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Abstract

We start by surveying the planar point vortex motion of the Euler equations in the

whole plane, half-plane and quadrant. Then we go on to prove the non-collision property

of the 2-vortex system by using the explicit form of orbits of the 2-vortex system in the

half-plane. We also prove that the N -vortex system in the half-plane is nonintegrable for

N ą 2, which was suggested previously by numerical experiments without rigorous proof.

The skew-mean-curvature (or binormal) flow in Rn, n ě 3 with certain symmetry can

be regarded as point vortex motion of the 2D lake equations. We compare point vortex

motions of the Euler and lake equations. Interesting similarities between the point vortex

motion in the half-plane, quadrant and the binormal motion of coaxial vortex rings, sphere

product membranes are addressed. We also raise some open questions in the paper.
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1 Introduction

In his seminal work [10], Helmholtz built the foundation for the theory of vortex dynamics.

In the same paper, he initiated the study of two areas: interacting point vortex motion and

the motion of vortex rings. After Helmholtz’s work, these two areas develop independently

along different lines. There are many important studies of point vortex motions, for instance,

the works of Kirchoff [16], Gröbli [8], Synge [33], Aref [1], Ziglin [36], etc. Meanwhile, the

motion of vortex rings has become a classical subject of binormal flow of vortex filaments [5]

and is studied by W. Thomson [35], J. J. Thomson [34], Dyson [6], Hicks [11], Saffman [30],

etc. In this paper, we search for possible relations between the motions of point vortices and

vortex rings. We will survey related research and prove some new results.

First we survey the vortex motion of the Euler equations. We start with the planar point

vortex system and consider three cases: the whole plane, half-plane and quadrant. It is well-

known that on the whole plane the N -vortex system for N ď 3 is integrable, and the explicit

solution of 3-vortex system is given by Gröbli [8]. For N ą 3, Ziglin [36] proves that vortex

systems with more than 3 vortices are nonintegrable.

We study the integrability and nonintegrability properties of point vortex systems in the

half-plane and quadrant. By symmetry group consideration, we know that the N -vortex sys-

tem in the half-plane is integrable when N ď 2 . In Section 2, we give the explicit solutions

for 2-vortex systems in the half-plane, which we did not find in the previous literature. Fur-

thermore, using the explicit form of the solutions, we show a non-collision property of the

2-vortex system in the half-plane.

There are some numerical evidences showing the nonintegrability of N -vortex system in

the half-plane for N ą 2, see cf. [17], but as far as we know the rigorous proof is missing. So

in this paper we present a proof. Curiously, up to the order of ε, the perturbed system we

used to prove the nonintegrability of 3 point vortices in the half-plane appears to be the same

as the perturbed system used in [4] to prove the nonintegrability of 3 coaxial vortex rings.

This observation shows an interesting relation of point vortex system in the half-plane and

coaxial vortex ring system, this similarity also is indicated by some phenomena, for example

both 2 point vortices and 2 vortex rings can have leapfrogging motion. (See Figure 2 in [20]
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for an illustration of the Leapfrogging motion.) Explicit solution of a single vortex in the

quadrant is also given in Section 2.

One of the purposes of this paper is to compare the point vortex system in the half-

plane with the system of coaxial vortex rings, as well as, compare single vortex motion in

the quadrant with motion of sphere product vortex membrane under the binormal flow. In

Section 3, we describe Dyson’s model of coaxial vortex rings system. In Section 4, we study

the motion of sphere product vortex membrane under the skew-mean-curvature flow.

Under the axisymmetry and sphere product symmetry, the Euler equations can be reduced

to the lake equations. Hence the two cases studied in Section 3 and 4 can be seen as the point

vortex motion for the lake equations. So in this paper we are actually comparing the point

vortex systems of the incompressible Euler equations and the lake equations. Several open

problems are raised in the paper.

Acknowledgments. The author is grateful to Boris Khesin and Klas Modin for stimu-

lating discussions.

2 Planar point vortex system

2.1 Point vortex system in the plane

The dynamics of N vortices with strength Γi located at xi “ pxiptq, yiptqq, i “ 1, 2, . . . , N are

governed by the equations:
$

’

’

’

’

&

’

’

’

’

%

9xi “ ´
1

2π

řN
j‰i

Γjpyi´yjq

l2ij
,

9yi “
1

2π

řN
j‰i

Γjpxi´xjq

l2ij
,

(1)

where lij “
a

pxi ´ xjq2 ` pyi ´ yjq2 are the distances between point vortices.

In the space pR2qN equipped with the symplectic structure ω “
řN
i“1 Γidxi ^ dyi, (1) can

be written in the Hamiltonian form:

$

’

’

’

’

&

’

’

’

’

%

Γi 9xi “
BH
Byi
,

Γi 9yi “ ´
BH
Bxi
,

(2)
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whose Hamiltonian function is Hpx1,x2, . . . ,xNq “ ´
1

4π

ř

j‰i ΓiΓj logplijq.

Besides the vortex interaction energy given by the Hamiltonian function H, the following

3 quantities are also conserved under the Hamiltonian flow of (2):

Q “
N
ÿ

i“1

Γixi, P “
N
ÿ

i“1

Γiyi and I “
N
ÿ

i“1

Γipx
2
i ` y

2
i q. (3)

Remark 2.1. The Hamiltonian system (2) is invariant under the action of semidirect product

group SO(3) ˙ R2, the above invariants Q, P, I can be regarded as the momentum map of

this group action. Applying the symplectic reduction theorem (see cf. [23]), if the dimension

of the reduced system is no more than 2, then the original system (2) is integrable.

