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Abstract
Running is the basic mode of fast locomotion for legged animals. One of the most
successful mathematical descriptions of this gait is the so-called spring–mass model
constructed upon an inverted elastic pendulum. In the description of the grounded
phase of the step, an interesting boundary value problem arises where one has to
determine the leg stiffness. In this paper, we find asymptotic expansions of the stiff-
ness. These are conducted perturbatively: once with respect to small angles of attack,
and once for large velocities. Our findings are in agreement with previous results and
numerical simulations. In particular, we show that the leg stiffness is inversely pro-
portional to the square of the attack angle for its small values, and proportional to the
velocity for large speeds. We give exact asymptotic formulas to several orders and
conclude the paper with a numerical verification.

Keywords Singular perturbation theory · Boundary value problem ·
Poincaré–Lindstedt series · Elastic pendulum · Running · Spring–mass model

Mathematics Subject Classification 34E10 · 34B15

1 Introduction

One of the fundamental achievements of evolution is the ability of various animals to
move efficiently throughout the natural terrain. Something as mundane as a running
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human or dog is itself a complex interplay of motor, neural, and muscular systems
(Dickinson et al. 2000; Gordon et al. 2017). Therefore, the research on movement is
intense and spans many disciplines such as biomechanics, sports medicine, applied
mathematics, and robotics (Biewener and Patek 2018; Daniels et al. 1978; Tibshirani
2005; Collins et al. 2005). Building a complete model of running can be prohibitively
difficult and, thus, to proceed onemay just focus on someparticular features or simplify
matters with a use of low-dimensional conceptual models (Dickinson et al. 2000).
There are many approaches to that problem. For example, in sports one usually is
concerned about finishing the race in a shortest time. Hence, a particular model can
focus only on several relevant parameters such as runner’s power, air drag, or race
strategy. This was a basis for a conceptual model of Keller proposed in the second half
of the twentieth century (Keller 1973) (which, in turn, stemmed from fundamental
ideas of Hill forwarded about fifty years earlier Hill 1925). An interested reader can
find some more modern accounts of competitive running models in Woodside (1991),
Pritchard (1993), Aftalion (2017), Aftalion and Martinon (2019).

In this paper, we are mainly concerned not in race performance but rather the very
mechanism of running. In particular, we analyse the classical spring–mass model
that has been highly successful in describing the motion and dynamics of legged
locomotion. The model has been firstly analysed in seminal papers (Blickhan 1989;
McMahon and Cheng 1990) where authors compared theoretical predictions with
real data. This model is based on an inverted elastic pendulum which acts in two
phases: grounded (stance) and aerial. As was noted in Blickhan and Full (1993),
despite of tremendous diversity of various locomotion modes, anatomical differences,
and sizes of particular animals, the spring–mass model describes the fundamental
mechanical principles of bouncing gaits very accurately. Therefore, this simple model
is very robust and has been investigated in many studies from different vantage points:
experimental (Farley et al. 1991, 1993; Dickinson et al. 2000) and biomechanical
modelling (He et al. 1991; Geyer et al. 2005). Further, the spring–mass model was a
starting point of many projects in robotics (where it is usually called the Spring Loaded
Inverted-Pendulum (SLIP) model). From the first SLIP-based hopper (Raibert 1986)
to more advanced modern robots (Rummel and Seyfarth 2008; Akinfiev et al. 2003;
Armour et al. 2007), this seemingly simple dynamical system inspired the design of
many fast legged robots. A very readable survey about locomotion in robotics can
be found in Aguilar et al. (2016). Apart from that, the basic spring–mass model has
been generalized and extended in many different directions. For example: multiple leg
hoppers (Gan and Remy 2014; Geyer et al. 2006), dynamic swing leg motion when
the attack angle is not constant (Gan et al. 2018), damping (Saranlı et al. 2010), and
various control problems (Ghigliazza et al. 2005; Sato and Buehler 2004; Takahashi
et al. 2017; Shahbazi et al. 2016). On the other hand, from the mathematical point
of view, the spring–mass model possesses interesting dynamical properties such as
complex bifurcation diagrams (Merker et al. 2015) or periodic gait stability issues
(Geyer et al. 2005; Seipel and Holmes 2007; Hamzaçebi andMorgül 2017). A detailed
numerical analysis of the dynamics has recently been conducted in Zaytsev et al.
(2019). Moreover, in certain situations one aims to find approximate solutions of the
considered model since they can be used in studying global dynamics under certain
assumptions. This programme has been conducted for example in Geyer et al. (2005),
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Schwind and Koditschek (2000), Ghigliazza et al. (2005), Saranlı et al. (2010) and
also in the prequel of our present investigations Płociniczak and Wróblewska (2020)
which we conduct in a similar spirit. An interested reader will find a very thorough
account of running models formulated as dynamical systems in Holmes et al. (2006).

