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VORTEX PATCHES CHOREOGRAPHY FOR ACTIVE SCALAR

EQUATIONS

CLAUDIA GARCÍA

Abstract. This paper deals with the existence of N vortex patches located at the vertex of
a regular polygon with N sides that rotate around the center of the polygon at a constant
angular velocity. That is done for Euler and (SQG)

β
equations, with β ∈ (0, 1), but may be also

extended to more general models. The idea is the desingularization of the Thomsom polygon for
the N point vortex system, that is, N point vortices located at the vertex of a regular polygon
with N sides. The proof is based on the study of the contour dynamics equation combined with
the application of the infinite dimensional Implicit Function theorem and the well–chosen of the
function spaces.

1. Introduction

This work deals with the dynamics of N vortex patches located at the vertex of a regular poly-
gon with N sides for Euler and generalized surface quasi–geostrophic equations. The motivation
comes from the Thomson polygon for the N point vortex problem which is a choreography for
this system: the evolution of the points is a rotation of constant angular velocity.

The generalized surface quasi–geostrophic equations describing the evolution of the potential
temperature θ read as







θt + (v · ∇)θ = 0, in [0,+∞)× R2,

v = −∇⊥(−∆)−1+β

2 θ, in [0,+∞)× R2,
θ(0, x) = θ0(x), with x ∈ R2.

(1)

In this system v refers to the velocity field, ∇⊥ = (−∂2, ∂1) and β ∈ [0, 2). The velocity field is

linked to the potential temperature θ via the operator (−∆)−1+β

2 agreeing with

(−∆)−1+β

2 θ(x) =

ˆ

R
2

Kβ(x− y)θ(y)dy,

where

Kβ(x) =

{

− 1
2π log |x|, β = 0,

Cβ

2π
1

|x|β
, β ∈ (0, 2),

and Cβ = Γ(β/2)

21−βΓ( 1−β

2 )
.

The case β = 0 corresponds to the Euler equations and β = 1 to the surface quasi–geostrophic
model. This model was proposed by Córdoba et al. in [13] as an interpolation between Euler
and surface quasi–geostrophic equations. See [11] for its relation with the three dimensional
incompressible Euler equations.

In this work we will be interested in the case β ∈ [0, 1) and we will distinguish between Euler
equations and (SQG)β for β ∈ (0, 1). Let us present here the Euler equations where ω stands
for the vorticity
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





ωt + (v · ∇)ω = 0, in [0,+∞)× R2,
v = K ∗ ω, in [0,+∞)× R2,
ω(0, x) = ω0(x), with x ∈ R2,

(2)

where K(x) = 1
2π

x⊥

|x|2 .

Relative equilibria for these active scalar equations have been studied in the last few years.
They survive in the class of Yudovich solutions [41] (bounded and integrable functions), which
are global for the Euler equations but only local for the (SQG)β equations due to the singularity

of the velocity field. For the case of vortex patches solutions, that is, θ0(x) = 1D, for a bounded
simply connected smooth domain D, there is a unique local solution in the patch form θ(t, x) =
1Dt . Furthermore, the boundary ∂Dt is described by the contour dynamics equations

∂tzt(w) =

ˆ

T

Kβ(zt(w)− zt(ξ))z
′
t(ξ)dξ,

where zt : T → ∂Dt is a lagrangian parametrization. In [10], Chemin proved the global persis-
tence of the boundary regularity in C 1,α, with α ∈ (0, 1), for Euler equations, see also [2, 39].
However, a local persistence result is only known for (SQG)β with β ∈ (0, 1), see [12, 19, 32, 38].

We shall focus on relative equilibria or V–states, which consist in single or multiple patches
moving without changing shape. The first known examples goes back to the stationary Rankine
vortex (the circular patch) and Kirchhoff [31] ellipses (which rotates at a constant angular
velocity Ω = ab

(a+b)2
, where a and b are the semi–axes of the ellipse). Later, Deem and Zabusky

[18] gave some numerical observations of the existence of more rotating patches with m–fold
symmetry. Using bifurcation theory, Burbea [4] proved analytically the existence of these V–
states close to the Rankine vortex. Following the approach of Burbea, there has been several
works concerning the existence of V–states not only for Euler equations but also for (SQG)β
equations. We refer to [7, 24, 30] for single rotating patches, [16, 17] for doubly–connected
V–states, [29] for corotating and counter–rotating vortex pairs, [20] for the existence of Kármán
Vortex Street structures and [6, 8, 9, 15, 21, 22, 23, 25, 27, 28] for other related works.

The N point vortex system is found when the area of a patch shrink to zero. We will be
interested in choreographies for the N point vortex problem which are solutions where the N
vortices follow the same patch. Moreover, these choreographies can help later with the study of
relative equilibria for active scalar equations as Euler or (SQG)β equations.

In [36], Marchioro and Pulvirenti proved the desingularization of point vortices for Euler
equations. That is, they found smooth solutions ωε for Euler equations, suitably ε-concentrated
around the points. We refer also to [14, 40] for more information about this topic. Recently, Ao,
Dávila, Del Pino, Musso and Wei [1] achieved also the desingularization of points for the (SQG)β
equations, with β ∈ (0, 1), for the special case of vortices traveling with constant speed along
one axis or rotating with constant angular velocity. With different techniques, Hmidi and Mateu
studied the desingularization of a pair of vortices by studying small vortex patches around each
point. Note that their work deals with Euler and (SQG)β equations, for β ∈ (0, 1). Following

similar techniques, the author in [20] found Kármán Vortex Street structures for different active
scalar equations which include also Euler and (SQG)β .

Here we follow the approach developed in [20, 29] to study the desingularization of the N
point vortices located at the vertex of a regular polygon with N ≥ 2 sides, that is,

zm(0) = e
i2πm
N z0(0), (3)

for any m = 0, . . . , N − 1 and where we take z0(0) = l ∈ R located in the real axis. Assume that
the evolution of the points is given by a general interaction G : R → R smooth off zero, meaning

z′m(t) =

N−1
∑

m6=k=0

∇⊥
zmG(|zm(t)− zk(t)|), (4)

zm(0) =e
i2πm
N z0(0),
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for any m = 0, . . . , N − 1. Note that the classical Newtonian interaction stands for G = 1
2π ln | · |

and (SQG)β for G = Cβ
1
|·|β

. We can check that the evolution of (3) due to (4) is given by a

rotation of constant angular velocity that we will denoted by Ω0, that is,

zm(t) = eiΩ0tzm(0).

The stability of the N polygon (also called Thomson polygon) has been studied in the last years,
we refer to [3, 5, 34]. They concluded that Thomson polygon is stable for N ≤ 7 but unstable
for N ≥ 8.

Hence, the idea of this work is to find small enough vortex patches around (3) evolving also
as a rotation with some constant angular velocity. Our main result reads as follows.

Theorem 1.1. Consider l ∈ R
⋆ and N ≥ 2. Then, there exists ε0 > 0 with the following

property. For all ε ∈ (0, ε0), there is a simply–connected bounded domain Dε, with center of

masses l, such that

θ0(x) =
1

πε2

N−1
∑

m=0

1
e
i2πm
N Dε

(x),

defines a rotating solution of (1), for β ∈ [0, 1), with some constant angular velocity Ω(ε).
Moreover, Dε is at least C 1.

For the sake of simplicity, we will focus only on Euler and (SQG)β equations, but same result
happens also for more general models of the type







qt + (v · ∇)q = 0, in [0,+∞) × R2,
v = ∇⊥G ∗ q, in [0,+∞) × R2,
q(t = 0, x) = q0(x), with x ∈ R2,

(5)

where G is radial and smooth off zero. See [20] for the desingularization of Kármán Vortex
Street structures in the general system (5).

