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Abstract

We consider a 2D smectics model

Eǫ (u) =
1

2

ˆ

Ω

1

ε

(
uz −

1

2
u2

x

)2

+ ε (uxx)
2 dx dz.

For εn → 0 and a sequence {un} with bounded energies Eεn (un) , we prove compactness of
{∂zun} in L2 and {∂xun} in Lq for any 1 ≤ q < p under the additional assumption ‖∂xun‖Lp ≤ C
for some p > 6. We also prove a sharp lower bound on Eε when ε → 0. The sharp bound
corresponds to the energy of a 1D ansatz in the transition region.

1 Introduction

Liquid crystal phases occur when a material exhibits characteristics of a crystalline solid while also
retaining the ability to flow like a liquid. Smectic-A liquid crystals (smectics) consist of a stack of
uniformly spaced layers of liquid which forms a one dimensional density wave. The molecules in
each layer tend to align in the direction parallel to the layer normal. Smectics are typically described
[13, 18] by a complex order parameter Ψ, where the magnitude of Ψ describes the smectic order
and the level sets of the phase Φ = Arg Ψ determine the smectic layers. This is achieved through
the introduction of the molecular mass density ρ, given at a point x = (x, y, z) by

ρ = ρ0 + ρ1 cos

[
2π

a
Φ (x)

]
,

where ρ0 is a locally uniform mass density, ρ1 is the density of the layers, and a is the uniform
spacing between layers. Smectic layers are defined as peaks of the density wave where Φ (x) ∈ aZ.

The free energy of a smectic liquid crystal [43] over a sample volume Ω, expressed in terms of
the phase Φ, is

F =
B

2

ˆ

Ω

[
(1− |∇Φ|)2 + λ2H2

]
dx dy dz, (1)

where H = ∇ ·N is the mean curvature and N = ∇Φ
|∇Φ| is the unit normal vector for the layers. Here

B and K1 = Bλ2 are the bulk and bend moduli, respectively. The constant λ (bend penetration
depth) is the intrinsic length scale that sets the scale of deformations. The first term in (1) accounts
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for the compression strain between layers and the second term represents the bending energy. When
boundaries are present, there is an additional term coming from the Gaussian curvature

FK = K̃

ˆ

Ω
∇ · [(∇ ·N)N− (N · ∇)N] dx dy dz.

Since this term is a total derivative which reduces to a boundary integral and does not play a role
in minimization of the energy under fixed boundary conditions, it is often omitted from the free
energy.

Inspection of the total energy (1) reveals that the compression term prefers equally spaced layers
while the bending term prefers layers with zero mean curvature, which are minimal surfaces. The
typical ground state minimizing (1) is Φ(x) = x ·n for fixed n ∈ S

2, which corresponds to uniformly
spaced layers perpendicular to the n direction. However, boundary conditions can impose curvature
on the layers and the resulting curvature is generally incompatible with equally spaced layers.
Due to the intrinsic interplay between the layer spacing, the Gaussian curvature, and the mean
curvature, the problem of finding minimal configurations for the energy (1) is challenging. Over
the years, physicists have devoted significant effort to looking for exact or approximate solutions of
deformations in smectic liquid crystals [1, 2, 3, 9, 11, 16, 17, 24, 26, 27, 30, 41, 42, 43, 44]. The goal
of this article is to analyze smectics using tools from the mathematical theory for similar singularly
perturbed variational problems, thus providing a link between these ideas and the extensive physics
literature.

In order to provide the necessary background for our analysis, let us briefly review the relevant
work from this literature. To study deformations of the smectic layers, we fix coordinates by
choosing n = ẑ and introduce the Eulerian displacement field

u(x) = z − Φ(x).

Expanding the compression strain in powers of ∇u = ẑ − ∇Φ and defining ∇⊥ = ∂xx̂ + ∂yŷ, we
can write the compression strain as

1− |∇Φ| ≈ ∂zu−
1

2
|∇⊥u|

2 +O
(
|∇u|3

)
.

In the limit of small elastic strains |∇u| ≪ 1, it is typical to retain only the terms quadratic in
derivatives of u in (1), yielding a linear theory to describe elastic deformations in smectic liquid
crystals [18, 28]. While the linear theory is rather successful in describing deformations for screw
dislocations and small angle twist grain boundaries, it misses much of the essential physics for
edge dislocations or large angle twist grain boundaries. Due to the truncation at the level of
quadratic terms in ∇u, the linear theory for edge dislocations in smectics is only valid in the limit
|∇⊥u|2

|∂zu|
≪ 1. This ratio is of order b/λ, where b ∈ aZ is the Burgers vector, and is not small for

an edge dislocation [42]. This was first observed by Brener and Marchenko [11], who demonstrated
that for the case b ∼ λ, nonlinear effects must be taken into account to describe the asymptotic
behavior even far from the defect core where elastic strain is small. They found an exact solution
to the Euler-Lagrange equation for the following nonlinear approximation of (1) in two dimensions
in the regime ∂zu ∼ (∂xu)

2 ≪ 1

F =
B

2

ˆ

Ω

[(
∂zu−

1

2
(∂xu)

2

)2

+ λ2
(
∂2
xu

)2
]
dx dz. (2)

Their solution differs significantly from the linear profile even far from the defects where the elastic
strain and layer curvature is small. In the limit of large bending rigidity, Brener and Marchenko’s
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solution recovers the profile from linear theory. Their construction was confirmed experimentally
by Ishikawa and Lavrentovich [24] in a cholesteric finger texture.

Brener and Marchenko’s solution is a specific example of a special class of exact solutions for
nonlinear approximations of (1) developed later by Santangelo and Kamien [42]. They studied the
3D nonlinear approximation of (1)

F =
B

2

ˆ

Ω

[(
∂zu−

1

2
|∇⊥u|

2

)2

+ λ2 (∆⊥u)
2

]
dx, (3)

where ∇⊥u = (∂xu, ∂yu) and ∆⊥u = ∂2
xu + ∂2

yu is the linear approximation of the mean curvature
H = ∇ ·N. Following a method developed by Bogomol’nyi [10], Prasad and Sommerfield [40] (BPS
decomposition) in the study of field configurations of magnetic monopoles and solitons in field
theory, Santangelo and Kamien decomposed the total energy (3) into the sum of a perfect square
and a total derivative plus an additional term

´

uK, where

K =
1

2
∇⊥ ·

(
∇⊥u∆⊥u−

1

2
∇⊥ |∇⊥u|

2

)

represents the approximation of Gaussian curvature in terms of the Eulerian displacement u. For
deformations with K = 0, the free energy reduces to the sum of a perfect square plus a series of
surface terms. The minimum is therefore achieved by BPS solutions where the perfect square term
vanishes. The BPS solutions satisfy a nonlinear differential equation of reduced order which can
be transformed into a linear equation through a Hopf-Cole transformation. The energy of these
configurations simplifies to a topological term which can be evaluated on the layers near defect
core. For a deformation depending only on z and x, so that K = 0, the BPS equation becomes

∂zu−
1

2
(∂xu)

2 − λ∂2
xu = 0, (4)

which recovers Brener and Marchenko’s solution through the boundary constraint u± (x, z = 0) =
± b

2Θ(x), where Θ (x) is the step function. For small K, the BPS solutions exhibit lower energy
than profiles from the linear theory [42]. The same approach was generalized by Santangelo and
Kamien [43] to the full smectic energy (1) where they identified a special class of minima when
Gaussian curvature vanishes. In particular, their analysis showed that the layer deformation in the
full theory is very close to that from the partially nonlinear theory studied in [11] and [42].