For the point vortex systems on the sphere or hyperbolic plane, the corresponding sym-

metry group are SO(3) and SL(2) respectively, then one can obtain similar integrable results

by reduction theorem, see [25] for more details.

Hence, we have the following theorem.

Theorem 2.2. (cf. [26]) The N-vortex problem for N ď 3 is integrable. If the total strength

of the vortices Γ “
řN
i“1 Γi “ 0, the 4-vortex problem is integrable.

Proof. The quantities H, I, P 2 `Q2 are mutually involution and functional independent.

If Γ “ 0, then H, P, Q, I are mutually involution and functional independent.

Remark 2.3. When N “ 2 and Γ1 ` Γ2 ‰ 0, the distance l12 and the center of vorticity

C “ Γ1x1`Γ2x2
Γ1`Γ2

are conserved. Therefore, the two vortices rotate over concentric circles about

their center of vorticity. When Γ1 ` Γ2 “ 0 (the dipole case), the vortices move along the

perpendicular bisector with velocity p1{2 pΓ2
1 ` Γ2

2qq
1{2{p2πl12q.

Remark 2.4. It is useful to rewrite the N -vortex system (1) in terms of the vortex separations

lij . When N “ 3, explicit solutions of the aforementioned system of vortex separations lij is

studied first by Gröbli [8], and later reconsidered by Novikov [27] and Aref [1].

Remark 2.5. When N ě 4, the system (2) is nonintegrable in general, see cf. [36].

Finally, for a three-vortex system satisfying Γ1Γ2`Γ2Γ3`Γ3Γ1 “ 0 and Γ1Γ2l
2
12`Γ2Γ3l

2
23`

Γ3Γ1l
2
31 “ 0, there exist solutions such that the triangle of vortices collapses self-similarly to
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a point in finite time. Self-similar vortex collapse may also be found analytically for four

and five vortices [28].

Proposition 2.6. The condition
ř

1ďiăjďN

ΓiΓj “ 0 is necessary for self-similar vortex col-

lapse.

Proof. For a self-similar motion, one can find a function fptq of time t, such that lijptq “

fptqlijp0q, where fp0q “ 1 and lim
tÑ8

fptq “ 0. Therefore the Hamiltonian at time t is

Hptq “
1

4π

ÿ

j‰i

ΓiΓj logpfptqlijp0qq “
1

4π

ÿ

j‰i

ΓiΓj logpfptqq `
1

4π

ÿ

j‰i

ΓiΓj logplijp0qq.

Because Hptq is conserved, the first term 1
4π

řN
j‰i ΓiΓj logpfptqq must be 0 for all time t, which

gives us
ř

1ďiăjďN

ΓiΓj “ 0.

Remark 2.7. From this proof, one can see that the condition
ř

1ďiăjďN

ΓiΓj “ 0 appeared in

[2] is actually a necessary condition for self-similar motion. Therefore
ř

1ďiăjďN ΓiΓj ‰ 0 does

not rule out other possibilities of vortex collision which are not self-similar vortex collapse.

For an N -vortex system in the half-plane, if we count both the vortices in the half-plane

and their images, one can see that
ř

1ďiăjď2N ΓiΓj ă 0 as a 2N -system in the whole plane,

hence by Proposition 2.6, self-similar vortex collapse can not happen in the half-plane, but

there still could be other kinds of collision.

2.2 Point vortex system in the half-plane

Before discussing the vortex motion in the half-plane, let us first consider general point vortex

system in a domain D Ă R2. The Green function GDpx, x
1q : D ˆD Ñ R associated to the

domain D is

GDpx, x
1q “ Gpx, x1q ` γDpx, x

1q,

where Gpx, x1q is the Green function in the whole plane R2, and smooth function γDpx, x
1q is

symmetric: γDpx, x
1q “ γDpx

1, xq.

Now suppose that N vortices with strength Γi locate at xiptq “ pxiptq, yiptqq, i “
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1, 2, . . . , N in the domain D. Then the system of vortices in D satisfies

d

dt
xiptq “ ∇Ki

N
ÿ

j‰i

ΓjGDpxiptq,xjptqq `
1

2
Γi∇Ki γ̂Dpxiptqq, (4)

where γ̂ipxiptqq “ γipxiptq,xiptqq and ∇Ki stands for pByi ,´Bxiq. See [22] for more details.

Remark 2.8. Unlike the vortex system in the plane, the vortex system in a general domain

contains a self-interaction part (term 1
2Γi∇Ki γDpxiptqq in the equation).

This system is also Hamiltonian [21] (see (2)):

$

’

’

’

’

&

’

’

’

’

%

Γi 9xi “
BH
Byi
,

Γi 9yi “ ´
BH
Bxi
,

(5)

with Hamiltonian function

Hpx1,x2, . . . ,xNq “
1

2

N
ÿ

j‰i

ΓiΓjGDpxi,xjq `
1

2

N
ÿ

i“1

Γ2
i γ̂Dpxiq. (6)

Next we apply the above formulas to the half-plane case: D “ R2
` “ tpx, yq : y ě 0u, the

corresponding Green function is

GR2
`
px,x1q “ ´

1

2π
log }x´ x1} `

1

2π
log }x´ x1˚}, (7)

where x1˚ “ px1,´y1q stands for the mirror image of x1 “ px1, y1q. Note that the first term

of GR2
`
px,x1q is the Green function in R2, hence the second term is responsible for the self-

interaction:

ˆγR2
`
pxq “ γR2

`
px,xq “

1

2π
logp2yq,

where x “ px, yq with y ě 0 is a point in the half-plane.