In what follows, we briefly explain the idea behind Theorem 1.1 for Euler equations, and same
strategy is later done for (SQG)β equations. Our main task is to find simply connected bounded
domains Dε

m, for m = 0, . . . , N − 1, N ≥ 2 and ε > 0, such that the evolution of

ω0,ε(x) =

N−1
∑

m=0

1Dε
m
(x), (6)

is due to a rotation of constant angular velocity, that is,

ω(t, x) = ω0,ε(e
−iΩtx), (7)

for some Ω ∈ R. Moreover, we will consider that the center of masses of Dε
0 is l ∈ R

⋆ and thus
we take

Dε
m = e

2πim
N Dε

0.

Note the following relation with the N point vortex system. In the case that Dε
0 = εD+l, one

finds for ε → 0 the point vortex distribution (3).
Furthermore, inserting the ansatz (7) in the Euler equations, one finds the following equivalent

equation
(

v0(x)−Ωx⊥
)

· n∂Dε
0
(x) = 0, x ∈ ∂Dε

0, (8)

where n∂Dε
0
stands for a unit normal vector to ∂Dε

0. Moreover, we can parametrize ∂Dε
0 − l by

a conformal map Φ : T → ∂Dε
0 − l as

Φ(w) = ε(w + εf(w)), f(w) =
∑

n≥1

anw
−n, an ∈ R, w ∈ T,

where f does not depend on ε. Thus, after some computations (8) amounts to

F (Ω, ε, f)(w) = Re
[{

v0(Φ(w) + l) + iΩ(Φ(w) + l)
}

w(w + εf ′(w))
]

= 0, w ∈ T .
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The velocity field v0 associated to (6) takes the following expression

v0(Φ(w) + l) =
iw

2πε
+

1

4π2

ˆ

T

w − ξ + ε(f(w)− f(ξ))

w − ξ + ε(f(w)− f(ξ))
f ′(ξ)dξ

+
1

4π2

ˆ

T

(w − ξ)(f(w)− f(ξ))− (w − ξ)(f(w)− f(ξ))

(w − ξ)(w − ξ + ε(f(w)− f(ξ)))
dξ

+

N−1
∑

m=1

1

4π2

ˆ

T

ξ + εf(ξ)

εe
i2πm
N (ξ + εf(ξ))− ε(w + εf(w)) + (e

i2πm
N − 1)l

(1 + εf ′(ξ))dξ,

for any w ∈ T.
Then, the problem reduces to find non trivial roots of F and thus get non trivial domains Dε

m

such as (6) evolves as (7). Furthermore, we can prove that F (Ω0, 0, 0)(w) = 0 for any w ∈ T,
where Ω0 is the angular velocity associated to the N point vortices (3).

The idea now is the use of the infinite dimensional Implicit Function theorem to F in order
to find solutions around the trivial one (Ω0, 0, 0). Then, one needs that the linearized operator
around such trivial solution is an isomorphism. If one formally compute such operator one gets

∂fF (Ω0, 0, 0)h(w) =
1

2π
Im[h′(w)].

In order to have that ∂fF (Ω0, 0, 0) is an isomorphism, let us define the following function spaces

X1+α =







f ∈ C
1+α(T), f(w) =

∑

n≥1

anw
−n, an ∈ R







, (9)

Yα =







f ∈ C
α(T), f(eiθ) =

∑

n≥2

an sin(nθ), an ∈ R







, (10)

for α ∈ (0, 1). Thus, it is clear that ∂fF (Ω0, 0, 0) : X1+α → Yα is an isomorphism, for any
α ∈ (0, 1).

However, the nonlinear functional F is not a priori well–defined in such function spaces.
Indeed, one can prove that it belongs to C α(T) and takes the form

F (Ω, ε, f)(eiθ) =
∑

n≥1

fn sin(nθ),

with θ ∈ [0, 2π) and fn ∈ R. Hence, in order to have that F ∈ Yα one needs an extra condition:
f1 = 0. To achieve that, we assume that Ω depends appropriately on (ε, f). Indeed, by assuming

Ω(ε, f) =
i
´

T
J(ε, f)(w)(w − w)(1 + εf ′(w))dw

´

T
(1 + εf ′(w))(w − w)(l + εw + ε2f(w))dw

. (11)

one has now that
F (Ω(ε, f), ε, f)(eiθ) =

∑

n≥2

fn sin(nθ),

and then it is worthy to work with F̃ defined as

F̃ (ε, f) = F (Ω(ε, f), ε, f),

instead of F . Moreover, one can check that Ω(0, f) = Ω0, for any f ∈ X1+α, and then

∂f F̃ (0, 0) = (∂fF )(Ω(0, 0), 0, 0) + (∂ΩF )(Ω(0, 0), 0, 0)(∂fΩ)(0, 0) = ∂fF (Ω0, 0, 0),

which is an isomorphism in those spaces as it was mentioned before. Thus the function spaces
(9)–(10) seem to be well chosen in this case. Similar techniques but with more involved compu-
tations work for (SQG)β, for β ∈ (0, 1).

This work is organized as follows. In Section 2 we describe the N vortex model studying the
evolution of the N polygon. Section 3 refers to the desingularization of the N polygon for Euler
equations whereas Section 4 stands for the one in the (SQG)β equations.
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2. Point vortex model

This section aims to study the dynamics of N point vortices located at the vertex of a regular
polygon with N sides. We shall notice that their evolution is given by a rotation of constant
angular velocity. That occurs not only for the Newtonian interaction but also for more general
interactions.

Then, consider initially a regular polygon with N sides and N point vortices located at the
vertex of the polygon. Furthermore, assume that the polygon has its center at the origin and
that there is a vertex in the horizontal axis, meaning z0(0) = l ∈ R, then the others vertex are
described by

zm(0) = e
i2πm
N z0(0),

for any m = 0, . . . , N − 1. The evolution of such points with Newtonian interaction is given by
the classical N–vortex problem, that is,

z′m(t) =
1

2π

N−1
∑

m6=k=0

(zm(t)− zk(t))
⊥

|zm(t)− zk(t)|2
, (12)

zm(0) =e
i2πm
N z0(0),

for any m = 0, . . . , N − 1.
On the other hand, assuming that the interaction between the points is a general function

G : R → R smooth off zero, one has

z′m(t) =
N−1
∑

m6=k=0

∇⊥
zmG(|zm(t)− zk(t)|), (13)

zm(0) =e
i2πm
N z0(0),

for any m = 0, . . . , N − 1. See [37] for more details.
In the following proposition, we show that the evolution of such points is given through a

rotation of constant angular velocity. For a better understanding, we first give the result for the
Newtonian interaction:

Proposition 2.1. Let zm(0) = e
i2πm
N z0(0) and z0(0) = l ∈ R, for any m = 0, . . . , N − 1. Then,

zm(t) = eiΩtzm(0), where

Ω =
1

2πl2

N−1
∑

k=1

1

1− e
i2πk
N

, (14)

for any m = 0, . . . , N − 1.

Remark 2.2. It is well–known in the literature that in the case of a vortex pair with strength 1
and separated by a distance d, one has that it rotates at angular velocity Ω = 1

πd2
. Note that it

agrees with (14) by taking N = 2 and d = 2l.

Proof. From (12) we easily get that

d

dt

N−1
∑

m=0

zm(t) = 0,

and then
N−1
∑

m=0

zm(t) =

N−1
∑

m=0

zm(0).

Note that from the particular initial distribution of points, one has that

N−1
∑

m=0

zm(0) = 0,
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implying
N−1
∑

m=0

zm(t) =
N−1
∑

m=0

zm(0) = 0.