While many physics papers focus on finding exact solutions or approximate solutions for nonlin-
ear smectics, works on the mathematical analysis of similar models often focus on the asymptotic
behavior of the energy as a small parameter such as λ approaches zero. In particular, proving com-
pactness and convergence to a limiting energy (in the sense of Γ-convergence) are natural questions
in light of the fact that Γ-convergence and equicoercivity imply the convergence of minimizers to
minimizers. Since many of our techniques draw from these ideas, it is perhaps instructive to recall a
selection of results for a well-studied example, the Aviles-Giga functional in two dimensions. Aviles
and Giga [7] proposed the energy

Fε =

ˆ

Ω

1

ε
(|∇u|2 − 1)2 + ε(∆u)2 (5)

as a model of liquid crystals in the smectic state, where Ω ⊂ R
2 is a bounded domain. Observe this

is similar to (1) with Φ = u and the mean curvature ∇ · ∇u
|∇u| replaced by its linear approximation

∆u. Up to a boundary term, (5) is equivalent to

Eε =

ˆ

Ω

1

ε
(|∇u|2 − 1)2 + ε|∇∇u|2. (6)
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When ε goes to zero, it is expected that minimizers of Eε (subject to suitable boundary constraints)
converge (in a suitable Sobolev space) to a limiting state u0 which represents the smectic state and
satisfies eikonal equation |∇u| = 1 a.e. in Ω. Due to boundary constraints, the solutions to
eikonal equation are not smooth and the limiting energy concentrates on the discontinuities of ∇u
(the folds). The singular perturbation term ε|∇∇u|2 provides a selection mechanism, choosing a
special fold-energy minimizing solution of the eikonal equation. Aviles and Giga conjectured the
fold-energy corresponds to a 1D ansatz at the ε level and the limiting energy takes the form

E0 = 1/3

ˆ

J∇u

|[∇u]|3,

where the limiting function u satisfies eikonal equation |∇u| = 1 a.e., J∇u is the defect set, and [∇u]
is the jump in ∇u across J∇u. The first significant progress toward Aviles-Giga’s conjecture came
in the work of Jin and Kohn [25], where they developed a new scheme for proving lower bounds
for the Aviles-Giga energy (6) in two dimensions. Jin and Kohn observed that the divergence of
vector field

Σu = (u1(1− u22 −
1

3
u21),−u2(1− u21 −

1

3
u22)), ui = ∂iu, uii = ∂iiu, (7)

namely (1 − |∇u|2)(u11 − u22), can be used to bound Eε from below. Under the specific choice
of boundary conditions u = 0, ∂u

∂n = −1 on ∂Ω, they showed the lower bounds from divΣu are
asymptotically sharp for certain domains, supporting Aviles-Giga’s conjecture that the optimal
transition layers are one dimensional. The picture in two dimensions was completed by Ignat and
Monteil [22] where they proved any minimizer of (6) on an infinite strip is one-dimensional. Taking
the supremum of the divergences of all rotated variants of Σu, Aviles and Giga [8] obtained a
limiting functional J : W 1,3(Ω) → [0,∞) which satisfies

J(u) ≤ lim inf
n→∞

Eεn(un)

for any sequence un converging to u strongly in W 1,3(Ω). Moreover, J is lower semicontinuous
with respect to strong convergence in W 1,3(Ω) and coincides with E0 for any u satisfying eikonal
equation with ∇u ∈ BV (Ω). The matching upper bound when ∇u ∈ BV (Ω) was shown in [14, 39].
While the result in [8] suggests the natural function space for the limiting problem is

AGe(Ω) = {u ∈ W 1,3(Ω) : |∇u| = 1 a.e. in Ω and J(u) < ∞},

E0 is well defined only if ∇u has locally bounded variation in Ω. In fact, a counterexample was
constructed in [5] showing there is a function in AGe(Ω) which does not have locally bounded
variation in Ω. In the same paper, the authors proved compactness of the sublevel sets

u ∈ AGe(Ω) : J(u) ≤ M

for any constant M > 0 and equicoercivity of Eε, i.e. any sequence {un} with Eεn(un) bounded and
εn ↓ 0 has a subsequence converging to a limiting function u ∈ AGe(Ω). By a different argument,
the authors in [15] proved that the gradients of a sequence {uε} with bounded energy Eε as ε goes
to zero are compact in L2.

Motivated by the physics literature on smectic liquid crystals and analysis tools developed in
the study of Aviles-Giga problem, we consider the 2D nonlinear approximations of (1) studied by
Brener and Marchenko [11]

F (u) =
1

2

ˆ

Ω

[
B

(
∂zu−

1

2
(∂xu)

2

)2

+K1

(
∂2
xu

)2
]
dx.
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Setting ε =
√

K1/B and multiplying through by (Bε)−1, we arrive at

Eε (u) =
1

2

ˆ

Ω

[
1

ε

(
∂zu−

1

2
(∂xu)

2

)2

+ ε
(
∂2
xu

)2
]
dx dz, (8)

where Ω ⊂ R
2 is a bounded region. We are interested in the asymptotic behavior of infuEε as

ε → 0, which corresponds to the physical case where the intrinsic length scale (the bend penetration
depth ε = λ) is vanishingly small compared to a length scale related to the problem geometry (size
of Ω).

Our main results are:

• a compactness theorem for a sequence with bounded energies (Theorem 3.1),

• a lower bound on Eε when ε → 0 (Theorem 4.3), and

• a sharp upper bound when ∇u ∈ BV (Ω) ∩ L∞(Ω) (Theorem 5.1).

For εn → 0 and a sequence {un} with bounded energies Eεn (un), we prove compactness of {∂xun}
in Lq for any 1 ≤ q < p and compactness of {∂zun} in L2 under the additional assumption
‖∂xun‖Lp ≤ C for some p > 6. This assumption is physically justifiable since the model (8) is only
valid in the limit of small strains [11, 42]. From a mathematical perspective, some assumption is
necessary for a compactness result due to the fact that the set {m2 = m2

1/2} ⊂ R
2 is unbounded.

Our compactness proof uses an entropy argument following the work of Tartar [46, 47, 49] and
Murat [32, 33, 34] on compensated compactness.

For the lower bound, by applying the BPS decomposition to (8) , we can write Eε(u) as

Eε(u) =

ˆ

Ω
divΣ (∇u) dx dz +

1

2

ˆ

Ω

1

ε

(
∂zu−

1

2
(∂xu)

2 − ε∂2
xu

)2

dx dz, (9)

cf. (29). It then follows that Eε is always bounded from below by the integral of the total derivative
and is saturated when the perfect square term vanishes. However, at this point, we do not search
for solutions of (4) so that the second term in (9) vanishes. Instead, for a sequence εn → 0 and {un}
in H1 converging to a limiting function u in a suitable space, we use (9) to bound lim inf Eεn (un)
from below by the total jump in Σ (∇u) of the limit function u across the jump set, explicitly
written as

ˆ

J∇u

|∂xu
+ − ∂xu

−|3

12
√

1 + 1
4(∂xu

+ + ∂xu−)2
dH1,

cf. (28). The argument is strongly reminiscent of the Jin-Kohn argument mentioned above [25].
Next, for the matching upper bound, by a general theorem of Poliakovsky [39], it suffices to show
the localized problem on a square is asymptotically minimized by a 1D ansatz when ε → 0. Our
1D ansatz satisfies the BPS equation so that the perfect square term vanishes and matches the
lower bound asymptotically. Regarding the 3D model (3), however, the BPS decomposition yields
an additional term

´

uK in the sum, and one can only get a lower bound when the approximation
of the Gaussian curvature K vanishes. In the physics literature, this restriction has been noted in
[42, 43]. To obtain the lower bound in the general case, a different argument is needed instead of
the BPS decomposition. See [35] for further details.

