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Abstract
We examine micromagnetic pattern formation in chiral magnets, driven by the
competition of Heisenberg exchange, Dzyaloshinskii–Moriya interaction, easy-plane
anisotropy and thermodynamic Landau potentials. Based on equivariant bifurcation
theory, we prove existence of lattice solutions branching off the zero magnetiza-
tion state and investigate their stability. We observe in particular the stabilization
of quadratic vortex–antivortex lattice configurations and instability of hexagonal
skyrmion lattice configurations, and we illustrate our findings by numerical studies.

Keywords Micromagnetics · Dzyaloshinskii–Moriya interaction · Skyrmions ·
Vortices · Lattice solutions · Equivariant bifurcation · Spectral stability

Mathematics Subject Classification 37G40 · 35Q82 · 82D40

1 Introduction andMain Results

Dzyaloshinskii–Moriya interaction (DMI) is the antisymmetric counterpart of Heisen-
berg exchange. It arises from the lack of inversion symmetry in certain magnetic
system, induced by the underlying crystal structures or by the system geometry in
the presence of interfaces. In micromagnetic models, DMI arises in the form of linear
combinations of the so-called Lifshitz invariants, i.e., the components of the chirality
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tensor ∇m × m and is therefore sensitive with respect to reflections and independent
rotation in the domain and the target space, respectively. It is well-known that DMI
gives rise to modulated phases. The basic phenomenon is that the energy of the homo-
geneous magnetization state m = const. can be lowered by means of spiralization
in the form of periodic domain wall arrays, the helical phase. A prominent form of
doubly periodic lattice state arises from the stabilization of topological structures,
so-called chiral skyrmions, in two-dimensional chiral ferromagnets. Chiral skyrmions
are localized structures which are topologically characterized by a unit S

2 degree and
a well-defined helicity depending on the specific form of DMI. In the presence of
sufficiently strong perpendicular anisotropy and/or Zeeman field interaction, chiral
skyrmions occur as local energy minimizers in form of isolated topological solitons.
Zeeman field interaction enables the possibility of an intermediate regimewhere chiral
skyrmion embedded into a hexagonal lattice is expected to be globally energy min-
imizing. Micromagnetic theories including DMI have been proposed in Bogdanov
and Yablonskii (1989) with the idea that skyrmion lattice configurations represent a
magnetic analog of the mixed state in type-II superconductors. Corresponding phase
diagrams and stability questions have been examined analytically and numerically in
the seminal work (Bogdanov and Hubert 1994, 1999), see Leonov et al. (2016) for a
recent review. A fully rigorous functional analytic theory on the existence, stability,
asymptotics, internal structure and exact solvability of isolated chiral skyrmions has
recently started to emerge (Melcher 2014; Döring and Melcher 2017; Li and Melcher
2018; Komineas et al. 2019, 2020; Barton-Singer et al. 2020; Bernand-Mantel et al.
2019).

Lattice states in two-dimensional Ginzburg–Landau models for chiral magnets
including thermodynamic effects have been proposed theoretically in Rößler et al.
(2006), see also Mühlbauer et al. (2009) and Yu et al. (2018). Mathematically, one
may expect a close analogy with Abrikosov’s vortex lattice solutions in Ginzburg–
Landau models for superconductors (Abrikosov 1957) with a well-established theory
in mathematical analysis. The occurrence of Abrikosov lattices in the framework of
gauge-periodic solutions of Ginzburg–Landau equations and the optimality of hexag-
onal lattices has been thoroughly investigated by means of variational methods and
bifurcation theory (Barany et al. 1992; Odeh 1967; Tzaneteas and Sigal 2009; Aydi
and Sandier 2009; Aftalion et al. 2006; Sandier and Serfaty 2012).

Ginzburg–Landau models in micromagnetics are, in contrast to superconductivity,
directly formulated in termsof the physically observablemagnetizationfield.Aclass of
such models has been proposed and examined computationally in Rößler et al. (2006)
andMühlbauer et al. (2009). Compared to the purely ferromagnetic case |m| = const.,
Ginzburg–Landau models offer a larger variety of patterns, including vortex and half-
skyrmion arrays of opposite in-plane winding on square lattices, and skyrmions on
hexagonal lattices, see Fig. 1.

We shall examine the occurrence of periodic solutions near the paramagnetic state
of zero magnetization, i.e., in a high temperature regime. Our starting point are mag-
netization fields m : R

2 → R
3 governed by energy densities of the form

A|∇m|2 + D m · (∇ × m) + f (m) + K (m · ê3)2.
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Fig. 1 The two-dimensional modulations on a a square lattice and b a hexagonal lattice (Color figure online)

The Dirichlet term with A > 0 is referred to as Heisenberg exchange interaction.
The helicity term with D �= 0 is a prototypical form of DMI arising in the context
of noncentrosymmetric cubic crystals. Note that for m = (m,m3) defined on a two-
dimensional domain

∇ × m =
(−∇⊥m3

∇⊥ · m
)

where ∇⊥ = (−∂2, ∂1).

Akey analytical feature induced byDMI is the loss of independent rotational symmetry
in magnetization space R

3 and the domain R
2. Finally, the Landau term f is an even

polynomial in the modulus |m|

a(T − TC)|m|2 + b|m|4 + c|m|6 + d|m|8 + · · ·

where T −TC is the deviation from the Curie temperature.We shall focus on aminimal
model with

a(T − TC)|m|2 + b|m|4 where a, b > 0.

For stability reasons,we also include the easy-plane anisotropy K (m·ê3)2 with K > 0,
which typically emerges as a reduced form of magnetostatic stray-field interaction in
thin-film geometries, see, e.g., Gioia and James (1997).

We are interested in magnetization fields m which are periodic with respect to a
two-dimensional lattice r� (r > 0) with

� = 2π

Im τ
(Z ⊕ τZ)

where τ is a complex number in the fundamental domain of the modular group,
referred to as the lattice shape parameter, see Sect. 2.1. Rescaling spacewemay assume
r = 1. The rescaled energy density reads

e(m) = 1

2
|∇m|2 + κ m · (∇ × m) + λ

2
|m|2 + α

4
|m|4 + β

2
(m · ê3)2 (1)
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with dimensionless constants

κ = Dr

2A
, λ = a(T − TC)r2

A
, α = 2br2

A
and β = Kr2

A
. (2)

Since a sign reversal of the DM density can be achieved by reflections such as m3 �→
−m3, we may assume w.l.o.g that κ > 0.

Euclidean Symmetry The planar model to be examined arises from dimensional
reduction. It is instructive to return to the original setting and consider the energy
density on fields m from R

3. In the case β = κ = 0, we have invariance with respect
to the following action of the Euclidean group in R

3

m(x) �→ Rm(RT (x − t)) for x ∈ R
3 and (R, t) ∈ O(3) � R

3.