The spring stiffness present in the model has to be adjusted accordingly in order to
smoothlymove from the grounded phase into the aerial. This gives rise to an interesting
nonlinear boundary value problem. In our previouswork (Płociniczak andWróblewska
2020), we have proved that it has a unique solution for sufficiently small angles of
attack (realistic assumption). We have also provided several asymptotic expansion of
the solution for small angles.As a by-product,wehave obtained a useful approximation
of the important parameter being the leg stiffness. This work expands and completes
several ideas born therein. While in Płociniczak and Wróblewska (2020), we were
concerned mostly about various properties of solutions, here we are mainly concerned
about the leg stiffness, its asymptotic form, and dependence on several other physical
parameters. Since it is impossible to find an exact form of the stiffness, we have to use
other methods to infer about its behaviour. In particular, we prove a rigorous result
that gives a two-term asymptotic expansion of the stiffness for small angles. In the
leading order, it coincides with our previous heuristics. Moreover, we consider the
mathematically interesting singular case of large velocity in which we have to use
a two-parameter perturbation. These results give very simple expressions that reveal
some biomechanical properties of the running or hoping leg. Furthermore, numerical
analysis shows that they are accurate and, hence,may be used in practical work. To sum
up, this paper extends, formalizes, and improves the estimate on leg stiffness found in
Płociniczak and Wróblewska (2020) along with additional material concerning large
velocity asymptotics.

In the next section, we introduce the model and devise the main boundary value
problem. The subsequent section deals with perturbation methods and asymptotic
solution. There, we state our main results. Throughout the paper, we include some
numerical examples that illustrate the theory.

2 Model and Problem Statement

The schematic of the model setting is depicted in Fig. 1. One leg is modelled as
an inverted elastic pendulum with an axis on the ground. By equating forces in the
Cartesian coordinates, we can write (for details, see Blickhan 1989; McMahon and
Cheng 1990; Płociniczak and Wróblewska 2020)

⎧
⎪⎨

⎪⎩

m
d2x

dt2
= k

(
l0 − √

x2 + y2
)
sin θ,

m
d2y

dt2
= k

(
l0 − √

x2 + y2
)
cos θ − mg,

(1)

where l0 is the equilibrium length of the spring and k is its stiffness. We supplement
the above system with initial conditions
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x(0) = −l0 sin α,
dx

dt
(0) = u, y(0) = l0 cosα,

dy

dt
(0) = v, (2)

where u and v are, respectively, horizontal and vertical velocities, and α is the angle of
attack.Aswe noted in Płociniczak andWróblewska (2020), it ismuchmore convenient
to analyse (1) in polar coordinates. Transforming and rescaling leads us to

⎧
⎪⎪⎨

⎪⎪⎩

L
d2θ

dt2
+ 2

dL

dt

dθ

dt
= sin θ,

d2L

dt2
−

(
dθ

dt

)2

L = K (1 − L) − cos θ,

(3)

where L = √
x2 + y2/l0, and the nondimensional stiffness is given by

K = kl0
mg

. (4)

The initial conditions now have the form

θ(0)=−α,
dθ

dt
(0) = U cosα−V sin α, L(0) = 1,

dL

dt
(0) = −U sin α−V cosα,

(5)
with the horizontal and vertical Froude numbers

U = u√
gl0

, V = v√
gl0

. (6)

Data from McMahon and Cheng (1990), Farley et al. (1993) indicate that for a wide
variety of animals we have

α ≈ 0.2 − 0.5, U ≈ 0.8 − 2.6, V ≈ 0.05 − 0.5, (7)

therefore α and V can be considered small, while U is of order of unity.
In the above biomechanical setting, a certain boundary value problem naturally

arises. It is to find the stiffness K ∗ and the smallest time t∗ for which we have

L(t∗, K ∗) = 1, θ(t∗, K ∗) = α. (8)

