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Abstract
Akey starting assumption in many classical interatomic potential models for materials
is a site energy decomposition of the potential energy surface into contributions that
only depend on a small neighbourhood. Under a natural stability condition, we con-
struct such a spatial decomposition for self-consistent tight binding models, extending
recent results for linear tight binding models to the nonlinear setting.
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1 Introduction

Electronic structure models are widely used to calculate many optical, magnetic and
mechanical properties of materials and molecules (Finnis 2003; Martin 2004; Kittel
2004; Szabo and Ostlund 1996). Self-consistent (nonlinear) tight binding models are
simple electronic structure models that are interesting in their own right but also pro-
vide convenient prototypes for themuchmore complicated density functional theories.
A paradigm example is the density functional tight binding (DFTB)method (Koskinen
and Mäkinen 2009; Seifert and Joswig 2012; Elstner and Seifert 2014).

In contrast to previous works on the linear tight binding model (Chen et al. 2018;
Chen and Ortner 2016; Chen et al. 2019), the present work allows for the “on-site”
Hamiltonian matrix entries to depend on the local electron density through a potential
term. This results in a nonlinear model since the electron density itself depends on the
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Hamiltonian via a self-consistency condition. The present work therefore represents a
key stepping stone between linear tight binding and more accurate nonlinear models
such as Kohn–Sham density functional theory.

The self-consistency introduces the interesting issue of stability of the electronic
structure problem; themain additional technical difficulty when compared to the linear
model. Therefore, under a suitable stability condition (E andLu2010),we show that the
potential energy surface in this model can be decomposed into exponentially localised
site contributions, thus justifying many classical interatomic potential (IP) and multi-
scale methods.

Despite the relative simplicity of tight binding models, a naive implementation
demands O(N 3) computational cost, where N is the number of particles in the system.
It may therefore be advantageous to instead implement an IP model. In this case, the
relevant parameters can be fitted to high accuracy by machine learning techniques
together with theoretical data resulting from a high-fidelity model (Bartók et al. 2018,
2010; Behler and Parrinello 2007; Shapeev 2016). In most IP models for materials, a
necessary starting assumption is that the potential energy surface can be decomposed
into localised site contributions. That is, for atomic positions y = {yn}, the total energy
E = E(y) may be written

E(y) =
∑

�

E�(y) with

∣∣∣∣∣
∂ j E�(y)

∂ yn1 . . . ∂ yn j

∣∣∣∣∣ � e−η
∑ j

l=1 |y�−ynl |, (1.1)

for some η > 0.
Typically, classical IPmodels are short-ranged and thus only justified if the exponent

η in (1.1),whichmeasures the interatomic interaction range, is not too small. Therefore,
in the present paper, not only arewe interested in obtaining a site energy decomposition
as in (1.1), but we also wish to describe the exponent.

Also, in the context ofQM/MMmulti-scalemethods, aminimal starting assumption
on the QM model is the strong locality of forces (Csányi et al. 2005). This condition
is implied by the strong energy locality condition (1.1) that we consider in the present
paper. Moreover, the exponent η from (1.1) gives a guide for the size of the (compu-
tationally more expensive) QM region that must be imposed (Chen and Ortner 2016,
2017; Csányi et al. 2005).

In addition to the partial justification for IP and multi-scale models, our results
also allow the thermodynamic and zero Fermi-temperature limit results of Ortner and
Thomas (2020), Chen et al. (2018) to be extended to the nonlinear setting. We sketch
the main ideas in the concluding remarks in Sect. 5.

1.1 List of Assumptions

Theanalysis requires a number of assumptions on the tight bindingmodel, the atomistic
configuration and associated electronic densities.

In general, we require the following assumptions:

(L) p. 4 Uniform non-interpenetration with non-interpenetration constantm > 0
(TB) p. 5 Nonlinear tight binding Hamiltonian H(u; ρ)
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(SC) p. 7 Self-consistent electronic density ρ

(STAB) p. 8 Stability of the configuration with stability operator L (u; ρ)

In addition to the above, we require the following assumptions for the particular
case of point defects in insulating multi-lattice materials:

(REF) p. 9 Multi-lattice reference configuration Λref with reference density
ρref

(GAP) p. 10 Insulating material (band gap in the system) with gap gref > 0
(STABref) p. 11 Stability of the reference configuration with reference stability

operator L ref

(P) p. 11 Point defect reference configuration Λ

(FF) p. 11 Far-field assumption on the electronic density

1.2 Summary of Results

The results of this paper are divided into two sections: we discuss general locality
estimates in Sect. 2 and improve these results for the specific case of point defects in
insulating multi-lattice materials in Sect. 3.

General Locality Estimates

The previous works (Chen et al. 2018; Chen and Ortner 2016) provide partial justifica-
tion for (1.1) in the setting of linear tight binding models at finite Fermi-temperature.
However, in general, we can only expect

η ∼ β−1 as β → ∞

where β is the inverse Fermi-temperature, meaning that for low-temperature regimes
the practical value of (1.1) is limited. However, in the case of insulating multi-lattice
materials (where there is a spectral gap in the system), the locality estimates are
improved (Chen et al. 2019), and extended to the zero Fermi-temperature case. In this
setting, the exponent η is linear in the spectral gap.

In Sect. 2, we simultaneously extend both Chen and Ortner (2016); Chen et al.
(2018) (in the case of finite Fermi-temperature) and Chen et al. (2019) (for insulators
at finite or zero Fermi-temperature) to the nonlinear setting.

Point Defects in Insulators

Simulating local defects in materials remains an issue of great interest in the solid
state physics and materials science communities (Pisani 1994; Stoneham 2001). See
Cancès and Le Bris (2013) for a mathematical review of some works related to the
modelling of point defects in materials science.

When considering point defects in the material, “pollution” of the spectrum may
enter band gap which a priori affects the exponent η in (1.1). However, by approxi-
mating the defect as a low rank perturbation, we show in Sect. 3 that the locality results
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only weakly depend on the defect and the estimates resemble the defect-free estimates
for sites away from the defect core. That is, the exponents in the locality estimates
depend only on a local environment of the particular atomic site. This extends results
of Chen et al. (2019) to the nonlinear setting.

1.3 Notation

For an operator T , the discrete spectrum (isolated eigenvalues of finitemultiplicity) and
essential spectrum are denoted by σdisc(T ) and σess(T ):=σ(T )\σdisc(T ), respectively.

For sequences ψ , the j th entry is written [ψ] j and the �2 norm is ‖ψ‖�2 . For
bounded C-valued functions, we denote by ‖ · ‖∞ the supremum norm. For matrices
(or operators with matrix entries only nonzero on a finite sub-matrix) M , we denote
by ‖M‖max:=maxi j |Mi j | the maximum-norm. For operators T on �2, ‖ · ‖F denotes
the Frobenius or Hilbert–Schmidt norm and ‖ · ‖�2→�2 the operator norm.

On R
n or C, we will denote the Euclidean norm by | · | and the open balls of

radius δ about a and 0 by Bδ(a) and Bδ:=Bδ(0), respectively. For a subset A of
R
n or C, we write Bδ(A):={x : dist(x, A) < δ} where dist(b, A):= infa∈A |a −

b|. The Hausdorff distance between two sets A and B is denoted dist(A, B):=
max{supa∈A dist(a, B), supb∈B dist(b, A)}.

We write b+ A = {b+a : a ∈ A}, A−b:={a−b : a ∈ A} and r A:={ra : a ∈ A}.
If A is finite then #A denotes the cardinality of A. For an index set A, we denote by
δi j the Kronecker delta function for i, j ∈ A. The set of non-negative real numbers
will be denoted by R+.

The symbolC will denote a generic positive constant that may change from one line
to the next. In calculations, C will always be independent of Fermi-temperature. The
dependencies of C will be clear from context or stated explicitly. When convenient to
do so we write f � g to mean f ď Cg for some generic positive constant as above.

2 Results: General Locality Estimates

2.1 Tight BindingModel

For a locally finite reference configurationΛ ⊂ R
d and displacement u : Λ → R

d , we
write r�k(u):=� + u(�) − k − u(k) and r�k(u):=|r�k(u)|. We consider displacements
u satisfying the following uniform non-interpenetration condition:

(L) There exists a non-interpenetration constant m > 0 such that r�k(u) ě m|� − k|
for all �, k ∈ Λ.