In the case β = 0 but κ �= 0, the reflection symmetry is broken and invariance is
restricting to the special Euclidean group with R ∈ SO(3), see Lemma 6. Including
anisotropy β �= 0 and κ �= 0 amounts to a further restriction of the rotation group to
elements of the form

R =
(
R 0
0 det R

)
where R ∈ O(2) (3)

defining an embedding O(2) ↪→ SO(3). Restricting to only horizontal translations
t = (t, 0) with t ∈ R

2 amounts to invariance of the two-dimensional model with
respect to the action of the Euclidean group in R

2

m(x) �→ Rm(RT (x − t)) for x ∈ R
2 and (R, t) ∈ O(2) � R

2 (4)

where R ∈ SO(3) is given by (3).
We shall investigate the occurrence and stability of non-trivial �-periodic critical

points m of the average energy over a primitive cell ��

E�(m) :=
 

��

e(m) dx, (5)

i.e., of non-trivial �-periodic solutions m to the Euler–Lagrange equation

F(m, λ) = −	m + 2κ∇ × m + λm + α|m|2m + βm3 ê3 = 0. (6)

We first discuss energy minimizing solutions.

Theorem 1 Suppose α > 0, β ≥ 0, and κ > 0.

(i) If λ > κ2, then m ≡ 0 is the unique energy minimizer on every lattice.
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(ii) If λ < κ2 and β = 0, then the helix

m(x) = M (0, cos(κx1), sin(κx1)) where M =
√

κ2 − λ

α
(7)

(see Fig. 2) is up to a joint rotation the unique energy minimizer on suitable
lattices.

In the isotropic case β = 0, Theorem 1 indicates the existence of only two phases,
paramagnetic or helical, while the picture in the anisotropic case β > 0 is incomplete.
The occurrence of helical phases is common to other mathematically related theories
for condensed matter such as the Oseen–Frank model for chiral liquid crystals (see,
e.g., Virga 1995) or the Gross–Pitaevskii model for spin–orbit coupled Bose–Einstein
condensates (see, e.g., Aftalion and Rodiac 2019). Helical structures in chiral ferro-
magnets are also discussed in Davoli and Di Fratta (2020) and Muratov and Slastikov
(2017).

Here, we are interested in doubly periodic solutions. Given a lattice �, we aim to
find λ and a non-trivial �-periodic solution m of (6) at λ. We call such pairs (m, λ)

�-lattice solutions and will prove the following:

Theorem 2 Suppose α > 0, β ≥ 0, κ > 0, and � = 2π
Im τ

(Z ⊕ τZ). Then, (6) has a
branch of �-lattice solution (ms, λs), analytically parameterized by a real parameter
s near 0, in a neighborhood of m0 ≡ 0 and

λ0 = −1 − β

2
±

√
4κ2 + β2

4
, (8)

provided λ0 satisfies the non-resonances condition that

λ0 �= −|ω|2 − β

2
±

√
4κ2|ω|2 + β2

4
(9)

for any ω ∈ �∗\S
1 where �∗ denotes the dual lattice, see Sect. 2.3.

The branch (ms, λs) has the form

ms = sϕ1 + O(s3), λs = λ0 + s2ν2 + O(s4) (10)

as s → 0 with ν2 < 0 and ϕ1 explicitly determined. Furthermore, we have

ν2 = −α
〈|ϕ1|4〉
〈|ϕ1|2〉2

< 0 (11)

and

E�(ms, λs) = s4

4

(
−α

〈|ϕ1|4〉
〈|ϕ1|2〉2

)
+ O(s6) (12)
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Fig. 2 The one-dimensional modulations on a non-equilateral lattice (Color figure online)

where 〈·〉 denote the average over a primitive cell ��.

The morphology of bifurcation solutions is related to symmetry properties of the
underlying lattice. Depending on this, the first-order bifurcation solution ϕ1, arising
from the first critical wave number, indicates a threefold pattern formation:

1. Helical pattern exists on all lattices, the first-order bifurcation solution (29) is given
by a single helical mode (see Fig. 2);

2. Vortex–antivortex pattern exists on equilateral lattices, the first-order bifurcation
solution (30) is a superposition of two helices propagating in different directions,
see Fig. 1a;

3. Skyrmionic pattern exists only on hexagonal lattices, the first-order bifurcation
solution (31) is a superposition of three helices propagating in distinct directions,
see Fig. 1b.

We say that a bifurcation solution (ms, λs) is linearly stable under �-periodic
perturbations if the linearized operator Ls = DmF(ms, λs) is non-negative with a
kernel that is only induced by translations, i.e.,

ker Ls = span {∂1ms, ∂2ms}.

Reducing the domain of the bifurcation parameter s if necessary we shall prove the
following stability properties of quadratic vortex–antivortex and hexagonal skyrmion
bifurcation solutions obtained in Theorem 2:

Theorem 3 Let α > 0, β ≥ 0 and κ > 0 satisfying

λ0 = −1 − β

2
+

√
4κ2 + β2

4
> 0 (13)

and

4κ2 ≤
√
4κ2 + β2

4
+

√
4κ2γ 2 + β2

4
(14)
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where γ is the second critical wave number, i.e.,

γ =
⎧⎨
⎩

|τ | for |τ | > 1,√
2 − 2 cos θ, for |τ | = 1, π

3 < θ ≤ π
2 ,√

3 for |τ | = 1, θ = π
3 ,

depending on the lattice shape τ = |τ |eiθ .
(i) On square lattices, the vortex–antivortex lattice solution is linearly stable under

�-periodic perturbations if β > 4√
3
κ and unstable if β < 4√

3
κ .

(ii) On hexagonal lattices, the skyrmion lattice solutions are unstable under �-
periodic perturbations for any β ≥ 0.

If λ0 ≤ 0, bifurcation solutions are unstable, independently of β ≥ 0, (14), and the
lattice shape.

Remark 1 Helical bifurcation solutions on the square lattice have the same transition
point: stability for β < 4√

3
κ and instability for β > 4√

3
κ , see Li (2020).

Corollary 1 The quadratic vortex–antivortex lattice configuration exists and is stable
if

β >
4√
3
κ, β ≥

√
16κ4 − 24κ2 + 1 and β < 4κ2 − 1.

The admissible set of (κ, β) is not empty, see Fig. 3.

The existence and stability results are only an initial step towards understanding
the stabilization of two-dimensional lattice solutions in chiral magnets. In particular,
stability of lattice solutions is only examined under the simplest perturbations which
preserve lattice periodicity. A more general stability result in the style of Sigal and
Tzaneteas (2018) is beyond the scope of this work and requires a different approach.

The mathematical framework for our construction of lattice solutions is the equiv-
ariant branching lemma (Chossat and Lauterbach 2000; Golubitsky et al. 2012), a
concept of symmetry-breaking bifurcation based on a particular type of (axial) sym-
metry group. More precisely, letting

�� = P� � T�, (15)

where P� ⊂ O(2) is the point group (or holohedry) of� andT� = R
2/� is the torus of

translations modulo�, the Euclidean symmetry (4) induces an action of �� on spaces
of �-periodic fields m. For each lattice, we identify all isotropy subgroups � ⊂ ��

(up to conjugacy) so that the fixed subspace of � in the kernel of linearized operator
DmF(m0, λ0) is one-dimensional. By means of an equivariant Lyapunov–Schmidt
procedure, (6) reduces to a one-dimensional bifurcation equation.The implicit function
theorem provides a solutions to the bifurcation equation in the one-dimensional fixed
subspace of �, from which a solution to (6) can be reconstructed. This solution is the
bifurcation solution and inherits the symmetries featured by �.
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Fig. 3 The admissible set of (κ, β) for a stable quadratic vortex–antivortex lattice (indicated by the grey
shaded area)

In Sect. 2, we shall briefly recall the representation of lattices in the plane with an
emphasis on symmetry and Fourier series which are key to our bifurcation argument.
In Sect. 3, we shall derive energy bounds proving Theorem 1. Solving the linearized
version of Eq. (6) explicitly by Fourier methods is the key ingredient to the proof
of Theorem 2 in Sect. 4 and provides insight about the morphology and topology of
bifurcation solutions. In Sect. 5, we investigate the stability of bifurcation solutions
under �-periodic perturbations proving Theorem 3 . Finally, in Sect. 6 we validate
our analytical results by a series of numerical simulations of gradient flows using a
modified Crank–Nicolson scheme.

