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Abstract

This paper considers a general stochastic SIR epidemic model driven by a multi-
dimensional Lévy jump process with heavy tailed increments and possible correlation
between noise components. In this framework, we derive new sufficient conditions for
disease extinction and persistence in the mean. Our method differs from previous
approaches by the use of Kunita’s inequality instead of the Burkholder-Davis-Gundy
inequality for continuous processes, and allows for the treatment of infinite Lévy mea-
sures by the definition of new threshold values. An SIR model driven by a tempered
stable process is presented as an example of application with the ability to model
sudden disease outbreak, illustrated by numerical simulations. The results show that
persistence and extinction are dependent not only on the variance of the processes
increments, but also on the shapes of their distributions.
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Kunita’s inequality; tempered stable process.
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1 Introduction

In this paper we consider the classical SIR population model perturbed by random noise.

The model consists in St + It + Rt individuals submitted to a disease, where St, It and Rt
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respectively denote the numbers of susceptible, infected, and recovered individuals at time

t ∈ R+, which are modeled as
dSt = (Λ− µSt − βStIt)dt+ St−dZ1(t),

dIt = (βStIt − (µ+ η + ε)It)dt+ It−dZ2(t),

dRt = (ηIt − µRt)dt+Rt−dZ3(t),

(1.1a)

(1.1b)

(1.1c)

where Z(t) = (Z1(t), Z2(t), Z3(t)) is a 3-dimensional stochastic process modeling the inten-

sity of random perturbations of the system. Here, Λ > 0 denotes the population influx into

the susceptible component, β > 0 reflects the transmission rate from the susceptible group

St to infected group It, µ > 0 represents the nature mortality rate of the three compartments

St, It and Rt, ε > 0 denotes the death rate of infected individuals induced by the disease,

and η > 0 is the recovery rate of the epidemic.

The deterministic version of (1.1a)-(1.1c) with Z(t) = 0 has been the object of extensive

studies, starting with Kermack and McKendrick (1927) and Anderson and May (1979), where

the equilibrium of (1.1a)-(1.1c) in the deterministic case has been characterized by the basic

reproduction number

R0 =
βΛ

µ(µ+ ε+ η)

such that when R0 < 1, the system admits a Globally Asymptotically Stable (GAS) bound-

ary equilibrium E0 = (Λ/µ, 0, 0) called the disease-free equilibrium, whereas when R0 > 1

there exists a GAS positive equilibrium

E∗ = (S∗, I∗, R∗) =

(
µ+ ε+ η

β
,
µ

β
(R0 − 1),

η

β
(R0 − 1)

)
,

which is called the endemic equilibrium. In order to model random variations in population

numbers, Brownian noise has been added to the deterministic system in e.g. Beddington and

May (1977), Tornatore et al. (2005), Gray et al. (2011), to better describe the continuous

growth of populations in real ecological systems.

Lévy jump noise has been first incorporated into the stochastic Lotka-Volterra population

model in Bao et al. (2011), Bao and Yuan (2012), where uniform pth moment bounds and

asymptotic pathwise estimations have been derived. Driving processes of the form

Zi(t) = %iBi(t) +

∫ t

0

∫ ∞
0

γi(z)Ñ(ds, dz), i = 1, 2, 3,
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where B1(t), B2(t), B3(t) are independent standard Brownian motions, Ñ(ds, dz) is a com-

pensated Poisson counting process with intensity dsν(dz) on R+ × [0,∞) and ν(dz) is a

finite Lévy measure on [0,∞), have been considered in Zhang and Wang (2013), Zhou and

Zhang (2016) and Zhang et al. (2018). In this setting, the asymptotic behavior of solutions

of (1.1a)-(1.1c) around the equilibrium of the corresponding deterministic system has been

studied in Zhang and Wang (2013), and the threshold of this stochastic SIR model has been

investigated in Zhou and Zhang (2016). The asymptotic behavior of the stochastic solution

of an SIQS epidemic model for quarantine modeling with Lévy jump diffusion term has been

analyzed in Zhang et al. (2018).

Previously used jump models, including Zhang and Wang (2013), Zhou and Zhang (2016)

and Zhang et al. (2018), share the property of being based on a Poisson counting process

N(dt, dz) with finite Lévy measure ν(dz) on [0,∞). However, this framework excludes im-

portant families of Lévy jump processes having an infinite Lévy measure, as well as flexible

correlation between the random noise components of the system (1.1a)-(1.1c). In particular,

the increments of jump-diffusion models with finite Lévy measures have exponential tails,

see e.g. §4.3 of Cont and Tankov (2004), and they have a limited potential to model extreme

events which usually lead to sudden shifts in population numbers.

In this paper, we work in the general setting of finite or infinite Lévy measures ν on R,

which allows us to consider heavy tailed increments having e.g. power law distributions. In-

deed, empirical data shows that the jump distribution of population dynamics under sudden

environmental shocks such as earthquakes, tsunamis, floods, heatwaves and so on, can follow

power law distributions, see e.g. Zhang et al. (2017) and references therein.

We consider a 3-dimensional Lévy noise Z(t) = (Z1(t), Z2(t), Z3(t)) with Lévy-Khintchine

representation

E
[
eiu1Z1(t)+iu2Z2(t)+iu3Z3(t)

]
= exp

(
− t

2
〈u, %u〉R3 + t

∫
R3\{0}

(
ei〈u,γ(z)〉R3 − i〈u, γ(z)〉R3 − 1

)
ν(dz)

)
,

u = (u1, u2, u3) ∈ R3, t ∈ R+, where % = (%i,j)1≤i,j≤3 is a positive definite 3 × 3 matrix, the

functions γi : R3 → R, i = 1, 2, 3 are measurable functions, and ν(dz) is a σ-finite measure
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of possibly infinite total mass on R3 \ {0}, such that∫
R3\{0}

min(|γi(z)|2, 1)ν(dz) <∞, i = 1, 2, 3. (1.2)

see e.g. Theorem 1.2.14 in Applebaum (2009). In addition, the process Z(t) = (Z1(t), Z2(t), Z3(t))

is known to admit the representation

Zi(t) = B%
i (t) +

∫ t

0

∫
R3\{0}

γi(z)Ñ(ds, dz), i = 1, 2, 3, (1.3)

where (B%
1(t), B%

2(t), B%
3(t)) is a 3-dimensional Gaussian process with independent and sta-

tionary increments and covariance matrix % = (%i,j)1≤i,j≤3, and Ñ(dt, dz) = N(dt, dz) −
ν(dz)dt is the compensated Poisson counting process with Lévy measure ν(dz) on R3 \ {0}.
All processes are defined on a complete filtered probability space (Ω,F , (Ft)t≥0,P), N(dt, dz)

is independent of (B%
1(t), B%

2(t), B%
3(t)), and the covariances of (Z1(t), Z2(t), Z3(t)) are given

by

E[Zi(t)Zj(t)] = %i,jt+ t

∫
R3\{0}

γi(z)γj(z)ν(dz), t ∈ R+, i, j = 1, 2, 3,

which allows for the modeling of random interactions between the components (St, It, Rt) of

the model.