We consider Nb atomic orbitals per atom, indexed by 1 ď a, b ď Nb. For given
displacements u, and corresponding electronic densities, ρ : Λ → R+, we define the
two-centre tight binding Hamiltonian as follows:

(TB) For �, k ∈ Λ and 1 ď a, b ď Nb, we suppose that the entries of the Hamiltonian
take the form

H(u; ρ)ab�k :=hab�k (r�k(u)) + v(ρ(�))δ�kδab (2.1)
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where hab�k : Rd → R are ν times continuously differentiable for some ν ě 1
and v is a bounded smooth function on (0,∞) with bounded derivatives.

Further, we assume that there exist h0, γ0 > 0 such that, for each 1 ď j ď ν,

∣∣∣hab�k (ξ)

∣∣∣ ď h0 e
−γ0|ξ | and

∣∣∣∂αhab�k (ξ)

∣∣∣ ď h0 e
−γ0|ξ | ∀ξ ∈ R

d (2.2)

for all multi-indices α ∈ N
d with |α|1 = j .

Finally, we suppose that hab�k (ξ) = hbak� (−ξ) for all ξ ∈ R
d , 1 ď a, b ď Nb and

�, k ∈ Λ.

Remark 1 (Tight binding Hamiltonian)

(i) Despite being able to define the tight bindingHamiltonian for any fixed electronic
density ρ, we will be concerned with the case that ρ satisfies a self-consistency
condition ρ = F(u; ρ) (see (SC) on page 7 for the definition of F). This equation
introduces the nonlinearity to the model; the main departure from the previous
works (Chen and Ortner 2016; Chen et al. 2019).

(ii) The constants h0 and γ0 in (2.2) are independent of the atomic sites.
(iii) The symmetry assumption in (TB) means that the Hamiltonian, H(u; ρ), is

symmetric and thus the spectrum is real. Moreover, σ(H(u; ρ)) ⊂ [σ , σ ] for
some σ , σ depending on m, d, h0, γ0, ‖v‖∞ and are independent of the size
of the system and the displacement u satisfying (L) with the constant m. In
fact, by generalising the proof of (Chen and Ortner 2016, Lemma 4) to the set-
ting we consider here, we obtain explicit bounds on the width of the spectrum:
σ(H(u; ρ)) ⊂ ‖v‖∞ + Cdh0(γ0m)−d [−1, 1].

(iv) The pointwise bound on |hab�k | in (2.2) is more general than many tight binding
models which impose a finite cut-off radius. The assumption for |α| = 1, states
that there are no long range interactions in the model and so, in particular, we
assume that Coulomb interactions have been screened, which is typical in prac-
tical tight binding models (Cohen et al. 1994; Mehl and Papaconstantopoulos
1996; Papaconstantopoulos et al. 1997).

Following (Chen and Ortner 2016; Chen et al. 2018; Ortner and Thomas 2020;
Chen et al. 2019), we consider finite energy displacements. For u : Λ → R

d , � ∈ Λ

and σ ∈ Λ − �, we define the finite difference Dσu(�):=u(� + σ) − u(�) and the full
finite difference stencil Du(�):=(Dσu(�))σ∈Λ−�. We then let Ẇ 1,2(Λ) be the set of
finite energy displacements: for ϒ > 0,

Ẇ 1,2(Λ):=
{
u : Λ → R

d : ‖Du‖2
�2ϒ

:=
∑

�∈Λ

∑

σ∈Λ−�

e−2ϒ |σ ||Dσu(�)|2 < ∞
}

which is well defined since all the semi-norms ‖D · ‖�2ϒ
are all equivalent for ϒ > 0

(Chen et al. 2019). For the remainder of this paper, we fix an exponent ϒ > 0. In
this section, we require perturbations to have finite energy (see Lemma 2), whereas
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when considering the improved estimates in the case of point defects in Sect. 3, we
also require the configurations to be given by finite energy displacements.

2.2 Spatial Decomposition of Quantities of Interest

Let u : Λ → R
d satisfy (L) and suppose ρ is an associated electronic density.

2.2.1 Local Quantities of Interest

We suppose o : R → R is a function that extends analytically to an open neighbour-
hood of σ(H(u; ρ)) inC and define the corresponding local quantities, O� (for � ∈ Λ),
by

O�(u; ρ):= − 1

2π i

∑

a

∮

Co

o(z)
[
(H(u; ρ) − z)−1

]aa
��
dz (2.3)

where Co is a simple, closed, positively oriented contour contained within the region
of holomorphicity of o, encircling σ(H(u; ρ)) and such that

do:= min
z∈Co

dist
(
z, σ (H(u; ρ))

)
> 0. (2.4)

For finite systems,wemay diagonalise theHamiltonian,H(u; ρ) = ∑
s λs |ψs〉〈ψs |

(where (λs, ψs) are normalised eigenpairs), and note that many quantities of interest,
including theHelmholtz free energy, grand potential and the particle number functional
(Chen et al. 2018; Chen and Ortner 2016), may be written as a sum of the local
contributions (2.3) for some appropriate choice of o:

∑

�∈Λ

O�(u; ρ) =
∑

�∈Λ
1� a � Nb

∑

s

o(λs)[ψs]2�a =
∑

s

o(λs). (2.5)

This decomposition is well known and follows from a spatial decomposition of the
total density of states (Ercolessi 2005; Chen and Ortner 2016; Finnis 2003; Chen et al.
2018).

Our motivation comes from viewing (2.5) as the total energy of the system and
(2.3) as a spatial decomposition of this energy. The aim of the present paper is to
show the exponential localisation of (2.3) with respect to perturbing atomic positions,
which, in the case of site energies, justifies IP and multi-scale models as discussed in
the introduction.

2.2.2 Self-consistency

The electronic structure of the system is obtained by assigning electrons to the eigen-
states of lowest energy, according to the Fermi-Dirac occupation distribution and

123



Journal of Nonlinear Science (2020) 30:3293–3319 3299

subject to Pauli’s exclusion principle. We nowmake this precise for (possibly infinite)
atomic systems.

After fixing an inverse Fermi-temperature β > 0, we define f (z − μ) = (1 +
eβ(z−μ))−1 to be the Fermi-Dirac occupation distribution where μ is a fixed chemical
potential. We let C f be a simple closed contour encircling σ(H(u; ρ)) and avoiding
the singularities of f ( · − μ). That is, avoiding μ + iπβ−1(2Z + 1) and such that
d f :=minz∈C f dist(z, σ (H(u; ρ))) > 0. In general, we may choose C f so that d f ě
π
2β . However, for insulators, as we shall see in Sect. 3, this constant may be chosen to
be linear in the spectral gap at μ.

For the case of zero Fermi-temperature, we take the pointwise β → ∞ limit and
define f (z−μ):=χ(−∞,μ)(z)+ 1

2χ{μ}(z). For insulating systems, there is a spectral gap
at μ (that is, with g:= inf[μ,+∞) ∩ σ(H(u; ρ)) − sup(−∞, μ] ∩ σ(H(u; ρ)) > 0)
and so f ( · − μ) is analytic in a neighbourhood of σ(H(u; ρ)). In this case, we
let C f be a simple closed contour encircling σ(H(u; ρ)) ∩ (−∞, μ) and avoiding
σ(H(u; ρ)) ∩ [μ,∞) with d f = minz∈C f dist(z, σ (H(u; ρ))) ě 1

2g.
For fixed β ∈ (0,∞] as above, we can therefore define

F�(u; ρ):=O�(u; ρ) with o = f ( · − μ) and Co = C f (2.6)

as in (2.3). To simplify notation in the following, we will write F(u; ρ) =
(F�(u; ρ))�∈Λ.

For a given displacement, we consider corresponding self-consistent electronic
densities, giving rise to the nonlinearity of the problem:

(SC) For a displacement u : Λ → R
d satisfying (L), we say that ρ is an associated

self-consistent electronic density if ρ = F(u; ρ).

