Skip to main content
Log in

Global Regularity for the 2D MHD and Tropical Climate Model with Horizontal Dissipation

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

This paper establishes the global regularity of classical solution to the 2D MHD system with only horizontal dissipation and horizontal magnetic diffusion in a strip domain \({\mathbb {T}}\times {{\mathbb {R}}}\) when the initial data are suitable small. To prove this, we combine the Littlewood–Paley decomposition with anisotropic inequalities to establish a crucial commutator estimate. We also analyze the asymptotic behavior of the solution. In addition, the global existence and uniqueness of classical solution is obtained for the 2D simplified tropical climate model with only horizontal dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Springer, Berlin (2011)

    Book  Google Scholar 

  • Biskamp, D.: Nonlinear Magnetohydrodynamics. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  • Bony, J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles nonlinéaires. Ann. Sci. École Norm. Sup. 14, 209–246 (1981)

    Article  MathSciNet  Google Scholar 

  • Cai, Y., Lei, Z.: Global well-posedness of the incompressible magnetohydrodynamics. Arch. Ration. Mech. Anal. 228, 969–993 (2018)

    Article  MathSciNet  Google Scholar 

  • Cao, C., Regmi, D., Wu, J.: The 2D MHD equations with horizontal dissipation and horizontal magnetic diffusion. J. Differ. Equ. 254, 2661–2681 (2013)

    Article  MathSciNet  Google Scholar 

  • Cao, C., Wu, J.: Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion. Adv. Math. 226, 1803–1822 (2011)

    Article  MathSciNet  Google Scholar 

  • Cao, C., Wu, J., Yuan, B.: The 2D incompressible magnetohydrodynamics equations with only magnetic diffusion. SIAM J. Math. Anal. 46, 588–602 (2014)

    Article  MathSciNet  Google Scholar 

  • Chemin, J., McCormick, D., Robinson, J., Rodrigo, J.: Local existence for the non-resistive MHD equations in Besov spaces. Adv. Math. 286, 1–31 (2016)

    Article  MathSciNet  Google Scholar 

  • Dai, Y., Hu, W., Wu, J., Xiao, B.: The Littlewood–Paley decomposition for periodic functions and applications to the Boussinesq equations. Anal. Appl. 18, 639–682 (2020)

    Article  MathSciNet  Google Scholar 

  • Danchin, R.: Fourier analysis methods for PDEs. Lecture notes (2005)

  • Davidson, P.A.: An Introduction to Magnetohydrodynamics, vol. 25. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  • Dong, B., Jia, Y., Li, J., Wu, J.: Global regularity and time decay for the 2D magnetohydrodynamic equations with fractional dissipation and partial magnetic diffusion. J. Math. Fluid Mech. 20, 1541–1565 (2018)

    Article  MathSciNet  Google Scholar 

  • Dong, B., Li, J., Wu, J.: Global regularity for the 2D MHD equations with partial hyperresistivity. Int. Math. Res. Not. IMRN 14, 4261–4280 (2019)

    Article  Google Scholar 

  • Dong, B., Wang, W., Wu, J., Ye, Z., Zhang, H.: Global regularity for a class of 2D generalized tropical climate models. J. Differ. Equ. 266, 6346–6382 (2019)

    Article  MathSciNet  Google Scholar 

  • Dong, B., Wang, W., Wu, J., Zhang, H.: Global regularity results for the climate model with fractional dissipation. Discrete Contin. Dyn. Syst. Ser. B 24, 211–229 (2019)

    MathSciNet  MATH  Google Scholar 

  • Dong, B., Wu, J., Ye, Z.: Global regularity for a 2D tropical climate model with fractional dissipation. J. Nonlinear Sci. 29, 511–550 (2019)

    Article  MathSciNet  Google Scholar 

  • Du, L., Zhou, D.: Global well-posedness of two-dimensional magnetohydrodynamic flows with partial dissipation and magnetic diffusion. SIAM J. Math. Anal. 47, 1562–1589 (2015)

    Article  MathSciNet  Google Scholar 

  • Duvaut, G., Lions, J.-L.: Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Ration. Mech. Anal. 46(4), 241–279 (1972)

    Article  Google Scholar 

  • Fefferman, C., McCormick, D., Robinson, J., Rodrigo, J.: Higher order commutator estimates and local existence for the non-resistive MHD equations and related models. J. Funct. Anal. 267, 1035–1056 (2014)

    Article  MathSciNet  Google Scholar 

  • Fefferman, C., McCormick, D., Robinson, J., Rodrigo, J.: Local existence for the non-resistive MHD equations in nearly optimal Sobolev spaces. Arch. Ration. Mech. Anal. 223, 677–691 (2017)

    Article  MathSciNet  Google Scholar 

  • Frierson, D., Majda, A., Pauluis, O.: Large scale dynamics of precipitation fronts in the tropical atmosphere: a novel relaxation limit. Commun. Math. Sci. 2, 591–626 (2004)

    Article  MathSciNet  Google Scholar 

  • He, L., Xu, L., Yu, P.: On global dynamics of three dimensional magnetohydrodynamics: nonlinear stability of Alfvén waves. Ann. PDE, 4(Art.5), 1–105 (2018)

  • Jiu, Q., Niu, D.: Mathematical results related to a two-dimensional magneto-hydrodynamic equations. Acta Math Sci. Ser. B Engl. Ed. 26, 744–756 (2006)

    Article  MathSciNet  Google Scholar 

  • Jiu, Q., Zhao, J.: Global regularity of 2D generalized MHD equations with magnetic diffusion. Z. Angew. Math. Phys. 66, 677–687 (2015)

    Article  MathSciNet  Google Scholar 

  • Li, J., Tan, W., Yin, Z.: Local existence and uniqueness for the non-resistive MHD equations in homogeneous Besov spaces. Adv. Math. 317, 786–798 (2017)

    Article  MathSciNet  Google Scholar 

  • Li, J., Titi, E.S.: Global well-posedness of strong solutions to a tropical climate model. Discrete Contin. Dyn. Syst. 36, 4495–4516 (2016)

    Article  MathSciNet  Google Scholar 

  • Li, J., Titi, E.S.: A tropical atmosphere model with moisture: global well-posedness and relaxation limit. Nonlinearity 29, 2674–2714 (2016)

    Article  MathSciNet  Google Scholar 

  • Lin, H., Ji, R., Wu, J., Yi, L.: Stability of perturbations near a background magnetic field of the 2D incompressible MHD equations with mixed partial dissipation. J. Funct. Anal. 279(2), 108519 (2020)

  • Lin, F., Xu, L., Zhang, P.: Global small solutions to 2-D incompressible MHD system. J. Differ. Equ. 259, 5440–5485 (2015)

    Article  MathSciNet  Google Scholar 

  • Majda, A.: New multiscale models and self-similarity in tropical convection. J. Atmos. Sci. 64(4), 1393–1404 (2007)

    Article  Google Scholar 

  • Majda, A., Klein, R.: Systematic multiscale models for the tropics. J. Atmos. Sci. 60(2), 393–408 (2003)

    Article  Google Scholar 

  • Paicu, M., Zhu, N.: On the Striated Regularity for the 2D Anisotropic Boussinesq System. J. Nonlinear Sci. 30, 1115–1164 (2020)