Insert now the ansatz zm(t) = eiΩtzm(0) in (12), thus we achieve

iΩeiΩtzm(0) =
i

2π

N−1
∑

m6=k=0

eiΩt(zm(0)− zk(0))

|zm(0)− zk(0)|2
, (15)

which agrees with

Ωzm(0) =
1

2π

N−1
∑

m6=k=0

zm(0)− zk(0)

|zm(0) − zk(0)|2
.

From the definition of zm(0) in (14), one has that

Ωe
i2πm
N z0(0) =

1

2π

N−1
∑

m6=k=0

e
i2πm
N z0(0)− e

i2πk
N z0(0)

|e
i2πm
N z0(0)− e

i2πk
N z0(0)|2

.

Multiplying everything by e−
i2πm
N and making the change of variables k −m 7→ k one finds

Ω =
1

2π|z0(0)|2

N−1−m
∑

06=k=−m

1− e
i2πk
N

|1− e
i2πk
N |2

.

Note that the above expression equals to

Ω =
1

2π|z0(0)|2

N−1
∑

k=1

1− e
i2πk
N

|1− e
i2πk
N |2

=
1

2π|z0(0)|2

N−1
∑

k=1

1

1− e
i2πk
N

, (16)

that does not depend on m. Hence, there exists a constant Ω verifying (15) for any m =
1, . . . , N − 1. Moreover, from (16) we can check that Ω ∈ R, and using that |z0(0)| = l we
achieve (14). �

The previous result can easily be generalized to the system (13).

Proposition 2.3. Let G : R → R be smooth off zero, zm(0) = e
i2πm
N z0(0) and z0(0) = l ∈ R, for

any m = 0, . . . , N − 1. Then, zm(t) = eiΩtzm(0), where

Ω =
1

l

N−1
∑

k=1

1− e
i2πk
N

|1− e
i2πk
N |

G′(l|1− e
i2πk
N |), (17)

for any m = 0, . . . , N − 1.

Proof. This proof is very similar to the previous one. Indeed, assume that we have a rotation
evolution for (13), that is,

zm(t) = eiΩtzm(0).

Hence, one finds that Ω must satisfy

iΩeiΩtzm(0) = i
N−1
∑

m6=k=0

eiΩt(zm(0)− zk(0))

|zm(0)− zk(0)|
G′(|zm(0) − zk(0)|), (18)

which can be reduced to

Ωzm(0) =
N−1
∑

m6=k=0

zm(0)− zk(0)

|zm(0)− zk(0)|
G′(|zm(0)− zk(0)|).

Moreover, the location of zm(0) amounts to

Ωe
i2πm
N z0(0) =

1

2π

N−1
∑

m6=k=0

e
i2πm
N z0(0)− e

i2πk
N z0(0)

|e
i2πm
N z0(0)− e

i2πk
N z0(0)|

G′(|e
i2πm
N z0(0)− e

i2πk
N z0(0)|),
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and again multiplying everything by e−
i2πm
N and making the change of variables k −m 7→ k it

yields

Ω =
1

|z0(0)|

N−1−m
∑

06=k=−m

1− e
i2πk
N

|1− e
i2πk
N |

G′(|z0(0)||1 − e
i2πk
N |).

Thus, it can be written as

Ω =
1

|z0(0)|

N−1
∑

k=1

1− e
i2πk
N

|1− e
i2πk
N |

G′(|z0(0)||1 − e
i2πk
N |), (19)

that does not depend on m implying the existence of Ω verifying (15) for any m = 1, . . . , N − 1.
Using now that |z0(0)| = l we achieve

Ω =
1

l

N−1
∑

k=1

1− e
i2πk
N

|1− e
i2πk
N |

G′(l|1− e
i2πk
N |). (20)

�

Remark 2.4. Note that in the case of the generalized quasi–geostrophic equation, one has

Ω =
βCβ

l2+β

N−1
∑

k=1

1− e
i2πk
N

|1− e
i2πk
N |2+β

.

3. Vortex patch polygon for Euler equations

The purpose of this section is to study rotating vortex patches distributed in a regular poly-
gon, which is motivated by Proposition 2.1. The idea is to desingularize the point vortices
of Proposition 2.1 by finding small vortex patches around them. First, we shall write down
the equation that will characterize this type of solutions and later find the suitable function
spaces where the problem is well–posed. Secondly, the implementation of the infinite dimen-
sional Implicit Function spaces will lead to the existence of such small patches around the point
vortices.

More specifically, our main task in this section is to find domains Dε
m, for m = 0, . . . , N − 1,

N ≥ 2 and ε > 0, such that the initial data

ω0,ε(x) =
1

πε2

N−1
∑

m=0

1Dε
m
(x), (21)

evolves as a rotation of constant angular velocity. That is, there exists Ω ∈ R and ε > 0 such
that the evolution of (21) is given by

ω(t, x) = ω0,ε(e
−iΩtx). (22)

Indeed, we will consider that Dε
m are located in the plane as the point vortices in Proposition

2.1. That is, take Dε
0 with center of masses l ∈ R

⋆ and

Dε
m = ei

2πm
N Dε

0, (23)

for m ≥ 1. Note that assuming that Dε
0 = εD+l, one finds for ε → 0 in (21) the point vortex

distribution of Proposition 2.1:

ω0,0(x) =

N−1
∑

m=0

δ
ei

2πm
N l

(x). (24)

Now assume that the evolution of (21) is given by (22). In that case, the Euler equations agree
with

(

v0(x)− Ωx⊥
)

· n∂Dε
m
(x) = 0, x ∈ ∂Dε

m, (25)
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for any m = 0, . . . N −1. Here n∂Dε
m
stands for a unit normal vector to ∂Dε

m. Indeed using (23),
one finds that (25) is equivalent to check such equation just for x ∈ ∂Dε

0, that is,
(

v0(x)− Ωx⊥
)

· n∂Dε
0
(x) = 0, x ∈ ∂Dε

0. (26)

The next step is to assume some symmetry for Dε
0 in order to simplify (25). Motivated by

the works [29] and [20] where the authors desingularized different point vortex patterns, take
that Dε

0 − l is parametrized by a conformal map from T into ∂Dε
0 − l in the sense

Φ(w) = ε (w + εf(w)) , f(w) =
∑

n≥1

anw
−n, an ∈ R, w ∈ T, (27)

where f does not depend on ε.
Using such parametrization, straightforward computations imply that (26) agrees with

Re
[{

v0(Φ(w) + l) + iΩ(Φ(w) + l)
}

wΦ′(w)
]

= 0, w ∈ T . (28)

In the next lemma we shall give an useful expression for v0(Φ(w) + l):

Lemma 3.1. The velocity field v0 associated to the initial data (21), assuming (27), agrees with

v0(Φ(w) + l) =
iw

2πε
+

1

4π2

ˆ

T

w − ξ + ε(f(w)− f(ξ))

w − ξ + ε(f(w) − f(ξ))
f ′(ξ)dξ

+
1

4π2

ˆ

T

(w − ξ)(f(w)− f(ξ))− (w − ξ)(f(w) − f(ξ))

(w − ξ)(w − ξ + ε(f(w) − f(ξ)))
dξ

+

N−1
∑

m=1

1

4π2

ˆ

T

ξ + εf(ξ)

εe
i2πm
N (ξ + εf(ξ))− ε(w + εf(w)) + (e

i2πm
N − 1)l

(1 + εf ′(ξ))dξ

=:
iw

2πε
+ J(ε, f)(w), (29)

for any w ∈ T.