2 Preliminaries

2.1 Representation of Lattices

Recall that a planar lattice � is the integer span of two linearly independent vectors
t1, t2 ∈ R

2, i.e.,

� = {m1t1 + m2t2 : m ∈ Z
2}.

Given x ∈ R
2, a primitive cell of � is a set of the form

�� = {x + a1t1 + a2t2, a1, a2 ∈ [0, 1]}.
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Fig. 4 The lattice cell �� determined by lattice basis { 2π
Im τ

ê1,
2π
Im τ

τ }

The lattice basis {t1, t2} is clearly non-unique. Identifying R
2 ∼= C, however, the

complex ratio τ ∈ C of two basis vectors of � contained in the fundamental domain

T =
{
|τ | ≥ 1 : Im τ > 0,−1

2
< Re τ ≤ 1

2
and Re τ ≥ 0 if |τ | = 1

}
(16)

parametrizes the lattice shape uniquely, see, e.g., Ahlfors (1953). Writing τ = |τ |eiθ ,
the range of |τ | and θ corresponding to fundamental domain (16) is

π

3
≤ θ <

2π

3
if |τ | ≥ 1 and

π

3
≤ θ ≤ π

2
if |τ | = 1. (17)

A lattice is called equilateral if |τ | = 1, where the borderline cases θ = π/2 and
θ = π/3 are referred to as square and hexagonal lattice, respectively; other equilateral
lattices are called rhombic.

There are two distinct types of symmetries preserving the lattice: the lattice transla-
tions and the holohedry group P�, which is a finite subgroup of O(2). Non-equilateral
lattices have holohedry Z2 (oblique) or D2 (rectangular); rhombic lattices have holo-
hedry D2; square lattices have holohedry D4; hexagonal lattices have holohedry D6,
where Dk is the dihedral group generated by rotation through 2π/k and a reflection,
see, e.g., Chossat and Lauterbach (2000).

2.2 Function Spaces on Lattices

As the governing energy densities and the Euler–Lagrange equations are invariant
under translation and joint rotation,we canfix one basis vector of the lattice� as 2πr ê1
so that � = 2πr(Z ⊕ τZ) is uniquely characterized by r and τ . Upon rescaling, we
can arrange � = 2π

Im τ
(Z ⊕ τZ) spanned by { 2π

Im τ
ê1, 2π

Im τ
τ } and consider the rescaled

density (1) containing only dimensionless parameters, see Fig. 4.
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For �-periodic functions or fields f , g on R
2, we denote the average by

〈 f 〉 :=
 

��

f (x) dx = 1

|��|
ˆ

��

f (x) dx,

the L2 scalar product by

〈 f , g〉 :=
 

��

f (x) · g(x) dx,

and the L2 norm by ‖ f ‖ := √〈 f , f 〉 once existent. Accordingly, we define

L2
� := { f : R

2 → R
3� − periodic with ‖ f ‖ < ∞}

and for k ∈ N the Sobolev spaces

Hk
� := { f ∈ L2

� : ∂v f ∈ L2
� for all |v| = k}

which are subspaces of L2
loc := L2

loc(R
2; R

3) and Hk
loc := Hk

loc(R
2; R

3), respectively.
Thanks to Sobolev embedding, the average energy (5) defines an analytic functional
on H1

�. Critical points m ∈ H2
� of E� satisfy

F(m, λ) = 0

where F : H2
loc × R → L2

loc is the nonlinear operator given by

F(m, λ) = −	m + 2κ∇ × m + λm + α|m|2m + βm3 ê3. (18)

2.3 Dual Lattice and Fourier Series

Fourier expansion on � requires the notion of dual lattice given by

�∗ = {v ∈ R
2 : u · v ∈ 2πZ for all u ∈ �}.

In particular, �∗ = A−T
Z
2 for � = 2πAZ

2 where in our setting

A = 1

|τ | sin θ

(
1 |τ | cos θ

0 |τ | sin θ

)
and A−T =

( |τ | sin θ 0
−|τ | cos θ 1

)
. (19)

In the equilateral case |τ | = 1, dual lattices remain square if θ = π/2 and hexagonal
if θ = π/3.
For f ∈ L2

� and v ∈ �∗, Fourier coefficients are defined as

f̃ (v) =
 

��

f (x)e−i v·x dx,
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and the following Fourier expansion

f (x) =
∑
v∈�∗

f̃ (v)ei v·x

holds true in the L2 sense along with Parseval’s identity

 
��

| f (x)|2 dx =
∑
v∈�∗

| f̃ (v)|2.

2.4 Equivariance and Lattice Symmetry

The action of an element γ = (R, t) of the group �� = P� � T�, the semi-direct
product of the holohedry of � and translations modulo �, on a field m : R

2 → R
3

given by

(γ • m)(x) = Rm(R−1(x − t)) for x ∈ R
2

where the corresponding R ∈ SO(3) is determined by (3), is an isometry on Hk
� for

every k ∈ N0, and the operator (18) is ��-equivariant in the sense that

F(γ • m, λ) = γ • F(m, λ)

for all γ ∈ ��, m ∈ H2
� and λ ∈ R, see Lemma 6

The symmetry of a field φ ∈ H2
� is given in terms of the isotropy subgroup

�φ = {σ ∈ �� : σ • φ = φ},

i.e., the largest subgroup of �� which fixes φ. Given a subspace X ⊂ H2
�, the fixed

subspace associated with a subgroup � ⊆ �� in X is

FixX (�) = {φ ∈ X : σ • φ = φ}.

L2
� orthogonal projections on such invariant subspaces of H2

� are equivariant. Equiv-
ariance therefore propagates to the Lyapunov–Schmidt decomposition enabling a
reduction in the bifurcation equation to FixX0(�) where X0 is the kernel of the lin-
earization of F at a bifurcation point (0, λ0), see, e.g., Chossat and Lauterbach (2000).
Bifurcation solutions arising from the equivariant branching lemma turn out to have
full � symmetry and are unique in this class.

Anticipating the results in Sect. 4,we introduce a set of isotropy subgroups�i ⊆ ��

on different lattice types, which play a central role in our bifurcation argument. In
Proposition 2, we shall prove that the �i are indeed axial, i.e., have one-dimensional
fixed-point subspace in the kernel X0.

On non-equilateral lattices (|τ | > 1), we consider the symmetry group

�1 = Z2 � T1 (20)
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where T1 are the translations in x1-direction and Z2 = {I , R} with associated SO(3)
elements

I =
⎛
⎝1 0 0
0 1 0
0 0 1

⎞
⎠ and R =

⎛
⎝−1 0 0

0 −1 0
0 0 1

⎞
⎠ .