    Article  MathSciNet  Google Scholar 

  • Pan, R., Zhou, Y., Zhu, Y.: Global classical solutions of three dimensional viscous MHD system without magnetic diffusion on periodic boxes. Arch. Rational Mech. Anal. 227, 637–662 (2018)

    Article  MathSciNet  Google Scholar 

  • Priest, E., Forbes, T.: Magnetic Reconnection: MHD Theory and Applications. Cambridge University Press (2000)

  • Ren, X., Wu, J., Xiang, Z., Zhang, Z.: Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion. J. Funct. Anal. 267, 503–541 (2014)

    Article  MathSciNet  Google Scholar 

  • Ren, X., Xiang, Z., Zhang, Z.: Global well-posedness for the 2D MHD equations without magnetic diffusion in a strip domain. Nonlinearity 29, 1257–1291 (2016)

    Article  MathSciNet  Google Scholar 

  • Sermange, M., Temam, R.: Some mathematical questions related to the mhd equations. Commun. Pure Appl. Math. 36(5), 635–664 (1983)

    Article  MathSciNet  Google Scholar 

  • Wan, R.: On the uniqueness for the 2D MHD equations without magnetic diffusion. Nonlinear Anal. Real World Appl. 30, 32–40 (2016)

    Article  MathSciNet  Google Scholar 

  • Wu, J., Wu, Y., Xu, X.: Global small solution to the 2D MHD system with a velocity damping term. SIAM J. Math. Anal. 47, 2630–2656 (2015)

    Article  MathSciNet  Google Scholar 

  • Wu, J., Zhu, Y.: Global solutions of 3D incompressible MHD system with mixed partial dissipation and magnetic diffusion near an equilibrium. Adv. Math., 377, 107466 (2021) 26 pp

  • Yamazaki, K.: Remarks on the global regularity of the two-dimensional magnetohydrodynamics system with zero dissipation. Nonlinear Anal. 94, 194–205 (2014)

    Article  MathSciNet  Google Scholar 

  • Ye, Z.: Global regularity for a class of 2D tropical climate model. J. Math. Anal. Appl. 446, 307–321 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Jiahong Wu for helpful discussion. N. Zhu was partially supported by the National Natural Science Foundation of China (Grant Nos. 11771043 and 11771045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Alain Goriely.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This appendix provides the complete proof of Lemma 4.1.

Proof

Proof of Lemma 4.1

$$\begin{aligned} \begin{aligned} -\int _{\Omega }\Delta _q(f\cdot \nabla g)\cdot \Delta _q h\,\hbox {d}x\hbox {d}y&=-\int _{\Omega }\Delta _q(f^1\partial _1 g)\cdot \Delta _q h\,\hbox {d}x\hbox {d}y\\&\quad -\int _{\Omega }\Delta _q(f^2\partial _2 g)\cdot \Delta _q h\,\hbox {d}x\hbox {d}y\\&\triangleq P+Q. \end{aligned} \end{aligned}$$

For P, by Bony’s decomposition, we can divide it into the following three terms,

$$\begin{aligned} P&=-\int _{\Omega }\Delta _q(f^1 \partial _1 g)\cdot \Delta _q h\,\hbox {d}x\hbox {d}y\nonumber \\&=-\sum _{|k-q|\le 2}\int _{\Omega }\Delta _q(S_{k-1}f^1 \Delta _k\partial _1 g)\cdot \Delta _q h\,\hbox {d}x\hbox {d}y\nonumber \\&\quad -\sum _{|k-q|\le 2}\int _{\Omega }\Delta _q(\Delta _kf^1 S_{k-1}\partial _1 g)\cdot \Delta _q h\,\hbox {d}x\hbox {d}y\nonumber \\&\quad -\sum _{k\ge q-1}\sum _{|k-l|\le 1}\int _{\Omega }\Delta _q(\Delta _kf^1 \Delta _l\partial _1 g)\cdot \Delta _q h\,\hbox {d}x\hbox {d}y\nonumber \\ \triangleq&P_1+P_2+P_3. \end{aligned}$$

For \(P_1\), using decomposition (2.3), we can rewrite it as

$$\begin{aligned} \begin{aligned} P_1&=-\sum _{|k-q | \le 2} \int _{\Omega } \Delta _{q}\left( S_{k-1} {\widetilde{f}}^{1} \partial _{1} \Delta _{k} {\widetilde{g}}\right) \cdot \Delta _{q} {\bar{h}}\,\hbox {d}x \hbox {d}y\\&\quad -\sum _{|k-q | \le 2} \int _{\Omega } \Delta _{q}\left( S_{k-1} {\widetilde{f}}^{1} \partial _{1} \Delta _{k} {\widetilde{g}}\right) \cdot \Delta _{q} {\widetilde{h}}\,\hbox {d}x \hbox {d}y\\&\quad -\sum _{|k-q | \le 2} \int _{\Omega } \Delta _{q}\left( S_{k-1} {\bar{f}}^{1} \partial _{1} \Delta _{k} {\widetilde{g}}\right) \cdot \Delta _{q} {\bar{h}}\,\hbox {d}x \hbox {d}y\\&\quad -\sum _{|k-q | \le 2} \int _{\Omega } \Delta _{q}\left( S_{k-1} {\bar{f}}^{1} \partial _{1} \Delta _{k} {\widetilde{g}}\right) \cdot \Delta _{q} {\widetilde{h}}\,\hbox {d}x \hbox {d}y\\&\triangleq P_{11}+P_{12}+P_{13}+P_{14}. \end{aligned} \end{aligned}$$

For \(P_{11}\), by anisotropic Hölder inequality and Poincaré inequality (2.5),

$$\begin{aligned} \begin{aligned} P_{11}&=-\sum _{| k-q | \le 2} \int _{\Omega }\Delta _q\left( S_{k-1} {\tilde{f}}^{1} \partial _{1} \Delta _{k} {\widetilde{g}}\right) \cdot \Delta _{q} {\bar{h}}\,\hbox {d}x \hbox {d}y \\&\le C \sum _{| k-q | \le 2}\left\| S_{k-1} {\widetilde{f}}^{1}\right\| _{L^\infty _yL_{x}^{2}}\left\| \partial _{1} \Delta _k{\widetilde{g}}\right\| _{L^{2}} \left\| \Delta _{q} {\bar{h}}\right\| _{L_{y}^{2}} \\&\le C\sum _{| k-q | \le 2}\left\| S_{k-1} {\widetilde{f}}^{1}\right\| _{L^2}^{\frac{1}{2}}\left\| S_{k-1}\partial _2 {\widetilde{f}}^{1}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _{1} \Delta _k{\widetilde{g}}\right\| _{L^{2}} \left\| \Delta _{q} {\bar{h}}\right\| _{L_{y}^{2}} \\&\le C\sum _{| k-q | \le 2}\left\| \partial _1S_{k-1} {\widetilde{f}}^{1}\right\| _{L^2}^{\frac{1}{2}}\left\| S_{k-1}\partial _1\partial _2 {\widetilde{f}}^{1}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _{1} \Delta _k{\widetilde{g}}\right\| _{L^{2}} \left\| \Delta _{q} {\bar{h}}\right\| _{L_{y}^{2}} \\&\le C2^{-2qs}b_q\left\| \partial _1{f}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _1\partial _2 {f}\right\| _{L^2}^{\frac{1}{2}} \left\| \partial _{1} {g}\right\| _{H^s} \left\| h\right\| _{H^s}. \end{aligned} \end{aligned}$$