In order to investigate the threshold of the stochastic SIR model with finite Lévy mea-

sures, Zhou and Zhang (2016) have derived long-term estimates (Lemmas 2.1-2.2 therein)

which rely on the finiteness of the quantity∫ ∞
0

(
(1 + γ(z))p − 1− γ(z)

)
ν(dz), p > 1, (1.4)

where

γ(z) := max(γ1(z), γ2(z), γ3(z)) and γ(z) := min(γ1(z), γ2(z), γ3(z)), z ∈ R.

In our generalized setting (1.3) under (1.2), estimates on solutions are obtained by replacing

(1.4) with the expression

λ(p) := cp

∫
R3\{0}

γ2(z)ν(dz) + cp

∫
R3\{0}

γp(z)ν(dz), p > 1. (1.5)

where cp := p(p− 1) max(2p−3, 1)/2. In addition, given the jump stochastic integral process

Kt :=

∫ t

0

∫
R3\{0}

gs(z)
(
N(ds, dz)− ν(dz)ds

)
, t ∈ R+,
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of the predictable integrand (gs(y))(s,y)∈R+×R, we use Kunita’s inequality

E
[

sup
0≤s≤t

|Ks|p
]

(1.6)

≤ CpE
[∫ t

0

∫
R3\{0}

|gs(z)|p ν(dz)ds

]
+ CpE

[(∫ t

0

∫
R3\{0}

|gs(z)|2 ν(dz)ds

)p/2 ]
,

for all t ∈ R+ and p ≥ 2, where Cp := 22p−2(√elog2 p/p+8plog2 p
)
, see Theorem 2.11 of Kunita

(2004), Theorem 4.4.23 of Applebaum (2009), and Corollary 2.2 in Breton and Privault

(2019). This replaces the Burkholder-Davis-Gundy inequality for continuous martingales

E
[

sup
0≤s≤t

|Ms|p
]
≤ CpE

[
〈M,M〉p/2t

]
, p > 1, (1.7)

which is used in the proof of Lemmas 2.1 and 2.2 in Zhou and Zhang (2016), where 〈M,M〉t
is the (predictable) quadratic variation of the continuous martingale (Mt)t∈R+ , see e.g. The-

orem 7.3 in Chapter 1 of Mao (2008). Indeed, it is known, see e.g. Remark 357 in Situ

(2005) and Breton and Privault (2019), that (1.7) is invalid for martingales with jumps.

As an example, we consider the tempered stable distribution introduced in Koponen

(1995) which belongs to the family of self-decomposable distributions, see § 3.15 in Sato

(1999). Given α ∈ (0, 2), the tempered α-stable Lévy measure is defined as

ν(A) =

∫ ∞
0

e−r

rα+1

∫
R3\{0}

1A(rx)Rα(dx)dr, (1.8)

where Rα(dx) is a measure on R3 \ {0} such that∫
R3\{0}

min(‖x‖2R3 , ‖x‖αR3)Rα(dx) <∞,

see Theorem 2.3 in Rosiński (2007). It has been shown in Sztonyk (2010), Theorem 5,

that the increments of tempered stable processes can have (heavy) power tails instead of

(semi-heavy) exponential tails, see also Küchler and Tappe (2013). Taking, e.g.

Rα(dx) = k−λ
α
−δ(−1/λ−,−1/λ−,−1/λ−)(dx) + k+λ

α
+δ(1/λ+,1/λ+,1/λ+)(dx),

where k−, k+, λ−, λ+ > 0, and δy denotes the Dirac measure at y ∈ R3, the Lévy measure of

the 3-dimensional fully correlated tempered stable process is given by

ν(A) =

∫
R3\{0}

∫ ∞
0

1A(rx)
e−r

rα+1
drRα(dx) (1.9)
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= k−

∫ ∞
0

1A(−r/λ−,−r/λ−,−r/λ−)
e−r

rα+1
dr + k+

∫ ∞
0

1A(r/λ+, r/λ+, r/λ+)
e−r

rα+1
dr,

with ν(R) = +∞ for all α ∈ (0, 2). We note that (1.4) is infinite when α ∈ [1, 2) and p > 1,

whereas λ(p) given by (1.5) remains finite whenever p > α.

This paper is organised as follows. After stating preliminary results on the existence and

uniqueness of solutions to (1.1a)-(1.1c) in Proposition 2.1, in the key Lemmas 2.2 and 2.3

we derive new solution estimates by respectively using λ(p) defined in (1.5) and Kunita’s

inequality (1.6) for jump processes. Then in Theorems 3.1 and 3.2 we respectively deal with

disease extinction and persistence in the mean for the system (1.1a)-(1.1c). We show that

the threshold behavior of the stochastic SIR system (1.1a)-(1.1c) is determined by the basic

reproduction number

R0 = R0 −
β2

µ+ ε+ η
=
βΛ/µ− β2
µ+ ε+ η

(1.10)

which differs from Zhou and Zhang (2016) due to the quantity

β2 :=
1

2
%2,2 +

∫
R3\{0}

(γ2(z)− log(1 + γ2(z))) ν(dz).

In Section 4 we present numerical simulations based on tempered stable processes with

parameter α ∈ (0, 1). We show in particular that the addition of a jump component to the

system (1.1a)-(1.1c) may result into the extinction of the infected and recovered populations

as α ∈ (0, 1) becomes large enough and the variance of random fluctuations increases, which

is consistent with related observations in the literature, see e.g. Cai et al. (2015). In addition,

we note that this phenomenon can be observed when the noise variances are normalized to

identical values, showing that the shape of the distribution alone can affect the long term

behavior of the system. The proofs which are similar to the literature, see Zhou and Zhang

(2016), are presented in the Appendix for completeness.

2 Large time estimates

For f an integrable function on [0, t], we denote

〈f〉t =
1

t

∫ t

0

f(s)ds, 〈f〉∗ = lim sup
t→∞

1

t

∫ t

0

f(s)ds, 〈f〉∗ = lim inf
t→∞

1

t

∫ t

0

f(s)ds, t > 0.

In addition, we assume that the jump coefficients γi(z) in (1.3) satisfy
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(H1)

∫
R3\{0}

|γi(z)|2ν(dz) <∞, i = 1, 2, 3,

together with the condition:

(H2) γi(z) > −1, ν(dz)-a.e., and

∫
R3\{0}

(
γi(z)− log(1 + γi(z))

)
ν(dz) <∞, i = 1, 2, 3.

Proposition 2.1 Under (H1)-(H2), for any given initial data (S0, I0, R0) ∈ R3
+, the system

(1.1a)-(1.1c) admits a unique positive solution (St, It, Rt)t∈R+ which exists in (0,∞)3 for all

t ≥ 0, almost surely.