That is to say, we have to determine the stiffness forwhich the leg has travelled an angle
2α precisely at the time of returning to its original length (see Fig. 1). In Płociniczak
and Wróblewska (2020), we have shown that this problem has a unique solution at
least for small α and provided some approximations to K ∗ and t∗. Specifically, we
have found that for U of order of unity we formally have

K ∗ ≈
(

π(U cosα − V sin α)

2α

)2

, t∗ ≈ π√
K ∗ . (9)
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Fig. 1 A schematic of the main model (taken from Płociniczak and Wróblewska 2020)

In what follows, we show that the above approximations are indeed the leading order
expansions as α → 0, more precisely we prove that

K ∗ =
(

πU

2α

)2

+
(

π2V

2
+ 2

V

(
1 −U 2 + 2V 2

)
)
U

α
+ O(α0),

t∗ = 2α

U
− 2

(
π2 + 8

)

π2U 2 α2 + O(α3),

as α → 0+,

(10)
Moreover, we also consider an interesting case of large U for which

K ∗ = 3UV

α3 + O(Uα−1) + O(U 0),

t∗ = 2α

U
+ 4Vα3

5U 2 + O(U−2α5) + O(U−3),

as U → ∞ and α → 0+. (11)

In this way, we prove that K ∗ depends linearly on U for large velocities what has
been observed before with numerical means only. Notice that above formulas are
asymptotic also for small α. However, led by our analytical results we also show that
K ∗ can be very accurately approximated with the following quasi-empirical formula
for all meaningful angles

K ∗ ≈ 3UV

α3

(

1 + 1

2
α2

)

, U → ∞. (12)
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The above extrapolates the small-angle leading order asymptotic behaviour of K ∗ into
the larger interval α ∈ [0, 1].

3 Asymptotic Solution

We begin by noticing that the main equation (3) for L can be written as

d2L

dt2
+

[

K −
(
dθ

dt

)2
]

L = K − cos θ. (13)

It follows that the nature of the solution depends on the relative sizes of K and dθ/dt .
The latter, in turn, has a magnitude of order ofU . Loosely speaking, the solutions are
either of trigonometric or hyperbolic nature. This makes a profound difference for the
solution of the problem (8). Below, we explore these two regimes perturbatively.

Becauseof a largenumber of different quantities, the scopeof below two subsections
is local. This means that all introduced variable names are valid only within the
respective subsection. Specifically, x and y are different in each of them.

3.1 Small Angle

The solution of the boundary value problem (8) requires that K = K (α). We start our
analysis with an observation that K (α)α2 is bounded when α → 0+. This makes the
subsequent perturbation theory possible. Moreover, this result has important implica-
tions since previously the angular dependence of K ∗ has been known only numerically.

Lemma 1 Let (K ∗(α), t∗(α)) be the solution of the boundary value problem (8). Then,

lim
α→0+ α2K ∗(α) = π2U 2

4
. (14)

Proof Start by using a new time scale

τ̂ = √
Kt . (15)

Then, the θ -equation in (3) can be transformed into the integral form by multiplying
it by L and integrating twice. We have

θ (̂τ ) = −α + U cosα − V sin α√
K

∫ τ̂

0
L(s)−2ds + 1

K

∫ τ̂

0
G (̂τ − s) sin θ(s)ds, (16)

where G is the kernel whose explicit form can be found. Setting θ (̂τ ) = α, we obtain
an implicit equation for K ∗

2α = U cosα − V sin α√
K ∗

∫ τ̂∗

0
L(s)−2ds + 1

K ∗

∫ τ̂∗

0
G (̂τ − s) sin θ(s)ds. (17)
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Now, in Płociniczak andWróblewska (2020) we have shown that there exists a mono-
tone relation K ∗ = K ∗(α) for sufficiently small α. Moreover, K ∗(α) → ∞ and
τ̂ ∗(α) → π as α → 0+. If we take the same limit in the equation above the second
term on the right vanishes since, as can be checked with an elementary calculation, G
is uniformly bounded for each α. Our previous results (Płociniczak and Wróblewska
2020) also indicate that in this limit L → 1 and hence, for the both sides to be equal to
each other we should have K (α) ∼ π2U 2α−2/4 as α → 0+. This finishes the proof.	