For \(P_{12}\), along the same method,

$$\begin{aligned} P_{12}&=-\sum _{| k-q | \le 2} \int _{\Omega }\Delta _q\left( S_{k-1} {\tilde{f}}^{1} \partial _{1} \Delta _{k} {\widetilde{g}}\right) \cdot \Delta _{q} {\widetilde{h}}\,\hbox {d}x \hbox {d}y \\&\le C \sum _{| k-q | \le 2}\left\| S_{k-1} {\widetilde{f}}^{1}\right\| _{L^\infty _yL_{x}^{2}}\left\| \partial _{1} \Delta _k{\widetilde{g}}\right\| _{L^{2}} \left\| \Delta _{q} {\widetilde{h}}\right\| _{L^\infty _xL_{y}^{2}} \\&\le C\sum _{| k-q | \le 2}\left\| S_{k-1} {\widetilde{f}}^{1}\right\| _{L^2}^{\frac{1}{2}}\left\| S_{k-1}\partial _2 {\widetilde{f}}^{1}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _{1} \Delta _k{\widetilde{g}}\right\| _{L^{2}} \left\| \Delta _{q} {\widetilde{h}}\right\| _{L^{2}}^{\frac{1}{2}}\left\| \Delta _{q}\partial _1 {\widetilde{h}}\right\| _{L^{2}}^{\frac{1}{2}} \\&\le C\sum _{| k-q | \le 2}\left\| S_{k-1} {\widetilde{f}}^{1}\right\| _{L^2}^{\frac{1}{2}}\left\| S_{k-1}\partial _1\partial _2 {\widetilde{f}}^{1}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _{1} \Delta _k{\widetilde{g}}\right\| _{L^{2}} \left\| \Delta _{q} {\widetilde{h}}\right\| _{L^{2}}^{\frac{1}{2}}\left\| \Delta _{q}\partial _1 {\widetilde{h}}\right\| _{L^{2}}^{\frac{1}{2}} \\&\le C2^{-2qs}b_q\left\| {f}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _1\partial _2 {f}\right\| _{L^2}^{\frac{1}{2}} \left\| \partial _{1} {g}\right\| _{H^s} \left\| h\right\| _{H^s}^{\frac{1}{2}}\left\| \partial _1 h\right\| _{H^s}^{\frac{1}{2}}. \end{aligned}$$

According to the duality property of the operator \(\Delta _q\),

$$\begin{aligned} \begin{aligned} P_{13}&=-\sum _{|k-q | \le 2} \int _{\Omega } \Delta _{q}\left( S_{k-1} {\bar{f}}^{1} \partial _{1} \Delta _{k} {\widetilde{g}}\right) \cdot \Delta _{q} {\bar{h}}\,\hbox {d}x \hbox {d}y\\&=-\sum _{|k-q | \le 2} \int _{\Omega } \left( S_{k-1} {\bar{f}}^{1} \partial _{1} \Delta _{k} {\widetilde{g}}\right) \cdot \Delta _{q}^2 {\bar{h}}\,\hbox {d}x \hbox {d}y\\&=-\sum _{|k-q | \le 2} \int _{{{\mathbb {R}}}}S_{k-1} {\bar{f}}^{1}\Delta _{q}^2 {\bar{h}}\cdot \bigg (\int _{{\mathbb {T}}} \partial _{1} \Delta _{k} {\widetilde{g}}(x,y)~\hbox {d}x\bigg )\,\hbox {d}y\\&=0. \end{aligned} \end{aligned}$$

Also by anisotropic Hölder inequality, interpolation (2.6) and Poincaré inequality (2.5),

$$\begin{aligned} \begin{aligned} P_{14}&=-\sum _{| k-q | \le 2} \int _{\Omega }\Delta _q\left( S_{k-1} {\bar{f}}^{1} \partial _{1} \Delta _{k} {\widetilde{g}}\right) \cdot \Delta _{q} {\widetilde{h}}\,\hbox {d}x \hbox {d}y \\&\le C \sum _{| k-q | \le 2}\left\| S_{k-1} {\bar{f}}^{1}\right\| _{L^\infty _y}\left\| \partial _{1} \Delta _k{\widetilde{g}}\right\| _{L^{2}} \left\| \Delta _{q} {\widetilde{h}}\right\| _{L^{2}} \\&\le C\sum _{| k-q | \le 2}\left\| S_{k-1} {\bar{f}}^{1}\right\| _{L^2}^{\frac{1}{2}}\left\| S_{k-1}\partial _2 {\bar{f}}^{1}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _{1} \Delta _k{\widetilde{g}}\right\| _{L^{2}} \left\| \partial _1\Delta _{q} {\widetilde{h}}\right\| _{L_2} \\&\le C2^{-2qs}b_q\left\| {f}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _2 {f}\right\| _{L^2}^{\frac{1}{2}} \left\| \partial _{1} {g}\right\| _{H^s} \left\| \partial _1h\right\| _{H^s}. \end{aligned} \end{aligned}$$

Combining the estimates of \(P_{11}-P_{14}\), we obtain the estimate for \(P_1\) that,

$$\begin{aligned} \begin{aligned} P_{1}&\le C2^{-2qs}b_q(\left\| \partial _1{f}\right\| _{L^2}\left\| \partial _1\partial _2 {f}\right\| _{L^2} \left\| h\right\| _{H^s}^2 +\left\| {f}\right\| _{L^2}^2\left\| \partial _1\partial _2 {f}\right\| _{L^2}^2 \left\| h\right\| _{H^s}^2 )\\&\quad +C\varepsilon _02^{-2qs}b_q(\left\| \partial _{1} {g}\right\| _{H^s}^2+ \left\| \partial _1 h\right\| _{H^s}^2)\\&\quad +2^{-2qs}b_q\left\| {f}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _2 {f}\right\| _{L^2}^{\frac{1}{2}} (\left\| \partial _{1} {g}\right\| _{H^s}^2+ \left\| \partial _1h\right\| _{H^s}^2). \end{aligned} \end{aligned}$$

Then, we estimate \(P_2\); also, by decomposition (2.3), we can write \(P_2\) into the following three terms,

$$\begin{aligned} P_2&=-\sum _{|k-q|\le 2}\int _{\Omega }\Delta _q(\Delta _kf^1 S_{k-1}\partial _1 g)\cdot \Delta _q h\,\hbox {d}x\hbox {d}y\\&=-\sum _{|k-q | \le 2} \int _{\Omega } \Delta _{q}\left( \Delta _{k}{\widetilde{f}}^{1} \partial _{1} S_{k-1} {g}\right) \cdot \Delta _{q} {h}\,\hbox {d}x \hbox {d}y\\&\quad -\sum _{|k-q | \le 2} \int _{\Omega } \Delta _{q}\left( \Delta _{k}{\bar{f}}^{1} \partial _{1} S_{k-1} {\widetilde{g}}\right) \cdot \Delta _{q} {\bar{h}}\,\hbox {d}x \hbox {d}y\\&\quad -\sum _{|k-q | \le 2} \int _{\Omega } \Delta _{q}\left( \Delta _{k}{\bar{f}}^{1} \partial _{1} S_{k-1} {\widetilde{g}}\right) \cdot \Delta _{q} {\widetilde{h}}\,\hbox {d}x \hbox {d}y\\&\triangleq P_{21}+P_{22}+P_{23}. \end{aligned}$$