Remark 2 (Self-consistency) For a finite system, the self-consistency equation (SC)
takes the following form:

ρ(�) =
∑

s,a

f (λs − μ)[ψs]2�a (2.7)

where H(u; ρ) = ∑
s λs |ψs〉〈ψs | for normalised eigenpairs (λs, ψs). Written in this

form, we can see that f (λs − μ) represents the occupation number for the electronic
state s.

2.2.3 Stability

Wewish to show that, for fixedu : Λ → R
d and an associated self-consistent electronic

density ρ, the quantities O�(u; ρ) are exponentially localised. As shown in Chen
et al. (2019) for the linear model (that is, neglecting the v(ρ(�))δ�k term in (2.1)), the
exponent in these locality results are linear in do from (2.4). For themore complicated,
nonlinear model that we consider here, the locality also depends on the stability of the
model, which we will now discuss.

Supposing that (u, ρ) satisfies a natural stability condition (defined in (STAB) on
page 8, below), it is possible to rewrite the local quantities of interest as a function
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of the displacements. That is, for ũ in a neighbourhood of u, there exists a locally
unique ρ̃ = ρ̃(̃u) in a neighbourhood of ρ such that (̃u, ρ̃(̃u)) satisfies (SC) and we
can therefore write

Osc
� (̃u):=O�

(
ũ; ρ̃(̃u)

)
. (2.8)

Moreover, the mapping ũ �→ Osc
� (̃u) is ν times continuously differentiable in a neigh-

bourhood of u. See Lemma 2 for the rigorous statement.
We can now consider the derivatives of the local quantities of interest with respect

to the perturbation of atomic positions. Using (2.3), it is sufficient to consider the
derivatives of the resolvent operators. Since the linear contribution has been studied
in Chen et al. (2019), we are only concerned with the additional nonlinear part, which
involves derivatives of the electronic density. Due to the self-consistency, we obtain
the formula

∂ρ(�)

∂[u(m)]i =
[
(I − L (u; ρ))−1φ(m)

]

�
(2.9)

where the stability operator,L (u; ρ), is the Jacobian of F(u; ρ)with respect to ρ and
φ(m) ∈ �2(Λ) satisfies |φ(m)

� | � e−ηr�m (u) for some η > 0. Therefore, the following
stability condition, which we take from E and Lu (2010, 2012), is the minimal starting
assumption required for the analysis:

(STAB) We say (u, ρ) is stable if I − L (u; ρ) is invertible as an operator on �2(Λ)

where L (u; ρ) is the Jacobian of F(u; ρ) with respect to ρ. For a stable
configuration (u, ρ), we write

dL :=dist(1,L (u; ρ)) > 0. (2.10)

Remark 3 (i) Equivalently, (2.10) states that ‖(I − L (u; ρ))−1‖�2→�2 ď d−1
L .

(ii) A simple calculation reveals that L (u; ρ) : �2(Λ) → �2(Λ) has matrix entries

L (u; ρ)�k = 1

2π i

∮

C f

f (z − μ)

Nb∑

a,b=1

([
(H(u; ρ) − z)−1

]ab
�k

)2

dz v′(ρ(k)).

(2.11)

2.2.4 Locality

We are now in a position to state general locality estimates for β ∈ (0,∞) and for
insulators in the case β = ∞:

Theorem 1 (General Locality Estimates) Suppose (u, ρ) satisfies (L), (SC), (STAB)
and let do, d f , dL > 0 be the constants from (2.4) and (2.10). Then, for 1 ď j ď ν,
� ∈ Λ, m = (m1, . . . ,m j ) ∈ Λ j and 1 ď i1, . . . , i j ď d, there exists C j > 0 such
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that
∣∣∣∣∣

∂ j Osc
� (u)

∂[u(m1)]i1 . . . ∂[u(m j )]i j

∣∣∣∣∣ ď C je
−η

∑ j
l=1 r�ml (u)

where η:=cmin
{
1, do, d f , c f dL

}
, c f :=d2f min{1, dd+1

f } and c is a positive constant
depending on γ0, h0, m, Nb, d, j , ‖Du‖�2ϒ

, ‖v′‖∞ and on the length of C f .

Proof The proof of this result follows the analogous proof in the linear case (Chen
et al. 2019), together with bounds on the nonlinear contribution (2.9). Full details are
presented in Sect. 6. ��

3 Results: Point Defects in InsulatingMaterials

Nowwe consider the specific example of point defect reference configurations. In this
case, we show “improved” locality estimates in which the pre-factors and exponents
behave like the corresponding reference constants.

3.1 Point Defect Configurations

Wesuppose thatΛref ⊂ R
d is amulti-lattice andρref is a corresponding self-consistent

electronic density:

(REF) We suppose that there exist a non-singular matrix A ∈ R
d×d and a unit cell

Γ ⊂ R
d such that Γ is finite, contains the origin and

Λref :=
⋃

γ∈Zd

(Γ + Aγ ).

Moreover, we require the Hamiltonian to satisfy the following translational
invariance property: hab�+Aγ1,k+Aγ2

(ξ) = hab�k (ξ) for all γ1, γ2 ∈ Z
d , ξ ∈ R

d

and 1 ď a, b ď Nb. Further, we suppose ρref is a translational invariant, self-
consistent electronic density: (x ref , ρref) satisfies (SC) where x ref : Λref →
Λref is the identity configuration on Λref and ρref(� + Aγ ) = ρref(�) for all
� ∈ Γ and γ ∈ Z

d .

It is possible that there are many electronic densities ρref satisfying the conditions
of (REF). However, this is an issue that we will not concern ourselves with here, and,
for the remainder of this paper, wewill simply fix any electronic density ρref satisfying
(REF).

The translational invariance property of the Hamiltonian states that all � + Aγ are
of the same atomic species.

To simplify notation, when we consider the reference configuration (Λ = Λref ),
we will write,

Href :=H(0; ρref) and L ref :=L (0; ρref).
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By exploiting the translational invariance of the reference configuration, and by use
of the Bloch transform (Kittel 2004), we may conclude that σ(Href) and σ(L ref) can
be written as a union of finitely many spectral bands:

σ(Href) =
⋃

n

λn(Γ
�) and σ(L ref) =

⋃

n

εn(Γ
�) (3.1)

where Γ � ⊂ R
d is a compact, connected set and λn and εn are continuous functions.

Full details follow the calculations of E and Lu (2010) and are given in Appendix 1
for completeness.

In the following, we consider insulating materials and thus assume that there is a
band gap in the reference Hamiltonian:

(GAP) We assume μ /∈ σ(Href) and define

gref := inf
(
σ(Href) ∩ (μ,∞)

)
− sup

(
σ(Href) ∩ (−∞, μ)

)
> 0.

Therefore, in the finite temperature case (β < ∞), we may consider a contour C f as
in (2.6) with dreff :=minz∈C f dist(z, σ (Href)) ě 1

2dist
(
μ, σ(Href)

)
. In particular, we

have dreff �→ 0 in the zero temperature limit. On the other hand, for zero temperature

(β = ∞), we may choose C f as in (2.6) with dreff = 1
2g

ref .
Further, we suppose that the reference configuration is stable:

(STABref) ∃drefL > 0 such that I − L ref is invertible with ‖(I − L ref)−1‖�2→�2 ď
(drefL )−1.

Now, given a reference, Λref , as above, we consider a point defect configuration, Λ,
satisfying:

(P) There exists Rdef > 0 such that Λ \ BRdef = Λref \ BRdef and Λ ∩ BRdef is finite.

We will consider electronic densities ρ : Λ → R+ satisfying the following mild
technical assumption on the far-field behaviour:

(FF) lim|�|→∞ |v(ρ(�)) − v(ρref(�))| = 0 where ρref is the fixed electronic density

satisfying (REF).

This assumption is explained in more detail in Remark 4, below.
We now restrict the class of admissible configurations by considering finite energy

displacements, u ∈ Ẇ 1,2(Λ), and show that, for such displacements, the spectra can
be described in terms of the reference spectra.

Lemma 1 (Perturbation of the Spectrum) Let u ∈ Ẇ 1,2(Λ) satisfy (L) and ρ be an
associated electronic density satisfying (SC) and (FF).

Then, for all δ > 0, there exists Sδ such that #
(
σ(H(u; ρ)) \ Bδ(σ (Href))

) +
#
(
σ(L (u; ρ)) \ Bδ(σ (L ref))

) ď Sδ .