Since we are interested in solving the boundary value problem (8), we will rescale
the relevant variables in a natural way to simplify matters. First, set

Ld(α) = U sin α + V cosα, θd(α) = U cosα − V sin α, (18)

which are initial conditions for L and θ as in (5). Then, we put

L = 1 − Ld(α)√
K (α)

x, θ = α(1 − 2y), (19)

for new dependent variables x and y. As we can see x measures the spring departure
from initial length while y is normalized angle. The magnitude of 1 − L is chosen
according to the asymptotic analysis done in our previous work (Płociniczak and
Wróblewska 2020) (but see also Geyer et al. 2005). As for the time scale, we choose
the one balancing L ′′ with L in (3)

t =
√
K (α)

ω(α)
τ, ω(α) = 1 + ω1α + ω2α

2, (20)

where τ is the strained fast time variable introduced because of the frequency mod-
ulation. Notice that ω is terminated after the second-order term. We will not conduct
the higher-order expansion. In these new variables, Eq. (3) has the form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ω(α)2x ′′ + (1 − 4α2ω(α)2y′2)x = −4α2ω(α)2
√
K (α)

Ld(α)
y′2

+ 1

Ld(α)
√
K (α)

cos(α(1 − 2y)),

−
(

1 − Ld(α)√
K (α)

x

)

y′′ + 2Ld(α)√
K (α)

x ′y′ = ω(α)−1

2αK (α)
sin(α(1 − 2y)),

(21)

with initial conditions

x(0) = 0, x ′(0) = 1, y(0) = 1, y′(0) = − θd(α)

2α ω(α)
√
K (α)

. (22)

Here, prime denotes the derivative with respect to the fast time τ . We can see that due
to Lemma 1 the derivative y′(0) is bounded as α → 0+.
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Now, we make the following perturbation expansions for the solutions of ODEs

x(τ ) = x0(τ )+ x1(τ )α+ x2(τ )α2+· · · , y(τ ) = y0(τ )+ y1(τ )α+ y2(τ )α2+· · · ,

(23)
and the unknown stiffness

√
K (α) = k−1

α
+ k0 + k1α + · · · , (24)

where we notice that it is more feasible to expand the square root of K . Plugging these
into (21), collecting respective powers of α, and using initial conditions (22) yields
the following systems

α0 :
⎧
⎨

⎩

x ′′
0 + x0 = 0, x0(0) = 0, x ′

0(0) = 1,

y′′
0 = 0, y0(0) = 1, y′

0(0) = − U

2k−1
,

α1 :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x ′′
1 + x1 = 1

Vk−1
− 4k−1

V
y′2
0 − 2ω1x ′′

0 , x1(0) = 0, x ′
1(0) = −ω1,

y′′
1 = V

k−1

(
2x ′

0y
′
0 + x0y′′

0

)
, y1(0) = 0,

y′
0(0) = − 1

2k2−1

(−Vk−1 +Uk0 +Uk−1ω1) .

(25)
The α0 equation can immediately be solved

x0(τ ) = sin τ, y0(τ ) = 1 − U

2k−1
τ. (26)

Now, since x ′′
0 (τ ) = − sin τ we can remove the secular terms from the α1 equation

only by taking ω1 = 0. The corresponding solution will then have the form

x1(τ ) = 1

Vk−1
(1 −U 2)(1 − cos τ),

y1(τ ) = −UV

k2−1

(1 − cos τ) + 1

2k2−1

(Uk0 − Vk−1) τ. (27)

Further, the second-order correction to the frequency ω2 can be determined from the
α2 equation

α2 : x ′′
2 + x2 =

(

2ω2 + 5U 2

k2−1

)

sin τ − U

V 2k−1

(
1 −U 2 + 2V 2

)
+ U 2 − 1

Vk2−1

k0. (28)

Therefore, by removing the secular terms we have

ω2 = −5

2

U 2

k2−1

. (29)
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The process can be continued in a standard way however, as can be seen, equations
become very cluttered. Nevertheless, we have all the expansions needed to determine
k−1 and k0. Our systematic expansions can be compared with more heuristic approach
in Geyer et al. (2006) where Authors find some accurate approximations, couple them
with the aerial phase, and investigate the stability of such model.