We write that owing to anisotropic Hölder inequality, interpolation (2.6) and Poincaré inequality (2.5),

$$\begin{aligned} P_{21}&\le C \sum _{| k-q | \le 2}\left\| \Delta _k {\widetilde{f}}^{1}\right\| _{L^\infty _xL_{y}^{2}}\left\| \partial _{1} S_{k-1}{g}\right\| _{L^{\infty }_yL^2_x} \left\| \Delta _{q} {h}\right\| _{L^{2}} \\&\le C\sum _{| k-q | \le 2}\left\| \Delta _k {\widetilde{f}}^{1}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _1\Delta _k {\widetilde{f}}^{1}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _{1} S_{k-1}{g}\right\| _{L^{2}}^{\frac{1}{2}}\left\| \partial _{1}\partial _2 S_{k-1}{g}\right\| _{L^2}^{\frac{1}{2}} \left\| \Delta _{q} {h}\right\| _{L^{2}} \\&\le C\sum _{| k-q | \le 2} \left\| \partial _{1} {g}\right\| _{L^{2}}^{\frac{1}{2}}\left\| \partial _{1}\partial _2 {g}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _1\Delta _k {\widetilde{f}}^{1}\right\| _{L^2} \left\| \Delta _{q} {h}\right\| _{L^{2}}\\&\le C2^{-2qs}b_q\left\| \partial _1{g}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _1\partial _2 {g}\right\| _{L^2}^{\frac{1}{2}} \left\| \partial _{1} {f}\right\| _{H^s} \left\| h\right\| _{H^s}. \end{aligned}$$

Similar as \(P_{13}\), it is easy to see that \(P_{22}=0\). To bound \(P_{23}\), we write that

$$\begin{aligned} P_{23}&=\sum _{| k-q | \le 2} \int _{\Omega }\Delta _q\left( \Delta _{k}{\bar{f}}^{1} S_{k-1}\partial _{1} {\widetilde{g}}\right) \cdot \Delta _{q} {\widetilde{h}}~\hbox {d}x \hbox {d}y \\&\le C \sum _{| k-q | \le 2}\left\| \Delta _k {\bar{f}}^{1}\right\| _{L^2_y}\left\| \partial _{1} S_{k-1}{\widetilde{g}}\right\| _{L^{\infty }_yL^{2}_x} \left\| \Delta _{q} {\widetilde{h}}\right\| _{L^{2}} \\&\le C\sum _{| k-q | \le 2}\left\| \Delta _k {\bar{f}}^{1}\right\| _{L^2_y}\left\| \partial _{1} S_{k-1}{\widetilde{g}}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _{1}\partial _2 S_{k-1}{\widetilde{g}}\right\| _{L^{2}}^{\frac{1}{2}} \left\| \partial _1\Delta _{q} {\widetilde{h}}\right\| _{L^2} \\&\le C2^{-2qs}b_q\left\| {\partial _1g}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _1\partial _2 {g}\right\| _{L^2}^{\frac{1}{2}} \left\| {f}\right\| _{H^s} \left\| \partial _1h\right\| _{H^s}. \end{aligned}$$

Making use of Young’s inequality, we deduce the estimate of \(P_2\) that

$$\begin{aligned} \begin{aligned} P_{2}&\le C2^{-2qs}b_q\left\| \partial _1{g}\right\| _{L^2}\left\| \partial _1\partial _2 {g}\right\| _{L^2}( \left\| {f}\right\| _{H^s}^2+ \left\| h\right\| _{H^s}^2)\\&\quad + C\varepsilon _02^{-2qs}b_q( \left\| \partial _1{f}\right\| _{H^s}^2+ \left\| \partial _1h\right\| _{H^s}^2). \end{aligned} \end{aligned}$$

For \(P_3\), first we use decomposition (2.3),

$$\begin{aligned} P_3&=-\sum _{k\ge q-1}\sum _{|k-l|\le 1}\int _{\Omega }\Delta _q(\Delta _kf^1 \Delta _l\partial _1 g)\cdot \Delta _q h\,\hbox {d}x \hbox {d}y\\&=-\sum _{k\ge q-1}\sum _{|k-l|\le 1} \int _{\Omega } \Delta _{q}\left( \Delta _{k}{\widetilde{f}}^{1} \partial _{1} \Delta _l {g}\right) \cdot \Delta _{q} {h}\,\hbox {d}x \hbox {d}y\\&\quad -\sum _{k\ge q-1}\sum _{|k-l|\le 1} \int _{\Omega } \Delta _{q}\left( \Delta _{k}{\bar{f}}^{1} \partial _{1} \Delta _l {\widetilde{g}}\right) \cdot \Delta _{q} {\bar{h}}\,\hbox {d}x \hbox {d}y\\&\quad -\sum _{k\ge q-1}\sum _{|k-l|\le 1} \int _{\Omega } \Delta _{q}\left( \Delta _{k}{\bar{f}}^{1} \partial _{1} \Delta _l {\widetilde{g}}\right) \cdot \Delta _{q} {\widetilde{h}}\,\hbox {d}x \hbox {d} y\\&\triangleq P_{31}+P_{32}+P_{33}. \end{aligned}$$

The term \(P_{31}\) can be handled in the same way as \(P_{21}\) and utilizing Bernstein inequality,

$$\begin{aligned} P_{31}&\le C \sum _{k\ge q-1}\sum _{|k-l|\le 1}\left\| \Delta _k {\widetilde{f}}^{1}\right\| _{L^\infty _xL_{y}^{2}}\left\| \partial _{1} \Delta _l{g}\right\| _{L^2} \left\| \Delta _{q} {h}\right\| _{L^\infty _yL^{2}_x} \\&\le C\sum _{k\ge q-1}\sum _{|k-l|\le 1}\left\| \Delta _k {\widetilde{f}}^{1}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _1\Delta _k {\widetilde{f}}^{1}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _{1} \Delta _l{g}\right\| _{L^{2}} \left\| \Delta _{q} {h}\right\| _{L^{2}}^{\frac{1}{2}} \left\| \partial _2\Delta _{q} {h}\right\| _{L^{2}}^{\frac{1}{2}}\\&\le C\sum _{k\ge q-1}2^{\frac{q}{2}}2^{-\frac{k}{2}}\left\| \partial _1\Delta _k {\widetilde{f}}^{1}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _1\nabla \Delta _k {\widetilde{f}}^{1}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _{1} \Delta _k{g}\right\| _{L^{2}} \left\| \Delta _{q} {h}\right\| _{L^{2}} \\&\le C2^{-2qs}b_q\left\| \partial _1{f}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _1\nabla {f}^1\right\| _{L^2}^{\frac{1}{2}} \left\| \partial _{1} {g}\right\| _{H^s} \left\| h\right\| _{H^s}\\&\le C2^{-2qs}b_q\left\| \partial _1{f}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _1\partial _2{f}\right\| _{L^2}^{\frac{1}{2}} \left\| \partial _{1} {g}\right\| _{H^s} \left\| h\right\| _{H^s}, \end{aligned}$$

where we have used the relation \(\nabla f^1=(\partial _1f^1,\partial _2f^1)=(-\partial _2f^2,\partial _2f^1)\) in the last step.

