Hm) if

i) m = 2 and rank(F2 − F1) = 1,
ii) m > 2 and, up to a permutation, rank(F2 − F1) = 1 and (̃ti , F̃i )1≤i≤m−1 satisfy

(Hm−1), where

t̃1 = t1 + t2, F̃1 = 1

t1 + t2
(t1F1 + t2F2) and t̃i = ti+1, F̃i = Fi+1 (A.2)

for i ∈ {2, . . . , m − 1}.

Lemma A.5 Let W : GL+(n) → R be bounded below. Then

RW (F) = inf

{
m∑

i=1

ti W (Fi )

∣∣∣ t1, . . . , tm ∈ [0, 1],
m∑

i=1

ti = 1,
m∑

i=1

ti Fi = F,

(ti , Fi ) satisfy (Hm)} (A.3)

for all F ∈ GL+(n).

Proof See (Dacorogna (1987)) and Dacorogna (2008, Theorem 6.10). ��

In addition to its direct application toward characterizing the rank-one convex enve-
lope of a function, the (Hm)-condition also plays an important role for the construction
of laminates in the theory of gradient Young measures (Roubıček 2011; Koumatos
et al. 2016; Rindler 2018); here, we will apply it to a similar, but more straightforward
approach (cf. Dacorogna and Marcellini 1997) involving only classical deformation
mappings in an appropriate function space.
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Lemma A.6 Let �̂ ⊂ R
n be open and bounded. Let t̂ ∈ [0, 1] and F̂1, F̂2 ∈ R

n×n

with rank(F̂2 − F̂1) = 1 and F̂ = t̂ F̂1 + (1 − t̂)F̂2. Then for every ε̂ > 0, there exist
a (piecewise affine) mapping ϕ̂ ∈ W 1,∞(�̂;Rn) and disjoint open sets �̂1, �̂2 ⊂ �̂

such that ⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∣∣ |�̂1| − t̂ |�̂| ∣∣ ≤ ε̂,
∣∣ |�̂2| − (1 − t̂)|�̂| ∣∣ ≤ ε̂,

ϕ̂(x) = Fx on ∂�̂,

dist(∇ϕ̂(x), conv({F̂1, F̂2})) ≤ ε̂ a.e. in �̂,

∇ϕ̂(x) =
{

F̂1 if x ∈ �̂1,

F̂2 if x ∈ �̂2,

(A.4)

where conv({F̂1, F̂2}) is the closed line segment connecting F̂1 and F̂2.

Proof See Dacorogna (2008, Lemma 3.11). ��
Remark A.7 The inequality | |�̂1| − t̂ |�̂| | ≤ ε̂ can equivalently be expressed as

t̂ − ε

�̂
≤ �̂1

�̂
≤ t̂ + ε

�̂
.

Applying Lemma A.6 inductively, we obtain the following iterated generalization.

Corollary A.8 Let � ⊂ R
n be open and bounded, let t1, . . . , tm ∈ [0, 1] with∑m

i=1 ti = 1 and F1, . . . , Fm ∈ R
n×n such that (ti , Fi )1≤i≤m satisfy (Hm), and

let F =∑m
i=1 ti Fi . Then there exist M ∈ N and F1, . . . , F M ∈ R

n×n with

rank(F j+1 − F j ) = 1 for all j ∈ {1, . . . , M − 1}

such that for every ε > 0, there exist a (piecewise affine) mapping ϕ ∈ W 1,∞(�;Rn)

and disjoint open sets �1, . . . , �m ⊂ � such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∣∣ |�i | − ti |�| ∣∣ ≤ ε,

ϕ(x) = Fx on ∂�,

dist
(
∇ϕ(x),

⋃M−1

j=1
conv({F j , F j+1})

)
≤ ε a.e. in �,

∇ϕ(x) = Fi if x ∈ �i

(A.5)

for all i ∈ {1, . . . , m}.
Proof We will prove the corollary by induction. For m = 2, the statement is identical
to Lemma A.6 with M = 2, F1 = F1 and F2 = F2.

Now let m > 2. By assumption on (ti , Fi )1≤i≤m and Definition A.4, (̃t1, F̃1), . . . ,

(̃t1, F̃m−1) given by (A.2) satisfy (Hm−1) and rank(F2 − F1) = 1 up to permutation.
Applying the induction assumption to (̃t1, F̃1), . . . , (̃t1, F̃m−1), wefirst choose suitable

matrices F̃1, . . . , F̃ M̃ .
Now let ε > 0 be given. Then for any ε̃ < ε, there exist �̃1, . . . , �̃m−1 and

a piecewise affine function ϕ̃ ∈ W 1,∞(�;Rn) such that (A.5) is satisfied for all
i ∈ {1, . . . , m − 1}. Applying Lemma A.6 to