We require that K (α) ∼ K ∗(α) as α → 0+ that is to say, coefficients ki have to be
chosen to asymptotically solve the boundary value problem (8). To this end, we make
the further expansion for the time t∗

τ ∗(α) = τ0 + τ1α + τ2α
2 + · · · . (30)

Now, ti and ki can be found by perturbatively solving

0 = x(τ ∗(α)) = x0(τ
∗(α)) + x1(τ

∗(α))α + · · · ,

0 = y(τ ∗(α)) = y0(τ
∗(α)) + y1(τ

∗(α))α + · · · (31)

Using (26), (27), and collecting respective powers of α, we obtain a series of linear
systems

α0 :
⎧
⎨

⎩

sin τ0 = 0,

1 − Uτ0

2k−1
= 0,

α1 :
⎧
⎨

⎩

(cos τ0) t1 +
(
1 −U 2

)
(1 − cos τ0)

Vk−1
= 0,

Uk0t0 −Uk−1t1 − Vk−1τ0 + 2UV (1 − cos τ0) = 0.
. . .

(32)

Solving the above leads us to

t0 = π, t1 = 4(1 −U 2)

UV
, k−1 = πU

2
, k0 = 4(1 −U 2) + (8 + π2)V 2

2πV
. (33)

It is now only a matter of returning to the original time scale t and squaring
√
K (α).

Therefore, we have proved the following result.

Theorem 1 Let (K ∗(α), t∗(α)) be the solution of the problem (8). Then, the expansion
(10) holds.

The numerical example of the above expansion is depicted in Fig. 2.We have plotted
the relative error of the asymptotic approximation K ∗

i of the numerical solution K ∗ of
(8). Here, i ∈ {−1, 0, 1} denotes the largest order of α taken in the expansion. Clearly,
all errors converge to 0 for small angles and what could have been anticipated, K ∗

1
looses accuracy for larger values of α (say, α > 0.3). We can see that K ∗

0 provides a
reasonable approximation even for larger angles.
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Fig. 2 Relative error of the asymptotic approximation K ∗
i of the solution K ∗ to the problem (8). Here

i = −1, 0, 1 denotes the largest order of α taken in the expansion. The plot below is the magnification of
the above for α ∈ [0, 0.1]

3.2 LargeVelocity

Similarly as in the previous section, we begin by finding the leading order of the
expansion K = K (U ) when U → ∞. Here however, we determine only how fast
K (U ) approaches infinity as U increases.

Lemma 2 Let (K ∗(U ), t∗(U )) be the solution of the boundary value problem (8). Then
K (U )U−1 is bounded when U → ∞.

Proof Similarly as in the proof of Lemma 1, we start by introducing a faster time scale

τ̂ = Kt . (34)
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Now, we have K = K (U ) and the initial derivatives have the form

dθ

dτ̂
(0) = U cosα − V sin α

K (U )
,

dL

dτ̂
(0) = −U sin α + V cosα

K (U )
. (35)

Since, by assumption (8) has a solution forU → ∞ the derivatives has to stay bounded
in the limit. We have then two possibilities: eitherU/K (U ) → 0 orU/K (U ) → C >

0 what means that K (U ) → ∞. Moreover, in the former case (3) becomes

d2L

dτ̂ 2
− 2L

(
dθ

dτ̂

)2

= 0, L
d2θ

dτ̂ 2
+ 2

dL

dτ̂

dθ

dτ̂
= 0. (36)

with initial conditions

θ(0) = −α,
dθ

dτ̂
(0) = 0, L(0) = 1,

dL

dτ̂
(0) = 0. (37)

Notice that the equation for θ can be rewritten as a conservation of angular momentum

d

dτ̂

(

L2 dθ

dτ̂

)

= 0, (38)

which, using the initial conditions, yields θ (̂τ ) = −α for all τ̂ which is a contradiction
since it is impossible to have θ = α. Therefore, we are left with U/K (U ) > 0 for
U → ∞ what concludes the proof. 	


Thanks to the above result we know that K (U ) ∝ U for large U . This observa-
tion has been made before in McMahon and Cheng (1990) but only on the basis of
numerical calculations. In what follows we will find the proportionality constant in
this dependence. It appears that this problem is more difficult than the one considered
before since the first-order perturbation equation does not posses an analytical solu-
tion. However, we will see that further expanding in the small α can help to obtain
useful results.