The corresponding bifurcation solutions feature a�1-invariant pattern of helices prop-
agating in the x2 direction (Fig. 2).

Equilateral lattices (|τ | = 1 and π
3 ≤ θ ≤ π

2 ) have an additional symmetry given by
reflections across the diagonals of the lattice cell. Therefore, in this case, we consider,
in addition to �1, the symmetry group

�2 = {I , R, R+
θ , R−

θ } = D2 (21)

where the associated SO(3) elements are

R+
θ =

⎛
⎝cos θ sin θ 0
sin θ − cos θ 0
0 0 −1

⎞
⎠ and R−

θ =
⎛
⎝− cos θ − sin θ 0

− sin θ cos θ 0
0 0 −1

⎞
⎠ .

Bifurcation solutions corresponding to �2 are doubly periodic array of vortices and
antivortices (Fig. 1a).

For the hexagonal lattice (|τ | = 1 and θ = π
3 ), in addition to �1 and �2, the

symmetry group considered is the cyclic subgroup Z6 of D6 generated by rotation
through π

3

�3 = {Rk, k = 0, 1, . . . , 5} (22)

where the corresponding SO(3) elements are

Rk =
⎛
⎝cos kπ

3 − sin kπ
3 0

sin kπ
3 cos kπ

3 0
0 0 1

⎞
⎠ .

Bifurcation solutions corresponding to �3 are hexagonal skyrmion lattices (Fig. 1b).

3 Energy Bounds on Lattices

For a lattice � and e(m) given by (1), we examine ansatz-free lower bounds

E�(m) =
 

��

e(m) dx . (23)
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We start by expressing the total exchange density

e0(m) = 1

2
|∇m|2 + κ m · (∇ × m)

as a sum of sign definite terms and a null Lagrangian also know as Frank’s formula in
the theory of liquid crystals, see, e.g., Virga (1995) Chapter 3.

Lemma 1 For m ∈ H1
loc(R

3; R
3), the following holds

e0(m) = 1

2

(
(∇ · m)2 + |∇ × m + κm|2 − κ2|m|2 + ∇ · [(m · ∇)m − m(∇ · m)]

)

in the sense of distributions. In particular for m ∈ H1
�

E�(m) ≥
 

��

|m|2
2

(
λ − κ2 + α

2
|m|2

)
dx

with equality if and only if ∇ × m + κm = 0 and β = 0.

From the lemma, we obtain immediately claim (i) in Theorem 1, and moreover:

Proposition 1 If λ < κ2, the energy admits a lower bound

E�(m) ≥ − (λ − κ2)2

4α

which for β = 0 is precisely attained for m of constant modulus

|m| =
√

κ2 − λ

α

and such that ∇ × m + κm = 0.

The unimodular Beltrami fields being parallel to their curl have been classified
by Ericksen within the variational theory of liquid crystals, see, e.g., Virga (1995)
and references therein. For the present case of constant κ , those are helices of pitch
2π/|κ|, i.e., (7). For the convenience of the reader, we present this fundamental result
in Appendix A Lemma 7, which yields claim (ii) in Theorem 1. Thus, in order to
realize the lower energy bound, the underlying lattice � is required to accommodate
such a helix. In this case, the zero state loses its linear stability at λ = κ2. In fact, the
Hessian

H�(m)〈φ,φ〉 = d2

ds2

∣∣∣∣
s=0

E�(m + sφ)
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for m,φ ∈ H1
� at m ≡ 0 reads

H�(0)〈φ,φ〉 =
 

��

|∇φ|2 + 2κ φ · (∇ × φ) + λ|φ|2 dx .

By the preceding arguments, it satisfies

H�(0)〈φ,φ〉 ≥ (λ − κ2)〈|φ|2〉

and has a helical instability at λ = κ2.

4 Bifurcation on Lattices

In this section, we prove Theorem 2 based on the equivariant branching lemma. The
requisite assumptions are summarized in Proposition 2. Bifurcation points λ0 arising
from the first critical wave number are identified by means of a Fourier expansion in
Lemma 2 in combination with Lemma 3.

We examine the linearization

L(λ) = DmF(0, λ) : H2
� → L2

�

of F at m = 0 for arbitrary λ given by

L(λ)φ = −	φ + 2κ∇ × φ + λφ + βφ3 ê3.

We need to find non-trivial �-periodic solutions φ of the equation

− 	φ + 2κ∇ × φ + λφ + βφ3 ê3 = 0 (24)

for λ = λ0 depending on κ and β.

Lemma 2 Equation (24) admits non-constant solutions φ ∈ H2
� if and only if

λ = −|v|2 − β

2
±

√
4κ2|v|2 + β2

4

for some v ∈ �∗\{0}.
Proof We expand φ ∈ H2

� in Fourier series

φ(x) =
∑
v∈�∗

φve
iv·x =

∑
v∈�∗

⎛
⎝av

bv

cv

⎞
⎠ eiv·x
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for x ∈ R
2, where, recalling (19),

v = (v1, v2) = A−T k =
(

Im τk1
−Re τk1 + k2

)
. (25)

Since

−	φ(x) =
∑
v∈�∗

|v|2
⎛
⎝av

bv

cv

⎞
⎠ eiv·x and ∇ × φ =

∑
v∈�∗

⎛
⎝ iv2cv

−iv1cv

i(v1bv − v2av)

⎞
⎠ eiv·x ,

the linearized equation (24) is equivalent to the system

|v|2av + 2κiv2cv + λav = 0

|v|2bv − 2κiv1cv + λbv = 0

|v|2cv + 2κi(v1bv − v2av) + λcv + βcv = 0,

for all v ∈ �∗. Constant solutions with v = 0 exist only if λ = 0 or λ + β = 0. For
v �= 0, we have

av = − 2κiv2
|v|2 + λ

cv, bv = 2κiv1
|v|2 + λ

cv (26)

and

(
|v|2 + λ + β − 4κ2|v|2

|v|2 + λ

)
cv = 0

which is possible for cv �= 0 only if λ = −|v|2 − β

2
±

√
4κ2|v|2 + β2

4
. ��

We focus on thewave vectors v ∈ �∗\{0} of shortest lengthwhich are characterized
by minimizing problem

|v|2 = min
k∈Z2\{0}

(
(Im τ k1)

2 + (Re τ k1 − k2)
2
)
.

A straightforward analysis yields (see Fig. 5):

Lemma 3 Let v ∈ �∗\{0}. Then, |v| is minimized by
(i) k = (0,±1) if |τ | > 1,
(ii) k = (±1, 0), (0,±1) if |τ | = 1, π

3 < θ ≤ π
2 , and

(iii) k = (±1, 0), (0,±1),±(1, 1) if |τ | = 1, θ = π
3 .
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Fig. 5 The critical circle with radius 1 around 0 and the critical wave vectors (red points) on the dual lattice
of a a non-equilateral lattice, b rhombic lattice, c square lattice and d hexagonal lattice (Color figure online)

Possible bifurcations at λ corresponding to wave numbers larger than |v| = 1 turn
out to be unstable, see proof of Lemma 4 below. Hence, we shall consider bifurcation
occurring at

λ0 = −1 − β

2
±

√
4κ2 + β2

4

satisfying (9), which guarantees that only the first non-trivial wave number contributes
to the kernel of the linearization.