Proof. By Theorem 6.2.11 in Applebaum (2009) or Theorem 2.1 in Bao et al. (2011), the

system (1.1a)-(1.1c) admits a unique local solution (St, It, Rt)t∈(0,τe] up to the explosion time

τe for any initial data (S0, I0, R0) ∈ R3
+, since it has affine coefficients by (H1). In addition,

by (H2) we have γi(z) > −1, ν(dz)-a.e., i = 1, 2, 3, hence the solution is positive. The

remaining of the proof follows the lines of proof of Theorem 1 in Zhang and Wang (2013) by

noting that the condition (H2) page 868 therein can be replaced by (H2) above. �

Next, given λ(p) defined in (1.5) we let

‖%‖∞ := max
i=1,2,3

3∑
j=1

|%i,j|,

and we consider the following condition:

(H
(p)
3 ) µ >

p− 1

2
‖%‖∞ +

λ(p)

p
, p > 1.

The proofs of Lemmas 2.2-2.3 below present several significant differences from the arguments

of Zhao and Jiang (2014) and Zhou and Zhang (2016). First, our arguments do not require

the finiteness of the Lévy measure ν(dz), and in the proof of our Lemma 2.2 we replace the

Burkholder-Davis-Gundy inequality (1.7) for continuous processes used in Zhou and Zhang

(2016) with the simpler bound (2.4) below, as (1.7) is not valid for jump processes and the

inequality used at the beginning of the proof of Lemma 2.1 in Zhou and Zhang (2016) may

not hold in general because the compensated Poisson process Ñ(t) can have a negative drift.

Second, the proof of our Lemma 2.3 uses Kunita’s inequality (1.6) for jump processes instead

of relying on the Burkholder-Davis-Gundy inequality (1.7) for continuous processes.

In the sequel, we consider the condition

7



(H
(p)
4 )

∫
R3\{0}

|(1 + γ(z))p − 1|ν(dz) <∞, p > 1.

Lemma 2.2 Assume that (H1)-(H2) and (H
(p)
3 )-(H

(p)
4 ) hold for some p > 1, and let (St, It, Rt)

be the solution of the system (1.1a)-(1.1c) with initial condition (S0, I0, R0) ∈ R3
+. Then we

have

lim
t→∞

St
t

= 0, lim
t→∞

It
t

= 0, lim
t→∞

Rt

t
= 0, P-a.s.

Proof. We let Ut := St + It +Rt and

Ht(z) := γ1(z)St + γ2(z)It + γ3(z)Rt, z ∈ R3, t ∈ R+,

with the inequality Ht(z) ≤ γ(z)Ut, z ∈ R3. Applying the Itô formula with jumps (see e.g.

Theorem 1.16 in Øksendal and Sulem (2005)) to the function x 7→ V (x) = (1 + x)p, we

obtain

dV (Ut) = p(1 + Ut)
p−1(Λ− µUt − εIt)dt

+
p(p− 1)

2
(1 + Ut)

p−2(%1,1S2
t + %2,2I

2
t + %3,3R

2
t + 2%1,2StIt + 2%1,3StRt + 2%2,3ItRt

)
dt

+p(1 + Ut)
p−1(StdB

%
1(t) + ItdB

%
2(t) +RtdB

%
3(t))

+

∫
R3\{0}

((1 + Ut +Ht(z))p − (1 + Ut)
p − p(1 + Ut)

p−1Ht(z))ν(dz)dt

+

∫
R3\{0}

((1 + Ut− +Ht−(z))p − (1 + Ut−)p)Ñ(dt, dz)

= LV (Ut)dt+ p(1 + Ut)
p−1(StdB

%
1(t) + ItdB

%
2(t) +RtdB

%
3(t))

+

∫
R3\{0}

(
(1 + Ut− +Ht−(z))p − (1 + Ut−)p

)
Ñ(dt, dz), (2.1)

where we let

LV (Ut) := p(1 + Ut)
p−1(Λ− µUt − εIt)

+
p(p− 1)

2
(1 + Ut)

p−2(%1,1S2
t + %2,2I

2
t + %3,3R

2
t + 2%1,2StIt + 2%1,3StRt + 2%2,3ItRt

)
+

∫
R3\{0}

((1 + Ut +Ht(z))p − (1 + Ut)
p − p(1 + Ut)

p−1Ht(z))ν(dz).

We note that for all z ∈ R3 and t ∈ R+ there exists θ ∈ (0, 1) such that

(1 + Ut +Ht(z))p − (1 + Ut)
p − p(1 + Ut)

p−1Ht(z)

= (1 + Ut)
p + p(1 + Ut)

p−1Ht(z) +
p(p− 1)

2
(1 + Ut + θHt(z))p−2H2

t (z)
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−(1 + Ut)
p − p(1 + Ut)

p−1Ht(z)

=
p(p− 1)

2
(1 + Ut + θHt(z))p−2H2

t (z)

≤ p(p− 1)

2
max(2p−3, 1)((1 + Ut)

p−2 + θHp−2
t (z))H2

t (z)

≤ cp(1 + Ut)
p−2H2

t (z) + cpH
p
t (z)

≤ cp(1 + Ut)
p−2U2

t (γ2(z) + γp(z)), z ∈ R3, t ∈ R+,

where we used the bound Ht(z) ≤ γ(z)Ut, with cp := p(p−1) max(2p−3, 1)/2. It then follows

that

LV (Ut) ≤ p(1 + Ut)
p−2((1 + Ut)(Λ− µUt)− ε(1 + Ut)It)

+
p(p− 1)

2
(1 + Ut)

p−2(%1,1S2
t + %2,2I

2
t + %3,3R

2
t + 2%1,2StIt + 2%1,3StRt + 2%2,3ItRt

)
+cp(1 + Ut)

p−2U2
t

∫
R3\{0}

γ2(z)ν(dz) + cp(1 + Ut)
p−2U2

t

∫
R3\{0}

γp(z)ν(dz)

≤ p(1 + Ut)
p−2(−µU2

t + (Λ− µ)Ut + Λ) +
p(p− 1)

2
(1 + Ut)

p−2‖%‖∞U2
t

+
pcp
p

(1 + Ut)
p−2U2

t

∫
R3\{0}

(γ2(z) + γp(z))ν(dz)

= p(1 + Ut)
p−2(−bU2

t + (Λ− µ)Ut + Λ), (2.2)

where

b := µ− p− 1

2
‖%‖∞ −

λ(p)

p
> 0

by (H
(p)
3 ). Next, for any k ∈ R it holds that

ekt(1 + Ut)
p = (1 + U0)

p +

∫ t

0

eks(k(1 + Us)
p + LV (Us))ds

+p

∫ t

0

eks(1 + Us)
p−1(SsdB

%
1(s) + IsdB

%
2(s) +RsdB

%
3(s))

+

∫ t

0

eks
∫
R3\{0}

(
(1 + Us− +Hs−(z))p − (1 + Us−)p

)
Ñ(ds, dz),

hence by taking expectations in (2.1) and in view of (2.2), for any k < bp we obtain

ektE[(1 + Ut)
p] = (1 + U0)

p + E
[∫ t

0

eks
(
k(1 + Us)

p + LV (Us)
)
ds

]
.

