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General rogue waves are derived for the generalized derivative nonlinear Schrodinger (GDNLS)
equations by a bilinear Kadomtsev-Petviashvili (KP) reduction method. These GDNLS equations
contain the Kaup-Newell equation, the Chen-Lee-Liu equation and the Gerdjikov-Ivanov equation
as special cases. In this bilinear framework, it is shown that rogue waves to all members of these
equations are expressed by the same bilinear solution. Compared to previous bilinear KP reduction
methods for rogue waves in other integrable equations, an important improvement in our current
KP reduction procedure is a new parameterization of internal parameters in rogue waves. Under
this new parameterization, the rogue wave expressions through elementary Schur polynomials are
much simpler. In addition, the rogue wave with the highest peak amplitude at each order can be
obtained by setting all those internal parameters to zero, and this maximum peak amplitude at
order N turns out to be 2N 4+ 1 times the background amplitude, independent of the individual
GDNLS equation and the background wavenumber. It is also reported that these GDNLS equations
can be decomposed into two different bilinear systems which require different KP reductions, but
the resulting rogue waves remain the same. Dynamics of rogue waves in the GDNLS equations is
also analyzed. It is shown that the wavenumber of the constant background strongly affects the
orientation and duration of the rogue wave. In addition, some new rogue patterns are presented.

I. INTRODUCTION

Rogue waves are large and spontaneous local excitations of nonlinear wave equations that “appear from nowhere
and disappear with no trace” [I]. More specifically, these local excitations arise from a flat constant-amplitude
background, reach a transient high amplitude, and then retreat back to the same flat background. Such solutions
were first reported for the nonlinear Schréodinger (NLS) equation by Peregrine in 1983 [2]. In recent years, such waves
were linked to freak waves in the ocean [3| 4] and extreme events in optics [5l [6], and were observed in water-tank and
optical-fiber experiments [THII]. Motivated by these physical applications, rogue waves have been derived in a large
number of physically-relevant integrable nonlinear wave equations, including the NLS equation [I2HI8], the derivative
NLS equations [19H22], the Manakov equations [23] [24], the Davey-Stewartson equations [25, 26], and many others
[27-36]. Indeed, rogue waves are caused by baseband modulation instability of the constant-amplitude background
[24]. Thus, any integrable equation with baseband modulation instability is expected to admit rogue waves, which
can be derived by integrable techniques. All known rogue waves in integrable equations are rational solutions of the
underlying systems. This fact is related to baseband modulation instability, since rational rogue-wave solutions are
associated with long-wave instability of the background. We note by passing that in nonintegrable systems, large and
spontaneous local excitations can also arise from a constant-amplitude background if such background admits baseband
modulation instability (see [5] for instance). But such excitations do not retreat back to the same background, and
are not expected to admit exact analytical expressions, due to the lack of integrability of the underlying nonlinear
wave equations [37].

In this paper, we consider rogue waves in the generalized derivative nonlinear Schréodinger (GDNLS) equations
38, [39)
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where p,a,b are arbitrary real constants with a # b, and the superscript ‘*’ represents complex conjugation (the
a = b case will be treated in the appendix). In fiber optics, these equations model the propagation of short light
pulses where, in addition to dispersion and Kerr (cubic) nonlinearity, self-steepening and fifth-order nonlinearity are
also accounted for (even though the Raman effect and third-order dispersion are omitted) [40, [41]. When p = 0 and
b = 2a, these equations reduce to the Kaup-Newell equation [42], which governs the propagation of circularly polarized
nonlinear Alfvén waves in plasmas [43] [44]. When p = b = 0, these equations reduce to the Chen-Lee-Liu equation
[45], which models short-pulse propagation in a frequency-doubling crystal through the interplay of quadratic and
cubic nonlinearities [46]. Due to these physical applications, rogue wave formation in these GDNLS equations is a
physically significant issue.

There have been a number of studies on rogue waves in these GDNLS equations. For instance, for the Kaup-
Newell equation (with p = 0 and b = 2a), special types of rogue waves were derived by Darboux transformation in
[19, 20]. For the Chen-Lee-Liu-type equation, with b = 0 in 7 the fundamental rogue wave was derived by the



bilinear Hirota method in [21I], and higher-order rogue waves were derived by Darboux transformation in [22]. For
the Gerdjikov-Ivanov equation [47], with p = a = 0 in , fundamental and higher-order rogue waves were derived by
Darboux transformation in [48, 49]. Even for the GDNLS equations themselves, general rogue waves were derived
by Darboux transformation in [50], and their chirping phase structure was examined.

In this article, we derive general rogue waves in the GDNLS equations by the bilinear Kadomtsev-Petviashvili
(KP) reduction method. The advantage of this bilinear framework is that rogue waves in all GDNLS equations (/1)) can
be expressed explicitly by the same bilinear solution. Compared to previous bilinear KP reduction methods for rogue
waves in other integrable equations [I8] 25H30], an important improvement in our current KP reduction technique is
a new parameterization of internal parameters in rogue waves. Under this parameterization, analytical expressions
of rogue waves through Schur polynomials are much simpler. More importantly, when all internal parameters are
set to zero, we would get a parity-time-symmetric rogue wave which attains the maximum peak amplitude among
rogue waves of that order. This allows us to analytically derive this maximum peak amplitude, which turns out to
be 2N + 1 times the background amplitude at order N, independent of the individual GDNLS equation and the
background wavenumber. We also find that the GDNLS equations can be decomposed into two different bilinear
systems which require different KP reductions, but the resulting rogue waves are the same. After these rogue waves
are derived, their dynamics is also analyzed. It is shown that the wavenumber of the background strongly affects the
orientation and duration of the rogue wave. In addition, some new rogue patterns are presented. In the appendix,
general rogue waves for the GDNLS equations with @ = b (the so-called Kundu-Eckhaus equation) are also given in
the bilinear framework. These results deepen our understanding of rogue waves in the physically significant GDNLS
equations . Meanwhile, they advance the bilinear KP-reduction methodology for the derivation of rogue waves.