Similar as \(P_{13}\), it is easy to check that \(P_{32}=0\). To bound \(P_{33}\), we write that

$$\begin{aligned} \begin{aligned} P_{33}&=-\sum _{k\ge q-1}\sum _{|k-l|\le 1} \int _{\Omega } \Delta _{q}\left( \Delta _{k}{\bar{f}}^{1} \partial _{1} \Delta _l {\widetilde{g}}\right) \cdot \Delta _{q} {\widetilde{h}}\,\hbox {d}x \hbox {d}y\\&\le C \sum _{k\ge q-1}\sum _{|k-l|\le 1}\left\| \Delta _k {\bar{f}}^{1}\right\| _{L_{y}^{2}}\left\| \partial _{1} \Delta _l{\widetilde{g}}\right\| _{L^2} \left\| \Delta _{q} {\widetilde{h}}\right\| _{L^\infty _yL^{2}_x} \\&\le C \sum _{k\ge q-1}\sum _{|k-l|\le 1}\left\| \Delta _k {\bar{f}}^{1}\right\| _{L_{y}^{2}}^{\frac{1}{2}} 2^{-\frac{k}{2}}\left\| \nabla \Delta _k {\bar{f}}^{1}\right\| _{L_{y}^{2}}^{\frac{1}{2}} \left\| \partial _{1} \Delta _l{\widetilde{g}}\right\| _{L^2} 2^{\frac{q}{2}}\left\| \Delta _{q} {\widetilde{h}}\right\| _{L^2_yL^{2}_x} \\&\le C \sum _{k\ge q-1}\sum _{|k-l|\le 1}2^{\frac{q}{2}-\frac{k}{2}}\left\| \Delta _k {\bar{f}}^{1}\right\| _{L_{y}^{2}}^{\frac{1}{2}} \left\| \partial _1\Delta _k {\bar{f}}^{1}\right\| _{L_{y}^{2}}^{\frac{1}{2}} \left\| \partial _{1} \Delta _l{\widetilde{g}}\right\| _{L^2} \left\| \Delta _{q} {\widetilde{h}}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _1\Delta _{q} {\widetilde{h}}\right\| _{L^2}^{\frac{1}{2}} \\&\quad +C \sum _{k\ge q-1}\sum _{|k-l|\le 1}2^{\frac{q}{2}-\frac{k}{2}}\left\| \Delta _k {\bar{f}}^{1}\right\| _{L_{y}^{2}}^{\frac{1}{2}} \left\| \partial _2\Delta _k {\bar{f}}^{1}\right\| _{L_{y}^{2}}^{\frac{1}{2}} \left\| \partial _{1} \Delta _l{\widetilde{g}}\right\| _{L^2} \left\| \partial _1\Delta _{q} {\widetilde{h}}\right\| _{L^2} \\&\le C2^{-2qs}b_q(\left\| {f}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _1 {f}^1\right\| _{L^2}^{\frac{1}{2}} \left\| \partial _{1} {g}\right\| _{H^s} \left\| h\right\| _{H^s}^{\frac{1}{2}}\left\| \partial _1h\right\| _{H^s}^{\frac{1}{2}}\\&\quad +\left\| {f}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _2 {f}^1\right\| _{L^2}^{\frac{1}{2}} \left\| \partial _{1} {g}\right\| _{H^s} \left\| \partial _1h\right\| _{H^s}). \end{aligned} \end{aligned}$$

Combining with Young’s inequality, we obtain the estimate for \(P_3\) that

$$\begin{aligned} \begin{aligned} P_{3}&\le C2^{-2qs}b_q(\left\| {f}\right\| _{L^2}^{2}\left\| \partial _1 {f}^1\right\| _{L^2}^{2} \left\| h\right\| _{H^s}^{2}+\left\| \partial _1{f}\right\| _{L^2}\left\| \partial _1\partial _2 {f}^1\right\| _{L^2} \left\| h\right\| _{H^s}^2)\\&\quad +C2^{-2qs}b_q\left\| {f}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _2 {f}^1\right\| _{L^2}^{\frac{1}{2}} (\left\| \partial _{1} {g}\right\| _{H^s}^2+ \left\| \partial _1h\right\| _{H^s}^2) \\&\quad +C\varepsilon _0 2^{-2qs}b_q( \left\| \partial _{1} {g}\right\| _{H^s}^2+\left\| \partial _1h\right\| _{H^s}^2). \end{aligned} \end{aligned}$$

Next, we estimate Q; first, we divide it into three parts,

$$\begin{aligned} \begin{aligned} -\int _{{{\mathbb {R}}}^2}\Delta _q(u^2 \partial _2 f)\cdot \Delta _q f\,\hbox {d}x\hbox {d}y =Q_1+Q_2+Q_3, \end{aligned} \end{aligned}$$
(8.1)

with

$$\begin{aligned} Q_1= & {} -\sum _{|k-q|\le 2}\int _{\Omega }\Delta _q(S_{k-1}f^2 \Delta _k\partial _2 g)\cdot \Delta _q h\,\hbox {d}x\hbox {d}y, \\ Q_2= & {} -\sum _{|k-q|\le 2}\int _{\Omega }\Delta _q(\Delta _kf^2 S_{k-1}\partial _2 g)\cdot \Delta _q h\,\hbox {d}x\hbox {d}y \end{aligned}$$

and

$$\begin{aligned} Q_3=-\sum _{k\ge q-1}\sum _{|k-l|\le 1}\int _{\Omega }\Delta _q(\Delta _kf^2 \Delta _l\partial _2 g)\cdot \Delta _q h\,\hbox {d}x\hbox {d}y. \end{aligned}$$

Because f satisfies the divergence-free condition and according to property (2.7), we can rewrite \(Q_1\) as

$$\begin{aligned} Q_1&=-\sum _{|k-q|\le 2}\int _{\Omega }\Delta _q(S_{k-1}{\widetilde{f}}^2 \Delta _k\partial _2 g)\cdot \Delta _q h\,\hbox {d}x\hbox {d}y\\&=-\sum _{|k-q|\le 2}\int _{\Omega }[\Delta _q, S_{k-1}{\widetilde{f}}^2\partial _2]\Delta _k g\cdot \Delta _q h\,\hbox {d}x\hbox {d}y\\&\quad -\sum _{|k-q|\le 2}\int _{\Omega }({ S_{k-1}{\widetilde{f}}^2-S_q{\widetilde{f}}^2})\partial _2\Delta _q \Delta _kg\cdot \Delta _q h\,\hbox {d}x\hbox {d}y\\&\quad -\int _{\Omega }{S}_{q}{\widetilde{f}}^2\partial _2\Delta _q g\cdot \Delta _q h\,\hbox {d}x\hbox {d}y\\&\triangleq Q_{11}+Q_{12}+Q_{13}. \end{aligned}$$

For \(Q_{11}\), we decompose it into the following four terms,

$$\begin{aligned} Q_{11}&=-\sum _{|k-q|\le 2}\int _{\Omega }[\Delta _q, S_{k-1}{\widetilde{f}}^2\partial _2]\Delta _k {\bar{g}} \cdot \Delta _q {\bar{h}}\,\hbox {d}x\hbox {d}y\\&\quad -\sum _{|k-q|\le 2}\int _{\Omega }[\Delta _q, S_{k-1}{\widetilde{f}}^2\partial _2]\Delta _k {\bar{g}} \cdot \Delta _q {\widetilde{h}}\,\hbox {d}x\hbox {d}y\\&\quad -\sum _{|k-q|\le 2}\int _{\Omega }[\Delta _q, S_{k-1}{\widetilde{f}}^2\partial _2]\Delta _k {\widetilde{g}} \cdot \Delta _q {\bar{h}}\,\hbox {d}x\hbox {d}y\\&\quad -\sum _{|k-q|\le 2}\int _{\Omega }[\Delta _q, S_{k-1}{\widetilde{f}}^2\partial _2]\Delta _k {\widetilde{g}} \cdot \Delta _q {\widetilde{h}}\,\hbox {d}x\hbox {d}y,\\&\triangleq Q_{111}+Q_{112}+Q_{113}+Q_{114}, \end{aligned}$$

where \([X,Y]\triangleq XY-YX\) defining the standard commutator.