≤ (1 + U0)
p + E

[∫ t

0

eks
(
k(1 + Us)

p + p(1 + Us)
p−2(Λ + (Λ− µ)Us − bU2

s )
)
ds

]
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= (1 + U0)
p + pE

[∫ t

0

eksUp−2
s

(
−
(
b− k

p

)
U2
s +

(
Λ− µ+

2k

p

)
Us + Λ +

k

p

)
ds

]
≤ (1 + U0)

p + pM

∫ t

0

eksds

= (1 + U0)
p +

pM

k
ekt, t ∈ R+,

where

0 < M := 1 + sup
x∈R+

xp−2
(
−
(
b− k

p

)
x2 +

(
Λ− µ+

2k

p

)
x+ Λ +

k

p

)
<∞.

Hence, for any k ∈ (0, bp) we have

lim sup
t→∞

E[(1 + Ut)
p] ≤ pM

k
,

which implies that there exists M0 > 0 such that

E[(1 + Ut)
p] ≤M0, t ∈ R+. (2.3)

Now, by (2.1) and (2.2) there will be

(1 + Ut)
p − (1 + Ukδ)

p ≤ p

∫ t

kδ

(1 + Us)
p−2(Λ + (Λ− µ)Us − bU2

s )ds

+p

∫ t

kδ

(1 + Us)
p−1(SsdB

%
1(s) + IsdB

%
2(s) +RsdB

%
3(s))

+

∫ t

kδ

∫
R3\{0}

(
(1 + Us− +Hs−(z))p − (1 + Us−)p

)
Ñ(ds, dz), t ≥ kδ,

from which it follows that

sup
kδ≤t≤(k+1)δ

(1 + Ut)
p ≤ (1 + Ukδ)

p + p sup
kδ≤t≤(k+1)δ

∣∣∣∣∫ t

kδ

(1 + Us)
p−2(Λ + (Λ− µ)Us − bU2

s )ds

∣∣∣∣
+p sup

kδ≤t≤(k+1)δ

∣∣∣∣∫ t

kδ

(1 + Us)
p−1(SsdB

%
1(s) + IsdB

%
2(s) +RsdB

%
3(s))

∣∣∣∣
+ sup

kδ≤t≤(k+1)δ

∣∣∣∣∫ t

kδ

∫
R3\{0}

(
(1 + Us− +Hs−(z))p − (1 + Us−)p

)
Ñ(ds, dz)

∣∣∣∣ .
Taking expectation on both sides, we obtain

E
[

sup
kδ≤t≤(k+1)δ

(1 + Ut)
p

]
≤ E[(1 + Ukδ)

p] + J1 + J2 + J3 ≤M0 + J1 + J2 + J3,

10



where, for some c3 > 0,

J1 := pE
[

sup
kδ≤t≤(k+1)δ

∣∣∣∣∫ t

kδ

(1 + Us)
p−2(Λ + (Λ− µ)Us − bU2

s )ds

∣∣∣∣ ]
≤ c3E

[
sup

kδ≤t≤(k+1)δ

∫ t

kδ

(1 + Us)
pds

]
= c3E

[ ∫ (k+1)δ

kδ

(1 + Us)
pds

]
≤ c3δE

[
sup

kδ≤t≤(k+1)δ

(1 + Ut)
p

]
,

and, for some c4 > 0,

J2 := pE
[

sup
kδ≤t≤(k+1)δ

∣∣∣∣∫ t

kδ

(1 + Us)
p−1(SsdB%

1(s) + IsdB
%
2(s) +RsdB

%
3(s)

)∣∣∣∣ ]
≤ p

√
32E

[(∫ (k+1)δ

kδ

(1 + Us)
2(p−1)(%1,1S2

s + %2,2I
2
s + %3,3R

2
s

)
ds

)1/2]
≤ p

√
32δ‖%‖∞E

[(
sup

kδ≤t≤(k+1)δ

(1 + Ut)
2p

)1/2]
= c4

√
δE
[

sup
kδ≤t≤(k+1)δ

(1 + Ut)
p

]
,

where we used the Burkholder-Davis-Gundy inequality (1.7) for continuous martingales, see

Theorem IV.4.48 page 193 of Protter (2004), or Theorem 7.3 in Chapter 1 of Mao (2008).

Furthermore, we have

J3 = E

[
sup

kδ≤t≤(k+1)δ

∣∣∣∣∫ t

kδ

∫
R3\{0}

(
(1 + Us− +Hs−(z))p − (1 + Us−)p

)
Ñ(ds, dz)

∣∣∣∣
]

≤ E

[∣∣∣∣∣
∫ (k+1)δ

kδ

∫
R3\{0}

(
(1 + Us− +Hs−(z))p − (1 + Us−)p

)
N(ds, dz)

∣∣∣∣∣
]

+E

[∣∣∣∣∣
∫ (k+1)δ

kδ

∫
R3\{0}

(
(1 + Us− +Hs−(z))p − (1 + Us−)p

)
dsν(dz)

∣∣∣∣∣
]

= 2E

[∣∣∣∣∣
∫ (k+1)δ

kδ

∫
R3\{0}

(
(1 + Us− +Hs−(z))p − (1 + Us−)p

)
dsν(dz)

∣∣∣∣∣
]

≤ 2E

[∫ (k+1)δ

kδ

∫
R3\{0}

(1 + Us−)p|(1 + γ(z))p − 1|dsν(dz)

]

= 2E

[∫ (k+1)δ

kδ

(1 + Us)
pds

]∫
R3\{0}

|(1 + γ(z))p − 1|ν(dz)

11



≤ 2δE

[
sup

kδ≤t≤(k+1)δ

(1 + Ut)
p

]∫
R3\{0}

|(1 + γ(z))p − 1|ν(dz). (2.4)

Therefore, we have

E
[

sup
kδ≤t≤(k+1)δ

(1 + Ut)
p

]
(2.5)

≤ E[(1 + Ukδ)
p] +

(
c3δ + c4

√
δ + 2δ

∫
R3\{0}

|(1 + γ(z))p − 1|ν(dz)

)
E
[

sup
kδ≤t≤(k+1)δ

(1 + Ut)
p

]
.