Finally, we remark on the implications of the analysis here. Our work indicates that for the 2D
smectic model (2), the local defect energy of asymptotically minimal configurations corresponds
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to the energy of a 1D ansatz in which ∇u varies in the direction transverse to the defect. A
full Γ-convergence proof would entail the construction of a recovery sequence {∇uε} when ∇u /∈
BV (Ω) ∩L∞(Ω), which presents non-trivial technical issues, cf. Remark 4.4. The optimality/non-
optimality of 1D transition regions and the possible emergence of microstructure is a recurring
theme in problems coming from materials science; see for example [29]. It is interesting that such
microstructure does not appear in this smectics model. Also, the sharp lower bound using the
BPS decomposition is physically compelling, in that it shows that minimization of the total energy
occurs via an equipartition of energy between the bending and compression terms. Furthermore,
it has been observed in the physics literature [42] that the dependence of the BPS solution on the
problem geometry makes it difficult to use the solution to gain insight into more complicated defect
structures, e.g. curved deformations or multiple edge dislocations. Our analysis demonstrates that
regardless of geometry, this equipartition of energy is optimal.

The paper is organized as follows. After a brief review on preliminaries in Section 2, we prove
compactness in Section 3. Section 4 is devoted to a lower bound with a key lemma proved in
Appendix. In Section 5 we construct a 1D ansatz in a square which matches the lower bound from
Section 4 when ε → 0.

2 Preliminaries

We consider the energies

Eε(u) =
1

2

ˆ

Ω

{(
∂zu− 1

2(∂xu)
2
)2

ε
+ ε(∂2

xu)
2

}
dx dz. (10)

Throughout the paper Ω ⊂ R
2 will be a bounded domain. In some parts, we will require mild

regularity on ∂Ω which will be specified. We define the admissible class by

A := {u ∈ H1(Ω) : ∂2
xu ∈ L2(Ω)}.

Regarding the choice of A, the condition u ∈ H1(Ω) is not sufficient for the integral
´

(∂zu −
(∂xu)

2/2)2 to always be finite, so we will take the convention that Eε(u) = ∞ if that term is
infinite.

With the goal of understanding what type of boundary conditions pertain to the class A, let
∂Ω be Lipschitz. Since A ⊂ H1(Ω), we can demand

u∂Ω = g,

where u ∈ A and g : ∂Ω → R is in H1/2(∂Ω). Regarding ∇u, there is not enough regularity for a
Dirichlet condition. However, it is possible to require that admissible competitors for Eε satisfy a
condition of the type

∇u∂Ω · τΩ = h, h ∈ H−1/2(∂Ω). (11)

Here τΩ is tangent to ∂Ω. This is due to the fact that ∇u belongs to the space

Hcurl (Ω;R
2) = {m ∈ L2(Ω;R2) : curlm = ∂xm2 − ∂zm1 ∈ L2(Ω)}.

In fact, curl (∇u) = 0 in the sense of distributions. Since ∇u ∈ Hcurl (Ω;R
2), there is, in the

sense of distributions, a well-defined tangential trace ∇u∂Ω · τΩ ∈ H−1/2(∂Ω), cf. [50, Ch. 1]. For
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φ ∈ H1/2(∂Ω), ∇u∂Ω · τΩ acts via the integration by parts formula

< ∇u∂Ω · τΩ, φ > :=

ˆ

Ω

(
Φcurl (∇u) +∇⊥Φ · ∇u

)
dx dz (12)

=

ˆ

Ω
∇⊥Φ · ∇u dx dz,

where Φ is an H1(Ω) extension of φ and ∇⊥Φ = (−∂zΦ, ∂xΦ). The first term in the integrand in
(12) vanishes since curl (∇u) = 0. This definition is independent of the choice of Φ, as can be seen
by an approximation argument.

For the upper and lower bounds, we work with a different set of limiting configurations A0 ⊂
W 1,∞(Ω) (defined in Section 4). Now when u ∈ A0, so that ∇u ∈ L∞(Ω;R2), it turns out that the
distribution ∇u∂Ω · τΩ corresponds to an L∞(∂Ω)-function. This is a consequence of the duality
L∞(∂Ω) = (L1(∂Ω))∗. Indeed, we fix φ ∈ L1(∂Ω) and consider a W 1,1(Ω) extension Φ. The right
hand side of (12) defines a functional which is independent of the particular Φ and thus clearly
linear in φ. Furthermore, it is continuous due to Hölder’s inequality.

Lastly, we remark on the question of existence of minimizers for Eε. Due to the lack of control
on second derivatives of u other than ∂2

xu, it is not clear how to use the direct method to find a
minimizer of Eε. However, since we are interested in characterizing states with low or near-minimal
energy and our compactness theorem requires only bounded energies, this issue is not a significant
obstacle.

3 Compactness

Our main result in this section is

Theorem 3.1. Let Ω ⊂ R
2 be a bounded domain. Let εn ց 0, {un} ⊂ H1(Ω) be such that

‖∂xun‖Lp ≤ C for some p > 6, ∂2
xun ∈ L2(Ω), and Eεn(un) ≤ C.

Then
{∂xun} is relatively compact in Lq(Ω) for any 1 ≤ q < p

and
{∂zun} is relatively compact in L2(Ω).

Theorem 3.1 is a direct corollary of the following stronger proposition. To state and prove the
proposition, we work with the divergence-free vector fields mn = (mn1,mn2) = R∇un, where

R∇un =

(
∂xun
−∂zun

)
.

Proposition 3.2. Let Ω ⊂ R
2 be a bounded domain. Let {mn} ⊂ L2(Ω;R2) be such that

divmn = mn1z +mn2x = 0 in the sense of distributions, (13)

∥∥mn2 +
1
2m

2
n1

∥∥
L2 → 0, (14)

∂xmn1 ∈ L2(Ω) with ‖∂xmn1‖L2

∥∥mn2 +
1
2m

2
n1

∥∥
L2 ≤ C, (15)

7



and ‖mn1‖Lp ≤ C for some p > 6. (16)

Then

{mn1} is relatively compact in Lq(Ω) for any 1 ≤ q < p.

and
{mn2}is relatively compact in L2(Ω)

The proof of Proposition 3.2 utilizes the compensated compactness approach of Tartar [46, 47]
and Murat [33]. Recall for a scalar conservation law

∂zs+ ∂xf(s) = 0,

where f is a C1 function, an entropy solution s is defined such that for any nonlinear pair (η, q)
satisfying η′ = q′f ′ (the so-called entropy entropy-flux pair) satisfies

∂zη(s) + ∂xq(s) is a measure .

A lemma of Murat [32] implies ∂zη(sn) + ∂xq(sn) is compact in H−1 for a uniformly bounded
sequence of entropy solutions {sn}. This allows application of Tartar and Murat’s div-curl lemma
[32, 46] to derive restrictions on the Young measure generated by {sn}, yielding strong convergence
of sn. This type of argument was also used in [15]. For our case, the limiting function should satisfy

uz =
1

2
u2x a.e. in Ω.