Put the expression of GR2
`

and ˆγR2
`

into (6), one obtains the Hamiltonian function for the
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N -vortex system in the half-plane R2
`:

HR2
`
px1,x2, . . . ,xNq “

1

4π

ÿ

j‰i

ΓiΓj log
pxi ´ xjq

2 ` pyi ` yjq
2

pxi ´ xjq2 ` pyi ´ yjq2
`

1

2π

N
ÿ

i“1

Γ2
i logp2yiq. (8)

Remark 2.9. When N “ 1, the Hamiltonian (8) becomes HR2
`
px1, y1q “

1
2πΓ2

1 logp2y1q where

px1, y1q is the position of a single vortex and Γ1 is its strength. This system can be solved

explicitly, the single vortex moves with a speed inversely proportional to the distance from

the x-axis in a straight line parallel to the x-axis.

For the motion of two point vortices in the half-plane, the explicit solutions of Hamiltonian

(8) are presented in Sections 2.2.1 and 2.2.2. Suppose that in the half-plane R2
`, 2 vortices

located at x1 “ px1ptq, y1ptqq and x2 “ px2ptq, y2ptqq have strengths Γ1 and Γ2 respectively.

The symplectic structure is ω “ Γ1dx1^dy1`Γ2dx2^dy2, and the corresponding Hamiltonian

is

HR2
`
px1, x2, y1, y2q “ 1

2π tΓ1Γ2 logrpx1 ´ x2q
2 ` py1 ` y2q

2s

´Γ1Γ2 logrpx1 ´ x2q
2 ` py1 ´ y2q

2s

`Γ2
1 logp2y1q ` Γ2

2 logp2y2qu

“ 1
2π log

"

p2y1q
Γ2

1p2y2q
Γ2

2

”

px1´x2q
2`py1`y2q

2

px1´x2q2`py1´y2q2

ıΓ1Γ2
*

.

(9)

2.2.1 The motion of two generic point vortices

First we consider the generic case when Γ1 ` Γ2 ‰ 0. Let us introduce the notations for the

center of vorticity:

x0 “
Γ1x1 ` Γ2x2

Γ1 ` Γ2
, y0 “

Γ1y1 ` Γ2y2

Γ1 ` Γ2
,

and relative coordinates:

xr “ x1 ´ x2, yr “ y1 ´ y2.

We know that y0 and the Hamiltonian function are first integrals of the system. (Here y0

can be regarded as the momentum map of the Abelian group R-action on R2
`.) We can fix a

value of the momentum map y0 “ µ and an energy level H “ E, and describe the orbits of

the vortices in the 2-dimensional reduced space pxr, yrq.
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Theorem 2.10. For 2 vortices with strengths Γ1 and Γ2 such that Γ1 ` Γ2 “ 0, located at

x1 “ px1ptq, y1ptqq and x2 “ px2ptq, y2ptqq respectively in the half-plane, introduce parameters

y0 “ µ and H “ E. Then the orbits in the reduced space pxr, yrq satisfy the following equation:

ˆ

µ`
Γ2

Γ1 ` Γ2
yr

˙Γ2
1
ˆ

µ´
Γ1

Γ1 ` Γ2
yr

˙Γ2
2

»

—

–

x2
r `

´

2µ` Γ2´Γ1
Γ1`Γ2

yr

¯2

x2
r ` y

2
r

fi

ffi

fl

Γ1Γ2

“ e2πE (10)

Proof. First take a canonical transformation

px1, y1, x2, y2q ÞÑ

ˆ

x0, pΓ1 ` Γ2qy0, xr,
Γ1Γ2

Γ1 ` Γ2
yr

˙

,

in the new coordinates the Hamiltonian becomes

HR2
`

´

x0, pΓ1 ` Γ2qy0, xr,
Γ1Γ2

Γ1`Γ2
yr

¯

“ 1
2π log

$

&

%

´

y0 `
Γ2

Γ1`Γ2
yr

¯Γ2
1
´

y0 ´
Γ1

Γ1`Γ2
yr

¯Γ2
2

«

x2
r`

´

2y0`
Γ2´Γ1
Γ1`Γ2

yr
¯2

x2
r`y

2
r

ffΓ1Γ2

,

.

-

.
(11)

One can see that this new Hamiltonian does not depend on x0, hence y0 is a conserved

quantity. By fixing y0 “ µ and the Hamiltonian HR2
`
“ E, we obtain the equation for orbits

in pxr, yrq coordinates:

ˆ

µ`
Γ2

Γ1 ` Γ2
yr

˙Γ2
1
ˆ

µ´
Γ1

Γ1 ` Γ2
yr

˙Γ2
2

»

—

–

x2
r `

´

2µ` Γ2´Γ1
Γ1`Γ2

yr

¯2

x2
r ` y

2
r

fi

ffi

fl

Γ1Γ2

“ e2πE .

A corollary of this theorem is the following non-collision property.

Corollary 2.11. If Γ1 ` Γ2 ‰ 0, the two point vortices in the half-plane will not collide or

hit the boundary (x-axis).

Proof. There are 3 possibilities of collision, and we exclude them one by one.

1. The 2 vortices hit each other, which means xr “ yr “ 0 in finite time. We claim that

if xr “ yr “ 0 at a certain time, the Hamiltonian function (11) becomes infinity. First if

y0 ‰ 0, it is clear that the function (11) becomes infinity as xr “ yr “ 0. And if y0 “ 0, the

9



rational function
´

y0 `
Γ2

Γ1`Γ2
yr

¯Γ2
1
´

y0 ´
Γ1

Γ1`Γ2
yr

¯Γ2
2

«

x2
r`

´

2y0`
Γ2´Γ1
Γ1`Γ2

yr
¯2

x2
r`y

2
r

ffΓ1Γ2

“ 0, so after

taking the logarithm the Hamiltonian (11) becomes infinity. However the Hamiltonian should

not become infinity because it is conserved, hence 2 vortices will not hit each other.