Furthermore, from (H
(p)
4 ) we can choose δ > 0 such that

c3δ + c4
√
δ + 2δ

∫
R3\{0}

|(1 + γ(z))p − 1|ν(dz) <
1

2
,

and, combining (2.3) with (2.5), we obtain

E
[

sup
kδ≤t≤(k+1)δ

(1 + Ut)
p

]
≤ 2E[(1 + Ukδ)

p] ≤ 2M0. (2.6)

Let now ε > 0 be arbitrary. By Chebyshev’s inequality, we get

P
(

sup
kδ≤t≤(k+1)δ

(1 + Ut)
p > (kδ)1+ε

)
≤ 1

(kδ)1+ε
E
[

sup
kδ≤t≤(k+1)δ

(1 + Ut)
p

]
≤ 2M0

(kδ)1+ε

for all k ≥ 1. Then, by the Borel-Cantelli lemma (see Lemma 2.4 in Chapter 1 of Mao

(2008)) it follows that for almost all ω ∈ Ω, the bound

sup
kδ≤t≤(k+1)δ

(1 + Ut)
p ≤ (kδ)1+ε,

holds for all but finitely many k. Thus, for almost all ω ∈ Ω there exists k0(ω) such that

whenever k ≥ k0(ω) we have

log(1 + Ut)
p

log t
≤ 1 + ε, ε > 0, kδ ≤ t ≤ (k + 1)δ,

hence

lim sup
t→∞

logUt
log t

≤ lim sup
t→∞

log(1 + Ut)

log t
≤ 1

p
, P-a.s., p > 1.

In other words, for any ξ ∈ (0, 1 − 1/p) there exists an a.s. finite random time T (ω) such

that

logUt ≤
(

1

p
+ ξ

)
log t, t ≥ T .

12



It follows that

lim sup
t→∞

Ut
t
≤ lim sup

t→∞

tξ+1/p

t
= 0,

therefore we have

lim sup
t→∞

St
t
≤ 0, lim sup

t→∞

It
t
≤ 0, lim sup

t→∞

Rt

t
≤ 0, P-a.s.

This, together with the positivity of the solution, implies that

lim
t→∞

St
t

= 0, lim
t→∞

It
t

= 0, lim
t→∞

Rt

t
= 0, P-a.s.

�

The next Lemma 2.3 is proved by using Kunita’s inequality (1.6) for jump processes instead

of the Burkholder-Davis-Gundy inequality (1.7) for continuous martingales.

Lemma 2.3 Assume that (H1)-(H2) and (H
(p)
3 )-(H

(p)
4 ) hold for some p > 2, and let (St, It, Rt)

be the solution of the system (1.1a)-(1.1c) with initial condition (S0, I0, R0) ∈ R3
+. Then we

have

lim
t→∞

1

t

∫ t

0

Sr−

∫
R3\{0}

γ1(z)Ñ(dr, dz) = 0, lim
t→∞

1

t

∫ t

0

Ir−

∫
R3\{0}

γ2(z)Ñ(dr, dz) = 0,

and

lim
t→∞

1

t

∫ t

0

Rr−

∫
R3\{0}

γ3(z)Ñ(dr, dz) = 0, P-a.s.

Proof. Denote

X1(t) :=

∫ t

0

Sr−

∫
R3\{0}

γ1(z)Ñ(dr, dz), X2(t) :=

∫ t

0

Ir−

∫
R3\{0}

γ2(z)Ñ(dr, dz),

and

X3(t) :=

∫ t

0

Rr−

∫
R3\{0}

γ3(z)Ñ(dr, dz), t ∈ R+.

By Kunita’s inequality (1.6), for any p ≥ 2 there exists a positive constant Cp such that

E
[

sup
0<r≤t

|X1(r)|p
]

≤ CpE
[(∫ t

0

|Sr|2
∫
R3\{0}

|γ1(z)|2ν(dz)dr

)p/2]
+ CpE

[ ∫ t

0

|Sr|p
∫
R3\{0}

|γ1(z)|pν(dz)dr

]
= Cp

(∫
R3\{0}

γ21(z)ν(dz)

)p/2
E
[(∫ t

0

|Sr|2dr
)p/2]

+ Cp

(∫
R3\{0}

γp1(z)ν(dz)

)
E
[ ∫ t

0

|Sr|pdr
]

13



≤ Cpt
p/2

(∫
R3\{0}

γ21(z)ν(dz)

)p/2
E
[(

sup
0<r≤t

|Sr|2
)p/2 ]

+ Cp

∫
R3\{0}

γp1(z)ν(dz)

∫ t

0

E[|Sr|p]dr

≤ Cpt
p/2

(∫
R3\{0}

γ21(z)ν(dz)

)p/2
E
[

sup
0<r≤t

|Sr|p
]

+ CpM0t

∫
R3\{0}

γp1(z)ν(dz),

where the bound (2.3) has been used in the last inequality. Combining the above inequality

with (2.6) yields

E
[

sup
kδ≤t≤(k+1)δ

|X1(t)|p
]

≤ Cp((k + 1)δ)p/2
(∫

R3\{0}
γ21(z)ν(dz)

)p/2
E
[

sup
kδ≤t≤(k+1)δ

|Sr|p
]

+CpM0(k + 1)δ

∫
R3\{0}

γp1(z)ν(dz)

≤ Cp2M0((k + 1)δ)p/2
(∫

R3\{0}
γ21(z)ν(dz)

)p/2
+ CpδM0(k + 1)

∫
R3\{0}

γp1(z)ν(dz).

Let ε > 0 be arbitrary. It follows from Doob’s martingale inequality (see e.g. Theorem 3.8

in Chapter 1 of Mao (2008)) that

P
(

sup
kδ≤t≤(k+1)δ

|X1(t)|p > (kδ)1+ε+p/2
)
≤ (kδ)−1−ε−p/2E

[
sup

kδ≤t≤(k+1)δ

|X1(t)|p
]

≤ Cp2M0((k + 1)δ)p/2

(kδ)1+ε+p/2

(∫
R3\{0}

γ21(z)ν(dz)

)p/2
+
CpM0(k + 1)δ

(kδ)1+ε+p/2

∫
R3\{0}

γp1(z)ν(dz).

By the Borel-Cantelli lemma it follows that for almost all ω ∈ Ω the bound

sup
kδ≤t≤(k+1)δ

|X1(t)|p ≤ (kδ)1+ε+p/2

holds for all but finitely many k. Thus, for almost all ω ∈ Ω there exists k0(ω) such that for

all k ≥ k0(ω) we have

log |X1(t)|
log t

≤ 1

2
+

1 + ε

p
, ε > 0, kδ ≤ t ≤ (k + 1)δ,

hence

lim sup
t→∞

log |X1(t)|
log t

≤ 1

2
+

1

p
, p > 2,
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and as in the proof of Lemma 2.2, this yields

lim sup
t→∞

|X1(t)|
t
≤ lim sup

t→∞

t1/2+1/p

t
= 0

since p > 2, which shows that

lim
t→∞

|X1(t)|
t

= 0, P-a.s.

By similar arguments, we also obtain

lim
t→∞

X2(t)

t
= 0, lim

t→∞

X3(t)

t
= 0, P-a.s.

�

Remark 2.4 We note that by the continuity of p 7→ λ(p) in (1.5), in order for (H
(p)
3 ) to

hold for some p > 2 it suffices that (H
(2)
3 ) be satisfied, i.e.