II. PRELIMINARIES

Under a simple gauge transformation [51]
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where x = £ — 2pt/(a — b), the GDNLS equations with a # b reduce to
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where v = a/(a — b). We will work with these normalized GDNLS equations in the remainder of this article.
These equations become the Kaup-Newell equation when v = 2 [42], the Chen-Lee-Liu equation when v = 1 [45], and
the Gerdjikov-Ivanov equation when v = 0 [47].

It is noted that with an additional gauge transformation

u(x,t) = v(w,t) 2= [ v(@)Pde. "
the normalized GDNLS equations further reduce to the Kaup-Newell equation
10 + Vg + 2i(|v[*0); = 0. W

Thus, from rogue waves of the Kaup-Newell equation, one can derive rogue waves in the GDNLS equations
in principle. However, the gauge transformation involves a nontrivial integral, which makes it difficult to derive
explicit solutions to the GDNLS equations from those of the Kaup-Newell equation. For this reason, we will not utilize
this gauge transformation. Instead, we will use a bilinear method to directly obtain explicit rogue wave solutions in
the GDNLS equations for arbitrary - values.

Rogue waves in the GDNLS equations approach a constant-amplitude continuous wave background at large
x and t. By simple variable scalings, this constant amplitude can be normalized to be unity. Then, these rogue
waves approach the unit-amplitude continuous wave background e**~“! where k is a free wavenumber, and w =
k2 + 2k — (y — 1)(y — 2) is the frequency. In order for rogue waves to arise, these backgrounds must be unstable to
baseband modulations [24]. Simple modulation instability calculations show that these backgrounds are base-band
unstable when £ < 1 — . Thus, rogue waves in the GDNLS equations should approach the following background
as x,t — +o0:
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where a > 0 is a wavenumber parameter. Unlike the NLS equation, the GDNLS equations do not admit Galilean-
transformation invariance. Thus, « is a non-reducible parameter in its rogue waves.
In view of the above boundary condition, we introduce the variable transformation
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where f and g are complex functions. Under this transformation, the GDNLS equations (2)) can be decomposed into
the following system of four bilinear equations:
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where D is Hirota’s bilinear differential operator. We will use these bilinear equations to derive rogue waves in
the GDNLS equations . It is important to notice that these bilinear equations are independent of the equation
parameter . This means that rogue waves in the whole family of GDNLS equations , for different values of ~,
are given by the same f and g solutions, and the y-dependence of the rogue waves only appears through the bilinear
transformation @ This is a big advantage of the bilinear method for solving the GDNLS equations .

Interestingly, under the same transformation @, the GDNLS equation can also be decomposed into a different
bilinear system, where the first equation @ is replaced by
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while the other three equations @i remain the same. This replacement is admitted because the left side of
the latter first bilinear equation (11)) can be written as a linear combination of the left sides of the former bilinear
equations (7)-(L0). Specifically, denoting the left side of each equation by its equation number, we have the identity
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Thus, if f and g satisfy the former system of bilinear equations, then they would also satisfy the latter bilinear system.
Although these two (1+1)-dimensional bilinear systems are equivalent, they have to be reduced from different higher-
dimensional bilinear systems which admit different bilinear solutions. But these two different KP reductions will lead
to the same rogue wave solutions, which we will show in later texts.

In this article, we will present rogue waves of the GDNLS equations through elementary Schur polynomials.
These Schur polynomials S;(x) are defined by
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or more explicitly,
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where @ = (z1, 2, ).

III. GENERAL ROGUE WAVE SOLUTIONS

Our general rogue wave solutions to the GDNLS equations are given by the following theorem.

Theorem 1. The GDNLS equations (@ under the boundary condition (@ admit rational rogue wave
solutions
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where the positive integer N represents the order of the rogue wave,

In(z,t) =000, gn(z,1)=0_11,
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the matriz elements in oy, 1 are defined by
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h. (), s are coefficients from the expansions
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and a, (r =1,2,...) are free complex constants.

Note 1. The first few coefficients h,.(«) and s, in expansions are

i_\/a hg(a): L, h3(a):
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Theorem 1 will be proved in Sec. [V]

Some remarks on rogue waves in this theorem are in order. First, one can notice that the matrix-element expression
in this theorem is significantly simpler than earlier such expressions for other integrable equations [I8, [25H28]. Indeed,
the current expression in involves a single summation, while previous such expressions involved three summations.
Second, our current parameterization of rogue waves in Theorem 1 is very different from the previous ones. In
our current rogue wave solution, all internal parameters ai,as,as,... appear inside the x*(n,k) vectors, while
previous internal parameters all appeared outside such vectors as summation coefficients [18], [25H28]. This different
parameterization is the key reason for the simpler matrix-element expression in Theorem 1. More significantly,
this parameterization facilitates the analysis of rogue waves, especially regarding the maximum peak amplitude for
rogue waves of a given order. Indeed, under previous parameterizations for the NLS equation, the rogue wave with
maximum peak amplitude occurs at peculiar internal parameter values [I8], which makes the derivation of maximum
peak amplitudes at arbitrary orders intractable. However, in our current parameterization, rogue waves in Theorem
1 admit the following property.

Theorem 2. When a, = 0 for all r > 1, the rogue wave in Theorem 1 is parity-time-symmetric, i.e.,
uy(—z,—t) = un(x,t).