According to the definition of decomposition (2.3), it is not difficult to check that \(Q_{111}=0\). For \(Q_{112}\), according to the definition of \(\Delta _q\),

$$\begin{aligned}{}[\Delta _q, S_{k-1}{{\widetilde{f}}^2\partial _2}]\Delta _k {\bar{g}}&=\int _{\Omega }h_q({\mathbf {x}}-{\mathbf {x}}')(S_{k-1}{\widetilde{f}}^2({\mathbf {x}}')\partial _2\Delta _k {\bar{g}}({\mathbf {x}}'))\,\hbox {d}{\mathbf {x}}'\\&\quad -S_{k-1}{\widetilde{f}}^2({\mathbf {x}})\int _{\Omega }h_q({\mathbf {x}}-{\mathbf {x}}')\partial _2\Delta _k {\bar{g}}({\mathbf {x}}')\,\hbox {d}{\mathbf {x}}'\\&=\int _{\Omega }h_q({\mathbf {x}}-{\mathbf {x}}')(S_{k-1}{\widetilde{f}}^2({\mathbf {x}}')-S_{k-1}{\widetilde{f}}^2({\mathbf {x}}))\partial _2\Delta _k {\bar{g}}({\mathbf {x}}')\,\hbox {d}{\mathbf {x}}'\\&=\int _{\Omega }h_q({\mathbf {x}}-{\mathbf {x}}')\int _0^1({\mathbf {x}}'-{\mathbf {x}})\cdot \nabla S_{k-1}{\widetilde{f}}^2(s\mathbf {x'}\\&\quad +(1-s){\mathbf {x}})~\hbox {d}s\partial _2\Delta _k {\bar{g}}({\mathbf {x}}')\,\hbox {d}{\mathbf {x}}'\\&=\int _{\Omega }\int _0^1h_q({\mathbf {z}}){\mathbf {z}}\cdot \nabla S_{k-1}{\widetilde{f}}^2({\mathbf {x}}-s{\mathbf {z}})\partial _2\Delta _k {\bar{g}}({\mathbf {x}}-{\mathbf {z}})\,\hbox {d}s \hbox {d}{\mathbf {z}}, \end{aligned}$$

where \(h_q\) is defined as in (2.2).

Making use of the anisotropic Hölder inequality, interpolation (2.6), Poincaré inequality (2.5) and Bernstein inequality,

$$\begin{aligned} \begin{aligned} Q_{112}&=-\sum _{|k-q|\le 2}\int _{\Omega }[\Delta _q, S_{k-1}{\widetilde{f}}^2\partial _2]\Delta _k {\bar{g}} \cdot \Delta _q {\widetilde{h}}\,\hbox {d}x\hbox {d}y \\&\le C \sum _{| k-q | \le 2}2^{-q}\left\| S_{k-1}\nabla {\widetilde{f}}^{2}\right\| _{L^\infty _yL^2_x}\left\| \partial _{2} \Delta _k{\bar{g}}\right\| _{L^{2}_y} \left\| \Delta _{q} {\widetilde{h}}\right\| _{L^{2}} \\&\le C\sum _{| k-q | \le 2}2^{k-q}\left\| S_{k-1}\nabla {\widetilde{f}}^{2}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _2S_{k-1}\nabla {\widetilde{f}}^{2}\right\| _{L^2}^{\frac{1}{2}}\left\| \Delta _k{g}\right\| _{L^{2}} \left\| \partial _1\Delta _{q} {\widetilde{h}}\right\| _{L^{2}} \\&\le C2^{-2qs}b_q\left\| {\partial _1f}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _1\partial _2 {f}\right\| _{L^2}^{\frac{1}{2}} \left\| {g}\right\| _{H^s} \left\| \partial _1h\right\| _{H^s}, \end{aligned} \end{aligned}$$

where we have used the relation \(\nabla {\widetilde{f}}^2=(\partial _1{\widetilde{f}}^1,\partial _2{\widetilde{f}}^2)=(\partial _1{\widetilde{f}}^1,-\partial _1{\widetilde{f}}^1)\) in the last step.

The similar conclusion can also be drawn for \(Q_{113}\) and \(Q_{114}\) that

$$\begin{aligned} \begin{aligned} Q_{113}&\le C2^{-2qs}b_q\left\| {\partial _1f}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _1\partial _2 {f}\right\| _{L^2}^{\frac{1}{2}} \left\| \partial _1{g}\right\| _{H^s} \left\| h\right\| _{H^s},\\ Q_{114}&\le C2^{-2qs}b_q\left\| {\partial _1f}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _1\partial _2 {f}\right\| _{L^2}^{\frac{1}{2}} \left\| \partial _1{g}\right\| _{H^s} \left\| h\right\| _{H^s}. \end{aligned} \end{aligned}$$

Next, we deal with \(Q_{12}\), also making use decomposition (2.3),

$$\begin{aligned} Q_{12}&=-\sum _{|k-q|\le 2}\int _{\Omega }({ S_{k-1}{\widetilde{f}}^2-S_q{\widetilde{f}}^2})\partial _2\Delta _q \Delta _kg\cdot \Delta _q h\,\hbox {d}x\hbox {d}y\\&=-\sum _{|k-q|\le 2}\int _{\Omega }({ S_{k-1}{\widetilde{f}}^2-S_q{\widetilde{f}}^2})\partial _2\Delta _q \Delta _k{\bar{g}}\cdot \Delta _q {\bar{h}}\,\hbox {d}x\hbox {d}y\\&\quad -\sum _{|k-q|\le 2}\int _{\Omega }({ S_{k-1}{\widetilde{f}}^2-S_q{\widetilde{f}}^2})\partial _2\Delta _q \Delta _k{\bar{g}}\cdot \Delta _q {\widetilde{h}}\,\hbox {d}x\hbox {d}y\\&\quad -\sum _{|k-q|\le 2}\int _{\Omega }({ S_{k-1}{\widetilde{f}}^2-S_q{\widetilde{f}}^2})\partial _2\Delta _q \Delta _k{\widetilde{g}}\cdot \Delta _q {\bar{h}}\,\hbox {d}x\hbox {d}y\\&\quad -\sum _{|k-q|\le 2}\int _{\Omega }({ S_{k-1}{\widetilde{f}}^2-S_q{\widetilde{f}}^2})\partial _2\Delta _q \Delta _k{\widetilde{g}}\cdot \Delta _q {\widetilde{h}}\,\hbox {d}x\hbox {d}y\\&\triangleq Q_{121}+Q_{122}+Q_{123}+Q_{124}. \end{aligned}$$