Proposition 2 Under the assumptions of Theorem 2, the linearization

L0 := DmF(0, λ0) : H2
� ⊂ L2

� → L2
�

is a self-adjoint Fredholm operator with dim ker L0 = N, where N = 2 on non-
equilateral lattices, N = 4 on rhombic and square lattices and N = 6 on hexagonal
lattices. The fixed subspace of the corresponding symmetry group �i , i = 1, 2, 3, (see
Sect. 2.4) in X0 = ker L0 is one-dimensional,

FixX0(�i ) = span {ϕ(i)
1 }.

Proof The normalized Fourier coefficients (26) obtained in the proof of Lemma 2 are

φv = 1√
1 + A2

⎛
⎜⎝A

(
− iv2|v|
iv1|v|

)

1

⎞
⎟⎠ where A = 2κ

−β
2 ±

√
4κ2 + β2

4

. (27)

The corresponding real-space solutions of (24) to the wave vector v are

φ1,v(x) = φve
iv·x + φ−ve

−iv·x = 1√
1 + A2

⎛
⎜⎝A

(
v2|v| sin(v · x)

− v1|v| sin(v · x)
)

cos(v · x)

⎞
⎟⎠
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and

φ2,v(x) = iφve
iv·x + iφ−ve

−iv·x = 1√
1 + A2

⎛
⎜⎝A

(
v2|v| cos(v · x)

− v1|v| cos(v · x)
)

− sin(v · x)

⎞
⎟⎠

satisfying

φ1,−v = φ1,v and φ2,−v = −φ2,v. (28)

We need to find all solutions of L0φ = 0 for a given wave number |v|. According
to Lemma 3, we consider following cases separately.

Case 1 Non-equilateral lattice, |τ | > 1
The wave vector (25) corresponding to k = (0, 1) is

v(1) =
(
0
1

)
∈ �∗.

Therefore, taking into account (28),

ker L0 = span{φ1,v(1) ,φ2,v(1)}.

�1 given in (20) is the only axial isotropy subgroup. More precisely

FixX0(�1) = span{ϕ(1)
1 }

with the L2
� normalized

ϕ
(1)
1 = √

2φ1,v(1) =
√

2

1 + A2

⎛
⎝A sin(x2)

0
cos(x2)

⎞
⎠ . (29)

Case 2 Rhombic or square lattice, |τ | = 1, π
3 < θ ≤ π

2
The wave vectors (25) corresponding to k = (1, 0) and (0, 1)

v(2) =
(

sin θ

− cos θ

)
and v(3) =

(
0
1

)
.

Therefore, taking into account (28),

ker L0 = span{φi,v( j) , i = 1, 2, j = 2, 3}.

As in Case 1, we have

FixX0(�1) = span{ϕ(1)
1 } where ϕ

(1)
1 = √

2φ1,v(2) .
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The fixed subspace of �2 (see (21)) in the kernel X0 is

FixX0(�2) = span{ϕ(2)
1 }

with the L2
�-normalized field

ϕ
(2)
1 = φ1,v(2) − φ1,v(3)

= 1√
1 + A2

⎛
⎝A

(− cos θ sin(sin θx1 − cos θx2) − sin(x2)
− sin θ sin(sin θx1 − cos θx2)

)

cos(sin θx1 − cos θx2) − cos(x2)

⎞
⎠ . (30)

Case 3 Hexagonal lattice, |τ | = 1, θ = π
3

The wave vectors (25) corresponding to k = (1, 0), (0, 1), (1, 1) are

v(4) =
( √

3
2− 1
2

)
, v(5) =

(
0
1

)
, v(6) =

(√
3
2
1
2

)
.

Therefore, taking into account (28),

ker L0 = span{φi,v( j) , i = 1, 2, j = 4, 5, 6}.

Similarly, we have

FixX0(�1) = span{ϕ(1)
1 } with ϕ

(1)
1 = √

2φ1,v(4)

and

FixX0(�2) = span{ϕ(2)
1 } with ϕ

(2)
1 = φ1,v(4) − φ1,v(5) .

The fixed subspace of �3 (see (22)) in the kernel X0 is

FixX0(�3) = span{ϕ(3)
1 }

with the L2
�-normalized field

ϕ
(3)
1 =

√
2

3
(φ1,v(4) + φ1,v(5) + φ1,v(6) )

=
√

2

3(A2 + 1)

⎛
⎜⎜⎜⎝
A

⎛
⎝− 1

2 sin
(√

3
2 x1 − 1

2 x2
)

+ sin(x2) + 1
2 sin

(√
3
2 x1 + 1

2 x2
)

−
√
3
2 sin

(√
3
2 x1 − 1

2 x2
)

−
√
3
2 sin

(√
3
2 x1 + 1

2 x2
)

⎞
⎠

cos
(√

3
2 x1 − 1

2 x2
)

+ cos(x2) + cos
(√

3
2 x1 + 1

2 x2
)

⎞
⎟⎟⎟⎠ .

(31)

��

123



Journal of Nonlinear Science (2020) 30:3389–3420 3407

Remark 2 The first-order bifurcation solution on non-equilateral lattices is an exact
solution of the nonlinear equation at β = 0, i.e.,

F(sφ1, λ0 − αs2) = 0 for any s ∈ R.

Proof of Theorem 2 Clearly, F(0, λ) = 0 for all λ ∈ R. According to Proposition 2,
the fixed subspace of the symmetry group � = �i , i = 1, 2, 3 is one-dimensional in
all three cases

FixX0(�) = span{ϕ1},

where ϕ1 = ϕ
(i)
1 and

DλDmF(0, λ0)〈φ〉 = φ /∈ ran L0 for any nonzero φ ∈ FixX0(�).

Invoking the equivariant branching lemma (see Chossat and Lauterbach 2000; Gol-
ubitsky et al. 2012), we conclude the existence of bifurcation solutions in the form
of

λs = λ0 + ϕλ(s), ms = sϕ1 + ϕm(s)

where s ∈ (−δ, δ) for some δ > 0, ϕλ : (−δ, δ) → R and ϕm : (−δ, δ) → H2
� are

analytic in s satisfying ϕλ(0) = 0, ϕm(0) = 0 and 〈ϕm(s),ϕ1〉 = 0.
Inserting the analytic expansion of bifurcation solutions into (6) and (5), we obtain

(10)–(12). Explicit calculations are carried out in Appendix B. ��

Topology of Bifurcation Solutions On hexagonal lattices, the bifurcation solution
corresponding to the isotropy subgroup�3 is nowhere vanishing and features in every
primitive cell a skyrmion, i.e., a vortex-like structure with the magnetizations pointing
upwards at the core and downwards at the perimeter, see Fig. 6a.

On equilateral lattices, the horizontal component of ϕ
(2)
1 has a finite number of

isolated zeros in a primitive cell and forms a vortex or an antivortex around each zero.
The antivortices are half-skyrmions (sometimes referred to as merons, see, e.g., Yu
et al. 2018) and have magnetizations pointing upwards or downwards at the core;
while the center of vortices are singularity points (m = 0) due to the continuity and
the �2-invariance of bifurcation solutions, see Fig. 6b.