We start by introducing appropriate scaling. Let

L = x, θ = α (1 − 2y) , t = 2α

U
τ. (39)

We have thus rescaled the angle according to its range in the considered problem.
The time scale has been chosen based on the linear approximation to θ for which
θ(t) ≈ −α+(U cosα−V sin α)t . Then, θ(t) ≈ α when t ≈ 2α(U cosα−V sin α)−1

which gives the above chosen time scale for large U and small α.
Now, Eq. (3) transforms into

⎧
⎨

⎩

x ′′ − 4α2xy′2 = ε2 (K (ε)(1 − x) − cos (α(1 − 2y))) ,

xy′′ + 2x ′y′ = ε2
sin (α(1 − 2y))

α
,

(40)
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where we have denoted the small parameter

ε := 2α

U

 1, (41)

and the prime denotes a derivative with respect to τ . The initial conditions (5) have
the form

x(0) = 1, x ′(0) = −2α sin α−εV cosα, y(0) = 1, y′(0) = − cosα+ε
V

2α
sin α.

(42)
Therefore, we can see that both dependent variables and their derivatives are now of
order of unity.

We are ready to make the perturbation expansion

x(τ ) = x0(τ ) + x1(τ )ε + O(ε2), y(τ ) = y0(τ ) + y1(τ )ε + O(ε2),

K (ε) = K1ε + O(ε2) as ε → 0+, (43)

for which (40) becomes an array of equations

ε0 :
{
x ′′
0 − 4α2x0y′2

0 = 0, x0(0) = 1, x ′
0(0) = −2α sin α,

x0y′′
0 + 2x ′

0y
′
0 = 0, y0(0) = 1, y′

0(0) = − cosα,

ε1 :
{
x ′′
1 − 4α2

(
x1y′2

0 + 2x0y′
0y

′
1

) = K1(1 − x0), x1(0) = 0, x ′
1(0) = −V cosα,

x0y′′
1 + x1y′′

0 + 2
(
x ′
0y

′
1 + x ′

1y
′
0

) = 0, y1(0) = 0, y′
1(0) = V

2α
sin α.

(44)
Notice that the above equations are nonlinear in all orders. However, the ε0 system
can be exactly integrated in a closed form. To see this notice that from the second
equation we have the conservation of angular momentum

(
x20 y

′
0

)′ = 0. (45)

From which it follows that
y′
0 = −cosα

x20
. (46)

Plugging it to the first equation, we obtain a single nonlinear ODE

x30 x
′′
0 = 4α2 cos2 α. (47)

This equation has an analytical solution which can be obtained by reduction in order

x0(τ ) =
√
1 − 4τα sin α + 4α2t2. (48)

After returning to y0 and integrating, we have

y0(τ ) = 1 + 1

2α
arctan

(
2τα cosα

1 − 2τα sin α

)

. (49)
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Notice that this equation is degenerate in the sense that it does not contain the K1
coefficient but, nevertheless, automatically solves (8). To wit, note that the leading
order time of the solution is

τ ∗
0 = sin α

α
, (50)

for which we have both x0(τ ∗) = 1 and y0(τ ∗) = 0.
In order to gain some insight how does the solution of (40) behave for small positive

εwehave to analyze the ε1 equation in (44).Unfortunately,we cannot obtain its closed-
form solution. However, since α is small, we can at least try to find the subsequent
perturbation approximation. To this end, put

x1(τ ) = x10(τ )+x12(τ )α2+O(α4), y1(τ ) = y10(τ )+y12(τ )α2+O(α4) as α → 0.
(51)

Notice thatwe expandonly in the even powers ofα since both ε1 equation and the initial
conditions (44) have even α-expansion. Plugging the above expansion into (44) and
using the found leading order solution (48)–(49), we obtain the following equations

α0 :
{
x ′′
10 = 0, x10(0) = 0, x ′

10(0) = −V ,

y′
10 − 2x ′

10 = 0, y10(0) = 0, y′
10(0) = V

2
,

α2 :

⎧
⎪⎪⎨

⎪⎪⎩

x ′′
12 = 4

(

x10 − 2y′
10 + 1

2
K1τ(τ − 1)

)

, x12(0) = 0, x ′
12(0) = V

2
,

y′′
12 = − (

8t2 − 8t + 1
)
x ′
10 − 2t(t + 1)y′′

10 + 2x ′
12

− 4(2t − 1)
(
x10 + y′

10

) , y12(0) = 0, y′
12(0) = − V

12
.

(52)

This system is easy to be solved explicitly yielding

x10(τ ) = −τV , x12(τ ) = τ

6

(
3(1 − 2τ)2V − K1(τ − 2)τ 2

)
,

y10(τ ) = V τ

2
(1 − 2τ) , y12(τ ) = τ

60

(
2K1(5 − 2τ)τ 3 + 5V (24τ(τ − 1)(2τ − 1) − 1)

)
.