Proof. Note that the velocity field associated to (21) is given by

v0(x) =

N−1
∑

m=0

i

2π2ε2

ˆ

Dε
m

dA(y)

x− y
,

for x ∈ ∂Dε
0. By using Stokes theorem, it agrees with

v0(x) =
N−1
∑

m=0

1

4π2ε2

ˆ

∂Dε
m

x− ξ

x− ξ
dξ, (30)

for x ∈ ∂Dε
0. Note now that if m 6= 0, one automatically has the following

ˆ

∂Dε
m

dξ

x− ξ
= 0,

since x ∈ Dε
0. Hence (30) can be written as

v0(x) =
1

4π2ε2

ˆ

∂Dε
0

x− ξ

x− ξ
dξ +

N−1
∑

m=1

1

4π2ε2

ˆ

∂Dε
m

ξ

ξ − x
dξ,

Thanks to (23), it amounts to

v0(x) =
1

4π2ε2

ˆ

∂Dε
0

x− ξ

x− ξ
dξ +

N−1
∑

m=1

1

4π2ε2

ˆ

∂Dε
0

ξ

e
i2πm
N ξ − x

dξ,
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for x ∈ ∂Dε
0. Making now the change of variables x 7→ x′ + l, where x′ ∈ Φ(T), the previous

expression is equivalent to

v0(x+ l) =
1

4π2ε2

ˆ

∂Φ(T)

x− ξ

x− ξ
dξ +

N−1
∑

m=1

1

4π2ε2

ˆ

∂Φ(T)

ξ

e
i2πm
N ξ − x+ (e

i2πm
N − 1)l

dξ.

Introducing the conformal map (27) we get

v0(Φ(w) + l) =
1

4π2ε

ˆ

T

w − ξ + ε(f(w)− f(ξ))

w − ξ + ε(f(w) − f(ξ))
(1 + εf ′(ξ))dξ

+

N−1
∑

m=1

1

4π2

ˆ

T

ξ + εf(ξ)

εe
i2πm
N (ξ + εf(ξ))− ε(w + εf(w)) + (e

i2πm
N − 1)l

(1 + εf ′(ξ))dξ

=: Iε1(w) + Iε2(w),

for any w ∈ T. By virtue of the Residue theorem and following the ideas of [29, Page 709], we
get that

Iε1(w) =−
i

2πε
w +

1

4π2

ˆ

T

w − ξ + ε(f(w)− f(ξ))

w − ξ + ε(f(w)− f(ξ))
f ′(ξ)dξ

+
1

4π2

ˆ

T

(w − ξ)(f(w)− f(ξ))− (w − ξ)(f(w) − f(ξ))

(w − ξ)(w − ξ + ε(f(w) − f(ξ)))
dξ.

Finally, we arrive at

v0(Φ(w) + l) =
iw

2πε
+

1

4π2

ˆ

T

w − ξ + ε(f(w)− f(ξ))

w − ξ + ε(f(w)− f(ξ))
f ′(ξ)dξ

+
1

4π2

ˆ

T

(w − ξ)(f(w)− f(ξ))− (w − ξ)(f(w) − f(ξ))

(w − ξ)(w − ξ + ε(f(w)− f(ξ)))
dξ

+

N−1
∑

m=1

1

4π2

ˆ

T

ξ + εf(ξ)

εe
i2πm
N (ξ + εf(ξ))− ε(w + εf(w)) + (e

i2πm
N − 1)l

(1 + εf ′(ξ))dξ

=:
iw

2πε
+ J(ε, f)(w),

for any w ∈ T. �

By virtue of the above Lemma 3.1, we have that (28) is equivalent to

F (ε,Ω, f)(w) := Re
[

{I(ε, f)(w) + iΩε(w + εf(w)) + iΩl}w(1 + εf ′(w))
]

= 0, (31)

for any w ∈ T. The function I(ε, f) is connected to the velocity field and is given by

I(ε, f)(w) = −
iw

2πε
+ J(ε, f)(w), (32)

where J(ε, f) is defined in (29), and has the following expression

J(ε, f)(w) =
1

4π2

ˆ

T

w − ξ + ε(f(w)− f(ξ))

w − ξ + ε(f(w)− f(ξ))
f ′(ξ)dξ (33)

+
1

4π2

ˆ

T

(w − ξ)(f(w)− f(ξ))− (w − ξ)(f(w)− f(ξ))

(w − ξ)(w − ξ + ε(f(w) − f(ξ)))
dξ

+
1

4π2

N−1
∑

m=1

ˆ

T

ξ + εf(ξ)

εe
i2πm
N (ξ + εf(ξ))− ε(w + εf(w)) + (e

i2πm
N − 1)l

(1 + εf ′(ξ))dξ,

for w ∈ T. By using J(ε, f), one finds that (31) agrees with

F (ε,Ω, f)(w) := Re

[

−
i

2π
f ′(w) + {J(ε, f)(w) + iΩε(w + εf(w)) + iΩl}w(1 + εf ′(w))

]

= 0,

(34)
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for any w ∈ T.
In order to find solutions as (21)–(22), one has to study the roots of F . First, let us show in

the next lemma some symmetry properties of F (ε,Ω, f):

Lemma 3.2. If (Ω, ε) ∈ R
2 and f ∈ C 1 satisfies

f(w) =
∑

n≥1

anw
−n, an ∈ R, w ∈ T, (35)

hence

F (Ω, ε, f)(w) = −F (Ω, ε, f)(w), w ∈ T . (36)

That implies

F (Ω, ε, f)(eiθ) =
∑

n≥1

fn sin(θ), fn ∈ R, θ ∈ [0, 2π]. (37)

Proof. Note that if f satisfies (35), hence f(w) = f(w) and f ′(w) = f(w). Moreover, notice
that the first part of (34) satisfies (36):

Re

[

−
i

2π
f ′(w)

]

= −Re

[

−
i

2π
f ′(w)

]

= −Re

[

−
i

2π
f ′(w)

]

.

The last part of (34) trivially satisfies (36), that is,

Re
[

{iΩε(w + εf(w)) + iΩl}w(1 + εf ′(w))
]

=− Re
[

{iΩε(w + εf(w)) + iΩl}w(1 + εf ′(w))
]

=− Re
[

{iΩε(w + εf(w)) + iΩl}w(1 + εf ′(w))
]

.

Hence, in order to check (36) it remains to check that

J(ε, f)(w) = −J(ε, f)(w). (38)

Recall the following property of the complex integrals over T:
ˆ

T

f(ξ)dξ = −

ˆ

T

f(ξ)dξ, (39)

for a complex function f . Then,

−J(ε, f)(w) =
1

4π2

ˆ

T

w − ξ + ε(f(w)− f(ξ))

w − ξ + ε(f(w)− f(ξ))
f ′(ξ)dξ

+
1

4π2

ˆ

T

(w − ξ)(f(w)− f(ξ))− (w − ξ)(f(w)− f(ξ))

(w − ξ)(w − ξ + ε(f(w)− f(ξ)))
dξ

+
N−1
∑

m=1

ˆ

T

ξ + εf(ξ)

εe−
i2πm
N (ξ + εf(ξ))− ε(w + εf(w)) + (e−

i2πm
N − 1)l

(1 + εf ′(ξ))dξ.

Note that we can do a change of variables in the sum m 7→ −m getting

−J(ε, f)(w) =
1

4π2

ˆ

T

w − ξ + ε(f(w)− f(ξ))

w − ξ + ε(f(w)− f(ξ))
f ′(ξ)dξ

+
1

4π2

ˆ

T

(w − ξ)(f(w)− f(ξ))− (w − ξ)(f(w)− f(ξ))

(w − ξ)(w − ξ + ε(f(w)− f(ξ)))
dξ

+

N−1
∑

m=1

ˆ

T

ξ + εf(ξ)

εe
i2πm
N (ξ + εf(ξ))− ε(w + εf(w)) + (e

i2πm
N − 1)l

(1 + εf ′(ξ))dξ.