5 Linear Stability of the Bifurcation Solutions

In this section, we discuss the stability of bifurcation solutions following perturbation
methods as, e.g., in Kielhöfer (2011). Suppose (ms, λs) is a bifurcation solution as in
Theorem 2 with
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Fig. 6 Top view of a ϕ
(3)
1 on hexagonal lattice and b ϕ

(2)
1 on square lattice. The cones indicate the direction

and length of the in-planemagnetizations; the color indicates the out-of-planemagnetizations (red: upwards,
green: in-plane, blue: downwards). The dashed lines in a and b define a primitive cell of the hexagonal and
square lattice, respectively (Color figure online)

λ0 = −1 − β

2
+

√
4κ2 + β2

4
.

We focus on the larger root as positivity turns out to be necessary for the stability
of bifurcation solutions. The linearization of (6) at (ms, λs)

Ls = DmF(ms, λs) : H2
� ⊂ L2

� → L2
�

is given by

Lsφ = −	φ + 2κ∇ × φ + λsφ + α
(
|ms |2φ + 2(ms · φ)ms

)
+ βφ3 ê3.

We first investigate the spectrum of L0.

Lemma 4 The spectrum of L0 is discrete and non-negative if (13) and (14) hold.
Otherwise, L0 has negative eigenvalues.

Proof The equation (L0 − μ)φ = 0 admits constant nonzero solutions at μ = λ0. So
L0 has negative eigenvalues with constant eigenfunctions precisely if λ0 < 0. As in
Lemma 2, the eigenvalues of L0 with non-constant eigenfunctions at λ0 are

μ0,ω± = |ω|2 − 1 +
√
4κ2 + β2

4
±

√
4κ2|ω|2 + β2

4
, ω ∈ �∗\{0}.
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Wehave |ω| ≥ 1 for allω ∈ �∗\{0}, which, togetherwith (14), ensures thatμ0,ω+ ≥ 0
and

μ0,ω− =
(
|ω|2 − 1

)⎛
⎝1 − 4κ2√

4κ2 + β2

4 +
√
4κ2|ω|2 + β2

4

⎞
⎠ ≥ 0

for all ω ∈ �∗\{0} and any β ≥ 0. ��
From now on, we focus on the case λ0 > 0. It follows from Lemma 4 and the

standard perturbation theory of eigenvalue (Kato 2013) that the spectrumof Ls consists
of eigenvalues of the same multiplicities in an neighborhood of the eigenvalues of L0.
Thus, the stability of (ms, λs) depends on the perturbation of the critical eigenvalue 0.
It follows fromProposition 2 that there exist the following topological decompositions

L2
� = ker L0 ⊕ ran L0 and H2

� = ker L0 ⊕ X1,

where X1 = {φ ∈ H2
� : φ ⊥ ker L0 in L2}.

We first consider the perturbation of the zero eigenvalue corresponding to the eigen-
vector ϕ1 spanning FixX0(�).

Lemma 5 After reducing δ > 0 if necessary, there exists a smooth map

(μ,ψ) : (−δ, δ) → R × X1 with (μ(0),ψ(0)) = (0, 0)

such that

Ls(ϕ1 + ψ(s)) = μ(s)(ϕ1 + ψ(s)). (32)

Furthermore, there exists a C > 0 so that μ(s) = Cαs2 for s ∈ (−δ, δ).

Proof We introduce the smooth operator

G : (
FixX0(�) ⊕ X1

) × R × X1 × R → FixX0(�) ⊕ ran L0

given by

G(ms, λs,ψ, μ) = Ls(ϕ1 + ψ) − μ(ϕ1 + ψ).

Since Lsφ ∈ FixX0(�)⊕ran L0 for φ ∈ FixX0(�)⊕X1, this operator is well-defined.
As G(0, λ0, 0, 0) = 0 and the differential

∂(ψ,μ)G(0, λ0, 0, 0) : X1 × R → FixX0(�) ⊕ ran L0

given by

∂(ψ,μ)G(0, λ0, 0, 0) =
(

L0
−ϕ1

)
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is invertible, the implicit function theorem provides a smooth map

(μ,ψ) : (−δ, δ) → R × X1 with (μ(0),ψ(0)) = (0, 0)

so that

G(ms, λs,ψ(s), μ(s)) = 0 for s ∈ (−δ, δ).

It remains to examine the properties of μ(s). Differentiating (32) with respect to s in
s = 0 yields

μ̇(0)ϕ1 =D2
mF(m0, λ0)〈ϕ1,ϕ1〉 + DλDmF(m0, λ0)〈ϕ1〉λ̇s |s=0

+ DmF(m0, λ0)〈ψ̇(0)〉 = L0ψ̇(0)
(33)

since λ̇s = 2sν2 + O(s2) and

D2
mF(m0, λ0)〈ϕ,ψ〉 =2α((ϕ · ψ)m0 + (m0 · ϕ)ψ + (m0 · ψ)ϕ) = 0

with m0 = 0. Testing (33) with ϕ1 yields

μ̇(0) = 〈L0ψ̇(0),ϕ1〉
〈ϕ1,ϕ1〉

= 0.

Calculating the second derivative of μ(s) at s = 0, we obtain

μ̈(0)ϕ1 = D3
mF(m0, λ0)〈ϕ1,ϕ1,ϕ1〉 + DmF(m0, λ0)〈ψ̈(0)〉

+ DλDmF(m0, λ0)〈ϕ1〉λ̈(0).

Taking into account

DλDmF(m0, λ0)〈ϕ〉 = ϕ, λ̈(0) = 2ν2

D3
mF(m0, λ0)〈ϕ,φ,ψ〉 = 2α((ϕ · φ)ψ + (ϕ · ψ)φ + (φ · ψ)ϕ)

and using Theorem 2 yields

μ̈(0) = 6α〈|ϕ1|2ϕ1,ϕ1〉 + 2ν2〈ϕ1,ϕ1〉
〈ϕ1,ϕ1〉

= 4α〈|ϕ1|4〉.

Hence, μ(s) = Cαs2 with a positive constant C . Provided α > 0, we have μ(s) > 0
for nonzero s ∈ (−δ, δ). ��
The helical solution on non-equilateral lattices is stable.
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Proposition 3 For β ≥ 0 and every nonzero s ∈ (−δ, δ), the bifurcation solution on
non-equilateral lattices is linearly stable in the sense that

Ls ≥ 0 with ker Ls = span{∂2ms}.

Proof Recall that on non-equilateral lattices

ker L0 = span{φ1,v(1)} ⊕ span{φ2,v(1)},

where both ϕ
(1)
1 = φ1,v(1) and φ2,v(1) depend only on the spatial variable x2 and

∂2ϕ
(1)
1 = φ2,v(1) By translational invariance, ∂2ms = s∂2ϕ1 + O(s3) is, for small s, a

non-trivial element of ker Ls , and the claim follows with Lemma 5. ��
The quadratic vortex–antivortex lattice is stable under large enough anisotropy.

Proposition 4 For every nonzero s ∈ (−δ, δ), the vortex–antivortex bifurcation solu-
tion on square lattices is linearly stable in the sense that

Ls ≥ 0 with ker Ls = span{∂1ms, ∂2ms}.

provided α > 0 and

β >
4√
3
κ ≈ 2.3κ.

For β < 4√
3
κ , there exists φ ∈ L2

� such that 〈Lsφ,φ〉 < 0.