This property will also be proved in Sec. [V] The significance of this property is that, this parity-time-symmetric rogue
wave happens to possess the maximum peak amplitude among rogue waves of that order (see [50]). In addition, this
maximum peak amplitude is located at the center of this parity-time-symmetric rogue wave, i.e., at =t = 0. Thus,



to derive the maximum peak amplitude of rogue waves in Theorem 1, we only need to set all its internal parameters

a, as well as (z,t) to zero, which is much easier. Doing so, our explicit calculations for N =1,2,...,6 show that
QN(N+1)/2 IN + 1)aN(N+1)/2
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Remarkably, this maximum peak amplitude does not depend on the background wavenumber «, although |fx| and
|gn| in its numerator and denominator do. While these formulae — were obtained for N < 6, we believe they
hold for all N > 6 as well.

In Refs. [22] [49] [50] for the Chen-Lee-Liu equation, the Gerdjikov-Ivanov equation and the GDNLS equations ,
examination of some low-order rogue waves revealed that their maximum peak amplitude was 2N + 1. Our result
above is more general. Interestingly, this maximum peak amplitude for rogue waves in the GDNLS equations is
exactly the same as that for the NLS equation [12} 13}, 18] 52].

Another remark on rogue waves in Theorem 1 pertains to the number of their irreducible free parameters. These
rogue waves of order N contain 2N — 1 complex parameters ai,as,...,asny—1. But we can show that all even-indexed
parameters aeqen are dummy parameters which cancel out automatically from the solution. To prove this, we first
rewrite o, in Theorem 1 as [I§]
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In addition, denoting &, and 7, as the real and imaginary parts of a,, we can easily see that
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Using these two equations, we can show that
Oty, On ks = Opy,.On i = 0, (22)

which proves that rogue waves in Theorem 1 are independent of parameters acyen. Thus, we will simply set ay =
4 =+ = Geyen = 0 throughout this article. Of the remaining parameters, we can normalize a; = 0 through a shift
of x and t. Then, the N-th order rogue waves in the GDNLS equation contain N — 1 free irreducible complex
parameters, as, as,...,asny—1. LThis number of irreducible free parameters is the same as that in rogue waves of the
NLS equation [18].

IV. DYNAMICAL PATTERNS OF ROGUE WAVES

In this section, we analyze the dynamics of rogue waves in Theorem 1 for the GDNLS equations .
First of all, we notice from Eq. that the amplitude profile of the rogue wave is

_lgw(a.1)|
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which is independent of the equation parameter «v. This means that the intensity patterns of rogue waves are the same
for all GDNLS equations regardless of the « value. But the phase structure of rogue waves is influenced by the ~y
value. Indeed, the gauge transformation tells us that, on top of rogue waves v(z,t) of the Kaup-Newell equation,
different values of v introduce an extra phase 6(z,t) = (2—7) [ |v(z, t)|*dz, which can be calculated directly from the
bilinear solution . This phase induces a “chirp” to an optical rogue wave, which was examined in detail in [50].

Although the rogue wave intensity pattern in the GDNLS equations is independent of v, it does depend on the
wavenumber parameter « of the constant background. We will focus on this o dependence of the rogue-wave intensity
pattern next.

First, we consider fundamental rogue waves, where we set N = 1 in Theorem 1. In addition, we normalize a; = 0
(see the remark in the end of the last section). Then, we get

fun (a, 1) (23)
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At three values of @ = 0.5,1 and 2, this amplitude profile is shown in Fig. 1(a,b,c) respectively. It is seen that «
strongly affects the orientation and duration of the rogue wave. Specifically, as the a value increases, the orientation
angle also increases, but the duration of the rogue wave decreases. However, the peak amplitudes of these rogue waves
for different a values are all equal to 3, which are attained at the center x =t = 0, i.e., |uy(0,0; «)] = 3. Physically,
the longer duration of rogue waves at smaller o values can be understood, because in this case, the growth rates of
baseband modulation instability can be shown to be smaller, which causes the rogue wave to take longer time to rise
from the unit-amplitude background to its peak amplitude of 3. The dependence of the orientation angle on « can
also be heuristically understood. It is known that the phase gradient of a pulse generally causes the pulse to move at
a velocity which is proportional to this phase gradient. In the present case, the phase gradient of the rogue wave can
be estimated from Eq. as the wavenumber 1 —~ — . Then, for a fixed equation parameter -, larger o causes the
velocity to be smaller or negative, leading to a larger orientation angle. To put these results in perspective, we note
that for the NLS equation, since the constant-background wavenumber of its rogue waves can be normalized by a
Galilean transformation [18], the background wavenumber only affects the orientation, but not duration, of its rogue
waves.

FIG. 1: Amplitude profiles of first-order rogue waves. (a) @ =0.5; (b) a =1; (¢) a = 2.

It is interesting to notice that, in the limit of o — 0,
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which becomes a quadratic algebraic soliton instead of a rogue wave. This comes about because when a = 0, baseband
modulation instability disappears in the GDNLS equation , and thus rogue waves no longer exist.

Now we consider second-order rogue waves, where we set N = 2 and a; = 0 in Theorem 1. These solutions contain
one complex free parameter ag. When as = 0, the resulting rogue wave is parity-time-symmetric, and it reaches peak
amplitude 5 at the center x = ¢ = 0 for all « values, i.e., |uz(0,0; )| = 5. This peak amplitude 5 is the maximum
peak amplitude for all rogue waves of second order, and thus this parity-time-symmetric rogue wave was called the
super rogue wave in [50]. The amplitude profile of this super rogue wave depends on the wavenumber parameter o
though. At three « values of 0.5, 1 and 2, these super rogue waves are displayed in Fig. 2. Again, « strongly affects
the orientation and duration of these rogue waves.