2. One vortex hits the boundary while the other does not. In this case using the expression

of Hamiltonian function (9), one can see that if y1 “ 0, y2 ‰ 0, the Hamiltonian becomes

infinity. Again this is a contradiction since the Hamiltonian is a conserved quantity.

3. Both vortices hit the boundary. If y0 ‰ 0 at the initial time, then this case is impossible

because the center of vorticity y0 is conserved for all time. And if y0 “ 0, put yr “ 0 and xr ‰ 0

(we only consider xr ‰ 0 here since xr “ 0 is already studied in case 1) into Hamiltonian (11),

we see that the Hamiltonian becomes infinity which is a contradiction.

Remark 2.12. By changing the parameters µ and E, we can study the motion of 2 vortices.

For example if the 2 vortices have the same strength, the equation in terms of relative position

is (modulo certain constants)

1

1´ y2
r

´
1

1` x2
r

“ expp´Eq.

2.2.2 The motion of a vortex dipole

Next let us consider the motion of the 2-vortex system in the half-plane when Γ1 “ ´Γ2.

Suppose that Γ1 “ ´Γ2 “ 1 and introduce the new (center and relative) coordinates:

x0 “
x1 ` x2

2
, y0 “

y1 ` y2

2
,

and

xr “ x1 ´ x2, yr “ y1 ´ y2.

In this case, yr and Hamiltonian function are first integrals of the system. Hence we fix

yr “ ν and H “ E, and describe the orbits of the vortices in the 2-dimensional reduced space

pxr, y0q.

10



Theorem 2.13. For the dipole case, i.e. 2 vortices with strengths Γ1 “ 1 and Γ2 “ ´1 located

at x1 “ px1ptq, y1ptqq and x2 “ px2ptq, y2ptqq respectively in the half-plane, set parameters

yr “ ν and H “ E. Then the orbits in the reduced space pxr, y0q satisfy the following

equation:

1

ν2 ` x2
r

`
1

4y2
0 ´ ν

2
“ e´2πE (12)

Proof. One can check that dx1 ^ dy1 ´ dx2 ^ dy2 “ dx0 ^ dyr ` dxr ^ dy0, so the map

px1, y1, x2, y2q ÞÑ px0, yr, xr, y0q is a canonical transformation, and in the new coordinates, the

Hamiltonian becomes

HR2
`
px0, yr, xr, y0q “

1

2π
log

"

p4y2
0 ´ y

2
r qpx

2
r ` y

2
r q

x2
r ` 4y2

0

*

.

This new Hamiltonian does not depend on x0, hence x0’s conjugate coordinate yr is a conserved

quantity. By fixing yr “ ν and HR2
`
“ E, we obtain the equation for orbits in pxr, y0q

coordinates:

1

ν2 ` x2
r

`
1

4y2
0 ´ ν

2
“ e´2πE .

Remark 2.14. Here ν “ yr “ y1 ´ y2, so ν “ 0 means that the vortex dipole is symmetric

with respect to their vertical bisector, and this case can be reduced to a single vortex in the

quadrant. (See Section 2.3.)

In general, an N -vortex system in the half-plane gives rise to a 2N -vortex system in the

plane (N vortices plus N images). Similarly, an N -vortex system in the quadrant gives rise

to a 2N -vortex system in the half plane, which also can be seen as a 4N -vortex system.

Remark 2.15. To study Equation (12), for simplicity, we assume that the RHS of (12)

e´2πE “ C ą 0. Suppose that xr “ 0 then Equation (12) becomes

1

ν2
`

1

4y2
0 ´ ν

2
“ C.

Then solve this equation for y0, we get 4y2
0 “

Cν2

C´1{ν2 . Hence when C ą 1
ν2 , y0 has real

solutions, i.e., xr can be 0, otherwise, if C ď 1
ν2 , xr can not be 0.

11



Note that here we have two parameters: C “ e´2πE ą 0 is related to the energy and

ν “ y1 ´ y2 is the difference of 2 vortices in y-direction.

From the above discussion, we know that when C ą 1
ν2 , a typical orbit in pxr, y0q coordi-

nates looks like the following graph.

Figure 1: Orbit when C ą 1
ν2

And when 0 ă C ď 1
ν2 , an orbit in pxr, y0q variables looks like the following graph.

Figure 2: Orbit when 0 ă C ď 1
ν2
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Remark 2.16. For orbits when C ď 1
ν2 , we can study the asymptotes. If y0 Ñ ˘8, we have

1
x2
r`ν

2 Ñ C, i.e., |xr| Ñ
a

1{C ´ ν2, so x2
r ` y2

r Ñ 1{C. This means if two vortices move

up together, the distance between them approaches 1{C (slant asymptotes in the regular

px1, x2, y1, y2q coordinates).

If xr Ñ ˘8, we have y0 Ñ
1
2

a

1{C ` ν2. This means if two vortices move apart each other

in x-direction, their center in y-direction approaches 1
2

a

1{C ` ν2 (horizontal asymptotes).

Similar to the previous case, one can prove the following property on collision.

Corollary 2.17. The vortex dipole in the half-plane will not collide or hit the boundary (x-

axis).

Proof. Again, we just need to check the three cases in the proof of Corollary 2.11. For Case

1 and 3, we have yr “ 0. Since for vortex dipole, yr is a conserved quantity, we know that

the two vortices have the same y coordinate for all time t, hence one can reduce the motion

of vortex dipole to a single vortex in the quarter-plane, and we can see in the later section,

a single vortex moves in the quarter-plane will not hit the boundary, therefore Case 1 and 3

will not happen.