The same reasoning as \(Q_{111}\) implies that \(Q_{121}=0\). For \(Q_{122}\), by the anisotropic Hölder inequality, Bernstein inequality, interpolation (2.6) and Poincaré inequality (2.5),

$$\begin{aligned} \begin{aligned} Q_{122}&\le C \sum _{| k-q | \le 2}2^{-q}\left\| \nabla \Delta _k {\widetilde{f}}^{2}\right\| _{L^\infty _yL^2_x}\left\| \partial _{2} \Delta _k{\bar{g}}\right\| _{L^{2}_y} \left\| \Delta _{q} {\widetilde{h}}\right\| _{L^{2}} \\&\le C\sum _{| k-q | \le 2}2^{k-q}\left\| \nabla \Delta _k {\widetilde{f}}^{2}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _2\nabla \Delta _k {\widetilde{f}}^{2}\right\| _{L^2}^{\frac{1}{2}}\left\| \Delta _k{g}\right\| _{L^{2}} \left\| \partial _1\Delta _{q} {\widetilde{h}}\right\| _{L^{2}} \\&\le C2^{-2qs}b_q\left\| {\nabla f^2}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _2\nabla {f}^2\right\| _{L^2}^{\frac{1}{2}} \left\| {g}\right\| _{H^s} \left\| \partial _1h\right\| _{H^s}\\&\le C2^{-2qs}b_q\left\| {\partial _1f}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _1\partial _2 {f}\right\| _{L^2}^{\frac{1}{2}} \left\| {g}\right\| _{H^s} \left\| \partial _1h\right\| _{H^s}, \end{aligned} \end{aligned}$$

where we have used the relations \(\partial _2f^2=-\partial _1f^1\) and \(\nabla f^2=(\partial _1 f^2, \partial _2 f^2)=(\partial _1 f^2, -\partial _1f^1)\) in the last step.

Similar arguments apply to the terms \(Q_{123}\) and \(Q_{124}\); we can see that

$$\begin{aligned} \begin{aligned} Q_{123}&\le C2^{-2qs}b_q\left\| {\partial _1f}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _1\partial _2 {f}\right\| _{L^2}^{\frac{1}{2}} \left\| \partial _1{g}\right\| _{H^s} \left\| h\right\| _{H^s},\\ Q_{124}&\le C2^{-2qs}b_q\left\| {\partial _1f}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _1\partial _2 {f}\right\| _{L^2}^{\frac{1}{2}} \left\| \partial _1{g}\right\| _{H^s} \left\| h\right\| _{H^s}. \end{aligned} \end{aligned}$$

Gathering the estimates for \(Q_{11}\) and \(Q_{12}\), we get the bound for \(Q_{1}\) that

$$\begin{aligned} \begin{aligned} Q_{1}&\le C2^{-2qs}b_q\left\| {\partial _1f}\right\| _{L^2}\left\| \partial _1\partial _2 {f}\right\| _{L^2} (\left\| g\right\| _{H^s}^2+\left\| h\right\| _{H^s}^2) \\&\quad +C\varepsilon _02^{-2qs}b_q (\left\| \partial _1{g}\right\| _{H^s}^2+\left\| \partial _1{h}\right\| _{H^s}^2)\\&\quad -\int _{\Omega }{S}_{q}{\widetilde{f}}^2\partial _2\Delta _q g\cdot \Delta _q h\,\hbox {d}x\hbox {d}y. \end{aligned} \end{aligned}$$

Then, we estimate \(Q_2\). We first decompose \(Q_2\) as follows:

$$\begin{aligned} Q_2&=-\sum _{|k-q|\le 2}\int _{\Omega }\Delta _q(\Delta _kf^2 S_{k-1}\partial _2 g)\cdot \Delta _q h\,\hbox {d}x\hbox {d}y\\&=-\sum _{|k-q|\le 2}\int _{\Omega }\Delta _q(\Delta _k{\widetilde{f}}^2 S_{k-1}\partial _2 g)\cdot \Delta _q h\,\hbox {d}x\hbox {d}y\\&=-\sum _{|k-q|\le 2}\int _{\Omega }\Delta _q(\Delta _k{\widetilde{f}}^2 S_{k-1}\partial _2 {\bar{g}})\cdot \Delta _q {\bar{h}}\,\hbox {d}x\hbox {d}y\\&\quad -\sum _{|k-q|\le 2}\int _{\Omega }\Delta _q(\Delta _k{\widetilde{f}}^2 S_{k-1}\partial _2 {\bar{g}})\cdot \Delta _q {\widetilde{h}}\,\hbox {d}x\hbox {d}y\\&\quad -\sum _{|k-q|\le 2}\int _{\Omega }\Delta _q(\Delta _k{\widetilde{f}}^2 S_{k-1}\partial _2 {\widetilde{g}})\cdot \Delta _q {\bar{h}}\,\hbox {d}x\hbox {d}y\\&\quad -\sum _{|k-q|\le 2}\int _{\Omega }\Delta _q(\Delta _k{\widetilde{f}}^2 S_{k-1}\partial _2 {\widetilde{g}})\cdot \Delta _q {\widetilde{h}}\,\hbox {d}x\hbox {d}y\\&\triangleq Q_{21}+Q_{22}+Q_{23}+Q_{24}. \end{aligned}$$

Similar as \(Q_{111}\), we can check at once that \(Q_{21}=0\). Owing to anisotropic Hölder inequality, Bernstein inequality, interpolation (2.6) and Poincaré inequality (2.5), we write that

$$\begin{aligned} Q_{22}&=-\sum _{|k-q|\le 2}\int _{\Omega }\Delta _q(\Delta _k{\widetilde{f}}^2 S_{k-1}\partial _2 {\bar{g}})\cdot \Delta _q {\widetilde{h}}\,\hbox {d}x\hbox {d}y \\&\le C \sum _{| k-q | \le 2}\left\| \Delta _k {\widetilde{f}}^{2}\right\| _{L^{\infty }_yL^{2}_x}\left\| \partial _{2} S_{k-1}{\bar{g}}\right\| _{L^2_y} \left\| \Delta _{q} {\widetilde{h}}\right\| _{L^{2}} \\&\le C \sum _{| k-q | \le 2}\left\| \Delta _k {\widetilde{f}}^{2}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _2\Delta _k {\widetilde{f}}^{2}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _{2} S_{k-1}{\bar{g}}\right\| _{L^2_y} \left\| \Delta _{q} {\widetilde{h}}\right\| _{L^{2}} \\&\le C \sum _{| k-q | \le 2}\left\| \Delta _k {\widetilde{f}}^{2}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _1\Delta _k {\widetilde{f}}^{1}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _{2} S_{k-1}{\bar{g}}\right\| _{L^2_y} \left\| \partial _1\Delta _{q} {\widetilde{h}}\right\| _{L^{2}} \\&\le C2^{-2qs}b_q\left\| {\partial _2g}\right\| _{L^2} \left\| \partial _1{f}\right\| _{H^s} \left\| \partial _1h\right\| _{H^s}. \end{aligned}$$