When a3 # 0, the second-order rogue waves generally will split into three separate first-order rogue waves, as has
been reported in [20, 22], 49, [50]. This phenomenon is similar to second-order rogue waves of the NLS equation [T2HIS].
The orientations and durations of these three separate first-order rogue waves are determined by the wavenumber
parameter «.

Having clarified the effect of wavenumber parameter o on rogue waves, at third order, we will fix @« = 1 and explore
new rogue wave patterns. For this purpose, we set N = 3 and a; = 0, and the remaining free complex parameters are
az and a5. When a3 = a5 = 0, we get a super rogue wave with peak amplitude 7 (see also [22], 149, [50]). At other ag and
as values, the third-order rogue wave generally splits into 6 separate first-order rogue waves in various configurations.
Two such solutions are displayed in Fig. 3. The left panel shows a pentagon pattern, which has been seen before
[22, [49]. But the right panel shows a mix of a first-order rogue wave and a cluster of five first-order rogue waves in
square configuration, which is novel to our knowledge. Our results suggest that when a third-order rogue wave splits
into 6 separate first-order rogue waves, these 6 first-order rogue waves can appear in arbitrary configurations in the
(z,t) plane. The same should hold for higher-order rogue waves too.



FIG. 2: Amplitude profiles |uz(z,t)| of second-order super rogue waves (with az = 0). (a) a =0.5; (b) a =1; (¢) a = 2.
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FIG. 3: Third-order rogue waves with a = 1. Left: a pentagon pattern, where az = 0 and as = 80 4 80i. Right: a mixed
pattern, where as = 10i and as = 100i.

V. DERIVATION OF ROGUE WAVES FROM THE FIRST BILINEAR SYSTEM

As we have mentioned in Sec. @ the GDNLS equation ([2)) can be decomposed into two different bilinear systems.
In this section, we will derive rogue waves in Theorem 1 from the first bilinear system @) . The basic idea of this
derivation is similar to that in [I8] for the NLS equation. The main improvement is that we will choose differential
operators in the bilinear solutions in a different way, which leads to a more convenient parameterization and simpler
expression for rogue waves.

A. Gram determinant solutions for a higher-dimensional bilinear system

First, we need to derive algebraic solutions to a higher-dimensional bilinear system, which can reduce to the original

lower-dimensional bilinear system @)—. under certain reductions.
From Lemma 2 of Ref. [53], section 3.2 of Ref. [54] and our own calculations, we learn that if functions m(rz ")

<p2(-" ) and 1/Jj(n of variables (z_1, x1, 22) satisfy the following differential and difference relations,
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where c¢ is an arbitrary complex constant, then they would also satisfy the following relations,
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Using these relations, one can show that the determinant
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would satisfy the following bilinear equations in the extended KP hierarchy
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Now, we introduce functions m(™*) (k) and (%) ag
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and p, q,& and ny are arbitrary complex constants. It is easy to see that these functions satisfy the differential and
difference relations with indices i and j ignored. Then, by defining
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where A; and B; are differential operators with respect to p and g respectively as
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these functions would also satisfy the differential and difference relations since operators A; and B; commute with
differentials 0, . Consequently, for an arbitrary sequence of indices (i1,42,- - ,in;Jj1,J2, - ,jN), the determinant
_ (n, k))
Tnuk 1§322N (m“ﬂu (40)

satisfies the higher-dimensional bilinear system —.

It is important to notice that the differential operators A; and B; defined here are simpler than the ones in previous
bilinear derivations of rogue waves [I8 25H30]. Indeed, the current differential operators are single terms, while
previous ones were defined as summations. The reason for the previous summation definitions was to introduce
internal free parameters in rogue waves. In our current approach, we will introduce free constants through &, and 7
in Egs. (36)-(37), which will be done later in this section.

Next, we will reduce the higher- dlmensmnal bilinear system ([29 . ) to the original bilinear system @ . so that
the hlgher dimensional solutions ) become rogue wave solutions to the GDNLS equations . In this reduction,
we will need to set

C = —ia7 (41)

where c¢ is the parameter in the higher-dimensional system ., and « is the wavenumber parameter in the
original bilinear system . .



B. Dimensional reduction

First, we reduce the higher-dimensional bilinear system — to a lower-dimensional one, a process called

dimension reduction. This reduction will restrict the indices in the determinant (40), and select the (p, ) values in

. . n,k
its matrix element mgy jl).

The dimension reduction condition we impose is
(02, +1c0z ) Tk = CTois (42)
where C' is some constant. Denoting p = p — c and § = ¢ + ¢, then A; and B; in Eq. can be rewritten as
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Using the Leibnitz rule exactly as in Ref. [18], the above equation reduces to
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Recalling ¢ = —ia from , we see that when we set p = pg and ¢ = qo, where
po=Va—ia, ¢ =+Va+ia, (44)

the above equation would further simplify to
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Now, we restrict the general determinant (40)) to
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Then, using the contiguity relation as in Ref. [I§], we get
(Bxl + ic@xfl) Tk = A aN T, i,

which shows that the 7, ; function satisfies the dimension reduction condition .
When this dimension reduction equation is used to eliminate x_; from the higher-dimensional bilinear system

[29)-(32), and in view of the parameter connection (4I]), we get

(D4, — D2, + 210Dy, ) Toet b1 - Tn—1,6 = 0, (47)
(DZQ - Dil) Tk - Tn—1,k = 0, (48)
(lel - ]-) Tn,k * Tn—1,k + Tn—1,k+1Tnk—1 = 0; (49)
(D2, +1Dy, +20)Tn g - Ta—1,k — (1Dgy +20)Tn—1 k41 Tn—1 = 0. (50)

In addition, using Eq. , we can replace the last bilinear equation by
Dngn,k *Tpn—1,k — lilTn—l,k+1 *Tn,k—1 + (205 + 1)(Tn,k *Tpn—1,k — Tn—1,k+1 * Tn,k—l) =0. (51)

In these reduced bilinear equations, the z_; derivative disappears.