Taking into account of this, we arrive at a scalar conservation law

∂zs+ ∂xf(s) = 0 with f(s) = −
1

2
s2.

As observed by Tartar [48] in the case of 1D conservation laws, theH−1-compact entropy production
of a single entropy can be used to obtain strong convergence. We shall follow the same idea to
prove compactness in our case by choosing a suitable entropy η.

Proof. First, by approximation, if the proposition holds for a sequence of smooth functions {mn},
then it holds for a general sequence as in the statement. To see that this is the case, it suffices to
approximate a general sequence {mn} by a sequence of smooth functions such that (13)-(16) still
hold and mn converge in L2(Ω;R2) if and only if their approximants do. Therefore, in the rest
of the proof, we will assume that each mn is smooth, so as to allow for differentiation of various
expressions.

Let vn = mn1 and f(vn) = −1
2v

2
n. We can write the divergence free condition (13) in terms of

vn as
∂zvn + ∂xf(vn) = −∂x

[
mn2 +

1
2m

2
n1

]
. (17)

Since
∥∥mn2 +

1
2m

2
n1

∥∥
L2 → 0, the right hand side of (17) is precompact in H−1(Ω).

Next, setting F (vn) = v3n/3 and multiplying (17) by −vn = −mn1, we obtain

∂zf(vn) + ∂xF (vn) = mn1∂x
[
mn2 +

1
2m

2
n1

]
(18)

= ∂x
[
mn1

(
mn2 +

1
2m

2
n1

)]
− ∂xmn1

(
mn2 +

1
2m

2
n1

)

=: In1 + In2 .
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From the uniform bound (16) on mn2 and (14), we see that

∥∥mn2

(
mn2 +

1
2m

2
n1

)∥∥
Lq → 0 for q =

2p

2 + p

Therefore, the sequence {In1 } is precompact in W−1,q(Ω). Moving on to In2 , we use (15) in order
to estimate

‖In2 ‖L1 ≤ ‖∂xmn1‖L2

∥∥mn2 +
1
2m

2
n1

∥∥
L2 ≤ C.

It follows that {In1 +In2 } is precompact in W−1,q(Ω) for q = 2p/(2+p) < 2. On the other hand, from
(16) and the definition of vn, the left hand side of (18) is bounded in W−1, p

3 (Ω). By interpolation,
we conclude that ∂zf(vn) + ∂xF (vn) is precompact in H−1(Ω).

Now, by (16), after restricting to a subsequence, we can assume that there exists v∈ Lp(Ω),
f∈ Lp/2(Ω), and F ∈ Lp/3(Ω) such that

vn ⇀ v, f(vn) ⇀ f, and F (vn) ⇀ F

weakly in L2(Ω). Replacing vn in the above arguments by vn − v, the results of the preceding two
paragraphs immediately yield

∂z[vn − v] + ∂x[f(vn)− f(v)] is precompact in H−1(Ω)

and
∂z[f(vn)− f(v)] + ∂x[F (vn)− F (v)] is precompact in H−1(Ω).

These observations allow us to apply the div-curl lemma [32, 46] to

Φn =

(
vn − v

f(vn)− f(v)

)
,Ψn =

(
F (vn)− F (v)

−(f(vn)− f(v))

)
,

so that
Φn ·Ψn

∗
⇀(weak limΦn) · (weak limΨn) in M(Ω) weak ∗ .

Written explicitly, this reads

(vn − v)(F (vn)− F (v))− (f(vn)− f(v))2 (19)
∗
⇀ (v − v)

(
F − F (v)

)
−

(
f − f (v)

)2

= −
(
f − f (v)

)2

≤ 0.

However, since F ′(vn) = f ′(vn)
2,

0 =

(
ˆ vn

v
f ′(t) dt

)2

− (f(vn)− f (v))2

≤ (vn − v)

ˆ vn

v
f ′(t)2 dt− (f(vn)− f (v))2

= (vn − v) (F (vn)− F (v))− (f(vn)− f (v))2 .

Combined with (19), the previous inequality implies that (vn−v)(F (vn)−F (v))−(f(vn)−f(v))2
∗
⇀

0. Hence, by (19) and the definition of f ,

−1
2v

2
n⇀f = f (v) = −1

2v
2 in M(Ω) weak ∗ .
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From this it follows that
ˆ

Ω
v2n dx dz →

ˆ

Ω
v2 dx dz.

Together with the weak convergence of vn to v in L2(Ω), the previous equation gives

mn2 = vn → v in L2(Ω). (20)

For the Lq convergence of {mn1}, if 1 ≤ q < 2, by Hölder’s inequality

||mn1 −m2
k1||Lq(Ω) ≤ C(Ω)||mn1 −m2

k1||L2(Ω)

→ 0 as n, k → ∞.

If q > 2, by Hölder’s inequality and the uniform Lp bound (16), we have

ˆ

Ω
|mn1 −mk1|

q dx dz ≤

(
ˆ

Ω
|mn1 −mk1|

p dx dz

) q−2
p−2

(
ˆ

Ω
|mn1 −mk1|

2 dx dz

) p−q

p−2

→ 0 as n, k → ∞.

The L2-convergence of mn2 is a consequence of (14), (16), and (20).

Remark 3.3. In the previous proposition, we imposed an uniform Lp bound on mn2 in our as-
sumptions. This is necessary since the well where the potential W vanishes is unbounded, since
we can easily pick a sequence with uz = u2x/2 = Cn → ∞ such that the energy is zero while the
sequence is divergent. It is open as to whether such a bound could be shown in certain scenarios,
for example if {∇un} have almost minimizing energy for Eεn subject to a boundary condition for
which the limiting problem has a minimizer ∇u satisfying an Lp bound.

Remark 3.4. If we put our energy functional in a periodic setting, we can rewrite the energy (10)
in the following form

Eε =

ˆ

T2

1

ε
(|∂2|

−1(∂1m1 − ∂2
1

2
m2

1))
2 + ε(∂2m1)

2dx

with m1 = ux, ∂1 = ∂z, ∂2 = ∂x. Adapting ideas handling Burgers operator ∂1w − ∂2
1
2w

2 from
[12, 23, 37], we can derive uniform bounds on mn2 in suitable Besov and Lp spaces in terms of
the energy. Compactness and additional properties can be obtained via Fourier analysis from those
estimates. See [36] for further details.

4 The Lower Bound

We consider the question of finding a limiting functional which provides a lower bound for Eε as
ε → 0. In order to state the theorem, we need to recall some properties of the space BV (Ω;R2) [6,
Chapter 3].

First, we recall the BV Structure Theorem, which in our case states that for m ∈ BV (Ω;R2),
the Radon measure Dm can decomposed as

Dm = Dam+Djm+Dcm,
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where all three measures are mutually singular and can be described as follows. The first and third
components, Dam and Dcm, are the absolutely continuous part of Dm (with respect to Lebesgue
measure) and the Cantor part, respectively. Most important for us is the jump part, Djm, which
can be expressed as

(m+ −m−)⊗ νH1 Jm,

where Jm is the countably 1-rectifiable jump set of m, ν is orthogonal to the approximate tangent
space at each point of Jm, and m+,m− are the traces of m from either side of Jm.

