Skip to main content
Log in

On Qualitative Behaviour of Solutions to a Thin Film Equation with a Source Term

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this article, we study a one-dimensional degenerate fourth-order parabolic equation (a thin-film model) with a source term. We prove existence of generalized weak solutions for the case \(n>0\) and study interface propagation properties like: finite speed propagation and waiting time phenomenon for the case \(1<n<2\). Our analysis is based on applications of global and local energy-entropy a priori estimates. Also, we illustrate some of our main analytical results by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Beretta, E., Bertsch, M., Dal Passo, R.: Non-negative solutions of a fourth-order nonlinear degenerate parabolic equation. Arch. Ration. Mech. Anal. 129(2), 175–200 (1995)

    Article  Google Scholar 

  • Bernis, F.: Finite speed of propagation and continuity of the interface for thin viscous flows. Adv. Differ. Equ. 1(3), 337–368 (1996)

    MathSciNet  MATH  Google Scholar 

  • Bernis, F., Friedman, A.: Higher order nonlinear degenerate parabolic equations. J. Differ. Equ. 83(1), 179–206 (1990)

    Article  MathSciNet  Google Scholar 

  • Bernis, F., Peletier, L.A., Williams, S.M.: Source type solutions of a fourth order nonlinear degenerate parabolic equation. Nonlinear Anal. Theory Methods Appl. 18(3), 217–234 (1992)

    Article  MathSciNet  Google Scholar 

  • Bertozzi, A.L., Pugh, M.: The lubrication approximation for thin viscous films: regularity and long-time behavior of weak solutions. Commun. Pure Appl. Math. 49(2), 85–123 (1996)

    Article  MathSciNet  Google Scholar 

  • Blowey, J.F., King, J.R., Langdon, S.: Small- and waiting-time behavior of the thin-film equation. SIAM J. Appl. Math. 67(6), 1776–1807 (2007)

    Article  MathSciNet  Google Scholar 

  • Carlen, E.A., Ulusoy, S.: An entropy dissipation-entropy estimate for a thin film type equation. Commun. Math. Sci. 3(2), 171–178 (2005)

    Article  MathSciNet  Google Scholar 

  • Carlen, E.A., Ulusoy, S.: Asymptotic equipartition and longtime behavior of solutions of a thin-film equation. J. Differ. Equ. 241(2), 279–292 (2007)

    Article  Google Scholar 

  • Carrillo, J.A., Toscani, G.: Long-time asymptotics for strong solutions of the thin film equation. Commun. Math. Phys. 225(3), 551–571 (2002)

    Article  MathSciNet  Google Scholar 

  • Chugunova, M., Taranets, R.M.: New dissipated energy for non-negative weak solution of unstable thin-film equations. Commun. Pure Appl. Anal. 10(2), 613–624 (2011)

    Article  MathSciNet  Google Scholar 

  • Chugunova, M., King, J.R., Taranets, R.M.: Uniqueness of the regular waiting-time type solution of the thin film equation. Eur. J. Appl. Math. 23(4), 537–554 (2012)

    Article  MathSciNet  Google Scholar 

  • Dal Passo, R., Garcke, H., Grün, G.: On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions. SIAM J. Math. Anal. (Electron.) 29(2), 321–342 (1998)

    Article  MathSciNet  Google Scholar 

  • Dal Passo, R., Giacomelli, L., Grün, G.: Waiting time phenomenon for thin film equations. Ann. Scuola Norm. Sup. Pisa 30(2), 437–463 (2001)

    MathSciNet  MATH  Google Scholar 

  • Èĭdel’man, S.D.: Parabolic Systems. Translated from the Russian by Scripta Technica London. North-Holland Publishing Co., Amsterdam (1969)

  • Fischer, J.: Optimal lower bounds on asymptotic support propagation rates for the thin-film equation. J. Differ. Equ. 255(10), 3127–3149 (2013)

    Article  MathSciNet  Google Scholar 

  • Fischer, J.: Upper bounds on waiting times for the thin-film equation: the case of weak slippage. Arch. Ration. Mech. Anal. 211(3), 771–818 (2014)