To further reduce the bilinear system ([47)-(49) and to the original system (7)-(L0), we set
xy=x—2t a9 =it (52)
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Under this variable relation, we have
Oy = Opy Oy, = —i0; — 2i0,. (53)
Inserting these equations into the bilinear system — and , and setting n = k = 0, we get
(iDy + D2 +2i(1 — a)D,) g - f =0, (
(iDy + D2 +2iD,) f - f =0, (55
(
(

(iDy *71)f ) fT+g§ =0,
Dif-f—iDyg g+ (2a+1)(|f]* —|g[*) =0,
where f, f,g and g are defined as

f=m0 [f=7T-10, 9=7-11, §=7T0-1 (58)

C. Complex conjugacy conditions

Next, we need to impose complex conjugacy conditions f = f* and g = ¢*, i.e.,
T 10 =To0, T0—1=T 11, (59)

so that the bilinear system — would reduce to the original bilinear system —. These conditions can be
satisfied by imposing the parameter constraint {, = nj. Indeed, under this constraint, since 1 = = — 2t is real,

T2 = it, c = —ia are pure imaginary, and go = p{j, we can easily show that
(n,k)1* (—n—1,—k)
[mi ; } =m,. . (60)
J 3y
P=Po, 4=4o P=Po, 4=do

Thus, 7, , = T—n—1,—, i.€., the complex conjugacy conditions lb hold.

D. Rogue wave solutions in differential operator form

Finally, we need to introduce free parameters into rogue waves. Unlike all previous bilinear approaches [18, 25H30],
we will introduce free parameters through the arbitrary constant & in Eq. (36]). Specifically, we choose &y as

OOA T b—c OOA rp+ia)
= a,In = a,In , 61
@2 (120) = 2o (7 o

where @, are free complex constants. We can show that rogue waves with this new parameterization can be converted
to those with the old parameterization through nontrivial parameter connections. But the new parameterization will
drastically simplify rogue wave expressions.

Putting all the above results together and setting _; = 0, rational solutions to the GDNLS equations are given
by the following theorem.

Theorem 3 The GDNLS equations (@ admit rational solutions

_ ol(1=r—a)z—i[o®+2(y-2)a+1-]t (f3) 'gn

UN(I7 t) Y ) (62)
Iy
where
fN(xat) = 70,0, gN((I),t) =T-1,1, (63)
_ (n,k)
o= et (om0 ). (o1
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the matriz elements in 7, 1, are defined by

(k) _ [(p+10)3,]" [(q — i)y
Mig = il 51

, (69)

. n . k
ip <_p> <_p+1a> O.t)
pta\ ¢ q—ia

O(z,t) = (p+ q)(z — 2t) + (p* —q2)it+idr In” <p+1a) ij: (‘i}”), (66)

P=Ppo, 9=90

with

Po, Qo are given in Eq. , a>0, and @, (r =1,2,...) are free complex constants.

E. Explicit rogue wave solutions through Schur polynomials

The above rational solutions in Theorem 3 involve differential operators, which make them less explicit. More
seriously, such forms make analysis of those solutions difficult. For instance, under such forms, it is difficult to prove
that they satisfy the boundary conditions . In addition, it is difficult to determine the maximum peak amplitudes
for rogue waves of each order. Thus, in this subsection, we derive a more explicit form for these solutions, which is
the one given in Theorem 1 earlier in the paper.

The technique we use is similar to that in Ref. [I§]. The differential operators in can be rewritten as ,
where p = p+ia and § = ¢ — icr, and the m("*) term following the differential operators in QD can be rewritten as

by _ 1P —i0) (_p - ia)" (_ﬁ)’“ y
p+d \ i+ia i

exp{@w) (e =20)+ [7* = =20+ )]t + b (£) 3w (qq)}

r=1

where pg = pg + i and Gy = qo — ia, i.e., o = §o = v/a. Then, introducing the generator G of differential operators

(905)" (40;) as

G = ZZCT ’ (5051 la0ul (67)

=0 j=0
and utilizing the formula [I§]
GF(p.q) = F (e*p,e*q) , (68)
we get
Gm(mk) _ /2 (/2 + Jae™¢/?) (—1)keF+5)E=Y) ie¢/2 4+ /ae=¢/? §
p=ho, 4=do et + e —ieM? 4 Jae=A/?
exp {\/a (e +e*) (z — 2t +2at) + a (e — ) it + Z (a-C" + a:)\’”)} .
r=1
Since
m(n,k)‘ _ (_l)k (1 + \/a) ( i+ f ) Va(z—2t+2at)
p=ho, 4=do 2 —i+a ’
we have
. _ n+1 . n
_1 gmir)| _ 2 gy (12 Va2 —i+/a y
m (k) p=po, G=do €S + e i++a —ieM2 4 \Jae= /2

r=1

exp <\/a (e +e* —2) (z — 2t + 20t) + a (e* — )it + i(arg’” + a,*)(‘)) . (69)
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Now, we need to expand the right side of the above equation into power series of ( and A. For this purpose, we denote

(/2 ¢/ 60/2 ¢/ o0
7+ Vo ol (VA PN She ).
i+« i+« —

where h,.(a) is as defined in Eq. . The exponent in the most right-hand side of Eq. can be rewritten as

exp (Z % (Va(z — 2t + 2at) + 2"iat) + Z % (Va(z — 2t + 2at) — 2"iat) + Z(QTCT + aﬁ)f)) ,

r=1"" r=1 r=1

and the 2/(e¢ + e*) term can be written as [I8]