As for Case 2, in the expression of Hamiltonian function (9), one can take for instance

y1 “ 0, y2 ‰ 0 and Γ1 “ 1,Γ2 “ ´1, and the Hamiltonian becomes infinity which is a

contradiction.

Corollary 2.11 and 2.17 together show that N -vortex system in the half-plane will not

collide or hit the boundary in finite time when N “ 2, and one would ask for the case when

N ą 2.

Question 2.18. Is it possible that an N -vortex system in the half-plane collides or hits the

boundary in finite time for N ą 2?

It is easy to see that for N “ 2 the system is integrable, and we presented its explicit

solutions above. So a natural question to ask is

Question 2.19. Prove nonintegrability for the N -vortex system in the half-plane R2
` when

N ą 2.

13



We answer the second question in the following theorem.

Theorem 2.20. The N -vortex system in the half-plane R2
` when N ą 2 is nonintegrable.

Proof. First we consider a restricted 3-vortex system with vortices whose strengths are Γ1 “

Γ2 “ 1, and Γ3 “ 0, thus the Hamiltonian for the motion of vortices with strengths Γ1 and

Γ2 is

H12px1, y1, x2, y2q “
1

2π
log

ˆ

4y1y2
px1 ´ x2q

2 ` py1 ` y2q
2

px1 ´ x2q
2 ` py1 ´ y2q

2

˙

,

and the Hamiltonian for the 0-strength vortex is

H3px3, y3, tq “
1

2π
log

rpx1 ´ x3q
2 ` py1 ´ y3q

2srpx2 ´ x3q
2 ` py2 ´ y3q

2s

rpx1 ´ x3q
2 ` py1 ` y3q

2srpx2 ´ x3q
2 ` py2 ` y3q

2s
.

Assume that xi “ εx̃i, yi “ 1 ` εỹi, i “ 1, 2, 3, i.e., vortices are close to each other and

relatively far from the boundary. Then H12 becomes

H̃12px̃1, ỹ1, x̃2, ỹ2q “
1

2π log
”

4p1` εỹ1qp1` εỹ2q
ε2px̃1´x̃2q

2`p2`εpỹ1`ỹ2qq
2

ε2px̃1´x̃2q2`ε2pỹ1´ỹ2q2

ı

“ 1
2π log

”

16
ε2

´

1
px̃1´x̃2q2`pỹ1´ỹ2q2

` ε 2pỹ1`ỹ2q

px̃1´x̃2q2`pỹ1´ỹ2q2
`Opε2q

¯ı

“ 1
2π log 16

ε2
` 1

2π log 1
px̃1´x̃2q2`pỹ1´ỹ2q2

` ε
π pỹ1 ` ỹ2q `Opε

2q.

(13)

In the above Hamiltonian function, the leading term is ´ 1
2π logrpx̃1´x̃2q

2`pỹ1´ỹ2q
2s (ignoring

the constant term 1
2π log 16

ε2
), which means, to the leading order, the two vortices with strength

Γ1 and Γ2 rotate on a common circle. Let ξ1 “ px̃1 ´ x̃2q{2` iỹ1 and ξ2 “ px̃2 ´ x̃1q{2` iỹ2

and suppose that initially ξ1p0q “ i and ξ2p0q “ ´i, then ξ1ptq “ ieiω0t ` Opεq and ξ2ptq “

´ieiω0t `Opεq, hence we have

x̃1ptq “ ´ sinpω0tq `Opεq, x̃2ptq “ sinpω0tq `Opεq,

ỹ1ptq “ cospω0tq `Opεq, ỹ1ptq “ ´ cospω0tq `Opεq.
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Next we write H̃3 in a moving frame, here H̃3 is

H̃3px̃3, ỹ3q “
1

2π log
”

ε2px̃1´x̃3q
2`ε2pỹ1´ỹ3q

2

ε2px̃1´x̃3q2`p2`εpỹ1`ỹ3qq2
ε2px̃2´x̃3q

2`ε2pỹ2´ỹ3q
2

ε2px̃2´x̃3q2`p2`εpỹ2`ỹ3qq2

ı

“ 1
2π log ε4

16 `
1

2π logtrpx̃1 ´ x̃3q
2 ` pỹ1 ´ ỹ3q

2srpx̃2 ´ x̃3q
2 ` pỹ2 ´ ỹ3q

2su

´ ε
8π pỹ1 ` ỹ2 ` 2ỹ3q `Opε

2q.

(14)

First we consider a frame moving with speed 1{2p 9̃x1 ` 9̃x2q, the new Hamiltonian in this

frame is

H 13px
1, y1q “ H̃3px̃3, ỹ3q ´

1

2
y1p
BH̃12

Bỹ1
`
BH̃12

Bỹ2
q (15)

where x1 “ x̃3 ´ 1{2p 9̃x1 ` 9̃x2q, y
1 “ ỹ3.

Then in a frame rotating with speed ω0, i.e., in coordinate px, yq given by x ` iy “

px1 ` iy1qeiω0t, the Hamiltonian becomes

Hpx, y, tq “ H 1px1, y1q `
1

2
ω0px

2 ` y2q.

Because x` iy “ px1 cospω0tq ` y
1 sinpω0tqq ` ipy

1 cospω0tq ´ x
1 sinpω0tqq, the main term in H

is

H0px, yq “
1

2π
logrx2 ` py ´ 1q2srx2 ` py ` 1q2s `

1

2
ω0px

2 ` y2q.