(H
(2)
3 ) : µ >

‖%‖∞
2

+
λ(2)

2
.

The next Lemma 2.5 can be proved on (2.3), by noting that the argument of Lemma 2.2

in Zhou and Zhang (2016) is valid for correlated Brownian motions (B%
1(t), B%

2(t), B%
3(t)),

without requiring the continuity of (St, It, Rt)t∈R+ .

Lemma 2.5 Assume that (H1)-(H2) and (H
(p)
3 )-(H

(p)
4 ) hold for some p > 1, and let (St, It, Rt)

be the solution of (1.1a)-(1.1c) with initial condition (S0, I0, R0) ∈ R3
+. Then, P-a.s, we have

lim
t→∞

1

t

∫ t

0

SrdB
%
1(r) = 0, lim

t→∞

1

t

∫ t

0

IrdB
%
2(r) = 0, lim

t→∞

1

t

∫ t

0

RrdB
%
3(r) = 0.

3 Extinction and persistence

By virtue of the large time estimates for the solution of (1.1a)-(1.1c) and its diffusion and

jump components obtained in Section 2, in this section we determine the threshold behavior

of the stochastic SIR epidemic model.

In Theorems 3.1 and 3.2 below, the extinction and persistence of the disease is charac-

terized by means of the critical reproduction number R0 in (1.10), which shows that the
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additional environmental noise induced by Lévy jumps can limit the outbreak of the disease.

In the sequel, we let

0 < βi :=
1

2
%i,i +

∫
R3\{0}

(γi(z)− log(1 + γi(z))) ν(dz), i = 1, 2, 3,

which is finite under (H1), and we consider the following condition:

(H5)

∫
R3\{0}

(
log(1 + γi(z))

)2
ν(dz) <∞.

We note that the basic reproduction number R0 becomes lower in the presence of jumps.

Theorem 3.1 (Extinction). Assume that (H1)-(H2), (H
(p)
3 )-(H

(p)
4 ) and (H5) hold for some

p > 2. If in addition

R0 := R0 −
β2

µ+ ε+ η
< 1,

then for any initial condition (S0, I0, R0) ∈ R3
+, the disease vanishes with probability one in

large time, i.e. the solution (St, It, Rt) of (1.1a)-(1.1c) satisfies

lim
t→∞
〈S〉t =

Λ

µ
, lim

t→∞
It = 0 and lim

t→∞
Rt = 0, P-a.s.

The proof of Theorem 3.1 follows the lines of the proof of Theorem 2.1 in Zhou and Zhang

(2016), up to the new Condition (H
(p)
3 ) which allows for infinite Lévy measures in Lemma 2.2.

For reference, the proof of Theorem 3.1 is stated in Appendix.

Next, we consider the persistence of the system (1.1a)-(1.1c). We recall that the system

(1.1a)-(1.1c) is said to be persistent in the mean if

lim inf
t→∞

1

t

∫ t

0

Srdr > 0, lim inf
t→∞

1

t

∫ t

0

Irdr > 0, lim inf
t→∞

1

t

∫ t

0

Rrdr > 0, P-a.s.

In Theorem 3.2 we explore the conditions for the disease to be endemic, in other words,

sufficient conditions for the persistence of the infected population It.

Theorem 3.2 (Persistence). Assume that (H1)-(H2), (H
(p)
3 )-(H

(p)
4 ) and (H5) hold for some

p > 2. If in addition

R0 := R0 −
β2

µ+ ε+ η
> 1,

then for any initial condition (S0, I0, R0) ∈ R3
+, the solution (St, It, Rt) of (1.1a)-(1.1c)

satisfies

lim
t→∞
〈S〉t = S∗ +

β2
β
, lim

t→∞
〈I〉t =

µ

β
(R0 − 1), lim

t→∞
〈R〉t =

η

β
(R0 − 1), P-a.s.,
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where S∗ := (µ + ε + η)/β is the equilibrium value for the susceptible population St in the

corresponding deterministic SIR model.

For reference, the proof of Theorem 3.2 is stated in Appendix. It follows the lines of the

proof of Theorem 3.1 in Zhou and Zhang (2016), up to the use of Lemma 5.1 (in Appendix)

which extends Lemma 2 of Liu and Wang (2014) to discontinuous functions.

4 Numerical experiments

In this section, we provide numerical simulations for the behavior of (1.1a)-(1.1c) using tem-

pered stable processes. The (compensated) one-dimensional tempered stable Lévy process

Y (t) =

∫ t

0

∫
R\{0}

zÑ(ds, dz), t ∈ R+,

is defined by its Lévy measure (1.9) on R \ {0} where k−, k+, λ−, λ+ > 0 and α ∈ (0, 2), i.e.

ν(dz) =
k−
zα+1

e−λ−zdz +
k+
zα+1

e−λ+zdz. (4.1)

As ν(R) =∞, the tempered stable process (Y (t))t∈R+ is not covered by the proof arguments

of Zhang and Wang (2013), Zhou and Zhang (2016) and Zhang et al. (2018), in particular

the quantity defined in (1.4) is not finite in this case.

Random simulations

We use the simulation algorithm of Rosiński (2007) for the tempered stable process with Lévy

measure (1.8). Consider (εj)j≥1 an independent and identically distributed (i.i.d.) Bernoulli

(−λ−, λ+)-valued random sequence with distribution (k−/(k−+k+), k+/(k−+k+)), (ξj)j≥1 an

i.i.d. uniform U(0, 1) random sequence, and (ηj)j≥1, (η′j)j≥1 i.i.d. exponentially distributed

random sequences with parameter 1, with Γj := η′1 + · · · + η′j, j ≥ 1. We also let (uj)j≥1

denote an i.i.d. sequence of uniform random variables on [0, T ], where T > 0, and assume

that the sequence (εj)j≥1, (ξj)j≥1, (ηj)j≥1, (η′j)j≥1, and (uj)j≥1 are mutually independent. By

Theorem 5.3 in Rosiński (2007), the tempered stable process Y (t) with Lévy measure (1.8)

admits the following representations.

(i) If α ∈ (0, 1), set

Y (t) =
∞∑
j=1

I(0,t](uj) min

{(
T (k− + k+)

αΓj

)1/α

,
ηj
|εj|

ξ
1/α
j

}
εj
|εj|

, t ∈ [0, T ].
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(ii) If α ∈ (1, 2), set

Y (t) =
∞∑
j=1

(
I(0,t](uj) min

{(
k− + k+
αΓj/T

)1/α

,
ηj
|εj|

ξ
1/α
j

}
εj
|εj|
− x0

t

T

(
k− + k+
αj/T

)1/α
)

+ tbT ,

t ∈ [0, T ], with x0 = (k− − k+)/(k− + k+), x1 = k+λ
−1−α
+ − k−λ−1−α− , and

bT :=
x0
T
ζ

(
1

α

)(
T (k− + k+)

α

)1/α

− x1Γ(1− α),

where ζ is the Riemann zeta function.
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(a) Tempered stable process with α = 0.2
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(b) Tempered stable process with α = 1.7

Figure 1: Simulated sample paths of the tempered stable process.