Next, we have the BV chain rule [4, 51], which says that if F ∈ C1(R2;R2) with bounded
derivatives and m ∈ BV (Ω;R2), then F ◦m is in BV (Ω;R2) and

D(F ◦m) = ∇F (m)∇mL2 +∇F (m̃)Dcm+ (F (m+)− F (m−))⊗ νH1 Jm.

Here m̃ is the approximate limit of m and is defined off of Jm (cf. [6, Definition 3.63]) and ∇m is
the matrix of approximate partial derivatives of m defined almost everywhere. Taking the trace on
both sides, we have

div (F ◦m) = tr (∇F (m)∇m)L2 + tr (∇F (m̃)Dcm) (21)

+ (F (m+)− F (m−)) · νH1 Jm.

Given those preliminary results, let us focus on the problem at hand. In the compactness result
Theorem 3.1, the limiting function u is in W 1,2(Ω) and satisfies ∂zu = (∂xu)

2/2 a.e. With that in
mind, we define

A0 := {u ∈ W 1,∞(Ω) : ∇u ∈ BV (Ω;R2) and ∂zu = (∂xu)
2/2 a.e.}. (22)

Here we assume that the limit function u ∈ W 1,∞(Ω) for application of BV chain rule. According to
the previous paragraphs, the gradient of u ∈ A0 has a jump set J∇u. The traces along J∇u satisfy a
jump condition due to the fact that ∇u is a gradient. Indeed, application of the divergence theorem
reveals that along J∇u, we have

∇u+ · ν⊥ = ∇u− · ν⊥. (23)

Next, we define the vector field

Σ(m) = (Σ1(m),Σ2(m)) :=

(
m1m2 −

1

6
m3

1,−
1

2
m2

1

)
. (24)

A discussion of the motivation behind the definition of Σ is below the statement of the upcoming
theorem and in Remark 4.2. Note that Σ(∇u) is an L1 function if we have ∂xu ∈ L3 and ∂zu ∈ L

3
2 ,

which motivates the choice of convergence in Theorem 4.3; see also Remark 4.4. If u ∈ A0, then
since ∇u is bounded and in BV (Ω;R2), we can apply the BV chain rule and (21) to Σ ◦ ∇u. A
short calculation yields

div Σ(∇u) = ∂2
xu(∂zu− (∂xu)

2/2)L2 + (∂̃zu− (∂̃xu)
2/2)Dc(∇u)11

+ (Σ(∇u+)− Σ(∇u−)) · νH1 J∇u.

In the second term on the right hand side, Dc(∇u)11 is the first entry in the first column of Dc(∇u).
Since ∂zu = (∂xu)

2/2 a.e., we find

div Σ(∇u) = (Σ(∇u+)− Σ(∇u−)) · νH1 J∇u. (25)

As a final preliminary, we provide two explicit expressions for (Σ(∇u+)−Σ(∇u−)) · ν. The proofs
can be found in the appendix.
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Lemma 4.1. Suppose m+, m− satisfy m2 = (m1)
2/2, and set p = m+ −m−, n = p/|p|, so that

m+, m− are admissible traces across a jump set with normal vector parallel to n. Then

(Σ(m+)− Σ(m−)) · n =
n1

2

(
p1p2 −m−

1 p
2
1 −

1

3
p31

)

=
|m+

1 −m−
1 |

3

12
√

1 + 1
4(m

+
1 +m−

1 )
2
. (26)

Remark 4.2. The cubic growth for small jumps is the same as in the Aviles-Giga problem [25],
and is a common feature of lower bounds involving “entropies” such as Σ [21]. It also occurs in
scalar conservation laws, where the entropy production is asymptotically cubic for small jumps [20].
In the former setting, the energies under consideration are of the form

ˆ

Ω
ε|∇m|2 +

1

ε
W (m) dx dz, ∇ ·m = 0,

and an entropy Φ : R2 → R2 is a smooth map such that ∇· [Φ(m)] = 0 for smooth m with ∇·m = 0
and W (m) = 0. One can check that after setting m = (−∂zu, ∂xu), Σ can be used to construct the
entropy Φ := −Σ(m2,−m1). Maps of this type are also the basis of the compactness result in [15].

We now state the main theorem for this section.

Theorem 4.3. Let Ω ⊂ R
2 be a bounded domain. Consider εn ց 0, {un} ⊂ H1(Ω) with ∂2

xun ∈
L2(Ω) such that

∂xun → ∂xu in L3(Ω) and ∂zun → ∂zu in L
3
2 (Ω) (27)

for some u ∈ H1(Ω) with ∇u ∈ (L∞∩BV )(Ω;R2). Then

lim inf
n→∞

Eεn(un) ≥

ˆ

J∇u

|(Σ(∇u+)− Σ(∇u−)) · ν| dH1. (28)

Our choice of div Σ(∇u) is motivated by the BPS decomposition. By the BPS decomposition,
we can write (8) as

Eε (u) =
1

2

ˆ

Ω

[
1

ε

(
∂zu−

1

2
(∂xu)

2

)2

+ ε
(
∂2
xu

)2
]
dx dz

=
1

2

ˆ

Ω

1

ε

(
∂zu−

1

2
(∂xu)

2 − ε∂2
xu

)2

dx dz +

ˆ

Ω
divΣ(∇u) dz dz, (29)

where Σ(∇u) =
(
∂zu∂xu− 1

6 (∂xu)
3 ,−1

2 (∂xu)
2
)
. A direct conclusion from (29) is

Eε (u) ≥

ˆ

Ω
divΣ(∇u) (30)

and Eε is minimized by mappings satisfying (4) . Bounding the energy from below by the integral
of a total derivative is also the main idea of Jin and Kohn [25] for the Aviles-Giga problem, where
the “Jin-Kohn” entropy plays the part of Σ above.

Equation (30) is the starting point of our lower bound estimate, and we use (4) in our construc-
tion of 1D ansatz in our upper bound estimate in Section 5.

12



Proof of Theorem 4.3. We begin with the calculation

divΣ(∇v) = ∂x

[
∂xv∂zv −

1

6
(∂xv)

3

]
+ ∂z

[
−
1

2
(∂xv)

2

]
(31)

=

(
∂2
xv∂zv + ∂xv∂z∂xv −

1

2
(∂xv)

2∂2
xv − ∂xv∂x∂zv

)

= ∂2
xv

(
∂zv −

1

2
(∂xv)

2

)

≤

(
∂zv −

1
2(∂xv)

2
)2

2ε
+

ε(∂2
xv)

2

2

which holds for any smooth v, and hence by density any v ∈ H1(Ω) with ∂2
xv ∈ L2(Ω). Now if we

plug in ∇un to (31), multiply by a test function ϕ ∈ C∞
c (Ω), and integrate by parts, we have

ˆ

Ω
−Σ(∇un) · ∇ϕdx dz =

ˆ

Ω
div Σ(∇un)ϕdx dz (32)

≤ Eεn(un)‖ϕ‖L∞ .

As outlined in the discussion preceding the proof, we wish to take the limit as n → ∞ on the left
hand side of (32) to prove (28). If lim inf Eεn(un) = ∞, then (28) is immediate. Therefore, we may
suppose that

lim inf
n→∞

Eεn(un) < ∞. (33)

By the convergence (27), it follows that Σ(∇un) → Σ(∇u) in L1(Ω;R2). Then we can let n → ∞
in (32):

ˆ

Ω
−Σ(∇u) · ∇ϕdx dz = lim

n→∞

ˆ

Ω
−Σ(∇un) · ∇ϕdx dz (34)

≤ lim inf
n→∞

Eεn(un)‖ϕ‖L∞ .