Then, finally we find

−J(ε, f)(w) =
1

4π2

ˆ

T

w − ξ + ε(f(w) − f(ξ))

w − ξ + ε(f(w)− f(ξ))
f ′(ξ)dξ

+
1

4π2

ˆ

T

(w − ξ)(f(w)− f(ξ))− (w − ξ)(f(w)− f(ξ))

(w − ξ)(w − ξ + ε(f(w)− f(ξ)))
dξ
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+
N−1
∑

m=1

ˆ

T

ξ + εf(ξ)

εe
i2πm
N (ξ + εf(ξ))− ε(w + εf(w)) + (e

i2πm
N − 1)l

(1 + εf ′(ξ))dξ

=J(ε, f)(w),

getting (38). That concludes the proof. �

The main idea to find nontrivial roots to (34) is the use of the infinite dimensional Implicit
Function theorem around (Ω0, 0, 0) where Ω0 is the angular velocity of the point vortex config-
uration in Proposition 2.1, that is,

Ω0 :=
1

2πl2

N−1
∑

k=1

1

1− e
i2πm
N

. (40)

Hence, first we shall check that (Ω0, 0, 0) is a root of (34), which is proved in the following
proposition.

Proposition 3.3. The following equation is satisfied F (Ω0, 0, 0)(w) = 0, for any w ∈ T, where

Ω0 is defined in (40).

Proof. From the expression of F in (34) one finds

F (Ω, 0, 0)(w) = Re [w {J(0, 0)(w) + iΩl}] .

Moreover, from (33), we get

J(0, 0)(w) =
1

4π2

N−1
∑

m=1

ˆ

T

ξdξ

(e
i2πm
N − 1)l

= −
i

2πl

N−1
∑

m=1

1

1− e
i2πm
N

.

Hence, if Ω = Ω0 we trivially obtain that F (Ω0, 0, 0)(w) = 0 for any w ∈ T. �

Now we need to fix the Banach spaces when using the Implicit Function theorem. For α ∈
(0, 1), we define

X1+α =







f ∈ C
1+α(T), f(w) =

∑

n≥1

anw
−n, an ∈ R







, (41)

Yα =







f ∈ C
α(T), f(eiθ) =

∑

n≥2

an sin(nθ), an ∈ R







. (42)

Let us explain the choice of the previous function spaces. First, note that in Lemma 3.2, we
found that if f ∈ X1+α then

F (Ω, ε, f)(eiθ) =
∑

n≥1

fn sin(nθ), θ ∈ [0, 2π].

However, we have the constraint f1 = 0 in Yα. Such assumption appears when computing the
linearized operator of F around (Ω0, 0, 0) because one finds that it is an isomorphism from X1+α

to Yα. Moreover, since this is necessary for the Implicit Function theorem, our task now is to
fix Ω to have that f1 = 0 and thus F (Ω, ε, f) ∈ Yα is well–defined.

Define BX(0, σ) the unit ball of X center in 0 and radius σ. The next result reads as follows.

Proposition 3.4. For any σ < 1, α ∈ (0, 1), and some ε0 > 0, define the function Ω :
(−ε0, ε0)×BX1+α

(0, σ) → R, given by

Ω(ε, f) :=
i
´

T
J(ε, f)(w)(w − w)(1 + εf ′(w))dw

´

T
(1 + εf ′(w))(w − w)(l + εw + ε2f(w))dw

. (43)

Hence, it fulfills

• Ω is well–defined.

• Ω(0, f) = Ω0, where Ω0 is defined in (40).
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• We get that
ˆ 2π

0
F (Ω(ε, f), ε, f)(eiθ) sin(θ) = 0, (44)

for any (ε, f) ∈ (−ε0, ε0)×BX1+α
(0, σ) That implies that f1 in (37) vanishes.

Remark 3.5. We need to include the condition ε ∈ (−ε0, ε0) in order to have that the patches

are well–separated. Moreover, we need to assume δ < 1 to get that Φ is bilipschitz and thus

everything is well–defined.

Proof. We can easily check that Ω ∈ R by using the techniques developed in Lemma 3.2. Let us
check the second point. Note that

Ω(0, f) =
i
´

T
J(0, f)(w)(w − w)dw

l
´

T
(w − w)dw

.

On the one hand, we obtain
ˆ

T

(w − w)dw = −2πi,

by the Residue theorem, which implies

Ω(0, f) = −

´

T
J(0, f)(w)(w − w)dw

2πl
. (45)

On the other hand, by using (33) one achieves

J(0, f)(w) =
1

4π2

ˆ

T

w − ξ

w − ξ
f ′(ξ)dξ

+
1

4π2

ˆ

T

(w − ξ)(f(w)− f(ξ))− (w − ξ)(f(w)− f(ξ))

(w − ξ)2
dξ

+
1

4π2

N−1
∑

m=1

1

l(e
i2π
N − 1)

ˆ

T

ξdξ.

Moreover, note that
ˆ

T

w − ξ

w − ξ
f ′(ξ)dξ = 0, (46)

ˆ

T

(w − ξ)(f(w)− f((ξ))− (w − ξ)(f(w) − f(ξ))

(w − ξ)2
dξ = 2i

ˆ

T

Im
[

(f(w)− f(ξ))(w − ξ)
]

(w − ξ)2
dξ = 0,

(47)

using again the Residue theorem. That implies

J(0, f)(w) =
1

4π2

N−1
∑

m=1

2πi

l(e
i2π
N − 1)

= −
i

2πl

N−1
∑

m=1

1

1− e
i2π
N

.

Inserting this into (45) we get Ω(0, f) = Ω0. Finally, note that (43) comes from imposing (44)
to (34). �

Once we have defined Ω in terms of (ε, f), we can define F̃ (ε, f) as

F̃ (ε, f)(w) = F (Ω(ε, f), ε, f)(w), (48)

and work with F̃ instead of F . Note that from Proposition 3.4 we get that

F̃ (ε, f)(eiθ) =
∑

n≥2

fn sin(nθ),
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with θ ∈ [0, 2π] and fn ∈ R. Then, in order to check that F̃ : (−ε0, ε0) ×X1+α → Yα is well–
defined it remains to prove the regularity of Yα. For this reason we must work with singular
integrals of the type

T (f)(w) =

ˆ

T

K(w, ξ)f(ξ) dξ, w ∈ T, (49)

where K : T×T → C being smooth off the diagonal. The next result focuses on the smoothness
of the last operator, whose proof can be found in [24]. See also [26, 33, 35].

Lemma 3.6. Let 0 ≤ α < 1 and consider K : T×T → C with the following properties. There

exists C0 > 0 such that

(i) K is measurable on T×T \{(w,w), w ∈ T} and

|K(w, ξ)| ≤
C0

|w − ξ|α
, ∀w 6= ξ ∈ T .

(ii) For each ξ ∈ T, w 7→ K(w, ξ) is differentiable in T \{ξ} and

|∂wK(w, ξ)| ≤
C0

|w − ξ|1+α
, ∀w 6= ξ ∈ T .

Then,

(1) The operator T defined by (49) is continuous from L∞(T) to C1−α(T). More precisely,

there exists a constant Cα depending only on α such that

‖T (f)‖1−α ≤ CαC0‖f‖L∞ .

(2) For α = 0, the operator T is continuous from L∞(T) to Cβ(T), for any 0 < β < 1. That

is, there exists a constant Cβ depending only on β such that

‖T (f)‖β ≤ CβC0‖f‖L∞ .

By virtue of the previous lemma, we obtain that J(ε, f) : (−ε0, ε0)×BX1+α
(0, σ) → C α(T) is

well–defined and C 1. That implies the well–definition of F̃ . We omit here the proof due to its
similarity with the works [29, 20].

Proposition 3.7. For any σ < 1, α ∈ (0, 1), and some ε0 > 0, F̃ : (−ε0, ε0)×BX1+α
(0, σ) → Yα,

is well–defined and C 1.

Finally, in the next result we use the infinite dimensional Implicit Function theorem to F̃ in
order to get nontrivial roots and thus to conclude the main result of this work.