Next, we take γi(z) := σizi with σi > 0, i = 1, 2, 3, and we consider the system
dSt = (Λ− βStIt − µSt)dt+ StdB

%
1(t) + σ1StdY (t),

dIt = (βStIt − (µ+ ε+ η)It)dt+ ItdB
%
2(t) + σ2ItdY (t),

dRt = (ηIt − µRt)dt+RtdB
%
3(t) + σ3RtdY (t),

i.e. (1.3) reads Zi(t) = B%
i (t)+Y (t), i = 1, 2, 3, and (Y (t))t∈R+ is a one-sided tempered stable

process with k− = 0 in (1.8). We note that (H1)-(H2), (H5) are satisfied, and that (H
(p)
4 )

holds for all α ∈ (0, 1) and p > 1. In addition, letting σ := max(σ1, σ2, σ3), the quantity

λ(p) = cpσ
2

∫
R3\{0}

z2ν(dz) + cpσ
p

∫
R3\{0}

zpν(dz)

= cpk+σ
2Γ(2− α)

λ2−α+

+ cpk+σ
2Γ(p− α)

λp−α+
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in (1.5) is finite when p > α, where Γ(·) is the Gamma function. We note that the variance

k+tΓ(2− α)/λ2−α+ of the one-sided tempered stable process Y (t) is an increasing function of

α ∈ (0, 1) when λ+ ≥ 1.

First, we take α = 0.7, λ+ = 1.2, k+ = 2.8 with the initial condition (S0, I0, R0) =

(1.6, 0.4, 0.04) and the parameters Λ = 8, µ = 5.3, β = 4.8, η = 1 and ε = 0.5. The

covariance matrix is set at % = 10−2

 4 3.2 3.0
3.2 4 3.84
3 3.84 4.69

, with σ1 = 0.2, σ2 = 0.8 and

σ3 = 0.5, in which case Condition (H
(2)
3 ) is also satisfied by Remark 2.4.
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Figure 2: Disease extinction in the epidemic population model with α = 0.7.

We note that the deterministic system is persistent as R0 = 1.0655 > 1, with the positive

equilibrium value E∗ = (S∗, I∗, R∗) = (1.417, 0.0723, 0.0136). On the other hand, for the

stochastic system with α = 0.7 we have R0 = 0.9976 < 1, and disease extinction is induced

by the jump noise with

lim
t→∞
〈S〉t =

Λ

µ
= 1.5, lim

t→∞
It = 0, lim

t→∞
Rt = 0, P-a.s.

according to Theorem 3.1, see Figures 2-3.
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Figure 3: Disease extinction in the epidemic population model with α = 0.7.

We also note that the tempered stable model generates jumps of large size which can model

sudden disease outbreak. Next, we decrease the value of the index to α = 0.2 and keep

the initial value and other parametric values unchanged, in which case Condition (H
(2)
3 ) still

holds true and R0 = 1.00767 > 1.
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(a) Persistence of the infected population
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Figure 4: Persistence in the epidemic population model with α = 0.2.

Based on Theorem 3.2, the solution (St, It, Rt) of stochastic system (1.1a)-(1.1c) satisfies

lim
t→∞
〈S〉t = 1.49, lim

t→∞
〈I〉t = 0.0085, lim

t→∞
〈R〉t = 0.0016. The system is persistent and the

disease becomes endemic, as illustrated in Figures 4-5.
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Figure 5: Persistence in the epidemic population model with α = 0.2.

Finally, we consider a pure jump model with two different values α(1) and α(2) and Lévy

measures ν(1)(dz) and ν(2)(dz) given by (4.1) as

ν(j)(dz) =
k+

zα(j)+1
e−λ+zdz, j = 1, 2,

while normalizing the jump size variances(
σ
(1)
i

)2 ∫
R3\{0}

z2ν(dz) =
(
σ
(2)
i

)2 ∫
R3\{0}

z2ν(dz)

to the same level in both cases, i.e.

k+
(
σ
(1)
i

)2Γ(2− α(1))

λ2−α
(1)

+

= k+
(
σ
(2)
i

)2Γ(2− α(2))

λ2−α
(2)

+

with k+ = 2.8, λ+ = 1.2. When α(1) = 0.2 we take σ
(1)
1 = 0.2, σ

(1)
2 = 0.8 and σ

(1)
3 = 0.5, in

which case we have R0 = 1.01 > 1 and both I(t) and R(t) are persistent.
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Figure 6: Behavior of the infected population for two different values of α.

When α(2) = 0.9 we take σ
(2)
1 = 0.1857, σ

(2)
2 = 0.7426 and σ

(2)
3 = 0.4641, in which case we

have R0 = 0.99 < 1, and both I(t) and R(t) become extinct, showing that persistence and

extinction can depend on the shape of the jump size distribution for a given variance level,

see Figures 6-7. In particular, the presence of larger positive jumps for small values of α can

result into persistence of the disease.
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Figure 7: Behavior of the recovered population for two different values of α.
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5 Appendix

This section is devoted to proof arguments which are similar to the literature, see Zhou and

Zhang (2016). The next Lemma 5.1, which extends Lemma 2 of Liu and Wang (2014) to

possibly discontinuous functions f , is needed for the proof of Theorem 3.2.

Lemma 5.1 Let f : R+ → R+ be a function integrable on any interval [0, t], t > 0, and

consider Φ : R+ → R a function such that lim
t→∞

(Φ(t)/t) = 0.

i) Assume that there exist nonnegative constants ρ0 ≥ 0, T ≥ 0 such that

log f(t) ≤ ρt− ρ0
∫ t

0

f(r)dr + Φ(t), P-a.s.

for all t ≥ T , where ρ ∈ R. Then we have
lim sup
t→∞

1

t

∫ t

0

f(r)dr ≤ ρ

ρ0
, P-a.s. if ρ ≥ 0;

lim
t→∞

f(t) = 0, P-a.s. if ρ < 0.

ii) Assume that there exists positive constants ρ, ρ0, and T ≥ 0 such that

log f(t) ≥ ρt− ρ0
∫ t

0

f(r)dr + Φ(t), P-a.s.

for all t ≥ T . Then we have

lim inf
t→∞

1

t

∫ t

0

f(r)dr ≥ ρ

ρ0
, P-a.s.

Proof. Define

F (t) =

∫ t

0

f(r)dr.