Proof Recall that on square lattices

ker L0 = span{φ1,v(2) ,φ1,v(3) ,φ2,v(2) ,φ2,v(3)}
= span{φ1,v(2) − φ1,v(3)} ⊕ span{φ1,v(2) + φ1,v(3)} ⊕ span{φ2,v(2) ,φ2,v(3)}.

Note that ϕ
(2)
1 = φ1,v(2) − φ1,v(3) is �2-invariant, while ϕ̃1 = φ1,v(2) + φ1,v(3) is

invariant under another symmetry group �̃ = {Rk, k = 0, 1, 2, 3} where the associ-
ated SO(3) elements are

Rk =
⎛
⎝cos kπ

4 − sin kπ
4 0

sin kπ
4 cos kπ

4 0
0 0 1

⎞
⎠ .

Repeating the argument from Lemma 5, there exists a smooth map

(μ̃, ψ̃) : (−δ, δ) → R × X1 with (μ̃(0), ψ̃(0)) = (0, 0)
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such that

Ls(ϕ̃1 + ψ̃(s)) = μ̃(s)(ϕ̃1 + ψ̃(s)).

Moreover, we obtain μ̃(s) = C̃αs2 with

C̃ = 4〈(ϕ̃1 · ϕ
(2)
1 )2〉 + 2〈|ϕ̃1|2|ϕ(2)

1 |2〉 + 2
ν2

α
〈|ϕ̃1|2〉 = A2 − 3

A2 + 1

where A is the amplitude given in (27) depending on κ and β. C̃ is positive provided
A2 > 3, which is fulfilled if β > 4√

3
κ .

Finally, ∂ims = s∂iϕ1 + O(s3), i = 1, 2, are linearly independent for small s due
to the linear independence of ∂1ϕ

(2)
1 = φ2,v(2) and ∂2ϕ

(2)
1 = −φ2,v(3) , and annihilate

Ls by translational invariance of F . We conclude that Ls ≥ 0 and

ker Ls = span{∂1ms, ∂2ms}.

If β < 4√
3
κ , then 〈Lsφ,φ〉 < 0 for any φ ∈ FixX0(�̃). ��

The same argument proves that the helical bifurcation solution on square lattice is
stable if β < 4√

3
κ and unstable for β > 4√

3
κ , see Li (2020).

The hexagonal skyrmion lattice is unstable independently of any additional easy-
plane anisotropy: for example, for any nonzero s ∈ (−δ, δ)

〈Lsφ,φ〉 = −α(2A2 + 3)

3(A2 + 1)
s2 + O(s4) < 0

for φ = φ1,v(4) − φ1,v(5) . Similarly, it can be shown that the vortex–antivortex bifur-
cation solution on hexagonal lattice is unstable and the helical bifurcation solution is
linearly stable under any easy-plane anisotropy, for details see Li (2020).

6 Numerical Simulations

6.1 Numerical Scheme

To examine critical points, we consider the L2-gradient flow equation for the energy
functional E�

∂tm + gradL2E�(m) = 0. (34)

Decomposing the energy gradient into a linear (second-order elliptic)

Lm := −	m + 2κ∇ × m + λm + βm3 ê3
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and a nonlinear part

N (m) := −α|m|2m,

the gradient flow Eq. (34) reads

∂tm + Lm = N (m). (35)

We aim to find equilibria of the energy functional E� by solving (35) numerically
on a primitive cell �� induced by lattice spanned by {2π ê1, 2πτ }. Equation (35) is
discretized by a modified Crank–Nicolson approximation for the time variable and a
Fourier collocation method for the space variable. We denote mN the trigonometric
interpolation function of m on the discretized grid by N 2 collocation points

xi j := 2π

(
i

N
,
−τ cos θ i + j

Nτ sin θ

)
, (i, j) ∈ N

2
N ,

for NN = {0, . . . , N − 1}, N ∈ N and odd. For continuous fields u, v on ��, we
define the discrete L2 scalar product

〈u,w〉N :=
(
2π

N

)2 1

|��|
N−1∑
i=0

N−1∑
j=0

u(xi j ) · w(xi j ),

the associated norm ‖·‖N , defined by ‖u‖2N := 〈u, u〉N and the discrete energy

EN (m) := 1

2
〈m,Lm〉N + 〈1,W (m)〉N with W (m) = α

4
|m|4.

Our numerical scheme at time iteration n + 1 reads: find mn+1 such that

mn+1
N − mn

N

�t
+ L

(
mn+1

N + mn
N

2

)
= INN (mn

N ,mn+1
N ),

where IN denotes the trigonometric interpolation operator and

N (u,w) = −α
u + w

4

(
|u|2 + |w|2

)
.

At each time iteration, in order to find the solutionmn+1
N , we use a fixed point iteration

mn+1
N ,k+1 =

(
Id + �t

2
L

)−1[(
Id − �t

2
L

)
mn

N + �tN (mn+1
N ,k ,mn

N )

]

for some time step �t . Well-posedness and a-priori error bounds of this numerical
scheme follow analogously as in Condette et al. (2011). Given initial data m0

N , the
corresponding sequence (mn

N )n∈N0 satisfies the following energy law
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Fig. 7 Simulation results on square lattice for α = 1 and different values of κ and β, respectively a
κ = −0.6, β = 0, λ = 0.1875, b κ = −0.6, β = 1, λ = −0.2125, c κ = 0.8, β = 1, λ = 0.1638 and d
κ = 0.8, β = 2, λ = −0.1257 (Color figure online)

1

�t
‖mn+1

N − mn
N‖2N + EN (mn+1

N ) = EN (mn
N ), n ∈ N0.

We have implemented this numerical scheme in MATLAB. At each time-step, the
iteration process stops if a certain norm of the difference of two successive iterations
becomes smaller than a chosen stopping tolerance. In our case, we choose the L∞-
norm and set the stopping tolerance to 10−8. The discrete energy is evaluated in each
time step, and the terminal time is controlled through a smallness condition for the
discrete energy gradient, i.e.,

E(mn
N ) − E(mn+1

N )

�t
< 10−7.

After the termination of the scheme, an equilibrium configuration is reached approx-
imately.

6.2 Numerical Experiments

We have implemented the method on a lattice of 275 × 275 grid points and with a
time increment �t = 0.1 for different parameters and a randomly distributed initial
field with modulus between 0 and 0.1 as initial condition.

Parameter Study and Assessment of the Stability Condition (13) First, we imple-
mented the simulations on a square lattice for different parameters κ and β near the
bifurcation point by setting λ = λ0 + δν2, where δ = 0.01, λ0 and ν2 are calculated
according to (13) and (11), respectively.

For κ ∈ (0, 0.5), the bifurcation point λ0 is negative for any β ≥ 0. In this case,
the stability condition (13) is not fulfilled we obtained an almost homogeneous field.

When the value of κ was increased over 0.5, vortex–antivortex lattice configurations
were observed for β ≥ 0 small enough so that λ0 > 0. For β large enough so that
λ0 < 0, the vortex–antivortex lattice configuration decayed to an almost homogenous
field, as shown in Fig. 7.