Proof We may apply Lemmas 6 and 7 together with (Chen et al. 2019, Proof of
Lemma 3) to conclude. ��
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Supposing that (GAP) is satisfied, Lemma 1 states that there are at most finitely
many isolated eigenvalues lying inside the band gap and bounded away from the band
edges.

3.2 Improved Locality Estimates

Just as in the linear case (Chen et al. 2019), a Combes–Thomas resolvent estimate
(Combes and Thomas 1973) applied to the spectral projections corresponding to the
finitely many eigenvalues bounded away from the edges of the bands, together with
a finite rank update formula (i.e. the Woodbury identity), allows us to approximate
(H(u; ρ)−z)−1 and (I−L (u; ρ))−1 by finite rank updates of the reference resolvents
(Href − z)−1 and (I − L ref)−1, respectively. Therefore, by applying the locality
estimates of Theorem 1 on the reference spectrum, we obtain the following improved
estimates for point defect configurations:

Theorem 2 (Improved Locality Estimates) Suppose that the reference configuration
Λref , ρref satisfies (REF), (GAP) and (STABref). Moreover, we fix Λ satisfying (P),
u ∈ Ẇ 1,2(Λ) and ρ satisfying (L), (SC), (STAB) and (FF). Then,

(i) for 1 ď j ď ν, � ∈ Λ, m = (m1, . . . ,m j ) ∈ Λ j and 1 ď i1, . . . , i j ď d, there
exists positive constants C j = C j (�,m), η j = η j (�,m) such that

∣∣∣∣∣
∂ j Osc

� (u)

∂[u(m1)]i1 . . . ∂[u(m j )]i j

∣∣∣∣∣ ď C je
−η j

∑ j
l=1 r�ml (u)

where η j :=c j min
{
1, drefo , dreff , c f (�,m)drefL

}
, c j > 0 depends on j , γ0, h0, m,

d, ‖v′‖∞ and on the lengths of Co, C f and c f is a constant depending only on �,
m, dreff and d f .

(ii) C j (�,m) is uniformly bounded and c f (�,m) is uniformly bounded away from
zero independently of � and m. Let C ref

j :=C j (�,m) and creff :=c f (�,m) when

Λ = Λref , u = 0 and ρ = ρref . If �,m1, . . . ,m j ∈ BR(ξ) for some R > 0, then
C j (�,m) → C ref

j and c f (�,m) → creff as |ξ | → ∞, with exponential rates.

Remark 4 Here, we briefly give examples of when the assumption (FF) is satisfied
and we show that it is equivalent to ‖ρ − ρref‖�2 < ∞.

(i) Derivative of v sufficiently small. If ‖v′‖∞ is sufficiently small, we may treat
the nonlinear tight binding model as a nonlinear perturbation of the corresponding
linear model andwould thus expect themain assumption |v(ρ(�))−v(ρref(�))| →
0 to be satisfied. In fact, we now show that if ‖v′‖∞ is sufficiently small, then the
stronger condition ‖ρ − ρref‖�2 < ∞ is satisfied. Using the Combes–Thomas
estimates (Lemma 3) for the resolvents we can conclude that there exists η > 0
such that

∣∣∣ρ(�) − ρref(�)

∣∣∣ ď C
∣∣∣
∑

a

∮

C f

f (z − μ)
[
Rz(u; ρ) − Rref

z

]aa
��
dz

∣∣∣
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ď C sup
z∈C f

∑

a

∣∣∣
[
Rz(u; ρ)

(Href − H(u; ρ)
)
Rref

z

]aa
��

∣∣∣

ď C
∑

�1,�2

e−η(|�−�1|+|�1−�2|+|�2−�|)|D�2−�1u(�1)|

+ C
∑

�1

e−2η|�−�1||v(ρ(�1)) − v(ρref(�1))| (3.2)

where Rz(u; ρ):=(H(u; ρ) − z)−1 and Rref
z :=(Href − z)−1.

Here, we have abused notation as the operatorsRz(u; ρ) andRref
z are defined on

different spatial domains. This issue is resolved in (Chen et al. 2019, Sect. 4.3) and
also briefly explained on page 22. After squaring (3.2) and summing over � ∈ Λ,
we obtain

‖ρ − ρref‖2
�2

ď C1 + C2‖v′‖2∞‖ρ − ρref‖2
�2

.

Therefore, if C2‖v′‖2∞ < 1, then ‖ρ − ρref‖2
�2

ď C1(1 − C2‖v′‖2∞)−1.
(ii) Stability of the electronic structure. Another approach involves integrating along

a path between ρ and ρref . In order to compare u and reference configuration, we
must assume that (FF) is satisfied for ρ(0), a self-consistent electronic density
associated with the identity configuration on Λ. By the translational invariance of
the Hamiltonian (i.e. for all c ∈ R

d , H(u; ρ) = H(u + c; ρ) where (u + c)(�) =
u(�)+c), we obtain translational invariance of the quantities of interest (as in Chen
et al. 2018). In particular, the quantities of interest may be written as functions
of the finite difference stencil Du(�) for some � ∈ Λ. Therefore, the electronic
density solving ρ = F(u; ρ) can also be written as a function of Du(�). Now

since
∣∣∣ ∂ρ(�)
∂u(m)

∣∣∣ � e−ηr�m (see (6.10)), we formally obtain

|v(ρ(�)) − v(ρref(�))| ď ‖v′‖∞

∣∣∣∣∣

∫ 1

0

∑

σ∈Λ−�

∂ρt (�)

∂Dσu(�)
· Dσu(�)dt

∣∣∣∣∣

+ |v(ρ(0)(�)) − v(ρref(�))|
�

∑

σ∈Λ−�

e−η|σ ||Dσu(�)| + |v(ρ(0)(�)) − v(ρref(�))|

(3.3)

where ρt :=ρ(t Du(�)). Therefore, by taking � → ∞ we may conclude. However,
in (3.3), we have assumed that along the linear path between u and 0, the electronic
density is a well-defined differentiable function of the displacement. Generalising
the argument above, we only need to assume that there exists a sequence of dis-
placements such that we can integrate along a piecewise linear path between u and
0. That is, along the path, we need unique self-consistent electronic densities, the
uniform non-interpenetration assumption to be satisfied with a uniform constant
and, in the case of zero Fermi-temperature, the spectrum of the Hamiltonian must
avoid the chemical potential.
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(iii) An equivalent assumption. We claim that (FF) is equivalent to the (a priori
stronger) condition that ‖ρ − ρref‖�2 < ∞. Indeed, by assuming that |v(ρ(�)) −
v(ρref(�))| → 0, the diagonal operator defined by D��:=v(ρ(�)) − v(ρref(�)) is
compact and so Lemma 6 (given below) allows us to approximate the Hamiltonian
H(u; ρ) with a finite rank update of Href . We can therefore use (3.2) to obtain
the following stronger bound: for all δ > 0, there exists a Hilbert–Schmidt oper-
ator Pδ such that ‖Pδ‖F ď δ and |ρ(�) − ρref(�)| ď Cδe−η|�| + Pδ

��. This is an
argument similar to (Chen et al. 2019, (4.18)–(4.20)).
We have simply written |v(ρ(�))−v(ρref(�))| → 0 as an assumption in Lemma 1
and Theorem 2 to simplify the presentation and avoid the technical issues detailed
above. We briefly remark here that this is the minimal assumption needed for our
analysis to hold. Indeed, if (FF) is not satisfied, then the operatorH(u; ρ) −Href

is not compact and thus the compact perturbation results which we rely on in the
proofs cannot be applied.

4 Applications: Geometry Optimisation

Aswell as justifying a number of interatomic potential and multi-scale methods (Chen
and Ortner 2016, 2017; Csányi et al. 2005), we may use the locality results of this
paper to formulate limiting variational problems for infinite systems. That is, for a
fixed configuration u0 with associated self-consistent electronic density ρ0 such that
(u0, ρ0) is stable, we can renormalise the total energy and define

Gβ(u):=
∑

�∈Λ

(
Gβ

� (u) − Gβ
� (u0)

)
(4.1)

where Gβ
� is given by (2.8) with gβ(z) = 2

β
log(1 − fβ(z − μ)) for finite Fermi-

temperature and g∞(z) = 2(z−μ)χ(−∞,μ)(z) in the case of zero Fermi-temperature.
By the stability of the configuration (u0, ρ0), it follows from the locality results of
this paper together with Chen et al. (2019) that (4.1) is well defined in a ‖D · ‖�2ϒ(Λ)-
neighbourhood of u0.