    Article  MathSciNet  Google Scholar 

  • Greenspan, H.P.: On the motion of a small viscous droplet that wets a surface. J. Fluid Mech. 84(1), 125–143 (1978)

    Article  Google Scholar 

  • Giacomelli, L., Günther, G.: Lower bounds on waiting times for degenerate parabolic equations and systems. Interfaces Free Boundaries 8(1), 111–129 (2006)

    Article  MathSciNet  Google Scholar 

  • Giacomelli, L., Otto, F.: Variatonal formulation for the lubrication approximation of the Hele-Shaw flow. Calc. Var. 13, 377–403 (2001)

    Article  Google Scholar 

  • Kiradjiev, K.B., Breward, C.J.W., Griffiths, I.M.: Surface-tension-and injection-driven spreading of a thin viscous film. J. Fluid Mech. 861, 765–795 (2018)

    Article  MathSciNet  Google Scholar 

  • Lister, J.R.: Viscous flows down an inclined plane from point and line sources. J. Fluid Mech. 242, 631–653 (1992)

    Article  MathSciNet  Google Scholar 

  • Nirenberg, L.: An extended interpolation inequality. Ann. Scuola Norm. Sup. Pisa 3(20), 733–737 (1966)

    MathSciNet  MATH  Google Scholar 

  • Oron, A., Davis, S.H., Bankoff, S.G.: Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69(3), 931–980 (1997)

    Article  Google Scholar 

  • Schwartz, L.W., Michaelides, E.E.: Gravity flow of a viscous liquid down a slope with injection. Phys. fluids 32(10), 2739–2741 (1988)

    Article  Google Scholar 

  • Shetty, S.A., Cerro, R.L.: Spreading of liquid point sources over inclined solid surfaces. Ind. Eng. Chem. Res. 34(11), 4078–4086 (1995)

    Article  Google Scholar 

  • Shishkov, A.E., Shchelkov, A.G.: Dynamics of the supports of energy solutions of mixed problems for quasi-linear parabolic equations of arbitrary order. Izv. Math. 62(3), 601–626 (1998)

    Article  MathSciNet  Google Scholar 

  • Slepčev, D.: Linear stability of self-similar solutions of unstable thin-LM equations. Interfaces Free Boundaries 11(3), 375–398 (2009)

    Article  MathSciNet  Google Scholar 

  • Slepčev, D., Pugh, M.: Self-similar blowup of unstable thin-film equations. Indiana Univ. Math. J. 54(6), 1697–1738 (2005)

    Article  MathSciNet  Google Scholar 

  • Stampacchia, G.: Équations elliptiques du second ordre à coefficients discontinus. Séminaire Jean Leray 3, 1–77 (1963–1964)

  • Taranets, R.: Solvability and global behavior of solutions of the equation of thin films with nonlinear dissipation and absorption. Proc. Inst. Appl. Math. Mech. 7, 192–209 (2002). (Russian)

    MathSciNet  MATH  Google Scholar 

  • Taranets, R., Chugunova, M.: Thin film flow dynamics on fiber nets. Commun. Math. Sci. 16(3), 763–775 (2018)

    Article  MathSciNet  Google Scholar 

  • Tudorasku, A.: Lubrication approximation for thin viscous films: asymptotic behavior of non-negative solutions. Commun. Partial Differ. Equ. 32(7), 1147–1172 (2007)

    Article  Google Scholar 

  • Todorova, D., Thiele, U., Pismen, L.M.: The relation of steady evaporating drops fed by an influx and freely evaporating drops. J. Eng. Math. 73(1), 1730 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Chugunova.