2 ()" > o 3
o B (V) oo (G- n-§-3)

v=0

where ¢, are Taylor coefficients of A" in the expansion of Incosh(\/2), and s, are given in Eq. . Combining the
above results, Eq. becomes

1 n - CA : - r S - r

p=po, 4=do =% o

where 1 (n, k) and x, (n, k) are defined as
(k) = Va(z — 2t + 2at) + 2iat + (n + 1)hy +k + g — ¢y + as,
x7 (n, k) = Va(z — 2t + 2at) — 2iat — nh} — k — %(n—i— 1) — ey + aj,

1
zf(n, k) = ] [Va(z — 2t + 2at) + 2"iat] + (n+ 1)k, — ¢p + ay,

1
x, (n, k) = ] [Va(z — 2t 4 2at) — 2"iat] — nh} — ¢, + a;.

We further define shifted parameters

1 1

1
a1:d1—61+§h1—1, CLT:CALT—CT-i-ihr.

Then the above z; and x, reduce to those in Theorem 1. Taking the coefficients of (*A? on both sides of Eq. (70)),
we get

m{F) min(i, )
% = Z 4757:_” (3}+ —+ Z/S) Sj_,/ (mi + VS) ,
me P=Po,9=490 v=0

where m!™*) is the matrix element defined in Eq. 1} of Theorem 3. Finally, we define

,J
Tn,k

k N
(m(n’ ) {P:P(MI:(IU)

Then the matrix element in o, ;, is as given in Theorem 1. Since the bilinear equations - are invariant when f
and g are divided by an arbitrary complex constant multiplying an exponential of a linear and real function in = and
t, on 1 then is also a solution to the GDNLS equations .

Regarding boundary conditions of these rational solutions, using the Schur polynomial expressions in Theorem 1
and the same technique as in Ref. [I8], we can show that when x or ¢ approaches infinity, fn(x,t) and gn(z,t) have
the same leading term, which is also real. Thus, the rational solution satisfies the boundary condition , and
is thus a rogue wave. Theorem 1 is then proved.

On,k =
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F. The parity-time-symmetric rogue wave
In this subsection, we derive the parity-time-symmetric rogue wave and prove Theorem 2.

When we set all a,, = 0 in Theorem 1, z;" and z, satisfy the following relations

T (x,t) = —aF(2,t), r>1,

T

~

where we have defined f(x,t) = f*(—z, —t) for any function f(x,t). Thus,
(k) +v s=yT(nk)+vs—+zT(n),
where vectors y* and z* are defined as
yi = (—xli,in, —x?,xf, .. ) , 7zt = (0, —21‘2i,0, —2xf,0, - ) .

Notice that

j=0 j=0
= exp Z (y]jE +vs;+ zji) M| =exp Z (yji +v sj) N | exp sz)\j
j=1 j=1 j=1
(oo} oo ) (oo}
=Y S N SN =30 Y St vs)S (5N
=0 =0 5=0 p1+pa=j
Since s1 = 83 = - -+ = Spqq = 0 in view of Eq. , by comparing the coefficient of A/ on the two sides of this equation
and utilizing Lemmas 2 and 3 in Ref. [28], we get the relation
1i/2
S; (i¥ +v s) = (-1) Z S (w*)S; o, (x* +vs), (71)
n=0
where w* = (—2x2i, —Qxf, e ) Recall from Theorem 1 that
min(2i—1, 2j—1) 1 1
_ , + Lo -
ong = det > o S2im1-v(@t (0, k) +vs8) o Saia (@ (n, k) +vs) |

v=0

and o, 1 is equal to the right side of the above equation with x* replaced by z+. By rewriting these two determinants
into 3N x 3N determinants as in [Ig], utilizing relations and performing simple row manipulations, we can quickly
show that &, s = 0y, . Thus, the solution uy(x,t) in Theorem 1 with all a, being zero satisfies the parity-time
symmetry Uy = up, i.e., ui(—z, —t) = un(x,t). Theorem 2 is then proved.

It turns out that the converse is also true, i.e., if a rogue wave uy(z,t) in Theorem 1 is parity-time-symmetric,
then a; = a3 = -+ = ayqq = 0 [there is no restriction on the aeyen values because the solution is independent of them,
see Eq. ] Our proof is based on calculating the derivatives of the polynomial o,, ; with respect to the real part
&or—1 and imaginary part 79,1 of the parameter as,_1. Using Egs. —, we can show that each of O¢,, ,0n.
and i0,,, ,0p 1 contains power terms of (z,t) which are not parity-time-symmetric. Thus, if any a,qq is non-zero, the
solution uy(x,t) would not be parity-time-symmetric.

VI. ROGUE WAVES THROUGH A DIFFERENT KP-REDUCTION PROCEDURE

As we have mentioned in Sec. [[Il the GDNLS equations (2) admit two different bilinearizations. The first bilinear
system is Egs. @—, while the second bilinear system is Egs. — and , ie.,

(iDy + D2 —2iaD,) g - f =0,
(iDy =1) f- f*+g[*=0
D3f-f* =iDyg-g* + (2a+1)(|f[* = |g*) = 0.
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Rogue waves in the GDNLS equations , as given in Theorem 1, can also be derived from this second bilinear system,
but the corresponding KP-reduction procedure is different. This will be shown below. This situation is analogous to
multi-soliton solutions in the Sasa-Satsuma equation, which also admit two different bilinearizations and two different
reduction procedures [55]

A. Algebraic solutions for a higher-dimensional bilinear system

First, we consider the following higher-dimensional bilinear equations in the extended KP hierarchy