By Equation (13), BH̃12
Bỹ1

` BH̃12
Bỹ2

“ 1
2π ¨2εp1`1q “ 2ε{π, hence in (15), 1{2y1pBH̃12

Bỹ1
` BH̃12

Bỹ2
q “

´εy1{π “ ´εỹ3{π. Combining with (14), the term of order ε is

´
ε

π
ỹ3 ´

ε

8π
pỹ1 ` ỹ2 ` 2ỹ3q “ ´

5

4π
εỹ3 “ ´ε

5

4π
px sinpω0tq ` y cospω0tqq.

In conclusion, the Hamiltonian in the moving frame can be written as

Hpx, y, tq “ H0px, yq ` εH1px, y, tq `Opε
2q,

where H0px, yq “
1

2π logrx2 ` py ´ 1q2srx2 ` py ` 1q2s ` 1
2ω0px

2 ` y2q and H1px, y, tq “

´5{p4πqpx sinpω0tq ` y cospω0tqq.

Note that up to the order of ε, this system coincides with the perturbed system of restricted

3 vortex rings studied in [4]. Hence they have the same Melnikov integral. By the computation
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of the Melnikov integral in [4], we can get that this restricted 3-vortex system in the half-plane

is also nonintegrable. Then by the similar continuous argument used in [13], one can conclude

that the 3-vortex system in the half-plane is nonintegrable.

Remark 2.21. The above proof shows similarity of the restricted 3-vortex system in the

half-plane and the restricted system of 3 coaxial vortex rings. Two systems coincide up to

the order of ε, so they have similar properties. This is also true for the 2-vortex system in the

half-plane and the system of 2 vortex rings. One can use this similarity to explain the reason

that an interesting phenomenon of vortex pair in the half-plane, called leapfrogging (see cf.

[29]), is also observed for vortex rings.

2.3 Point vortex system in the quadrant

The Green function in the upper right quadrant is

GR`ˆR`
px,x1q “ ´

1

2π
log }x´ x1} `

„

1

2π
log }x´ x1˚} `

1

2π
log }x` x1˚} ´

1

2π
log }x` x1}



,

where x1˚ “ px1,´y1q is the mirror image of x1 “ px1, y1q. Note that the first term of

GR`ˆR`
px,x1q is the Green function in R2, hence the next three terms are responsible for

the self-interaction:

γ̂R`ˆR`
pxq “ γR`ˆR`

px,xq “
1

2π
log

2xy
a

x2 ` y2
,

where x “ px, yq with x ě 0 y ě 0 is a point in the upper right quadrant.

Put the expression of GR`ˆR`
and γ̂R`ˆR`

into the Hamiltonian function (6), one can

obtain the Hamiltonian function for the N -vortex system in the upper right quadrant R`ˆR`.

For the motion of a single vortex in the upper right quadrant, the Hamiltonian function

is HR`ˆR`
px, yq “ Γ2

2π log 2xy?
x2`y2

, where px, yq is the position of this single vortex and Γ is its

strength.
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Hence the Hamiltonian equations for a single vortex moving in the quadrant are

$

’

’

’

’

&

’

’

’

’

%

9x “ 1
2π

´

1
y ´

y
x2`y2

¯

,

9y “ ´ 1
2π

´

1
x ´

x
x2`y2

¯

.

(16)

Since the Hamiltonian is conserved under the flow of (16), the trajectories of a single vortex

satisfy

4x2y2

x2 ` y2
“ C2,

where C is an arbitrary constant. In terms of polar coordinates, this trajectory equation can

be written as r “ C
sin2θ . (A version of this equation can be found in the classical book [18]

by Lamb.) Also, one can get the following proposition from this explicit expression of the

trajectory.

Proposition 2.22. The single vortex moving in the upper right quadrant will not hit the

boundary.

Similar to the previous cases, one can ask the following natural questions.

Question 2.23. Is it possible that N -vortex system in the upper right quadrant collides or

hits the boundary in finite time when N ą 1?

Question 2.24. Prove the nonintegrable for the N -vortex system in the upper right quadrant

when N ą 1.

3 Coaxial circular vortex rings

Consider the axisymmetric Euler equations without swirl in R3 “ pz, r, θq (“without swirl”

means the θ component of the velocity field vanishes in the cylindrical coordinates pz, r, θq)

with velocity and pressure depending only on r and z:

$

’

’

’

’

&

’

’

’

’

%

Btuz ` puzBz ` urBrquz “ ´Bzp,

Btur ` puzBz ` urBrqur “ ´Brp,

Bzuz `
1
rBrprurq “ 0,

(17)
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where u “ puz, urq : R2
` Ñ R2 is the velocity field in the half-plane R2

`, which satisfies the

boundary condition ur “ 0 on r “ 0. Also note that the third equation in (17) above is

equivalent to the equation ∇ ¨ pruq “ Bzpruzq ` Brprurq “ 0.

One can see that Equations (17) are the lake equations (26) in variables pz, rq with bpz, rq “

r in the half-plane. (See Appendix A for an introduction to the lake equations. )

By Equation (28) for the stream function of the lake equations, the elliptic PDE for the

corresponding stream function ψ (by definition ψ satisfies ∇Kψ “ ru, i.e. Bzψ “ rur, Brψ “

´ruz) of the axisymmetric Euler equation is

´ B2
zψ ´ B

2
rψ `

1

r
Brψ “ rω. (18)

Remark 3.1. If we consider the stationary solution of (17), the vorticity equation is

u ¨∇
´ω

r

¯

“ 0,

since ∇Kψ “ ru, one can conclude that ω
r is a function of ψ, i.e., ωr “ fpψq, plug this into the

RHS of (18), we obtain

´ B2
zψ ´ B

2
rψ `

1

r
Brψ “ r2fpψq, (19)

this is the famous Grad-Shafranov equation with vanishing swirl. For the general Grad-

Shafranov equation with non-vanishing swirl, one can see [7, 31].