By the integrability of f(t), the Lebesgue differentiation theorem (see e.g. Theorem 1.6.11

in Tao (2011)) shows that F (t) is continuous and almost everywhere differentiable, with

dF (t)

dt
= f(t)

for almost every t ≥ 0. The rest of the proof is the same as in Lemma 2 of Liu and Wang

(2014), and is omitted. �
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Proof of Theorem 3.1. The proof of existence and uniqueness of solutions for stochastic

differential equation driven by Lévy processes in Applebaum (2009) ensure the integrability

of St, It and Rt on any bounded interval [0, T ]. In view of (1.1a)-(1.1c), we deduce

St − S0

t
+
It − I0
t

= Λ− µ〈S〉t − (µ+ ε+ η)〈I〉t +
1

t

∫ t

0

SrdB
%
1(r) +

1

t

∫ t

0

IrdB
%
2(r)

+
1

t

∫ t

0

Sr−

∫
R3\{0}

γ1(z)Ñ(dr, dz) +
1

t

∫ t

0

Ir−

∫
R3\{0}

γ2(z)Ñ(dr, dz),

which yields

µ〈S〉t + (µ+ ε+ η)〈I〉t = Λ− ϕ(t), (5.1)

where

ϕ(t) :=
St − S0

t
+
It − I0
t
− 1

t

∫ t

0

SrdB
%
1(r)− 1

t

∫ t

0

IrdB
%
2(r)

−1

t

∫ t

0

Sr−

∫
R3\{0}

γ1(z)Ñ(dr, dz)− 1

t

∫ t

0

Ir−

∫
R3\{0}

γ2(z)Ñ(dr, dz).

By the Itô formula for Lévy-type stochastic integrals (see Theorem 1.16 in Øksendal and

Sulem (2005)) and (5.1), letting

M2(t) :=

∫ t

0

∫
R3\{0}

log(1 + γ2(z))Ñ(ds, dz) (5.2)

we have

log It = log I0 + β

∫ t

0

Srdr − (µ+ ε+ η)t− β2t+B%
2(t) +M2(t)

= log I0 +

(
β

Λ

µ
− (µ+ ε+ η + β2)

)
t− β(µ+ ε+ η)

µ

∫ t

0

Irdr

−β
µ
tϕ(t) +B%

2(t) +M2(t) (5.3)

≤ log I0 + (µ+ ε+ η)(R0 − 1)t− β

µ
tϕ(t) +B%

2(t) +M2(t).

We deduce from Lemmas 2.2, 2.5 and 2.3 that

lim
t→∞

ϕ(t) = 0, P-a.s. (5.4)

In addition, under (H5) we have∫ t

0

d〈M2,M2〉(r)
(1 + r)2

dr =

∫ t

0

1

(1 + r)2
dr

∫
R3\{0}

(
log(1 + γ2(z))

)2
ν(dz)
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=
t

1 + t

∫
R3\{0}

(
log(1 + γ2(z))

)2
ν(dz) < +∞, t ∈ R+,

hence by the law of large numbers for local martingales (see Theorem 1 in Liptser (1980))

we have

lim
t→∞

M2(t)

t
= 0, P-a.s. (5.5)

By the law of large numbers (see Theorem 3.4 in Chapter 1 of Mao (2008)) we also get

lim
t→∞

B%
2(t)

t
= 0, P-a.s. (5.6)

Therefore, by (5.3), if R0 < 1 we have

lim sup
t→∞

log It
t
≤ (µ+ ε+ η)(R0 − 1) < 0, P-a.s.,

which, together with the positivity of It, implies

lim
t→∞

It = 0, P-a.s. (5.7)

In other words, the disease goes to extinction with probability one. Furthermore, from (5.1)

we obtain

lim
t→∞
〈S〉t =

Λ

µ
, P-a.s.

We derive from (1.1c) that

Rt −R0

t
= −µ

t

∫ t

0

Rrdr +
η

t

∫ t

0

Irdr +
1

t

∫ t

0

RrdB
%
3(r) +

1

t

∫ t

0

Rr−

∫
R3\{0}

γ3(z)Ñ(dr, dz),

and taking limits on both sides yields

µ lim
t→∞

1

t

∫ t

0

Rrdr = η lim
t→∞

1

t

∫ t

0

Irdr − lim
t→∞

Rt

t
+ lim

t→∞

1

t

∫ t

0

RrdB
%
3(r)

+ lim
t→∞

1

t

∫ t

0

Rr−

∫
R3\{0}

γ3(z)Ñ(dr, dz), P-a.s. (5.8)

Together with (5.7) and the conclusions in Lemmas 2.2, 2.5 and 2.3, we conclude to

lim
t→∞

Rt = 0, P-a.s.

�
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Proof of Theorem 3.2. By (5.1) we deduce that

β〈S〉t =
βΛ

µ
− β

µ
ϕ(t)− β(µ+ ε+ η)

µ
〈I〉t.

It then follows from (5.3) that

log It = log I0 + β

∫ t

0

Srdr − (µ+ ε+ η + β2)t

+B%
2(t) +

∫ t

0

∫
R3\{0}

log(1 + γ2(z))Ñ(ds, dz)

=

(
β

Λ

µ
− (µ+ ε+ η)− β2

)
t− β(µ+ ε+ η)

µ

∫ t

0

Irdr + Ψ(t),

where we denote

Ψ(t) := log I0 −
β

µ
tϕ(t) +B%

2(t) +M2(t), t ∈ R+,

and M2(t) is defined as in (5.2). From (5.4), (5.5) and (5.6) it follows that lim
t→∞

(Ψ(t)/t) = 0,

hence applying Lemma 5.1 to the function f(t) := It which is a.s. integrable over [0, T ],

T > 0, we obtain

lim
t→∞
〈I〉t =

µ (βΛ/µ− (µ+ ε+ η)− β2)
β(µ+ ε+ η)

=
µ

β
(R0 − 1), P-a.s.

Consequently, on account of (5.1) and (5.4) we get

lim
t→∞
〈S〉t =

Λ

µ
− (µ+ ε+ η)

β
(R0 − 1) = S∗ +

β2
β
, P-a.s.,

and it follows from (5.8) and Lemmas 2.2, 2.5 and 2.3 that

lim
t→∞
〈R〉t =

η

β
(R0 − 1), P-a.s.

�

Conclusion

In this paper, we consider a stochastic version of the SIR epidemic model (1.1a)-(1.1c),

driven by correlated Brownian and Lévy jump components with heavy tailed increments.

We present new solution estimates using the parameter λ(p) defined in (1.5) and Kunita’s

inequality for jump processes in the key Lemmas 2.2 and 2.3. Our approach relaxes the
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restriction on the finiteness of the Lévy measure ν(dz) imposed in Zhang and Wang (2013)

and Zhou and Zhang (2016), and our definition of the parameter λ(p) in (1.5) applies to a

wider range of Lévy measures. In Theorems 3.1 and 3.2 we derive the basic reproduction

number R0 which characterizes the extinction and persistence properties of the stochastic

epidemic system (1.1a)-(1.1c). As an illustration we present numerical simulations based on

tempered stable processes, showing that the additional presence of jumps and the level of the

index α ∈ (0, 1) can have a significant influence on the dynamical behavior of the epidemic

system.
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