(D — D2 — 2dD11) Trki+1 " Tkt = 0, (76)
(D2y — D2)) Tnkt * Tn—1,k0 =0, (77)
(eDy_, + 1) Tn—1,k0 " Tkl = Tnk—1,1Tn—1,k+1,05 (78)
(€D, Dy — Doy —20)Tn ket - Tn—1,k,0 = (Day — 26)Tn k=1, * Tn—1,k+1,1s (79)

where c and d are arbitrary complex constants. The main difference between these bilinear equations and the previous
ones . is the mtroductlon of the third index [ in the 7 function, Wthh is necessary in order to reduce the first
blhnear equation ([76)) to . Indeed, the prev1ous two-index 7 functlon is unable to satisfy a higher-dimensional
bilinear equation Wthh can be reduced to

We can show that if functions m( ok, l), En’k’l) and w](-n’k’l) of variables (z_1, 21, 22) satisfy the following differential
and difference relations

aa:lmg:r;,k A (p(n k1) w(n k l)
n,k,l n+1,k,l (n,k,l n—1,k,l
axl%(' )= ( * )v rlw ) = _7/1]( )7
) (p(_n,k,l) c(p(n kL) o (n k+1 1) a ’L/)(_n,k,l) w(n kL) ’(/)(n Jk—1 l)
T1Y'q 7 Z1
D, oD — g . SD(n Bd41) w](n ki) w(n ) ¢(n el— 1) (80)
T1¥q )
aajz(pgnkl 82 nkl’ J;zwnkl 821/J(nkl)
n,k,l n, k 1,0 n,k,l n, k 1,1
83:71%(' )= ( ) s O 1¢( )= wj( * )7
then the determinant
_ (n k,l)
Tkl = 13?5"th <m W ) (1)
would satisfy the new higher-dimensional bilinear system (76| .
Now, we introduce the function m(** as
. n k l
k) — P <P> (P - C> <Pd> o6
p+a\ ¢ q+c q+d ’
where
1 2
§=_—— T-1tpritpato
1 2
n= q+cx—1 +qr1 — q 22 + No,
and &y and 7y are arbitrary complex constants. Then, by defining
m(z Rl — AiBjm(n’k’l), (82)

where A; and B; are differential operators as defined in Eq. , then this mgzk b together with appropriately

chosen gp(n 0 and ¢(" hab) , satisfies those differential-difference equations , and thus the determinant satisfies

the bilinear system ([76| . ) for arbitrary sequences of 1nd1(:es (i1,92, AN J1, 02, ,JN)-
To reduce the higher-dimensional bilinear system (76| . ) to . .7 we will set

c=—ia, d=-i(1+a). (83)
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B. Dimension reduction
Our dimension reduction is the same as before, i.e.,
[a:m + icaﬂ?71] Tn,k,l = CTn,k,la (84)

where C' is a certain constant. The same calculations as in Sec. show that the determinant

), (85)
P=Po, 9=4qo0

with po, qo glven by Eq. . would satisfy this dimension reduction condition. Under this reduction, the bilinear
equation (78) becomes

(n,k,0)
T, = det m
n,k,l 1<ij<N ( 2i—1,25—1

(iDgy — 1) Tn okt - Tn—1,k0 + Tn k—1,1Tn—1,k+1,0 = 0, (86)
and (79), combined with (86]), reduces to

2 . .
DZ Tnkt - Tn—1kd + 1D Tnk—1,0 - Tn—1,k+1,0 = (2i¢ + 1) (Tr k—1,0 * T—1,k+1.0 — Tr kol * Tr—1,k,1)- (87)
1

C. The index reduction

The key step to reduce the bilinear equation to is the observation that the current three-index 7 function
admits the following index relation,

2
a+1
Togk11 =K1 1 k11, K= <£—i> . (88)

Its proof resembles that in Ref. % for showing a similar index relation but for a different integrable equation. From
2

(nkl)

the definition of m; in Eq. (82), we have

m(.n.’k_l’l) — Aq’B‘m(n’kil’l) = A;B: E 7(] tc p— d m(nfl,k,lfl).
" Y "Na/\ p—c)\q+d

plp—d) =~ . q+c
) H = T v
p—c 2 q(q +d)

Defining
H(p) =

where p = p — c and § = q + ¢, then

m(nk 1,l) ABH() () (n—1,k l—l).

]

From the Leibniz rule, we can rewrite the above equation as

(n k—-1,1) ~ (n—1,k,l—1)
ZZ I/' T" T(q) mi—u,j—r ’

v=0r=0
where functions H,(p) and H,(§) are defined as
H,(p) = (60;)" H(p), H. (@) = (405)" H(9)-

Introducing two generators

oo

17 R v AT r
D L AT e RS

v=0 " r=0
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and using the formula , we get

—d
GH () = H(ep) = ep+ LoD ~¢ L oe_yg
p
1
erg + LC; Je=A —9c+d

G2 H(§) = H(e*g) =

For the chosen c,d values and values py = Go = /a from , we see that G1 H(po) and GoH (o) are even
functions of ¢ and A, respectively. Thus, Ha,—1(po) = Ha,—1(do) = 0 for all v > 1. Utilizing these results, we get the
relation

i J
=1, 11 = “1ki—1
mg? ) |lp=po.g=q0 = E E *ﬁHu(p)Hr(Q) mgﬁu,j—r ) lp=po.a=go -

v=0, r=0,
vieven r:even

Thus,

U,

(n,k—1,1) o (n—1,k,l—1)
<m2i—1,2j—1 =L Moi—1,2j—1
P=Po, 4=490/ 1<4,5<N P=Po, 4=490/ 1<4,5<N

where L is a certain lower triangular matrix with Ho(pg) on the diagonal, and U is a certain upper triangular matrix
with Ho(go) on the diagonal. Taking determinants to this equation, we get

_ N
Tnk—1,0 = {Ho(ﬁo)Ho(éo)} Trn—1,k,l—1,

which is the same as (88) since Ho(po) Ho(do) = K.