Theorem 3.8. Consider l ∈ R
⋆ and N ≥ 2. Then, there exists ε0 > 0 with the following

property. For all ε ∈ (0, ε0), there is a simply–connected bounded domain Dε, with center of

masses l, such that

ω0(x) =
1

πε2

N−1
∑

m=0

1
e
i2πm
N Dε

(x),

defines a rotating solution of (2), with some constant angular velocity Ω(ε). Moreover, Dε is at

least C 1.

Proof. From Proposition 3.7, we have that F̃ : (−ε0, ε0)×BX1+α
(0, σ) → Yα is well–defined and

C 1. Moreover, from Propositions 3.3 and 3.4 one has that F̃ (0, 0)(w) = 0, for any w ∈ T.
Our aim is to apply the infinite dimensional Implicit Function theorem. Hence, we compute

the linearized operator of F̃ around (0, 0). Note first that ∂fΩ(0, 0) = 0 by using Proposition
3.4, and then

∂f F̃ (ε, f)h(w) = ∂fF (Ω0, 0, 0)h(w).

First, let us compute ∂fJ(0, 0) by using (33):

∂fJ(0, 0)h(w) =
1

4π2

ˆ

T

w − ξ

w − ξ
h′(ξ)dξ +

1

4π2

ˆ

T

(w − ξ)(h(w)− h((ξ))− (w − ξ)(h(w) − h(ξ))

(w − ξ)2
dξ.
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Moreover, (46)–(47) amounts to

∂fJ(0, 0)h = 0.

Then, using (34) we find

∂f F̃ (0, 0)h(w) =−
1

2π
Re

[

ih′(w)
]

+ lim
ε→0

Re
[

εwh′(w) {J(0, 0)(w) + iΩ0εw + iΩ0l}
]

+Re [w {∂fJ(0, 0)h(w)}]

=−
1

2π
Re

[

ih′(w)
]

,

which is an isomorphism from X1+α into Yα. Using then the Implicit Function theorem, we
conclude the proof. �

4. Vortex patch polygon for generalized surface quasi–geostrophic equations

This section aims to generalize the previous result on Theorem 3.8 for the generalized surface
quasi–geostrophic equations with β ∈ (0, 1). First, we shall arrive to the equation that generalize
the rotating polygon.

Similarly to Section 3, we would like to find domains Dε
m, for m = 0, . . . N − 1, N ≥ 2 and

ε > 0, such that the initial data

θ0,ε(x) =
1

πε2

N−1
∑

m=0

1Dε
m
(x), (50)

evolves as a rotation for (1). Then, consider that there exists Ω ∈ R and ε > 0 such that

θ(t, x) = θ0,ε(e
−iΩtx),

and

Dε
m = ei

2πm
N Dε

0, (51)

for some bounded simply–connected domain Dε
0. Moreover, assume that the center of masses of

Dε
0 is l ∈ R

⋆ and parametrize Dε
0 − l by a conformal map from T into ∂Dε

0 − l of the type

Φ(w) = ε
(

w + ε1+βf(w)
)

, f(w) =
∑

n≥1

anw
−n, an ∈ R, w ∈ T . (52)

Note that the scaling for Φ in ε is different from (27), which is the one for the Euler equations.
Indeed it depends on the singularity of the kernel of the velocity field.

Hence, the equation that characterizes this kind of solutions is given by

Re
[{

v0(Φ(w) + l) + iΩ(Φ(w) + l)
}

wΦ′(w)
]

= 0, w ∈ T . (53)

We omit here the details of the deduction of the previous equation by similarity to (25).
In the following we give a simplified expression for the velocity field in order to arrive at the

desired formulation. There, we use Taylor formula in a suitable manner to work better with the
singularity coming from ε. Hence, the velocity field reads as follows.

Proposition 4.1. The velocity field v0 associated to the initial data (50) agrees with

v0(Φ(w) + l) =
Cβ

πε1+β

ˆ

T

dξ

|w − ξ|β
+ J(ε, f)(w),

where

J(ε, f)(w) = −
βCβ

π

ˆ

T

ˆ 1

0

Re
[

(w − ξ)(f(w)− f(ξ))
]

+ tε1+β |f(w)− f(ξ)|2

|w − ξ + tε1+β(f(w)− f(ξ))|2+β
dtdξ

+
Cβ

π

ˆ

T

f ′(ξ)

|w − ξ + ε1+β(f(w)− f(ξ))|
β
dξ −

βCβ

π

N−1
∑

m=1

e
i2πm
N
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×

ˆ

T

{

ˆ 1

0

Re

[

l(1− e
i2πm
N )(w − e

i2πm
N ξ + ε1+β(f(w)− e

i2πm
N f(ξ)))

]

|l(1 − e
i2πm
N ) + t(Φ(w) − e

i2πm
N Φ(ξ))|2+β

+
tε|w − e

i2πm
N ξ + ε1+β(f(w)− e

i2πm
N f(ξ))|2

|l(1− e
i2πm
N ) + t(Φ(w)− e

i2πm
N Φ(ξ))|2+β

}

dtdξ

+
Cβε

β

π

N−1
∑

m=1

e
i2πm
N

ˆ

T

f ′(ξ)
∣

∣

∣
Φ(w)− e

i2πm
N Φ(ξ) + l(1− e

i2πm
N )

∣

∣

∣

β
dξ

=:(J1 + J2 + J3 + J4)(ε, f)(w), (54)

for any w ∈ T.

Proof. The velocity field associated to (50) reads as

v0(x) =
Cβi

πε2

N−1
∑

m=0

ˆ

Dε
m

x− y

|x− y|2+β
dA(y),

for x ∈ ∂Dε
0. Using Stokes theorem, we can write it as follows

v0(x) =
Cβ

πε2

N−1
∑

m=0

ˆ

∂Dε
m

dy

|x− y|β
,

for x ∈ ∂Dε
0. Then, taking x = Φ(w) + l and using (51), it agrees with

v0(Φ(w) + l) =
Cβ

πε2

ˆ

∂Dε
0

dy

|Φ(w) + l − y|β
+

Cβ

πε2

N−1
∑

m=1

e
i2πm
N

ˆ

∂Dε
0

dy

|Φ(w) + l − e
i2πm
N y|

,

for w ∈ T. Hence

v0(Φ(w) + l) =
Cβ

πε2

ˆ

T

Φ′(ξ)

|Φ(w)− Φ(ξ)|β
dξ

+
Cβ

πε2

N−1
∑

m=1

e
i2πm
N

ˆ

T

Φ′(ξ)

|Φ(w)− e
i2πm
N Φ(ξ) + l(1− e

i2πm
N )|β

dξ,

for w ∈ T. Now using the definition of Φ, one gets

v0(Φ(w) + l) =
Cβ

πε1+β

ˆ

T

dξ

|(w − ξ) + ε1+β(f(w)− f(ξ))|
β

+
Cβ

π

ˆ

T

f ′(ξ)

|w − ξ + ε1+β(f(w)− f(ξ))|
β
dξ

+
Cβ

πε

N−1
∑

m=1

e
i2πm
N

ˆ

T

dξ
∣

∣

∣Φ(w)− e
i2πm
N Φ(ξ) + l(1− e

i2πm
N )

∣

∣

∣

β

+
Cβε

β

π

N−1
∑

m=1

e
i2πm
N

ˆ

T

f ′(ξ)
∣

∣

∣Φ(w)− e
i2πm
N Φ(ξ) + l(1− e

i2πm
N )

∣

∣

∣

β
dξ

=:I1(ε, f)(w) + I2(ε, f)(w) + I3(ε, f)(w) + I4(ε, f)(w),

for w ∈ T.
In order to overcome the singularity in ε of I1 and I3, we use Taylor formula. Indeed, taking

any complex numbers A and B such that |B| < |A| one has

1

|A+B|β
=

1

|A|β
− β

ˆ 1

0

Re
[

AB
]

+ t|B|2

|A+ tB|2+β
dt. (55)
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In the case of I1, take A = w − ξ and B = ε1+β(f(w)− f(ξ)), implying

I1(ε, f)(w) =
Cβ

πε1+β

ˆ

T

dξ

|w − ξ|β
−

βCβ

π

ˆ

T

ˆ 1

0

Re
[

(w − ξ)(f(w) − f(ξ))
]

+ tε1+β|f(w)− f(ξ)|2

|w − ξ + tε1+β(f(w)− f(ξ))|2+β
dtdξ.