The lower bound (28) is obtained by taking the total variation of div Σ(∇u) in (34) and using the
expression (25) for div Σ(∇u).

Remark 4.4. Upon examination of the proof of Theorem 4.3, we see that if ∂xun → ∂xu in L3,
∂zun → ∂zu in L

3
2 , and lim inf Eεn(un) < ∞, then divΣ(∇u) is a finite Radon measure and

lim inf
n→∞

Eεn(un) ≥ |div Σ(u)|(Ω).

This argument holds even when ∇u /∈ (L∞∩BV )(Ω;R2), since that assumption was only used when
applying the BV chain rule to calculate |div Σ(∇u)|. This indicates that the space

{u ∈ W 1, 3
2 (Ω) : ∂xu ∈ L3, ∂zu = (∂xu)

2/2 and divΣ(∇u) is a Radon measure}

is the natural limiting space for this sequence of variational problems, similar to the Aviles-Giga
space defined in [5]. It is possible that this space contains elements which are not in BV (Ω;R2),
although we do not pursue this issue further. We refer the reader to [5, pgs. 338-340] for an example
of such a map in the Aviles-Giga problem. This is one reason that upper bound Theorem 5.1 does
not yield full Γ-convergence; the other is the restriction that ∇u ∈ L∞(Ω). The current techniques
involved in such constructions, developed in [14] and [39], require both of these conditions on ∇u,
and removing them is likely non-trivial.
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Remark 4.5. The identification of the cost (26) along defect curves could be utilized in conjunc-
tion with the geometric rigidity induced by the requirement that ∂zu = ∂xu

2/2 to compute critical
configurations for the limiting energy. See for example [19, Example 4.2], in which a critical con-
figuration for a nematic-isotropic phase transition is calculated with the far field being given by the
nematic ground state. This bears a resemblance to some of the BPS constructions for smectics from
[1], and such ideas could be employed in the smectic context as well.

5 An Estimate for the Minimum Energy on a Square and the

Upper Bound

In light of Theorem 4.3, we would like to know whether the lower bound can be matched by a
construction, yielding a sharp lower bound. When u ∈ A0, we provide an affirmative answer to
this question.

Theorem 5.1. Let u ∈ A0 and ∂Ω be C2. Then there exists a sequence {uε} ⊂ C2(Ω) such that

uε → u in W 1,p(Ω) for all 1 ≤ p < ∞

and

Eε(uε) →

ˆ

J∇u

|(Σ(∇u+)− Σ(∇u−)) · ν| dH1. (35)

As a first step towards proving Theorem 5.1, we will analyze a local problem for Eε posed on a
square, with boundary data chosen to induce a limiting jump set parallel to two of the sides. We
will show that up to an exponentially small error in ε, the minimum energy for the local problem
is attained by a “one-dimensional competitor” with constant gradient in the direction parallel to
the jump set. Having done the analysis of the local problem, the upper bound Theorem 5.1 can
then be shown as a consequence of a general theorem of Poliakovsky for proving upper bounds
for singular perturbation problems using a one-dimensional ansatz [39]. The idea is that the local
problem represents the cost per unit length along the jump set; this can then be made rigorous
with the right tools when ∇u ∈ BV (Ω;R2) [14, 39].

For orthonormal vectors ν, τ , we consider the square

R := {(x, z) ∈ R
2 : |(x, z) · ν| ≤ 1/2, |(x, z) · τ | ≤ 1/2}.

If we wish to force a jump set in the limit ε → 0 with normal vector ν, we must choose boundary data
on {(x, z) ·ν = 1/2} and {(x, z) ·ν = −1/2} which is compatible with a jump across {(x, z) ·ν = 0}.
Therefore, we choose m+, m− such that

m+,m− ∈ {m : m2 = m2
1/2} and ν is parallel to m+ −m−

and define the class

AR := {u ∈ H1(R) : ∇u = m± when (x, z)·ν = ±1/2 and ∇u is periodic

with period 1 in the τ direction}.

The restricted class of one-dimensional competitors is

A1D
R := {u ∈ AR : ∇u · τ = m+ · τ = m− · τ on R}.
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We set

rε = inf
AR

Eε

and

r1Dε = inf
A1D

R

Eε.

Proposition 5.2. For any ε > 0, we have

|(Σ(m+)− Σ(m−)) · ν| ≤ rε ≤ r1Dε . (36)

Furthermore, as ε → 0,

∣∣r1Dε − |(Σ(m+)− Σ(m−)) · ν|
∣∣ ≤ c1e

−c2/ε, (37)

where the constants c1 and c2 depend only on m+, m−, so that the one-dimensional ansatz is
asymptotically minimizing and the cost is given by the jump in Σ.

Proof. The first inequality in (36) is an immediate consequence of crucial calculation (28) and the
choice of boundary data for AR. The second follows since A1D

R ⊂ AR, so it remains to prove (37).
We construct a sequence of one-dimensional competitors uε such that Eε(uε) approaches |(Σ(m

+)−
Σ(m−))·ν| at the desired rate. The techniques in such a construction are well-known in the calculus
of variations, but we include a proof for the sake of completeness. For each ε, we will define ∇uε
via the following ansatz:

∇uε = gε((x, z) · ν)(m
+ −m−) +m− (38)

= gε((x, z) · ν)p+m−.

Here p = m+ − m− as in Lemma 4.1 and gε : [−1/2, 1/2] → [0, 1] is increasing and satisfies
gε(−1/2) = 0, gε(1/2) = 1. It is easy to check that since p is parallel to ν,

curl (gε((x, z) · ν)p+m−) = 0,

so that it is possible to find uε whose gradient is given by (38), and that ∇uε satisfies the boundary
conditions required to be a member of A1D

R . Since the energy Eε does not depend explicitly on uε
but only on its gradient, for the rest of the proof, we will, with a slight abuse of notation, refer to
the energy Eε(∇uε) without making an explicit choice of uε.

Next, let g be the local solution of the following initial value problem:




g′(t) =

|gp2 +m−
2 − (gp1 +m−

1 )
2/2|

p1n1
=: W (g),

g′(0) = 1/2.

(39)

The vectors p and n are given by p = m+−m− and n = p/|p|. The first components n1, p1 cannot
be zero since m+ and m− lie on the parabola m2 = (m1)

2/2. Here W is chosen so that when we
plug g(·/ε) into the ansatz (38) and calculate the resulting energy density, equality is achieved in
(31). This is the same idea as the transition layer ansatz for the Modica-Mortola problem [31] or
the Aviles-Giga problem [7]. We collect some properties of the solution g, all of which follow from
the facts that W ≥ 0 and vanishes linearly at 0 and 1 (see for example [45, Equation (1.21)]).
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(i) The solution g is increasing and exists for all time, and

(ii) there exist c1, c2 depending only on W and thus on m+, m+, such that

|1− g(t)| ≤ c1e
−c2t as t → ∞ and |g(t)| ≤ c1e

c2t as t → −∞. (40)

The constants ci will implicitly change from line to line but will always depend only on m+ and
m− and not on ε.