Additional information

Communicated by Dejan Slepcev.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Appendix

Appendix

Lemma 2

(Nirenberg 1966) If \(\varOmega \subset \mathbb {R}^N \) is a bounded domain with piecewise-smooth boundary, \(a > 1\), \(b \in (0, a),\ d > 1,\) and \(0 \leqslant k < j,\ k,j \in \mathbb {N}\), then there exist positive constants \(d_1\) and \(d_2\) \((d_2 = 0 \text { if } \varOmega \) is unbounded) depending only on \(\varOmega ,\ d,\ j,\ b,\) and N such that the following inequality is valid for every \(v(x) \in W^{j,d} (\varOmega ) \cap L^b (\varOmega )\):

$$\begin{aligned} \left\| {D^k v} \right\| _{L^a (\varOmega )} \leqslant d_1 \left\| {D^j v} \right\| _{L^d (\varOmega )}^\theta \left\| v \right\| _{L^b (\varOmega )}^{1 - \theta } + d_2 \left\| v \right\| _{L^b (\varOmega )} ,\ \theta = \frac{{\tfrac{1}{b} + \tfrac{k}{N} - \tfrac{1}{a}}}{{\tfrac{1}{b} + \tfrac{j}{N} - \tfrac{1}{d}}} \in \left[ {\tfrac{k}{j},1} \right) . \end{aligned}$$

Note that if \(\varOmega = B(0, R) {\setminus } B(0,r) \), where B(0, x) is ball with the radius x and the origin at 0, then \(d_2 = c (R - r)^{ - \frac{(a - b)N}{a b} -k}\).

Lemma 3

(Stampacchia 1963, Lemme 4.1, p. 19) Let f(x) be nonnegative, non-increasing in \([x_0,+\infty )\) function. Assume that f satisfies

$$\begin{aligned} f(y) \leqslant \frac{C}{(y -x)^{\alpha }} f^{\beta }(x) \text { for } y > x \geqslant x_0, \end{aligned}$$
(68)

where \(C,\,\alpha ,\, \beta \) are some positive constants. Then

  1. (i)

    if \(\beta > 1\) we have

    $$\begin{aligned} f(y) = 0 \text { for all } y \geqslant x_0 + d, \end{aligned}$$

    where \(d^{\alpha } = C f^{\beta -1}(x_0) 2^{\frac{\alpha \beta }{\beta -1}}\);

  2. (ii)

    if \(\beta = 1\) we get

    $$\begin{aligned} f(y) \leqslant e^{1- \zeta (y -x_0)}f(x_0) \text { for all } y \geqslant x_0, \end{aligned}$$

    where \( \zeta = (e\,C)^{- \frac{1}{\alpha }}\);

  3. (iii)

    if \(\beta < 1\) we obtain

    $$\begin{aligned} f(y) \leqslant 2^{\frac{\mu }{1-\beta }} \bigl [C^{\frac{1}{1-\beta }} + (2\, x_0)^{\mu } f(x_0) \bigr ] y^{-\mu } \text { for all } y \geqslant x_0 > 0, \end{aligned}$$

    where \( \mu = \frac{\alpha }{1- \beta }\).

Lemma 4

(Dal Passo et al. 2001, Lemma 3.1, p. 444; Shishkov and Shchelkov 1998, Lemma 4, p.624) Assume that a given nonnegative, non-decreasing function \(f : ( d,D) \rightarrow \mathbb {R}^1 \) satisfies

$$\begin{aligned} f(y) \leqslant \frac{C}{(x -y)^{\alpha }} (f(x) + (x -d)^{\sigma } ) ^{\beta } \text { for } 0 \leqslant d \leqslant y < x \leqslant D , \end{aligned}$$
(69)

where \(C,\,\alpha ,\, \beta , \, \sigma \) are some positive constants such that

$$\begin{aligned} \beta > 1 \text { and } \sigma \geqslant \tfrac{\alpha }{\beta -1}. \end{aligned}$$

Assume further that

$$\begin{aligned} d^{\alpha } \geqslant C \, 2^{\frac{\alpha \beta }{\beta -1}} ( 1 + 2^{\frac{\alpha }{\beta -1} - \sigma } )^{\beta } ( f(D) + (D-d)^{\sigma })^{\beta -1} . \end{aligned}$$
(70)

Then,

$$\begin{aligned} f(d) = 0 . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chugunova, M., Ruan, Y. & Taranets, R. On Qualitative Behaviour of Solutions to a Thin Film Equation with a Source Term. J Nonlinear Sci 31, 9 (2021). https://doi.org/10.1007/s00332-020-09662-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-020-09662-5

Keywords

Mathematics Subject Classification

Navigation