In the same way, we can work with I3 considering z1 = l(1− e
i2πm
N ) and z2 = Φ(w)− e

i2πm
N Φ(ξ)

and thus obtaining

I3(ε, f)(w) =
Cβ

πε

N−1
∑

m=1

e
i2πm
N

ˆ

T

dξ

|l(1 − e
i2πm
N )|β

−
βCβ

π

N−1
∑

m=1

e
i2πm
N

×

ˆ

T

ˆ 1

0

{Re

[

l(1− e
i2πm
N )(w − e

i2πm
N ξ + ε1+β(f(w)− e

i2πm
N f(ξ)))

]

|l(1− e
i2πm
N ) + t(Φ(w) − e

i2πm
N Φ(ξ))|2+β

+
tε|w − e

i2πm
N ξ + ε1+β(f(w)− e

i2πm
N f(ξ))|2

|l(1− e
i2πm
N ) + t(Φ(w)− e

i2πm
N Φ(ξ))|2+β

}

dtdξ

=−
βCβ

π

N−1
∑

m=1

e
i2πm
N

ˆ

T

ˆ 1

0

{Re

[

l(1− e
i2πm
N )(w − e

i2πm
N ξ + ε1+β(f(w)− e

i2πm
N f(ξ)))

]

|l(1− e
i2πm
N ) + t(Φ(w)− e

i2πm
N Φ(ξ))|2+β

+
tε|w − e

i2πm
N ξ + ε1+β(f(w)− e

i2πm
N f(ξ))|2

|l(1− e
i2πm
N ) + t(Φ(w)− e

i2πm
N Φ(ξ))|2+β

}

dtdξ.

Hence, we can write the velocity field as

v0(Φ(w) + l) =
Cβ

πε1+β

ˆ

T

dξ

|w − ξ|β

−
βCβ

π

ˆ

T

ˆ 1

0

Re
[

(w − ξ)(f(w)− f(ξ))
]

+ tε1+β |f(w)− f(ξ)|2

|w − ξ + tε1+β(f(w)− f(ξ))|2+β
dtdξ

+
Cβ

π

ˆ

T

f ′(ξ)

|w − ξ + ε1+β(f(w)− f(ξ))|
β
dξ

−
βCβ

π

N−1
∑

m=1

e
i2πm
N

ˆ

T

ˆ 1

0

{Re

[

l(1− e
i2πm
N )(w − e

i2πm
N ξ + ε1+β(f(w)− e

i2πm
N f(ξ)))

]

|l(1− e
i2πm
N ) + t(Φ(w) − e

i2πm
N Φ(ξ))|2+β

+
tε|w − e

i2πm
N ξ + ε1+β(f(w)− e

i2πm
N f(ξ))|2

|l(1− e
i2πm
N ) + t(Φ(w) − e

i2πm
N Φ(ξ))|2+β

}

dtdξ

+
Cβε

β

π

N−1
∑

m=1

e
i2πm
N

ˆ

T

f ′(ξ)
∣

∣

∣
Φ(w) − e

i2πm
N Φ(ξ) + l(1− e

i2πm
N )

∣

∣

∣

β
dξ

=:
Cβ

πε1+β

ˆ

T

dξ

|w − ξ|β
+ J(ε, f)(w).

That concludes the proof. �

By virtue of Proposition 4.1, one can simplify the expression for the velocity field (53). Indeed,
from [24] one has

ˆ

T

dξ

|w − ξ|β
=

2πiβΓ(1 − β)

(2− β)Γ2
(

1− β
2

)w,

and then

Re

[

w

ˆ

T

dξ

|w − ξ|β

]

= 0.



17

Hence, using the decomposition of v0 given in Proposition 4.1, one can write (53) as

Fβ(Ω, ε, f)(w) :=Re
[{

J(ε, f)(w) + iΩ(Φ(w) + l)
}

w(1 + ε1+βf ′(w))
]

+ µβIm
[

f ′(w)
]

= 0, w ∈ T, (56)

where J is defined in (54) and

µβ :=
Cβ2βΓ(1 − β)

(2− β)Γ2
(

1− β
2

) .

The analogue of Lemma 3.2 is found here obtaining that Fβ can be written as a sum of sines.
We omit the proof for its similarity.

Lemma 4.2. If (Ω, ε) ∈ R
2 and f ∈ C 1 satisfies

f(w) =
∑

n≥1

anw
−n, an ∈ R, w ∈ T, (57)

hence

Fβ(Ω, ε, f)(w) = −Fβ(Ω, ε, f)(w), w ∈ T . (58)

That implies that

Fβ(Ω, ε, f)(e
iθ) =

∑

n≥1

fn sin(θ), fn ∈ R, θ ∈ [0, 2π]. (59)

In the following result, we shall check that (Ω0, 0, 0) is a trivial root of Fβ as happens for the
formulation in the Euler equations. Recall that Ω0 in this case is given in Remark 2.4 by

Ω0 =
βCβ

l2+β

N−1
∑

k=1

1− e
i2πk
N

|1− e
i2πk
N |2+β

. (60)

Proposition 4.3. The following equation is verified Fβ(Ω0, 0, 0)(w) = 0, for any w ∈ T, where

Ω0 is defined in (60).

Proof. First, note that

Fβ(Ω0, 0, 0)(w) = Re
[{

J(0, 0)(w) + iΩ0l
}

w
]

.

We use the decomposition of J given in (54) in order to compute J(0, 0). Indeed, one finds

J(0, 0) = J3(0, 0).

Moreover,

J3(0, 0) =−
lβCβ

π

N−1
∑

m=1

e
i2πm
N

l2+β|1− e
i2πm
N |2+β

ˆ

T

Re

[

(1− e
i2πm
N )(w − e

i2πm
N ξ)

]

dξ

=−
lβCβ

2π

N−1
∑

m=1

e
i2πm
N (1− e

i2πm
N )

l2+β|1− e
i2πm
N |2+β

ˆ

T

(w − e
i2πm
N ξ)dξ

=ilβCβ

N−1
∑

m=1

(1− e
i2πm
N )

l2+β|1− e
i2πm
N |2+β

.

Then, it is clear that

J3(0, 0)(w) + iΩ0l = 0,

implying

Fβ(Ω0, 0, 0) = 0.

�
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Here, we use the Banach spaces defined in (41)–(42) with a suitable exponent for the Hölder
spaces given by the singularity of the kernel. As for Euler equations, we need to fix here Ω
depending on (ε, f) to have that Fβ ∈ Y1−β if (ε, f) ∈ R×X2−β. That is the analogue result to
Proposition 3.4.

Proposition 4.4. For any σ < 1, and some ε0 > 0, define the function Ω : (−ε0, ε0) ×
BX2−β

(0, σ) → R, given by

Ω(ε, f) :=
i
´

T
J(ε, f)(w)(w − w)(1 + ε1+βf ′(w))dw

´

T
(1 + ε1+βf ′(w))(w − w)(l + εw + ε2+βf(w))dw

. (61)

Hence, it fulfills

• Ω is well–defined.