Now we look at the N -vortex (ring) problem for (17). Solving the elliptic PDE (18) gives

us the stream function ψpz, rq at pz, rq:

ψpz, rq “
1

4π

ż `8

0

ż `8

´8

rr1ωpz1, r1q dz1 dr1
ż 2π

0

cos θ dθ
a

pz ´ z1q2 ` r2 ` r12 ´ 2rr1 cos θ
, (20)

and the Green function for (18) is

Gpz, r, z1, r1q “
rr1

4π

ż 2π

0

cos θ dθ
a

pz ´ z1q2 ` r2 ` r12 ´ 2rr1 cos θ
, (21)

these formulas can be found in [6] and [18].
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The speed V of a thin cored vortex ring of circulation Γ “
ş

ωdzdr, ring radius R and core

radius a (a{R ! 1) is (see cf. [35] and [18])

V “
Γ

4πR

„

log
8R

a
´

1

4
`O

´ a

R

¯



. (22)

Since R
a " 1, one can treat log 8R

a as a constant of order log 1
ε , where ε „ a{R, i.e., the ring

moves along the axis with a speed proportional to its curvature, which is a well-known result

for vortex filaments.

When considering N coaxial circular vortex rings, we need to count the motion due to the

self-interaction, together with the interaction of different vortex rings. The i-th ring’s position

at time t is given by the coordinate pZiptq, Riptqq of the center of its core, i “ 1, 2, . . . , N , the

equations in pZiptq, Riptqq are

$

’

’

’

’

&

’

’

’

’

%

9Zi “
Γi

4πRi

”

log 8Ri
ai
´ 1

4

ı

` 1
ΓiRi

BU
BRi

,

9Ri “ ´
1

ΓiRi

BU
BZi

,

(23)

where U is the interaction energy between different vortex rings

U “
1

2π

ÿ

j‰i

ΓiΓjGpZi, Ri, Zj , Rjq,

where GpZi, Ri, Zj , Rjq is the Green function defined above in (21). This system is usually

referred to as Dyson’s model in the literature [24].

The system (23) can also be rewritten in the following Hamiltonian form,

$

’

’

’

’

&

’

’

’

’

%

ΓiRi 9Zi “
BH
BRi

,

ΓiRi 9Ri “ ´
BH
BZi

,

(24)

where the Hamiltonian function is H “
N
ř

i“1

Γ2
i

4πRi

”

log 8Ri
ai
´ 7

4

ı

` U . By taking the canonical

variables pi “ ΓiR
2
i and qi “ Zi, the system (24) can be written in a canonical form.
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Also, the system (24) has two independent first integrals:
N
ř

i“1
ΓiR

2
i and the Hamiltonian

H, hence we have the following theorem.

Theorem 3.2. The N-vortex ring problem for N ď 2 is integrable.

Remark 3.3. The nonintegrability of 3 coaxial vortex rings is proved in [4]. Up to the order

ε, the perturbed system in that proof appears to be the same as the perturbed system we used

in Section 2.2. This shows an interesting relation of point vortex system in the half-plane and

coaxial vortex rings.

For higher-dimensional generalization of vortex ring, here are some natural open questions.

Question 3.4. One can consider a more general problem of vortex spheres of codimension 2

in Rn, centered on one axis, i.e., coaxial vortex spheres. The corresponding Euler equation

should reduce to the lake equations with bpz, rq “ rn´2, where r is the distance to the common

axis. Prove that:

1. a single vortex sphere travels along the axis with a speed proportional to its curvature,

2. integrability for 2 vortex spheres and nonintegrability for more than 2 vortex spheres,

3. Leapfrogging motion can happen for a pair of spheres.

Question 3.5. 1 More generally, consider the lake equations (26) in variables pz, rq with

bpz, rq “ rα, α ą 0 in the half-plane. Prove that:

1. a single vortex travels parallel to the z-axis with a speed proportional to 1{r,

2. integrability for the 2-vortex system and nonintegrability for more than 2 vortices,

3. leapfrogging motion can happen for a pair of vortices.

4 Sphere product vortex membranes

Assume that the Euler equation in Rm`l`2 is sphere product Sm ˆ Sl-symmetric, i.e., the

velocity v and the pressure p in the Euler equation are functions of the distances px, yq to the

origin: x “ |X|, y “ |Y | for X P Rm`1, Y P Rl`1, then the Euler equation can be written in

the form of the lake equations (26) with bpx, yq :“ xmyl.

1The author would like to thank the anonymous reviewer for suggesting this question.
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Now consider the motion of a sphere product vortex membrane under skew-mean-curvature

flow (see Appendix B). Here a sphere product vortex membrane is a singular vorticity ξ “ δΣ

supported on Σ “ Smpaq ˆ Slpbq Ă Rm`1 ˆ Rl`1 “ Rm`l`2. It also can be regarded as

the motion of a point vortex δpa,bq for pa, bq P R` ˆ R` for the corresponding lake equation.

The next theorem provides explicit solutions of point-vortex type, both existing forever or

collapsing in finite time, depending on the membrane structure and dimension.

Theorem 4.1. ([15]) Let F : Σ “ Smpaq ˆ Slpbq ãÑ Rm`1 ˆ Rl`1 “ Rm`l`2 be the product

of two spheres of radiuses a and b. Then the evolution Ft of this surface Σ in the binormal

flow is the product of spheres FtpΣq “ Smpaptqq ˆ Slpbptqq at any t with radiuses changing

monotonically according to the ODE system:

$

’

&

’

%

9a “ ´l{b,

9b “ `m{a.
(25)

For 0 ă m ă l the corresponding solution Ft exists only for finite time and collapses at

t “ ap0qbp0q{pl ´mq.