We can then consider the following geometry relaxation problems

u ∈ argmin
{
Gβ(u) : u ∈ Bδ(u0; ‖D · ‖�2ϒ

) satisfies (L)
}

(4.2)

where “argmin” denotes the set of local minimisers. We emphasise here that, in order
to define these problems, we require the differentiability of the site energies and so
can only define these problems locally around stable configurations. We may follow
the proofs of Ortner and Thomas (2020), to extend the results to the case of nonlinear
tight binding models. For example, we may show the following:

Theorem 3 Suppose that μ is fixed such that (GAP) is satisfied and that u solves (4.2)
for β = ∞ such that 〈δ2G∞(u)v, v〉 ě c0‖Dv‖2

�2ϒ
for all v ∈ Ẇ 1,2(Λ) and some
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c0 > 0. Then, there exists uβ solving (4.2) with β < ∞ such that ‖D(uβ − u)‖�2ϒ
�

e−cβ .

Sketch of the Proof Here, to distinguish between the finite and zero Fermi-temperature
cases, we will write Fβ(u; ρ), L β(u; ρ) and F∞(u; ρ), L ∞(u; ρ), respectively.

Firstly, we note that there exists a locally unique electronic density ρ = F∞(u; ρ).
By stability, I −L ∞(u; ρ) is invertible and so it follows from zero Fermi-temperature
limit results (see Ortner and Thomas 2020, Lemma 5.9) that I − L β(u; ρ) =
(I − L ∞(u; ρ)) − (L β(u; ρ) − L ∞(u; ρ)) is also invertible for all sufficiently
large β. This means that for u in a neighbourhood of u, there exists a locally unique
electronic density ρβ satisfying ρβ = Fβ(u; ρβ). Therefore, for u in a neighbourhood

of u, we may write Gβ
� (u):=Gβ

� (u; ρβ). This means that, for β sufficiently large, we
may apply the inverse function theorem on δGβ about u as in (Ortner and Thomas
2020, Theorem 2.3). ��

In Theorem 3, we restrict ourselves to the grand-canonical ensemble where there
is a fixed chemical potential. By following the proofs of Ortner and Thomas (2020),
one can also show analogous results for the canonical ensemble where the Fermi-level
arises as a Lagrange multiplier for the particle number constraint.

5 Conclusions

We have extended the locality results of Chen et al. (2019) to nonlinear tight binding
models. More specifically, the results of this paper are twofold: (i) we have written
analytic quantities of interest (which includes the total energy of the system) as the sum
of exponentially localised site contributions.Moreover, (ii) under amild assumption on
the electronic density, we have shown that point defects in the material only weakly
affect the locality estimates. That is, away from the defect, where the local atomic
environment resembles that of the corresponding defect-free configuration, the locality
estimates resemble that of the defect-free case.

We have formulated variational problems for (possibly infinite) atomic systems
and extended the zero Fermi-temperature limit results of Ortner and Thomas (2020)
to the nonlinear setting. We believe that the thermodynamic limit results of Ortner
and Thomas (2020) can also be extended to nonlinear tight binding models. The
only additional technical detail is to show that the limiting configuration gives rise
to stable configurations defined along the sequence of finite domain approximations.
This means the choice of boundary condition and the number of electrons imposed
plays a key role in the analysis. While we do not see any problem in extending the
results of Ortner and Thomas (2020) for a supercell model, it is much less clear how
and when the boundary effects may inhibit the stability of the electronic structure
when considering clamped boundary conditions, for example.

The results of this paper represent a first natural stepping stone between the linear
tight binding results of (Chen and Ortner 2016; Chen et al. 2018, 2019) towards more
accurate electronic structure models, such as Kohn-Sham density functional theory.
The strong energy locality estimates of this paper and the previous works (Chen and
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Ortner 2016; Chen et al. 2019) require an implicit screening assumption to justify the
short-ranged Hamiltonian. Therefore, the key question of incorporating long-range
Coulomb interactions into our analysis remains an important direction for future study.

6 Proofs: General Locality Estimates

In order to simplify the notation in the following, we will write H(u; ρ) = HL(u) +
HNL(ρ) where HL(u)ab�k :=hab�k (r�k(u)) and HNL(ρ)ab�k = v(ρ(�))δ�kδab. Further, we
denote the resolvent operator byRz(u; ρ):=(H(u; ρ) − z)−1.

6.1 Preliminaries

Firstly, we prove that we may write the local quantities of interest as a function of the
displacement, (2.8):

Lemma 2 Suppose that (u, ρ) satisfies (L), (SC) and (STAB). Then, there exist
δu, δρ > 0 such that for all ũ : Λ → R

d with ‖D(̃u − u)‖�2ϒ(Λ) < δu, there exists a
unique electronic density ρ̃ = ρ̃(̃u) satisfying ‖ρ̃ − ρ‖�2(Λ) < δρ and ρ̃ = F (̃u; ρ̃).

Further, the mapping ũ �→ ρ̃ is smooth.

Sketch of the Proof Weapply the implicit function theoremonT (̃u; ρ̃):=ρ̃−F (̃u; ρ̃), a
smoothmap in a neighbourhood of (u, ρ). Sinceρ satisfies (SC), we have T (u; ρ) = 0.
By (STAB), we have: for each ũ in a neighbourhood of u, there exists a locally unique
ρ̃ = ρ̃(̃u) with ρ̃ = F (̃u; ρ̃).

The fact that F is indeed a smooth map in a neighbourhood of (u, ρ) follows from
the fact that small perturbations in u and ρ lead to small perturbations in σ(H(u; ρ))

Kato (1995). This means that the fixed contour C f , which depends on (u, ρ), can be
used in the definition of F in a neighbourhood of (u, ρ).

For full details in a slightly different setting, see (E and Lu 2010, Theorem 5.3). ��
We now state a Combes–Thomas type estimate Combes and Thomas (1973) for the

resolvent:

Lemma 3 (Combes–Thomas Resolvent Estimates) Given u ∈ Ẇ 1,2(Λ) satisfying
(L), suppose that T (u) is an operator on �2(Λ × {1, . . . , Nb}) given by

[T (u)w](�; a):=
∑

k∈Λ

∑

1� b� Nb

T (u)ab�kw(k; b) where |T (u)ab�k | ď cT e
−γT r�k (u)

for some cT , γT > 0. Then, if z ∈ C with d:=dist(z, σ (T (u))) > 0, we have,

∣∣∣∣
[
(T (u) − z)−1

]ab
�k

∣∣∣∣ ď 2d−1e−γCTr�k (u)

where γCT:=cγT min{1, c−1
T γ d

T d} where c > 0 depends only on ‖Du‖�2ϒ
, m and d.
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Proof The proof is analogous to (Chen and Ortner 2016, Lemma 6) where the claimed
d-dependence can be obtained by following the same proof and calculating the pre-
factor in (Chen et al. 2019, (4.4)).

That is, it can be shown that

sup
�∈Λ

∑

k∈Λ

cT e
−γT r�k (u)(eγCTr�k (u) − 1) ď C

cT

γ d+1
T

γCT, ∀ γCT ď 1

2
γT (6.1)

for some C > 0 depending only on ‖Du‖�2ϒ
,m and d. The proof follows by choosing

γCT > 0 sufficiently small such that the right hand side of (6.1) is less than 1
2d. ��

Remark 5 More careful analysis reveals that the above proof gives

γCT:=1

2
γT min

{
1,

(m
2

)d+1 γ d
T d

d!‖Du‖�∞cT

}
where ‖Du‖�∞:= sup

�∈Λ

sup
ρ∈Λ−�

|Dρu(�)|
|ρ| .

Here, we have used the fact that ‖D · ‖�∞ defines a semi-norm that is equivalent to
‖D · ‖�2ϒ

Chen et al. (2019).