• Ω(0, f) = Ω0, where Ω0 is defined in (60).
• We get that

ˆ 2π

0
Fβ(Ω(ε, f), ε, f)(e

iθ) sin(θ) = 0, (62)

for any (ε, f) ∈ (−ε0, ε0)×BX2−β
(0, σ) That implies that f1 in (37) vanishes.

Proof. It is easy to check that Ω ∈ R and thus it is well–defined. Let us verify the second
statement. Note that

Ω(0, f) =
i
´

T
J(0, f)(w)(w − w)dw

l
´

T
(w − w)dw

= −

´

T
J(0, f)(w)(w − w)dw

2πl
.

From the decomposition of J in (54) one has

J(0, f)(w) =J1(0, f)(w) + J2(0, f)(w) + J3(0, f)(w)

=−
βCβ

π

ˆ

T

Re
[

(w − ξ)(f(w)− f(ξ))
]

|w − ξ|2+β
dξ +

Cβ

π

ˆ

T

f ′(ξ)

|w − ξ|β
dξ

−
βCβ

π

N−1
∑

m=1

e
i2πm
N

ˆ

T

Re

[

l(1− e
i2πm
N )(w − e

i2πm
N ξ)

]

|l(1 − e
i2πm
N )|2+β

dξ.

From [29], we can compute the previous integrals as

βCβ

2πi

ˆ

T

Re
[

(w − ξ)(f(w)− f(ξ))
]

|w − ξ|2+β
dξ =

∑

n≥1

an
(

γ1,nw
n+2 + γ2,nw

n
)

, (63)

Cβ

2πi

ˆ

T

f ′(ξ)

|w − ξ|β
dξ =−

CβΓ(1− β)

Γ2(1− β/2)

∑

n≥1

nan

(

β
2

)

n
(

1− β
2

)

n

wn, (64)

where

γ1,n :=
β(1 + β/2)CβΓ(1− β)

2(2 − β)Γ2(1− β/2)



1−

(

2 + β
2

)

n
(

2− β
2

)

n



 ,

γ2,n :=−
βCβΓ(1− β)

4Γ2(1− β/2)



1−

(

β
2

)

n
(

−β
2

)

n



 .

Hence, by the Residue theorem one finds
ˆ

T

(J1(0, f) + J2(0, f))(w −w)dw = 0.
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Moreover, J3(0, f) reads as

J3(0, f) = βCβi

N−1
∑

m=1

l(1− e
i2πm
N )

|l(1 − e
i2πm
N )|2+β

= ilΩ0,

implying

Ω(0, f) = −

´

T
J3(0, f)(w)(w − w)dw

2πl
= ilΩ0

´

T
(w − w)dw

2πl
= Ω0.

Finally, condition (61) amouns to (62). �

Then, we can work with F̃β defined by

F̃β(ε, f)(w) = F (Ω(ε, f), ε, f)(w).

instead of Fβ. In this way, we can ensure the following

F̃β(ε, f)(e
iθ) =

∑

n≥2

fn sin(nθ),

for θ ∈ [0, 2π] and fn ∈ R. Thus, it remains to check the regularity properties of F̃β.

Using Lemma 3.6 we can check that J(ε, f) : (−ε0, ε0) × BX2−β
→ C 1−β(T) is well–defined

and C 1 implying the well–definition of F̃β .

Proposition 4.5. For any σ < 1, and some ε0 > 0, F̃β : (−ε0, ε0) × BX2−β
(0, σ) → Y1−β is

well–defined and C 1.

Finally, we can use the infinite dimensional Implicit Function theorem to F̃β to get the exis-
tence of the rotating polygon for patches. That is presented in the following theorem.

Theorem 4.6. Consider l ∈ R
⋆ and N ≥ 2. Then, there exists ε0 > 0 with the following

property. For all ε ∈ (0, ε0), there is a simply–connected bounded domain Dε, with center of

masses l, such that

θ0(x) =
1

πε2

N−1
∑

m=0

1
e
i2πm
N Dε

(x),

defines a rotating solution of the generalized surface quasi–geostrophic equations for β ∈ (0, 1),
with some constant angular velocity Ω(ε). Moreover, Dε is at least C 1.

Proof. From Proposition 4.5 one has that F̃β : (−ε0, ε0) × BX2−β
(0, σ) → Y1−β is well–defined

and C 1. Moreover, from Propositions 4.3 and 4.4 one gets F̃β(0, 0)(w) = 0, for any w ∈ T.
The next step to use the infinite dimensional Implicit Function theorem is showing that the

linearized operator of F̃β around (0, 0) is an isomorphism. Furthermore, since ∂fΩ(0, 0) = 0 by
Proposition 4.4 one achieves

∂f F̃β(0, 0)h(w) = ∂fFβ(Ω0, 0, 0)h(w).

First, let us start computing ∂fJ(0, 0):

∂fJ(0, 0)h(w) =−
βCβ

π

ˆ

T

Re
[

(w − ξ)(h(w) − h(ξ))
]

|w − ξ|2+β
dξ +

Cβ

π

ˆ

T

h′(ξ)

|w − ξ|β
dξ,

and then

∂f F̃β(0, 0)h(w) = µβIm[h′(w)] + Re
[

K(h)(w)w
]

+ ∂fΩ(0, 0)lRe[iw],

where

K(h)(w) := −
βCβ

π

ˆ

T

Re
[

(w − ξ)(h(w) − h(ξ))
]

|w − ξ|2+β
dξ +

Cβ

π

ˆ

T

h′(ξ)

|w − ξ|β
dξ.
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However, by virtue of Proposition 4.4 one has ∂fΩ(0, 0) = 0 and hence the last term vanishes
having

∂f F̃β(0, 0)h(w) = µβIm[h′(w)] + Re
[

K(h)(w)w
]

.

Note now that K : C 2−β(T) → C 1−β(T) is a compact operator since it is smoothing (see for
instance Lemma 3.6). On the other hand h ∈ X2−β 7→ h′ ∈ Y1−β is an isomorphism and thus it is
a Fredholm operator of zero index. Hence, since compact perturbations of Fredholm operators
remain Fredholm with same index, we have that ∂f F̃β(0, 0) is Fredholm of zero index. As a
consequence, it is enough to check that is has a trivial kernel to show that it is an isomorphism.

Using (63)–(64) one achieves

∂f F̃β(0, 0)h(w) =
∑

n≥1

an sin((n+ 1)θ)







µβ + 2(γ1,n − γ2,n)−
2nCβΓ(1− β)

Γ2(1− β/2)

(

β
2

)

n
(

1− β
2

)

n







.

Finally, with the help of the computations done in [29, Pages 726–728], one gets

∂f F̃β(0, 0)h(w) =
∑

n≥1

CββΓ(1− β)

2Γ2(1− β/2)
anγn sin((n + 1)θ),

with

γn :=
2(1 + n)

1− β/2
−

(1 + β/2)n
(1− β/2)n

−
(1 + β/2)n+1

(1− β/2)n+1
.

In order to have a trivial kernel, one needs that γn 6= 0 for any n ≥ 1. Indeed by [29, Page 728]
one has

γn >
2(1 + n)

1− β/2
−

1 + β/2

2− β/2

n+ β/2

1− β/2
−

1 + β/2

2− β/2

n+ 1 + β/2

1− β/2
> C0n,

for some constant C0 > 0. Hence, the kernel is trivial and we can ensure that ∂f F̃β(0, 0) is an
isomorphism. �
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[10] J.-Y. Chemin, Persistance de structures géometriques dans les fluides incompressibles bidimensionnels. Ann.

Sci. Ec. Norm. Sup. 26 (1993), 1–26.
[11] P. Constantin, A. J. Majda, E. Tabak, Formation of strong fronts in the 2-D quasigeostrophic thermal active

scalar. Nonlinearity 7(6) (1994), 1495–1533.
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