Corollary 4.2. In the general case of sphere products Σ “ SmpaqˆSlpbq the radiuses of FtpΣq

change as follows: aptq “ ae´lt{pabq and bptq “ bemt{pabq for m “ l and

aptq “ am{pm´lq
`

a´ pl ´mqb´1t
˘l{pl´mq

and bptq “ bl{pl´mq
`

b` pm´ lqa´1t
˘m{pm´lq

,

for m ‰ l and initial conditions ap0q “ a, bp0q “ b.

Remark 4.3. This explicit solution might be useful to study the Euler singularity formation

in higher dimensions, since the skew-mean-curvature flow is the localized induction approxi-

mation of the Euler equation. The simplest case satisfying the collapse condition 0 ă m ă l

is m “ 1, l “ 2 for S1paq ˆ S2pbq Ă R5. Note also that the odd-dimensional Euler equation

has fewer invariants (generalized helicities) than the even-dimensional one (generalized en-

strophies), see [3]. The existence of many invariants helps control solutions, so it indicates

that the first example with a finite life-span occurs in the 5 dimensional case.

Proof. For a point q “ pq1, q2q P Smpaq ˆ Slpbq ãÑ Rm`1 ˆ Rl`1, the mean curvature of the
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sphere product is the vector H “ ´m
a n1 ´

l
bn2 (divided by the total dimension m` l of the

product, which we omit), and the skew-mean-curvature vector is ´JH “ ´ l
bn1`

m
a n2, where

n1 and n2 be the outer unit normal vectors to the corresponding spheres at the points q1 and

q2 respectively.

The explicit form of the ´JH vectors implies the system of ODEs (25) on the evolution of

radiuses. Rewriting this as one first order ODE one can solve this explicitly, as in Corollary 4.2.

The system (25) is Hamiltonian on the pa, bq-plane with the Hamiltonian function given by

Hpa, bq :“ lnpamblq, which is the logarithm of the volume of the product of two spheres:

volpΣq “ C ambl. (Note that the invariance of this Hamiltonian is consistent with conservation

of the volume of Σ, as the latter is the Hamiltonian of the skew-mean-curvature flow.)

One can compare the binormal equation (25) of the sphere product vortex membrane with

the motion of a point vortex in the quadrant described by equations (16). Here are the graphs

of their typical orbits.

Figure 3: An orbit of sphere product membrane under SMCF
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Figure 4: An orbit of point vortex in the quadrant

Another difference is that the solution of (16) exists for all time, while solutions of (25)

exist for all times for m “ l, but for 0 ă m ă l it exists for a finite time only.

Appendix A The lake equations

Let D Ă R2 be a planar domain and b : D Ñ p0,`8q be a positive depth function, then the

velocity field vpt, ¨q “ pv1, v2q : D Ñ R2 and the surface height function hpt, ¨q : D Ñ R are

governed by the lake equations:

$

’

’

’

’

&

’

’

’

’

%

Btv ` pv,∇qv “ ´∇h, on D,

∇ ¨ pbvq “ 0, on D,

v ¨ n “ 0, on BD,

(26)

where n denotes the outgoing normal vector at the boundary BD of the domain. See [19] for

more details about the lake equations.

Now take the vorticity function be ω “ B1v2 ´ B2v1, we obtain the vorticity formulation

of the lake equations (26):

Bt

´ω

b

¯

` pv,∇q
´ω

b

¯

“ 0. (27)
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Then take ψ be the stream function, i.e. ∇Kψ “ bv, here ∇K stands for pB2,´B1q, therefore

we have

ω “ B1v2 ´ B2v1 “ B1p´B1ψ{bq ´ B2pB2ψ{bq,

and simplifying this equation we obtain the following elliptic PDE:

´
∆ψ

b
´∇ψ ¨∇

ˆ

1

b

˙

“ ω. (28)

Appendix B Skew-mean-curvature flow

Skew-mean-curvature (or binormal) flows are localized approximations of the incompressible

Euler equation in Rn`2 with a singular vorticity profile supported on the membrane Σn, for

codimension 2 vortex membranes in R4 see [32] and in any dimension see [9, 12, 14]. Hence

their blow-up/global existence results could shed some light on the motion of fluid flows

themselves.

The skew-mean-curvature flow is defined as follows:

Definition B.1. Let Σn Ă Rn`2 be a codimension 2 compact oriented submanifold (mem-

brane) in the Euclidean space Rn`2, the skew-mean-curvature (or binormal) flow is described

by the equation:

Btq “ ´JpHpqqq, (29)

where q P Σ, Hpqq is the mean curvature vector at the point q on Σ, J stands for the operator

of positive π{2 rotation in the two-dimensional normal space NqΣ to Σ at q.

The skew-mean-curvature flow (29) is a natural generalization of the binormal equation:

the mean curvature vector of a curve γ in R3 at a point is H “ κn, where κ is the curvature of

the curve γ at that point, hence the skew-mean-curvature flow becomes: Btγ “ ´Jpκnq “ κb,

which is the binormal equation for filaments.

On the infinite-dimensional space M of codimension 2 membranes, there exists a natural

symplectic structure:

ωMV pΣqpu, vq “

ż

Σ
iuivµ, (30)
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where u and v are two vector fields attached to the membrane Σ P M, and µ is the volume

form in Rn`2. This is called the Marsden-Weinstein symplectic structure.

Let the functional volpΣq on the space M be the n-dimensional volume of a compact

n-dimensional membrane Σn Ă Rn`2. Then the skew-mean-curvature flow (29) is the Hamil-

tonian flow on the membrane space M equipped with the Marsden-Weinstein structure whose

Hamiltonian is given by the volume functional vol.
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