By applying Lemma 3 to H(u; ρ), we obtain locality estimates for the resolvents
Rz(u; ρ): for z ∈ C with dist(z, σ (H(u; ρ))) ě d > 0 we have

∣∣∣Rz(u; ρ)ab�k

∣∣∣ ď 2d−1e−γr(d)r�k (u) (6.2)

where γr(d):=cmin{1, d} and c is a positive constant that depends only on h0, γ0,
‖Du‖�2ϒ

, m and d. We will apply (6.2) for both z ∈ C f (with d = d f ) and z ∈ Co

(with d = do).
Therefore, by (2.11), we have

∣∣∣L (u; ρ)ab�k

∣∣∣ ď Cd−2
f e−2γr(d f )r�k (u). (6.3)

Therefore, applying Lemma 3 again with T replaced withL (u; ρ) (and with z = 1),
we obtain,

∣∣∣∣
[
(I − L (u; ρ))−1

]ab
�k

∣∣∣∣ ď 2d−1
L e−γsr�k (u) (6.4)

wheredL is the constant from (2.10) and γs:=c1γr(d f )min{1,d2f γ d
r dL }. By expand-

ing γr in terms ofd f , we obtain γs = c2 min
{
1,d f ,d

2
f dL ,dd+3

f dL
}
for some c2 > 0

depending only on h0, γ0, ‖Du‖�2ϒ
,m, d, the length of C f , ‖v′‖∞ and Nb.
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6.2 Proof of Theorem 1: General Locality Estimates

We are now in a position to prove the locality estimates. Since we may write Osc
� as

an integral of the resolvent operator, derivatives of Osc
� can be written as derivatives

of the resolvent operators.
We start with the case j = 1: for z ∈ Cwith dist(z, σ (H(u; ρ))) ě d > 0, we have

∂[Rz(u; ρ)]aa��

∂[u(m)]i = −
[
Rz(u; ρ)

∂[H(u; ρ)]

∂[u(m)]i Rz(u; ρ)

]aa

��

= −
[
Rz(u; ρ)

∂
[HL(u; ρ)

]

∂[u(m)]i Rz(u; ρ)

]aa

��

−
∑

k∈Λ

Nb∑

b=1

(
[Rz(u; ρ)]ab�k

)2
v′(ρ(k))

∂ρ(k)

∂[u(m)]i . (6.5)

Here, we have used the fact that,

∂[H(u; ρ)]ab�k

∂[u(m)]i = ∂HL(u)ab�k

∂[u(m)]i + v′(ρ(�))
∂ρ(�)

∂[u(m)]i δ�kδab.

The first contribution in (6.5) can be treated by applying (6.2) as in (Chen and Ortner
2016; Chen et al. 2019):

∣∣∣∣∣

[
Rz(u; ρ)

∂[HL(u)]
∂[u(m)]i Rz(u; ρ)

]aa

��

∣∣∣∣∣ ď Cd−2e−min{γr(d),γ0}r�m (u). (6.6)

Now we move on to consider the nonlinear contribution in (6.5). By taking deriva-
tives in the self-consistency equation for ρ (that is, ρ = F(u; ρ) from (SC)), we obtain
the following identity,

∂ρ(�)

∂[u(m)]i = − 1

2π i

∑

a

∮

C f

f (z − μ)
∂[Rz(u; ρ)]��

∂[u(m)]i dz

= 1

2π i

∑

a

∮

C f

f (z − μ)

[
Rz(u; ρ)

∂
[HL(u)

]

∂[u(m)]i Rz(u; ρ)

]aa

��

dz

+
[
L (u; ρ)

∂ρ

∂[u(m)]i
]

�

where L (u; ρ) is the stability operator given in (2.11). That is,

∂ρ(�)

∂[u(m)]i =
[
(I − L (u; ρ))−1φ(m)

]

�
(6.7)
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where φ(m) ∈ �2(Λ) is given by

φ
(m)
� := 1

2π i

Nb∑

a=1

∮

C f

f (z − μ)

[
Rz(u; ρ)

∂
[HL(u; ρ)

]

∂[u(m)]i Rz(u; ρ)

]aa

��

dz. (6.8)

Applying (6.6) and using the fact that f is uniformly bounded, we have

∣∣φ(m)
�

∣∣ ď Cd−2
f e−min{γr,γ0}r�m (u). (6.9)

Combining (6.9)with the resolvent estimate for (I−L (u; ρ))−1 from (6.4), we obtain

∣∣∣∣
∂ρ(�)

∂[u(m)]i
∣∣∣∣ ď Cd−2

f d−1
L

∑

k∈Λ

e−γsr�k (u)e−min{γr,γ0}rkm (u)

ď Cd−2
f d−1

L e− 1
2 min{γs,γr,γ0}r�m (u). (6.10)

Therefore,wemaybound the second term in (6.5): for z ∈ Cwithdist(z, σ (H(u; ρ))) ě
d, we have

∑

k∈Λ

∑

1� b� Nb

(
Rz(u; ρ)ab�k

)2
v′(ρ(k))

∂ρ(k)

∂[u(m)]i
ď Cd−2d−2

f d−1
L

∑

k∈Λ

|v′(ρ(k))|e−2γr(d)r�k(u)e− 1
2 min{γs,γr(d f ),γ0}rkm (u)

ď Cd−2d−2
f d−1

L ‖v′‖∞e− 1
4 min{γs,4γr(d),γr(d f ),γ0}r�m (u). (6.11)

Combining (6.6) and (6.11) with d = do and using the fact that o is uniformly bounded
along the contour Co, we can conclude the proof for j = 1.

Higher derivatives canbe treated by takingderivatives of (6.5). Thefirst contribution
in (6.5) is what arises in the linear case and so derivatives of this term can be treated
in the same way as in Chen et al. (2019). We sketch the argument for j = 2 for the
second contribution in (6.5). We fix k ∈ Λ and b ∈ {1, . . . , Nb} and note

∂

∂u(n)

{(
[Rz(u; ρ)]ab�k

)2
v′(ρ(k))

∂ρ(k)

∂u(m)

}

= 2[Rz(u; ρ)]ab�k
∂[Rz(u; ρ)]ab�k

∂u(n)
v′(ρ(k))

∂ρ(k)

∂u(m)
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+
(
[Rz(u; ρ)]ab�k

)2
v′′(ρ(k))

∂ρ(k)

∂u(n)

∂ρ(k)

∂u(m)

+
(
[Rz(u; ρ)]ab�k

)2
v′(ρ(k))

∂2ρ(k)

∂u(n)∂u(m)
. (6.12)

After summing over k ∈ Λ, the first two contributions in (6.12) may be bounded
above by a constant multiple of e−η(r�m (u)+r�n(u)) for some η > 0 depending only on
the exponents in (6.2), (6.6), and (6.11). The final contribution in (6.12) involves the
second derivative of the electronic density which may be bounded above as follows:
using (6.7), we have

∣∣∣∣
∂2ρ(k)

∂u(n)∂u(m)

∣∣∣∣ ď
∣∣∣∣

[
∂(I − L (u; ρ))−1

∂u(n)
φ(m)

]

k

∣∣∣∣ +
∣∣∣∣

[
(I − L (u; ρ))−1 ∂φ(m)

∂u(n)

]

k

∣∣∣∣

ď Ce−η(rkn(u)+rkm (u)) (6.13)

where η > 0 depends only on the exponents in (6.2), (6.4), (6.10) and in the locality
estimates of the first contribution in (6.5). The estimate in (6.13) is easy to prove but
is lengthy and very similar to the calculations above and so is omitted. Using (6.13)
and summing over k ∈ Λ in (6.12) we can conclude.

7 Proofs: Improved Locality Estimates

Before we prove Theorem 2, we require an improved Combes–Thomas type estimate
for the resolvent operators; see Lemma 5. In the following section, we discuss this
result and explain how we can use it despite the fact that the reference and defect
Hamiltonians are defined on different spatial domains. Then, in Sect. 7.2, we show
that the operators H(u; ρ) and L (u; ρ) satisfy the conditions of Lemma 5 and thus
prove Theorem 2.