Other patterns emerged for κ > 1.2 and small β ≥ 0. For example, at κ = 1.4
and small β ≥ 0 the solution converged to a stripe pattern, i.e., helices with a pitch
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Fig. 8 Simulation results on square lattice for κ = 1.4, α = 1 and different values of β, respectively a
β = 3, λ = 0.6640, b β = 4, λ = 0.4284, c β = 5, λ = 0.2412, d β = 7, λ = −0.0303 (Color figure
online)

Fig. 9 Simulation results on lattices |τ |eiθ for κ = 1.4, α = 1, β = 5, λ = 0.2412 and different values
of τ , respectively a |τ | = 1.0, θ = 90◦, b |τ | = 1.02, θ = 80◦ and c |τ | = 1.10, θ = 90◦ (Color figure
online)

smaller than 2π . Vortex–antivortex lattice configurations were observed for β in the
admissible region, see Fig. 3, i.e., β larger than the stability threshold (about 2.3κ) and
λ0 > 0. Increasing β further so that λ0 < 0, we obtained the almost homogeneous
field again, as shown in Fig. 8.

Stability of Vortex–Antivortex Solution Under the Perturbation of Lattices We
proved the stability of quadratic vortex–antivortex solutions in certain parameter region
under�-periodic perturbations (see Sect. 5). Complementarily, we examine the persis-
tence of quadratic vortex–antivortex solutions under the perturbations of lattice shape
by implementing the simulations on different lattices with the same parameters. For
small perturbations of τ = eiπ/2, we obtained the vortex–antivortex lattice config-
uration, while for |τ | large enough only the helix state was observable, as shown in
Fig. 9.
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Appendix A: Helical State

In this section,we consider vector fieldsm definedon adomain inR
3.Given R ∈ O(3),

we write

mR(x) := Rm(RT x) for x ∈ R
3.

Lemma 6 For smooth m, it holds that

∇ × mR = det R (∇ × m)R

and hence

mR · (∇ × mR) = det R (m · (∇ × m)) ◦ RT .

Proof Summing over repeated indices, we write the curl as

∇ × mR =
3∑
j=1

ê j × ∂ jmR

By the chain rule ∂ jmR = R jk(∂km)R and with Rêk = ê j R jk , it follows form the
O(3) skew-symmetry of the vector product that

∇ × mR = det R (∇ × m)R.

The second claim follows from the isometry property of R. ��
Lemma 7 Suppose κ �= 0 and ∇ × m + κm = 0 for some measurable m field with
|m| = M on a connected domain in R

3. Then, m is a helix of pitch 2π/κ , i.e., there
exists R ∈ SO(3) such that

m(x) = M(hR)(κx) where h(x) = (0, cos x1, sin x1).

Proof Upon rescaling, one may assume M = 1 and κ = 1. Taking the divergence,
it follows that ∇ · m = 0 and hence �m + m = 0 in the sense of distributions
by taking the curl. So m is smooth by virtue of standard elliptic regularity theory.
In particular, it is enough to prove the claim locally. Denoting the componentwise
gradient by (∇m) jk := (∂ jmk), we claim that

rank(∇m) = 1 and (∇m)2 = 0. (36)
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In fact, we observe that for arbitrary smooth fields

∇ · ((m · ∇)m) = tr(∇m)2 + (m · ∇)(∇ · m) (37)

and by using the assumptions

(m · ∇)m = (∇m)Tm =
(
(∇m)T − (∇m)

)
m = (∇ × m) × m = 0.

Collecting all these facts, we obtain

m ∈ ker(∇m) ∩ ker(∇m)T (38)

and

tr(∇m) = tr(∇m)2 = 0. (39)

Fixing a point x , we may assume after rotation m(x) = ê3, so that by (38) the matrix
∇m(x) is given by a 2 × 2 matrix A such that tr A = 0 and tr A2 = 0 by (39). It is
easy to see that A2 = 0 which implies det A = 0.

According to (36), there exist local smooth unit vector fields X andY and a function
λ such that

∇m = λX ⊗ Y and m = X × Y .

Now, ∇ × m = λ X × Y = λm, hence λ = −1 and ∇m = −X ⊗ Y .
Assuming X is constant so that after rotation X = ê1, it follows that m = m(x1)

and m1 = 0. Now, the equation implies for the remaining components m′
2 = −m3

and m′
3 = m2, so that after a rotation around the ê1 axis, m = h.

To show that X = const., one may invoke the spectral theorem. In fact, symmetry
of ∇X follows from the symmetry of ∇2m = (∇ ⊗ ∇)m since

−∇2m = ∇X ⊗ Y + X ⊗ ∇Y so that − ∇2m · Y = ∇X .

Next, we use the identity

m = −�m = (∇ · X)Y + (X · ∇)Y ,

which, after multiplication by Y , implies that tr(∇X) = ∇ · X = 0. Now, since
X ∈ ker∇m

(∇X)m = ∇(X · m) = 0

so that X,m ∈ ker(∇X), and in turn ∇X = 0. ��
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Appendix B: Higher Order Terms in the Bifurcation Solution

We have the following analytic expansion for the bifurcation solution

ms =
∞∑
k=1

skϕk, λs = λ0 +
∞∑
k=1

skνk

where the ϕk ∈ H2
� satisfy

〈ϕk,ϕ1〉 =
 

��

ϕk(x) · ϕ1(x) dx = 0 for k ≥ 2. (40)

Inserted into (6), we obtain a hierarchy of equations in orders of s that can be solved
successively. Solutions, which are fixed under the symmetry group, can be found by
the Fourier method used for solving (24).

The first-order equation is the linearized equation

−	ϕ1 + 2κ∇ × ϕ1 + λ0ϕ1 + β(ϕ1)3 = 0

which is certainly fulfilled. By normalizing in terms of 〈|ϕ1|2〉1/2, the second-order
equation becomes

− 	ϕ2 + 2κ∇ × ϕ2 + λ0ϕ2 + β(ϕ2)3 + ν1
ϕ1

〈|ϕ1|2〉1/2
= 0. (41)

Multiplying this equation with ϕ1 and integrating over �� yields

〈L0ϕ2,ϕ1〉 + ν1〈|ϕ1|2〉1/2 = 0

hence ν1 = 0 and in turn L0ϕ2 = 0 by (41) which implies ϕ2 ≡ 0 by (40).
The third-order equation is

− 	ϕ3 + 2κ∇ × ϕ3 + λ0ϕ3 + β(ϕ3)3 + α
|ϕ1|2ϕ1

〈|ϕ1|2〉3/2
+ ν2

ϕ1

〈|ϕ1|2〉1/2
= 0. (42)

Multiplying this equation with ϕ1 and integrating over �� yields

ν2 = −α
〈|ϕ1|4〉
〈|ϕ1|2〉2

where ϕ3 is a complicated function in H2
� satisfying 〈ϕ1,ϕ3〉 = 0.

The forth-order equation

−	ϕ4 + 2κ∇ × ϕ4 + λ0ϕ4 + β(ϕ4)3 + ν3
ϕ1

〈|ϕ1|2〉1/2
= 0
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is identical to (41), so that ν3 = 0 and ϕ4 ≡ 0 by the same argument.
Substituting the bifurcation solution into the average energy (5) yields

E�(ms, λs) = s2

2
〈L0ϕ1,ϕ1〉 + s4〈L0ϕ1,ϕ3〉 + s4

|��|
ˆ

��

ν2

2

|ϕ1|2
〈|ϕ1|2〉

+ α|ϕ1|4
4〈|ϕ1|2〉2

dx + O(s6)

= s4

4

(
−α

〈|ϕ1|4〉
〈|ϕ1|2〉2

)
+ O(s6).
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