�̂ = �̃1, ε̂ = ε̃ F̂1 = F1, F̂2 = F2 and t̂ = t1
t1 + t2

,
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we obtain disjoint open sets �̂1, �̂2 ⊂ �̃1 ⊂ � and a piecewise affine function
ϕ̂ ∈ W 1,∞(�1;Rn) which satisfies (A.4). Let

F1 = F1, F2 = F2, F3 = F̃1, �1 = �̂1, �2 = �̂2, M = M̃ + 3,

Fi = F̃ i−3 for i ∈ {4, . . . , M}, �i = �̃i−1 for i ∈ {3, . . . , m}

and

ϕ : � → R
n, ϕ(x) =

{
ϕ̂(x) if x ∈ �1,

ϕ̃(x) otherwise.

Then ϕ ∈ W 1,∞(�,Rn) is piecewise affine with ϕ(x) = Fx on ∂� and ∇ϕ(x) = Fi

on each �i . Furthermore, since

dist(∇ϕ(x), conv({F1, F2})) = dist(∇ϕ̂(x), conv({F̂1, F̂2})) ≤ ε̂ < ε a.e. in �̃1

by construction via Lemma A.6 and

dist
(
∇ϕ(x),

⋃M−1

j=4
conv({F j , F j+1})

)
= dist

(
∇ϕ̃(x),

⋃M̃−1

j=1
conv({F̃ j , F̃ j+1})

)

≤ ε̃ < ε a.e. in � \ �̃1

by the induction assumption, we find the third condition in (A.5) satisfied as well; note
that indeed rank(F j+1 − F j ) = 1 for all j ∈ {1, . . . , M − 1}.

Finally, the induction assumption directly yields

∣∣ |�i | − ti |�| ∣∣ = ∣∣ |�̃i−1| − t̃i−1|�| ∣∣ ≤ ε̃ < ε

for i ∈ {3, . . . , m}. For i = 1, we find (cf. Remark A.7)

|�1|
|�| = |�1|

|�̂| · |�̂|
|�| = |�̂1|

|�̂| · |�̃1|
|�|

≤
(

t̂ + ε̂

|�̂|
)

·
(

t̃1 + ε̃

|�|
)

=
(

t̂ + ε̃

|�̃1|
)

·
(

t̃1 + ε̃

|�|
)

and thus, we choose ε̃ > 0 sufficiently small

(
t̂ + |�|

|�̃1| t̃1

)
ε̃ + ε̃2

|�̃1| ≤ ε,

so that

|�1|
|�| ≤ t̂ · t̃1 + ε

|�| = t1
t1 + t2

· (t1 + t2) + ε

|�| = t1 + ε

|�| .

123



Journal of Nonlinear Science (2020) 30:2885–2923 2917

Similarly, |�1||�| ≥ t1 − ε
|�| , which implies ||�1| − t1|�|| ≤ ε. The last remaining

inequality for i = 2 follows analogously.

B The Quasiconvex Envelope for a Class of Conformal Energies

The concept of monotone-convex envelopes is directly connected to an earlier result
by Dacorogna and Koshigoe (1993), who obtained an explicit relaxation result for a
subclass of conformal energy functions.

Lemma B.1 (Dacorogna and Koshigoe 1993, Proposition 5.1) Let W : R2×2 → R be
of the form

W (F) := g(
√

‖F‖2 − 2 det F), g : [0,∞) → R. (B.1)

Define

g̃ : R → R, g̃(x) =
{

g(x) if x > 0,

g(−x) if x ≤ 0.

Then

CW (F) = PW (F) = QW (F) = RW (F) = g̃∗∗(√‖F‖2 − 2 det F
)
,

where g̃∗ is the Legendre-transformation of g̃ and g̃∗∗ = (g̃∗)∗.

The same result can be found in (Šilhavý 2001, Prop. 4.1).Note that the convexity of the
mapping F �→ g̃∗∗(

√‖F‖2 − 2 det F) = g̃∗∗(
√

(λ1 − λ2)2) follows directly (Ball
1977) from the fact that g̃∗∗ is convex and non-decreasing on [0,∞). Furthermore, if
g ≥ 0, then W of the form (B.1) is a conformal energy in the sense of Footnote 1.

If g is continuous and bounded below, then based on Dacorogna (2008, Theo-
rem 2.43) it is easy to show that the monotone-convex envelope of g is exactly the
restriction of Cg̃ to [0,∞):

CM g = (Cg̃)
∣∣[0,∞)

, Cg̃ = g̃∗∗.