D. Rogue wave solutions

Now, we set x1 =« — 2t, x5 = it, ¢,d as in , and n = k = = 0 in the above bilinear equations , ,
and . Since 70,01 = (K)" 7_1.1,0 due to the index relation , we find that when we define

J=7000 [=T7-100, 9=T-110, §=To-10
the above bilinear equations would become
iD; + D2 = 2iaD,) g- f =0,
iD; + D2 +2iD,) f - f =0,

(iD;—=1)f-f+g9=0, -
Dif-f—iD.g-g+ 2a+1)(ff —gg) =0.

(89)

Notice that these (f, f,g,g) functions all have index I = 0. Thus, these functions are exactly the same as those
given in Eq. of the earlier section. Then, following the same complex-conjugacy reductions f = f* and § = g¢*
as before, the bilinear system reduces to Egs. —, and its rogue wave solutions are exactly as given in
Theorems 1 and 3.

VII. CONCLUSIONS AND DISCUSSIONS

In this article, we have derived general rogue waves in the GDNLS equations by an improved bilinear KP
reduction method. Since these GDNLS equations arise in multiple physical situations and contain the Kaup-Newell
equation, the Chen-Lee-Liu equation and others as special cases, these results would be useful for rogue-wave gen-
eration in such physical systems. A main benefit of this bilinear framework is that, rogue waves to all members of
these GDNLS equations can be expressed by the same bilinear solution. Compared to previous bilinear KP reduction
methods for rogue waves in other integrable equations, an important improvement in our current KP reduction tech-
nique is a new parameterization of internal parameters in rogue waves. Under this new parameterization, the bilinear
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solution is much simpler than before. In addition, the rogue wave with the highest peak amplitude at each order can
be easily obtained by setting all these internal parameters to zero. This way, the maximum peak amplitude at order
N is found to be 2N + 1 times the background amplitude, independent of the individual GDNLS equation and the
background wavenumber. We have also found that these GDNLS equations can be decomposed into two different
bilinear systems which require different KP reductions, but the resulting rogue waves are the same. Dynamics of
rogue waves in the GDNLS equations is also analyzed. It is shown that the wavenumber of the constant background
strongly affects the orientation and duration of the rogue wave. In addition, some new rogue patterns are presented.

The GDNLS equations considered in this article have the parameter requirement of a # b, in which case these
equations are gauge-equivalent to the derivative NLS equation of Kaup-Newell type (see Sec. . If a = b, Eq.
is called the Kundu-Eckhaus equation in the literature [38]. The Kundu-Eckhaus equation is gauge-equivalent to the
NLS equation rather than the derivative NLS equation, and thus its rogue waves would be different from those for
the GDNLS equations with a # b. Rogue waves in the Kundu-Eckhaus equation have been studied by Darboux
transformation in [56HD8]. In the bilinear framework, we can derive general rogue waves in the Kundu-Eckhaus
equation in a similar way as we did for the GDNLS equations with a # b. This derivation will be sketched in the
appendix.
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Appendix: Bilinear derivation of rogue waves in the Kundu-Eckhaus equation

When a = b, Eq. becomes the Kundu-Eckhaus equation [38]

i1 + dee + pl6%6 + ia(6P)ed + 7a%19l'0 = . (90)
Under a gauge transformation
O(6,1) = w(g, e 2 IEDRE,
this Kundu-Eckhaus equation reduces to the NLS equation
iw; + wee + plw|*w = 0, (91)

whose rogue waves have been derived before [I2HI8]. To directly obtain rogue waves in the Kundu-Eckhaus equation
(90) without the use of the above gauge transformation, we can apply a similar bilinear approach as we did for
the a # b case in the main text of this article. Specifically, through a scaling of (¢,&,t,a) together with a Galilean
transformation, we can normalize p = 2 in Eq. , and the boundary conditions of its rogue waves can be normalized
as

o(&t) = 7399 (1) oo, (92)
Then, we employ a bilinear variable transformation

S, 1) = oi[2t—3alé+(n f)s]]%7 (93)

where f is a real function, and g a complex function. Under this transformation, the Kundu-Eckhaus equation
can be split into the following three bilinear equations,

(iDi+DF)g- f =0, (94)
(DZ+2)f - f =29/, (95)
DeDyf - f =2iDeg - g". (96)

One can recognize that the first two bilinear equations are the ones for the NLS equation with p = 2 [18]. Tt
turns out that the (f, g) solutions for rogue waves of the NLS equation also satisfy the third bilinear equation above,
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and thus rogue waves for the Kundu-Eckhaus equation are given by , where (f,g) are those for the NLS
equation . The reason for this is that, under the same differential and difference relations of 7 functions listed in
Eq. (3.7) of Ref. [18], the following three multi-dimensional bilinear equations are satisfied simultaneously,

(Z)IID3571 — 2)Tn cTn = _27-n+17-n—1a (97)
(Da, — Dil)TnJrl “Tp =0, (98)
Dy DyyTyn - Tn =2D4 Tn—1 * Tnt1- (99)

Thus, with the same dimension reduction and complex conjugacy conditions of the NLS equation [I8], and setting
x1 = &, xo = it, these multi-dimensional bilinear equations reduce to —, and thus the (f, g) solutions for rogue
waves of the NLS equation are also bilinear solutions for rogue waves of the Kundu-Eckhaus equation under
the bilinear variable transformation .
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