7.1 Preliminaries

We show an improved resolvent estimate for operators on �2(Λ × {1, . . . , Nb}) that
can be decomposed into a reference operator and two perturbations that are small in
the sense of rank and Frobenius norm (Lemma 5), respectively. First, we need a basic
identity for the inverse of an updated operator (Hager 1989):

Lemma 4 (Woodbury) Suppose that A and P are operators on a Banach space such
that A and A + P are invertible. Then, I + PA−1 and I + A−1P are invertible and

(A + P)−1 = A−1 − A−1(I + PA−1)−1PA−1

= A−1 − A−1P(I + A−1P)−1A−1.
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Proof Firstly, I + PA−1 = (A + P)A−1 is invertible with inverse A(A + P)−1.
Therefore, we have (A + P)−1 − A−1 = (A + P)−1[A − (A + P)]A−1 = −[(I +
PA−1)A]−1PA−1.

The second formulation can be shown similarly.

Using this Woodbury identity, we may prove the following “improved” Combes–
Thomas estimate:

Lemma 5 (Improved Combes–Thomas Resolvent Estimate) Suppose δ, R > 0,
T ref , T FR, T δ are operators on �2(Λ×{1, . . . , Nb}) and define T :=T ref +T FR +T δ .
Further, suppose that:

• ∣∣[T ref ]ab�k

∣∣ ď cT e−γT |�−k| for some cT , γT > 0,
• [T FR]ab�k = 0 if � /∈ Λ ∩ BR or k /∈ Λ ∩ BR,
• ‖T δ‖F ď δ and,
• z ∈ C with d:=dist(z, σ (T )) > 0 and dref :=dist(z, σ (T ref)) − δ > 0.

Then, there exists a constant C, depending on δ, R, cT , γT , ‖T FR‖max, d, dref and
d, such that

∣∣∣∣
[
(T − z)−1

]ab
�k

∣∣∣∣ ď C�ke
−γCT(dref )|�−k| where

C�k :=2(dref)−1 + C(1 + |z|)2e−γCT(dref )(|�|+|k|−|�−k|),

and γCT(dref):=cγT min{1, c−1
T (γT )ddref} is the constant from Lemma 3.

Proof This proof closely follows the ideas of (Chen et al. 2019, Sect. 4.4) but for more
general operators T . We sketch the argument for completeness.

After defining Rz :=(T − z)−1 and Rδ
z :=(T ref + T δ − z)−1, we apply Lemma 4

to obtain:

Rz = Rδ
z − Rδ

z (I + T FRRδ
z )

−1T FRRδ
z = Rδ

z − Rδ
z T

FR(I + Rδ
z T

FR)−1Rδ
z .

(7.1)

We will consider the two terms in (7.1) separately.
Firstly, since dist

(
σ(T ref), σ (T ref + T δ)

) ď ‖T δ‖F ď δ Kato (1995), we may

apply Lemma 3 directly to conclude that |[Rδ
z ]ab�k | ď 2(dref)−1e−γCT(dref )|�−k|.

Next, we note that (I + T FRRδ
z )

−1T FR is a finite rank operator with
[
(I +

T FRRδ
z )

−1T FR
]ab
�k = [

T FR(I + Rδ
z T

FR)−1
]ab
�k = 0 for all (�, k) /∈ (Λ ∩ BR)2.

Therefore,
∣∣∣[Rδ

z (I + T FRRδ
z )

−1T FRRδ
z ]ab�k

∣∣∣ ď ‖(I + T FRRδ
z )

−1T FR‖max
∑

�1,�2∈Λ∩BR

e−γCT(dref )(|�−�1|+|�2−k|)

ď C‖(I + T FRRδ
z )

−1T FR‖maxe
−γCT(dref )(|�|+|k|).

(7.2)
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Weobtain the claimed z-dependence after showing that‖(I+T FRRδ
z )

−1T FR‖max �
(1 + |z|)2. By (7.1), we have

(I + T FRRδ
z )

−1T FR = (T ref + T δ − z)(Rz − Rδ
z )(T

ref + T δ − z)

= −(T ref + T δ − z)RzT
FRRδ

z (T
ref + T δ − z). (7.3)

Using the fact [T FR]ab�1�2
= 0 unless �1, �2 ∈ Λ ∩ BR , we have

|[RzT
FRRδ

z ]ab�k | ď C
∑

�1,�2∈Λ∩BR

e−γCT(dref )|�−�1|e−γCT(d)|�2−k| ď Ce−η(|�|+|k|−2R)

(7.4)

where η:= 1
2 min{γCT(d), γCT(dref)}. Therefore, by combining (7.3) and (7.4), we

obtain

∣∣∣
[
(I + T FRRδ

z )
−1T FR]ab

�k

∣∣∣ ď C

( ∑

�1∈Λ

(cT + δ + |z|)e−η(|�1|−R)

)2

ď C(1 + |z|)2

and can thus conclude. ��

We will now show thatH(u; ρ) andL (u; ρ) can be written as in the statement of
Lemma 5 so that we may apply these improved resolvent estimates.

SinceH(u; ρ) andHref are defined on different spatial domains, we cannot directly
compare the Hamiltonian with the corresponding reference operator. In order to alle-
viate this issue, we follow the arguments of Chen et al. (2019). Firstly, we shift the
operator by a constant multiple of the identity cI and replace the contour and chemical
potential by Co + c and μ + c, respectively, so that 0 is not encircled by Co + c. By
changing variables in the integration, we can conclude that this shift does not affect the
quantities defined by (2.3). We then add zero rows and columns so that the operators
are defined on the same spatial domain Λ ∪ Λref . For example, for �, k ∈ Λ ∪ Λref ,
if � ∈ Λref \ Λ or k ∈ Λref \ Λ, we redefine H̃(u; ρ)ab�k :=0. This only affects the
spectrum by adding zero as an eigenvalue of finite multiplicity and so, because 0 is
not encircled by the contour Co, the value of (2.3) is unchanged. For full details, see
Chen et al. (2019).

By replacingH(u; ρ) by H̃(u; ρ) in (2.3) we obtain Õ�(u; ρ):=O�(u; ρ)χΛ(�). In
particular, if wewrite F̃(u; ρ) as a function of electronic densities defined onΛ∪Λref ,
we find that the Jacobian of F̃(u; ρ)with respect to ρ, which we denote by L̃ (u; ρ), is
obtained fromL (u; ρ) by inserting finitely many additional zero rows and columns.
Therefore, I − L̃ (u; ρ) is invertible with ‖(I − L̃ (u; ρ)

)−1‖�2→�2 ď max{1,d−1
L }.

For the remainder of this paper, we consider the redefined quantities H̃(u; ρ), H̃ref

and L̃ (u; ρ), L̃ ref and drop the tilde in the notation.
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7.2 Proof of Theorem 2: Improved Locality Estimates

Wenow show thatwe can applyLemma5 to theHamiltonian and the stability operators
and thus conclude the proof of Theorem 2.

Lemma 6 (Perturbation of the Hamiltonian) Let u ∈ Ẇ 1,2(Λ) satisfy (L) and ρ be
an associated electronic density satisfying (SC) and (FF).

Then, for all δ > 0, there exist operators Hδ = Hδ(u; ρ) and HFR = HFR(u; ρ)

such that

H(u; ρ) = Href + HFR + Hδ (7.5)

where ‖Hδ‖F ď δ and there exists an R > 0 such that [HFR]ab�k = 0 for all (�, k) /∈
(Λ ∩ BR)2.

Proof Applying (Chen et al. 2019, Lemma 9), we may conclude that (7.5) holds for
the linear Hamiltonian HL(u):

H(u; ρ) = Href + P(u) + Q(u) + D(ρ)

where ‖P(u)‖F ď δ, there exists an R > 0 such that Q(u)ab�k = 0 for all (�, k) /∈
(Λ ∩ BR)2 and D(ρ) is a diagonal operator with Daa

�� = v(ρ(�)) − v(ρref(�)) for all
� ∈ Λ \ BRref . After defining,

DR(ρ)aa�� :=
{
Daa

�� (ρ) if � ∈ Λ ∩ BR

0 otherwise,
we have

lim
R→∞ ‖D(ρ) − DR(ρ)‖�2→�2 = lim sup

|�|→∞
|v(ρ(�)) − v(ρref(�))| = 0.

That is, D(ρ) may be approximated with appropriate finite rank operators.