Similar to the geodesic distance considered in Sect. 4.1, the expression√‖F‖2 − 2 det F can be characterized as a measure of distance to the conformal
group:5 since the closure CSO(2) ∪ {0} of CSO(2) is a linear subspace6 of R2×2 with
an orthonormal basis given by

A1 =
√
2

2

(
1 0
0 1

)
, A2 =

√
2

2

(
0 1

−1 0

)
,

5 Note that the Euclidean distance can be considered a linearization of the geodesic distance and, unlike
the latter, does not take into account the Lie group structure of either GL+(2) or CSO(2). For a detailed
discussion of the relation between these distancemeasures and their applicability to the deformation gradient
in nonlinear mechanics, see Neff et al. (2016).
6 More generally (Šilhavý 2004, p.24), the set [0, ∞) · SO(n) is convex for n ≥ 1.
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thus

dist2euclid(F,CSO(2)) := inf
A∈CSO(2)

‖F − A‖2

= ‖F‖2 − (〈F, A1〉2 + 〈F, A2〉2)
= ‖F‖2 − 1

2
((F11 + F22)

2 + (F12 − F21)
2)

= ‖F‖2 − 1

2
(F2

11+F2
22+F2

12+F2
21+2 (F11 F22 − F12 F21))

= 1

2
(‖F‖2 − 2 det F),

where 〈·, ·〉 denotes the canonical inner product on R2×2. Therefore, the energy func-
tions considered in LemmaB.1 depend only on the Euclidean distance of F to CSO(2).

C The Convex Envelope of Conformally Invariant Planar Energies

The quasiconvex envelopes computed in Sect. 4 are, in general, not convex, i.e.
QW (F) > CW (F) for some F ∈ GL+(2). In fact, the following explicit computa-
tion shows that the convex envelope of any conformally invariant energy is necessarily
constant.

Recall that for a function W : M → R which is defined on a non-convex domain
M ⊂ R

n×n (e.g. M = GL+(2)) and bounded below, the convex envelope CW of W
is given by the restriction CW̃ |M of the convex envelope CW̃ of the function

W̃ : conv(M) → R ∪ {+∞}, W̃ (F) =
{

W (F) if F ∈ M,

+∞ if F /∈ M,

to M , where conv(M) denotes the convex hull of the set M ; cf. Remark 2.3. Note
that CW (F) < +∞ for all F ∈ M and that W̃ can be further extended to a convex
function Ŵ on R

n×n by setting Ŵ (F) = +∞ for all F /∈ conv(M).

Proposition C.1 Let W : GL+(2) → R be conformally invariant and bounded below.
Then

CW (F) = inf
{
W (F̃) | F̃ ∈ GL+(2)

}

for all F ∈ GL+(2).

Proof We only need to show that CW is constant on GL+(2). First, observe that the
convex envelope of W is conformally invariant (the proof of the bi-SO(2)-invariance
of CW given by Buttazzo et al. (1994, Theorem 3.1) can easily be adapted to include
the scaling invariance.). By the definition of convexity on GL+(2) employed here,
CW must be the restriction of a convex function W̃ : conv(GL+(2)) = R

2×2 → R
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to GL+(2). In particular, for any F ∈ R
2×2, the mapping pF : R → R with pF (t) =

W̃ (t F) is convex.
Let b := W̃ (0). Then for any F ∈ GL+(2) and t ∈ R,

pF (t) = W̃ (t F) =
{

CW (t F) if t �= 0

W̃ (0) if t = 0
=

{
CW (F) if t �= 0

b if t = 0

due to the conformal invariance of CW on GL+(2). Thus pF is convex and constant
on R \ {0}, which implies that p is constant on R; in particular, CW (F) = pF (1) =
pF (0) = b.

Remark C.2 As indicated in Sect. 2.1, analytical methods for finding generalized
convex envelopes have often been based on the observation that RW = CW for
certain classes of energy functions W and the subsequent computation of the classical
convex envelope CW ; for example, this method is applicable to the St.Venant–
Kirchhoff energy function (Le Dret and Raoult 1995) WSVK(F) = μ

4 ‖FT F −1‖2 +
λ
8

(
tr(FT F − 1)

)2
.

One of the most frequently cited examples of an isotropic and objective energy
function W with RW = QW = PW �= CW is the example of Kohn and Strang
(1983, 1986), where, in the R2×2-case (Zhang 2002; Došl 1997),

W (F) =
{
1 + ‖F‖2 if F �= 0,

0 if F = 0,
with CW (F) =

{
W (F) if ‖F‖ ≥ 1,

2 ‖F‖ if ‖F‖ < 1,

but QW (F) =
{

W (F) if ‖F‖ + 2 det F ≥ 1,

2
√‖F‖2 + 2 det F − 2 det F if ‖F‖ + 2 det F < 1.

Furthermore, ifW : GL+(n) → R is a volumetric energy functionof the formW (F) =
f (det F) with f : (0,∞) → R, then RW (F) = QW (F) = PW (F) = C f (det F)

and, in general, CW (F) < QW (F), see Dacorogna (2008, Theorem 6.24).
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