(53)

Having these expansions in hand, we can proceed to the solution (8). To this end, we
set

τ ∗(ε) = τ ∗
0 + ετ ∗

1 + O(ε) as ε → 0+, (54)

and then require that

1 = x0(τ
∗(ε)) + ε

(
x10(τ

∗(ε)) + x12(τ
∗(ε))α2 + O(α4)

)
+ O(ε2),

0 = y0(τ
∗(ε)) + ε

(
y10(τ

∗(ε)) + y12(τ
∗(ε))α2 + O(α4)

)
+ O(ε2),

(55)
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as ε → 0+ and α → 0+. The asymptotic solution of the above algebraic system is τ ∗
0

given by (50) and

τ ∗
1 = Vα

5
+ O(α3), K1 = 6V

α2 + O(α0) as α → 0+, (56)

which coincides with (11) after returning to the original time scale. Therefore, we
have proved the following result.

Theorem 2 Let (K ∗(α), t∗(α)) be the solution of the problem (8). Then, the expansion
(11) holds.

Notice that according to (56), we have K1 ∝ Vα−2 for small angles. Since our
approximation is only the asymptotic leading order for angles and not the exact
solution, it is interesting to extend this result numerically and find the empirical pro-
portionality constant valid for a larger set of α. Let

K̃1 = 6V

α2 , (57)

The ratio of K̃1 to the numerical value of K1 found by solving the boundary value
problem (8) corresponding to Eq. (40) is plotted in Fig. 3. As we can see, the analysed
quantity is almost independent of V . Whence, it is motivated to stipulate that

K1 ≈ K̃ p := 6V

α2 G(α), (58)

for some G with G(0) = 1. Numerical calculations plotting K1/K̃1 are shown in
Fig. 4. We can see that the sought form of G(α) is approximately quadratic and the
least squares best fit is given by

G(α) = 1 + 0.51α2 ≈ 1 + 1

2
α2, (59)

with the determination coefficient R2 = 0.999. The accuracy is thus very good for
α ∈ [0, 1].

On Fig. 5, we plot the relative error of the approximation (11) to the solution of
the problem (8) for the original Eq. (3). Notice that the approximations achieve an
accuracy of several percent for U = O(102). Also, the corrected coefficient K̃ p as in
(58) performs very well even for large angles while the leading order term K̃1 does
not converge to 0 for such.

4 Conclusion

The perturbation analysis conducted above helped us to determine the asymptotic form
of the solution of (8). As was shown, the physically important case of small angles, in
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Fig. 3 A ratio of K1 found from the numerical solution of the boundary value problem (8) for Eq. (40) and
its approximation K̃1 defined in (57). Here, ε = 10−4

Fig. 4 A ratio of K1 found from the numerical solution of the boundary value problem (8) for Eq. (40) and
its approximation K̃1 defined in (57). Points represent numerical calculations while solid line is G(α) as in
(59). Here, ε = 10−4 and V = 0.1

principle could have been resolved for any required order. However, the complexity
of expressions forced us to stop at two meaningful terms. Nevertheless, the rest can
be obtained in a standard way with a use of some symbolic manipulation environment
such as Wolfram Mathematica as was in our case. Moreover, found analytic formulas
proved to be very accurate in their region of validity and explained how does the leg
stiffness depends on the attack angle and velocities.

The case of large (horizontal) velocity also proved to be attackable with the per-
turbation theory. However, the leading order equations were nonlinear forcing higher
orders not to be resolvable analytically. Despite this difficulty, we have been able to
use the additional expansion in small angles and find leading order behaviour in two

123



2986 Journal of Nonlinear Science (2020) 30:2971–2988

Fig. 5 Log–log plot of the relative error of the approximation K̃1,p to the boundary value problem (8).
Here, V = 0.1

parameters. This let us to determine the form of dependence of the leg stiffness to
other physical parameters and, thanks to that knowledge, to empirically extend the
approximation for all meaningful angles.

Asymptotic analysis was only possible due to the fact that we firstly have found the
leading order behaviours of K ∗(α) and K ∗(U ) in the respective limits. Moreover, the
key step was to perturbatively look for expansions of the stiffness K ∗ and the time t∗.
Of course, this programme can be carried over to higher orders with a symbolic manip-
ulation software. However, our findings are sufficient to understand the fundamental
relations between stiffness and various physical parameters.We hope that this research
will contribute to the understanding of various gaits in locomotion and robotics.
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