We would like to define gε = g(t/ε) in (38); however, g(t/ε) does not satisfy the boundary
conditions at ±1/2. To account for this, we will linearly interpolate if |(x, z) · ν)| > 1/4 and use
the rescaled g elsewhere. We set

∇uε(x, z) =





[
g

(
1

4ε

)
+ 4

(
1− g

(
1

4ε

))(
ν · (x, z)−

1

4

)]
p+m− if (x, z) · ν ≥

1

4
,

g

(
ν · (x, z)

ε

)
p+m− if |(x, z) · ν| ≤

1

4
,

[
g

(
−

1

4ε

)
+ 4g

(
−

1

4ε

)(
ν · (x, z) +

1

4

)]
p+m− if (x, z) · ν ≤ −

1

4
.

It is straightforward to check that due to (40),

(∂2
xuε)

2,

(
∂zuε −

1

2
(∂xuε)

2

)2

≤ c1e
−c2/ε when |(x, z) · ν| ≥ 1/4. (41)

By (36), to finish the proof, it suffices to show that ∇uε satisfy

Eε(∇uε) ≤ |(Σ(m+)− Σ(m−)) · ν|+ c1e
−c2/ε. (42)

Let us split up the energies as

Eε(∇uε) =
1

2

ˆ

R

{(
∂zuε −

1
2 (∂xuε)

2
)2

ε
+ ε(∂2

xuε)
2

}
dx dz

=
1

2

ˆ

{|(x,z)·ν|≤1/4}

{(
∂zuε −

1
2(∂xuε)

2
)2

ε
+ ε(∂2

xuε)
2

}
dx dz

+
1

2

ˆ

{|(x,z)|·ν>1/4}

{(
∂zuε −

1
2(∂xuε)

2
)2

ε
+ ε(∂2

xuε)
2

}
dx dz

:= I1ε + I2ε .

First, from (41), we have
I2ε ≤ c1e

−c2/ε. (43)

For I1ε , we write

I1ε =
1

2

ˆ

{|(x,z)·ν|≤1/4}

{(
∂zuε −

1
2(∂xuε)

2
)2

ε
+ ε(∂2

xuε)
2

}
dx dz

=
1

2

ˆ 1/4

−1/4

{(
g(t/ε)p2 +m−

2 − (g(t/ε)p1 +m−
1 )

2/2
)2

ε
+

g′(t/ε)2p21ν
2
1

ε

}
dt.
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Now ν//n and both are unit vectors, so we can substitute ν21 = n2
1. Then by (39), we have

I1ε =
1

2

∣∣∣∣∣

ˆ 1/4

−1/4

2

ε
g′(t/ε)p1n1

(
g(t/ε)p2 +m−

2 − (g(t/ε)p1 +m−
1 )

2/2
)
dt

∣∣∣∣∣

=

∣∣∣∣∣

ˆ g(1/(4ε))

g(−1/(4ε))
p1n1

(
sp2 +m−

2 − (sp1 +m−
1 )

2/2
)
ds

∣∣∣∣∣

=

∣∣∣∣∣

ˆ g(1/(4ε))

g(−1/(4ε))
p1n1

(
sp2 +m−

2 − s2p21/2− sp1m
−
1 − (m−

1 )
2/2

)
ds

∣∣∣∣∣

=

∣∣∣∣∣

ˆ g(1/(4ε))

g(−1/(4ε))
p1n1

(
sp2 − s2p21/2− sp1m

−
1

)
ds

∣∣∣∣∣ .

In the last line we use m−
2 = (m−

1 )
2/2 to cancel two of the terms in parentheses. Since g(±1/(4ε))

approaches 1 and 0 exponentially as ε → 0, we can finish the calculation:

I1ε ≤

∣∣∣∣
ˆ 1

0
p1n1

(
sp2 − s2p21/2 − sp1m

−
1

)
ds

∣∣∣∣+ c1e
−c2/ε

=
∣∣∣n1

2
(p1p2 − p31/3− p21m

−
1 )

∣∣∣+ c1e
−c2/ε

=
∣∣(Σ(m+)− Σ(m−)) · ν

∣∣+ c1e
−c2/ε by Lemma 4.1.

Thus
Eε(∇uε) = I1ε + I2ε ≤

∣∣(Σ(m+)−Σ(m−)) · ν
∣∣+ c1e

−c2/ε,

as desired.

Finally, we can prove the upper bound Theorem 5.1. We quote a theorem from [39] which is
valid in any dimension and for a wide range of energy densities. Let us write the version that
applies to our problem.

Theorem 5.3 (Theorem 1.2 from [39]). Let Ω be a bounded C2-domain and let

F (a, b) : R2×2 × R
2 → R

be a C1 function satisfying F ≥ 0. Let u ∈ W 1,∞(Ω) be such that ∇u ∈ BV (Ω;R2) and
F (0,∇u(x)) = 0 a.e. in Ω. Then there exists a family of functions {uε} ⊂ C2(R2) satisfying

uε → u in W 1,p(Ω) for 1 ≤ p < ∞

and

lim
ε→0

1

ε

ˆ

Ω
F (ε∇2uε,∇uε) dx dz

=

ˆ

J∇u

inf
r∈Rχ(x,z),0

{
ˆ ∞

−∞
F
(
−r′(t)ν(x, z)⊗ ν(x, z), r(t)ν(x, z) +∇u−(x, z)

)
dt

}
dH1.

Here χ(x, z) is given by
χ(x, z)ν(x, z) = ∇u+(x, z) −∇u−(x, z),

and

Rχ(x,z),0 := {r(t) ∈ C1(R) : ∃L > 0 s.t. r(t) = χ(x, z) for t ≤ −L, r(t) = 0 for t ≥ L}.
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Proof of Theorem 5.1. In the notation of the statement of Theorem 5.3, we take

F (a, b) = (b2 − b21/2)
2/2 + a211/2,

so that
1

ε

ˆ

Ω
F (ε∇2uε,∇uε) dx dz = Eε(uε).

By rescaling and applying Proposition 5.2, we find that the infimum in Theorem 5.3 is in fact
|(Σ(∇u+)− Σ(∇u−)) · ν|. The proof of Theorem 5.1 is complete.

Remark 5.4. Theorem 5.3 does not deal with specifying boundary conditions for the recovery
sequence, and so we have not included this in our analysis either. In the Aviles-Giga problem, this
was handled in [38, Theorem 1.1] and [14, Section 6], and so similar techniques could apply here
as well.

Remark 5.5. Ignat and Monteil [22, Proposition 4.19] introduced a systematic approach for de-
termining the 1d symmetry for minimizers of variational integrals of the form

E(m) =

ˆ

1

2
|∇m|2 +W (m) with ∇ ·m = 0.

Denoting by Π0 the projection onto traceless matrices, the map Φ defined in Remark 4.2 satisfies
the “strong punctual condition”

|Π0∇Φ(m)|2 ≤ W (m)

from [22], which underlies the fact that the divergence of the entropy bounds the energy from below.
In the case where the limiting jump for ∇u has normal vector x̂, the results of [22] then yield the
optimality and uniqueness of the 1d profile.

6 Appendix

We prove Lemma 4.1.