Remark 6 We remark here that if (FF) is not satisfied then D(ρ) from the Proof of
Lemma 6 is not compact and thusH(u; ρ)−Href is also not compact. This means that,
as noted at the end of Remark 4, the main techniques used in the Proof of Theorem 2
cannot be applied.

We now use Lemma 6 to show an analogous result for the stability operator.

Lemma 7 (Perturbation of the Stability Operator) Let u ∈ Ẇ 1,2(Λ) satisfy (L) and
ρ be an associated electronic density satisfying (SC) and (FF). Then, for all δ > 0,
there exist operators L δ and L FR such that

L (u; ρ) = L ref + L FR + L δ.

where ‖L δ‖F ď δ and there exists an R > 0 such that [L FR]�k = 0 for all (�, k) /∈
(Λ ∩ BR)2.
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Proof Using the notation from Lemma 6, we may apply Lemma 4 and obtain: for
z ∈ C f ,

Rz(u; ρ) = (Href + HFR − z
)−1 + (

Rz(u; ρ) − (Href + HFR − z
)−1)

= Rref
z − Rref

z

(
I + HFRRref

z

)−1HFRRref
z

− Rz(u; ρ)Hδ
(Href + HFR − z

)−1

=:Rref
z + Pz + Qz . (7.6)

Therefore, using (2.11), we have

L (u; ρ)�k − [L ref ]�k = 1

2π i

∮

C f

f (z − μ)
∑

ab

[
Pz + Qz

]ab
�k

[
2Rref

z + Pz + Qz
]ab
�k dz v′(ρ(k)) (7.7)

and so, using the fact that ‖2Rref
z + Pz + Qz‖max < ∞ and arguing as in (7.2), we

have

‖L (u; ρ) − L ref‖2F ď C sup
z∈C f

‖Pz + Qz‖2F ď C sup
z∈C f

(‖Pz‖F + ‖Qz‖F)2

ď C
∑

�,k∈Λ

e−γ1(|�|+|k|)

+ C
∑

�,�1,�2,k∈Λ

∑

a1,a2

e−γ2r��1
∣∣[Hδ]a1a2�1�2

∣∣2e−γ3r�2k

ď C

( ∑

�∈Λ

e−γ1|�|
)2

+ C‖Hδ‖2F ď C (7.8)

where γl :=2γr(dl) and γr is the constant (6.2) with appropriate choices of dl for
l = 1, 2, 3. Here, we have implicitly assumed that δ is sufficiently small such that for
all z ∈ C f , we have dist(z, σ (Href + HFR)) ě d3 > 0. Therefore, by applying (7.8),
for sufficiently large R, we can define

[L FR]�k :=
{

[L (u; ρ) − L ref ]�k if �, k ∈ Λ ∩ BR

0 otherwise

and conclude ‖L (u; ρ) − L ref − L FR‖F ď δ.

For fixed (u, ρ) and δ > 0 sufficiently small, we fix operators HFR,Hδ and
L FR,L δ as in Lemmas 6 and 7 and apply Lemma 5 to obtain: for z ∈ C with
dist(z, σ (H(u; ρ))) ě d > 0 and dist(z, σ (Href)) − δ ě dref > 0 we have
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∣∣Rz(u; ρ)ab�k

∣∣ ď C�ke
−γr(d

ref )|�−k| where

C�k :=2(dref)−1 + C(1 + |z|)2e−γr(d
ref )(|�|+|k|−|�−k|) (7.9)

and γr(d
ref) = cmin{1, dref } is the constant from (6.2). We will apply (7.9) with

z ∈ C f (with d = d f and dref = dreff :=minz∈C f dist(z, σ (Href)) − δ) and z ∈ Co

(with d = do and dref = drefo :=minz∈Co
dist(z, σ (Href)) − δ).

By (2.11), we have
∣∣L (u; ρ)�k

∣∣ � C2
�ke

−2γr(d
ref
f )|�−k| and so, applying Lemma 5

again but now with T replaced withL (u; ρ) (and with z = 1), we obtain,

∣∣∣∣
[
(I − L (u; ρ))−1

]ab
�k

∣∣∣∣ ď C̃�ke
−γ ref

s r�k where

C̃�k :=2(drefL )−1 + Ce−γ ref
s (|�|+|k|−|�−k|) (7.10)

and γ ref
s :=c1γr(d

ref
f )min{1,C−2

�k γr(d
ref
f )ddrefL } with drefL :=dist(1, σ (L ref)) − δ. By

expanding γr(d
ref
f ) in terms of dreff , we obtain γ ref

s = c2 min
{
1,dreff ,C−2

�k

min{1, (dreff )d+1}drefL
}
.

Proof of Theorem 2 The arguments in the Proof of Theorem 1 can be applied with
the resolvent estimates of (6.2) and (6.4) replaced with the corresponding improved
estimates (7.9) and (7.10). This means that the exponents γr(d) and γs can be replaced
with the improved exponents γr(d

ref) and γ ref
s , respectively, and the pre-factors can

be replaced with constants that depend on the atomic sites. These constants decay
exponentially to the constants in the defect-free case as the subsystem moves away
from the defect core together. This can be seen by noting thatC�k → 2(dref)−1 (where
C�k is the constant from (7.9)) and C̃�k → 2(drefL )−1 (where C̃�k is the constant from
(7.10)) as |�| + |k| − |� − k| → ∞ with exponential rates. See (Chen et al. 2019,
(4.21)–(4.23)) for the analogous argument in the linear case that can be readily adapted
to the setting we consider here. ��
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Appendix A: Band Structure of Href the Reference Hamiltonian and
L ref the Reference Stability Operator

Recall that the unit cell Γ ⊂ Λref is finite and satisfies Λref = ⋃
γ∈Zd (Γ + Aγ ) and

Γ +Aγ pairwise disjoint for each γ ∈ Z
d . Suppose Γ � ⊂ R

d is a bounded connected
domain containing the origin and such that Rd = ⋃

η∈Zd (Γ � + 2πA−Tη) and the

Γ � + 2πA−Tη are disjoint. Therefore, for each ξ ∈ R
d , there exist unique ξ0 ∈ Γ �

and η ∈ Z
d such that ξ = ξ0 + 2πA−Tη, and since Aγ · A−Tη = γ · η, we have

e−iAγ ·ξ = e−iAγ ·ξ0 for γ ∈ Z
d .

Let us define the unitary operator U : �2(Λref × {1, . . . , Nb}) → L2
(
Γ �; �2(Γ ×

{1, . . . , Nb})) by

(Uψ)ξ (�; a) =
∑

γ∈Zd

ψ(� + Aγ ; a)e−i(�+Aγ )·ξ .

Here, L2
(
Γ �; �2(Γ × {1, . . . , Nb})

)
is a Hilbert space with inner product

〈Ψ , Φ〉L2(Γ �;�2):=
1

|Γ |
∫

Γ �

〈Ψξ ,Φξ 〉�dξ = 1

|Γ |
∑

�∈Γ

∑

1 a Nb

∫

Γ �

Ψξ (�; a)Φξ (�; a)dξ.

A simple calculation reveals that (UHrefψ)ξ = Href
ξ (Uψ)ξ where

[Href
ξ ]ab�k =

∑

γ∈Zd

hab�k (� − k + Aγ )e−i(�−k+Aγ )·ξ + δ�kδab
∑

γ∈Zd

v(ρref(�))e−iAγ ·ξ .

Letting λn(ξ) be the ordered eigenvalues ofHref
ξ for ξ ∈ Γ � and n = 1, . . . , Nb · #Γ ,

we can use the fact that U is unitary to conclude that,

σ(Href) =
⋃

n

⋃

ξ∈Γ �

λn(ξ).

Since λn : Γ � → R are continuous, we may conclude that σ(Href) is composed of
finitely many spectral bands.

Similarly,

σ(L ref) =
⋃

ξ∈Γ �

σ (L ref
ξ ), where

[
L ref

ξ

]
�k =

∑

γ∈Zd

1

2π i

∮

C f

f (z − μ)

Nb∑

a,b=1

(
[Rref

z ]ab�+Aγ,k

)2
dz v′(ρ(k))e−i(�−k+Aγ )·ξ .
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