Proof of Lemma 4.1. First, we prove

(Σ(m+)− Σ(m−)) · n =
n1

2

(
p1p2 −m−

1 p
2
1 −

1

3
p31

)
. (44)

Let us record the identities

n1p2 = n2p1, and m−
2 = (m−

1 )
2/2. (45)

We calculate

(Σ(m+)−Σ(m−)) · n =

(
m+

1 m
+
2 −

1

6
(m+

1 )
3

)
n1 −

1

2
(m+

1 )
2n2

−

(
m−

1 m
−
2 −

1

6
(m−

1 )
3

)
n1 +

1

2
(m−

1 )
2n2

= n1

[
m+

1 m
+
2 −m−

1 m
−
2 −

1

6
(m+

1 )
3 +

1

6
(m−

1 )
3

]
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+
1

2
n2

[
(m−

1 )
2 − (m+

1 )
2
]

= n1

[
(m−

1 + p1)(m
−
2 + p2)−m−

1 m
−
2 −

1

6

(
m−

1 + p1
)3

+
1

6
(m−

1 )
3

]

+
1

2
n2

[
(m−

1 )
2 − (m−

1 + p1)
2
]

= n1

[
p1p2 + p1m

−
2 + p2m

−
1 −

1

2
(m−

1 )
2p1 −

1

2
m−

1 p
2
1 −

1

6
p31

]

+
1

2
n2

[
−2p1m

−
1 − p21

]
.

Notice that the second and fourth terms in the first bracket add to 0 by the second identity in (45).
Continuing on and then using the first identity in (45) to cancel n1m

−
1 p2 − n2p1m

−
1 , we have

(Σ(m+)− Σ(m−)) · n = n1

[
p1p2 + p2m

−
1 −

1

2
m−

1 p
2
1 −

1

6
p31

]
+

1

2
n2

[
−2p1m

−
1 − p21

]

= n1

[
p1p2 −

1

2
m−

1 p
2
1 −

1

6
p31

]
−

1

2
n2p

2
1.

Finally, we finish the proof of (44) by again using (45) to rewrite n1p1p2 − n2p
2
1/2 as n1p1p2 −

n1p1p2/2 = n1p1p2/2, which gives

(Σ(m+)− Σ(m−)) · n = n1

[
1

2
p1p2 −

1

2
m−

1 p
2
1 −

1

6
p31

]
.

Moving on to the second expression for (Σ(m+)− Σ(m−)) · n, we show

(Σ(m+)− Σ(m−)) · n =
|m+

1 −m−
1 |

3

12
√

1 + 1
4 (m

+
1 +m−

1 )
2
. (46)

The calculation is straightforward. We write n as

n =
m+ −m−

|m+ −m−|
=

(
m+

1 ,
1
2(m

+
1 )

2
)
−

(
m−

1 ,
1
2(m

−
1 )

2
)

√
(m+

1 −m−
1 )

2 + 1
4

(
(m+

1 )
2 − (m−

1 )
2
)2

and notice that if m2 =
1
2m

2
1, then

Σ(m) =

(
1

3
m3

1,−
1

2
m2

1

)
.

Thus

(Σ(m+)− Σ(m−)) · n

=

(
1

3
(m+

1 )
3 −

1

3
(m−

1 )
3,
1

2
(m−

1 )
2 −

1

2
(m+

1 )
2

)
·

(
m+

1 ,
1
2 (m

+
1 )

2
)
−
(
m−

1 ,
1
2 (m

−
1 )

2
)

√
(m+

1 −m−
1 )

2 + 1
4

(
(m+

1 )
2 − (m−

1 )
2
)2

=
(m+

1 −m−
1 )

2

(
2

3

(
(m+

1 )
2 +m+

1 m
−
1 + (m−

1 )
2
)
,−(m+

1 +m−
1 )

)

·
(m+

1 −m−
1 )

(
1, 12 (m

+
1 +m−

1 )
)

|m+
1 −m−

1 |
√

1 + 1
4(m

+
1 +m−

1 )
2
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=
(m+

1 −m−
1 )

2

2|m+
1 −m−

1 |

(
2
3(m

+
1 )

2 + 2
3(m

+
1 m

−
1 ) +

2
3 (m

−
1 )

2 − 1
2(m

+
1 +m−

1 )
2
)

√
1 + 1

4(m
+
1 +m−

1 )
2

=
|m+

1 −m−
1 |

2

(
1
6(m

+
1 )

2 + 1
6(m

−
1 )

2 − 1
3m

+
1 m

−
1

)
√
1 + 1

4(m
+
1 +m−

1 )
2

=
|m+

1 −m−
1 |

3

12
√

1 + 1
4(m

+
1 +m−

1 )
2
.
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[34] , L’injection du cône positif de H−1 dans W−1, q est compacte pour tout q < 2, J. Math.
Pures Appl. (9), 60 (1981), pp. 309–322.

[35] M. Novack and X. Yan, Nonlinear approximation of 3d smectic liquid crystals: compactness
and sharp lower bound. in preparation.

[36] , A smectic liquid crystal model in periodic setting, in preparation.

[37] F. Otto and J. Steiner, The concertina pattern, Calc. Var. Partial Differential Equations,
39 (2010), pp. 139–181.

[38] A. Poliakovsky, Upper bounds for singular perturbation problems involving gradient fields,
J. Eur. Math. Soc. (JEMS), 9 (2007), pp. 1–43.

[39] , A general technique to prove upper bounds for singular perturbation problems, J. Anal.
Math., 104 (2008), pp. 247–290.

[40] M. Prasad and C. M. Sommerfield., Solutions of classical gauge field theories with spin
and internal symmetry, Nuclear Physics B, 110 (1976), pp. 153 – 172.

[41] C. D. Santangelo, Geometry and the nonlinear elasticity of defects in smectic liquid crystals,
Liquid Crystals Today, 15 (2006), pp. 11–18.

[42] C. D. Santangelo and R. D. Kamien, Bogomol’nyi, prasad, and sommerfield configurations
in smectics, Phys. Rev. Lett., 91 (2003), p. 045506.

[43] C. D. Santangelo and R. D. Kamien, Curvature and topology in smectic-A liquid crystals,
Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), pp. 2911–2921.

[44] , Triply periodic smectic liquid crystals, Phys. Rev. E (3), 75 (2007), pp. 011702, 12.

[45] P. Sternberg, The effect of a singular perturbation on nonconvex variational problems, Arch.
Rational Mech. Anal., 101 (1988), pp. 209–260.

[46] L. Tartar, Compensated compactness and applications to partial differential equations, in
Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, vol. 39 of Res. Notes in
Math., Pitman, Boston, Mass.-London, 1979, pp. 136–212.

22



[47] L. Tartar, The compensated compactness method applied to systems of conservation laws, in
Systems of nonlinear partial differential equations (Oxford, 1982), vol. 111 of NATO Adv. Sci.
Inst. Ser. C Math. Phys. Sci., Reidel, Dordrecht, 1983, pp. 263–285.

[48] , The compensated compactness method for a scalar hyperbolic equation, Carnegie Mellon
Univ. Lecture notes, 1987, pp. 87–20.

[49] , Compensation effects in partial differential equations, Rend. Accad. Naz. Sci. XL Mem.
Mat. Appl. (5), 29 (2005), pp. 395–453.

[50] R. Temam, Navier-Stokes equations, vol. 2 of Studies in Mathematics and its Applications,
North-Holland Publishing Co., Amsterdam-New York, revised ed., 1979. Theory and numerical
analysis, With an appendix by F. Thomasset.

[51] A. I. Vol’pert, Spaces BV and quasilinear equations, Mat. Sb. (N.S.), 73 (115) (1967),
pp. 255–302.

23


	1 Introduction
	2 Preliminaries
	3 Compactness
	4 The Lower Bound
	5 An Estimate for the Minimum Energy on a Square and the Upper Bound
	6 Appendix