Along the same way,

$$\begin{aligned} \begin{aligned} Q_{23}&=-\sum _{|k-q|\le 2}\int _{\Omega }\Delta _q(\Delta _k{\widetilde{f}}^2 S_{k-1}\partial _2 {\widetilde{g}})\cdot \Delta _q {\bar{h}}\,\hbox {d}x\hbox {d}y\\&\le C \sum _{| k-q | \le 2}\left\| \Delta _k {\widetilde{f}}^{2}\right\| _{L^{\infty }_yL^{2}_x}\left\| \partial _{2} S_{k-1}{\widetilde{g}}\right\| _{L^2} \left\| \Delta _{q} {\bar{h}}\right\| _{L^{2}_y} \\&\le C \sum _{| k-q | \le 2}\left\| \Delta _k {\widetilde{f}}^{2}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _2\Delta _k {\widetilde{f}}^{2}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _1\partial _{2} S_{k-1}{\widetilde{g}}\right\| _{L^2} \left\| \Delta _{q} {\bar{h}}\right\| _{L^{2}_y} \\&\le C \sum _{| k-q | \le 2}\left\| \partial _1\Delta _k {\widetilde{f}}^{2}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _1\Delta _k {\widetilde{f}}^{1}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _1\partial _{2} S_{k-1}{\widetilde{g}}\right\| _{L^2} \left\| \Delta _{q} {\bar{h}}\right\| _{L^{2}_y} \\&\le C2^{-2qs}b_q\left\| {\partial _1\partial _2g}\right\| _{L^2} \left\| \partial _1{f}\right\| _{H^s} \left\| h\right\| _{H^s}. \end{aligned} \end{aligned}$$

In the same manner, we can see that

$$\begin{aligned} \begin{aligned} Q_{24} \le C2^{-2qs}b_q\left\| {\partial _1\partial _2g}\right\| _{L^2} \left\| \partial _1{f}\right\| _{H^s} \left\| h\right\| _{H^s}. \end{aligned} \end{aligned}$$

Thus, we conclude that

$$\begin{aligned} \begin{aligned} Q_{2}&\le C2^{-2qs}b_q\left\| {\partial _1\partial _2g}\right\| _{L^2}^2\left\| h\right\| _{H^s}^2 + C\varepsilon _02^{-2qs}b_q\left\| \partial _1{f}\right\| _{H^s}^2\\&\quad +C2^{-2qs}b_q\left\| {\partial _2g}\right\| _{L^2} (\left\| \partial _1{f}\right\| _{H^s}^2+ \left\| \partial _1h\right\| _{H^s}^2). \end{aligned} \end{aligned}$$

Finally, we deal with \(Q_3\). Similar as \(Q_2\), we first divide it into the following four parts,

$$\begin{aligned} Q_3&=-\sum _{k\ge q-1}\sum _{|k-l|\le 1}\int _{\Omega }\Delta _q(\Delta _kf^2 \Delta _l\partial _2 g)\cdot \Delta _q h\,\hbox {d}x\hbox {d}y\\&=-\sum _{k\ge q-1}\sum _{|k-l|\le 1}\int _{\Omega }\Delta _q(\Delta _k{\widetilde{f}}^2 \Delta _l\partial _2 g)\cdot \Delta _q h\,\hbox {d}x\hbox {d}y\\&=-\sum _{k\ge q-1}\sum _{|k-l|\le 1}\int _{\Omega }\Delta _q(\Delta _k{\widetilde{f}}^2 \Delta _l\partial _2 {\bar{g}})\cdot \Delta _q {\bar{h}}\,\hbox {d}x\hbox {d}y\\&\quad -\sum _{k\ge q-1}\sum _{|k-l|\le 1}\int _{\Omega }\Delta _q(\Delta _k{\widetilde{f}}^2 \Delta _l\partial _2 {\bar{g}})\cdot \Delta _q {\widetilde{h}}\,\hbox {d}x\hbox {d}y\\&\quad -\sum _{k\ge q-1}\sum _{|k-l|\le 1}\int _{\Omega }\Delta _q(\Delta _k{\widetilde{f}}^2 \Delta _l\partial _2 {\widetilde{g}})\cdot \Delta _q {\bar{h}}\,\hbox {d}x\hbox {d}y\\&\quad -\sum _{k\ge q-1}\sum _{|k-l|\le 1}\int _{\Omega }\Delta _q(\Delta _k{\widetilde{f}}^2 \Delta _l\partial _2 {\widetilde{g}})\cdot \Delta _q {\widetilde{h}}\,\hbox {d}x\hbox {d}y\\&\triangleq Q_{31}+Q_{32}+Q_{33}+Q_{34}. \end{aligned}$$

A trivial verification shows that \(Q_{31}=0\). For \(Q_{32}\), we can handle it by

$$\begin{aligned} Q_{32}&=-\sum _{k\ge q-1}\sum _{|k-l|\le 1}\int _{\Omega }\Delta _q(\Delta _k{\widetilde{f}}^2 \Delta _l\partial _2 {\bar{g}})\cdot \Delta _q {\widetilde{h}}\,\hbox {d}x\hbox {d}y\\&\le C \sum _{k\ge q-1}\sum _{|k-l|\le 1}\left\| \Delta _k {\widetilde{f}}^{2}\right\| _{L^2}\left\| \partial _{2} \Delta _l{\bar{g}}\right\| _{L^2_y} \left\| \Delta _{q} {\widetilde{h}}\right\| _{L^\infty _yL^{2}_x} \\&\le C\sum _{k\ge q-1}\sum _{|k-l|\le 1}\left\| \Delta _k {\widetilde{f}}^{2}\right\| _{L^2}^{\frac{1}{2}}2^{-\frac{k}{2}}\left\| \nabla \Delta _k {\widetilde{f}}^{2}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _{2} \Delta _l{\bar{g}}\right\| _{L^{2}_y} 2^{\frac{q}{2}}\left\| \Delta _{q} {\widetilde{h}}\right\| _{L^{2}}\\&\le C\sum _{k\ge q-1}2^{\frac{q}{2}}2^{-\frac{k}{2}}\left\| \partial _1\Delta _k {\widetilde{f}}^{2}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _1\Delta _k {\widetilde{f}}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _{2} {g}\right\| _{L^{2}} \left\| \partial _1\Delta _{q} {\widetilde{h}}\right\| _{L^{2}} \\&\le C2^{-2qs}b_q\left\| \partial _2{g}\right\| _{L^2} \left\| \partial _{1} {f}\right\| _{H^s} \left\| \partial _1h\right\| _{H^s}, \end{aligned}$$

where we have used the relation \(\nabla {\widetilde{f}}^2=(\partial _1{\widetilde{f}}^2,\partial _2{\widetilde{f}}^2)=(\partial _1{\widetilde{f}}^2,-\partial _1{\widetilde{f}}^1)\).

\(Q_{33}\) can be bounded similarly,

$$\begin{aligned} Q_{33}= & {} -\sum _{k\ge q-1}\sum _{|k-l|\le 1}\int _{\Omega }\Delta _q(\Delta _k{\widetilde{f}}^2 \Delta _l\partial _2 {\widetilde{g}})\cdot \Delta _q {\bar{h}}\,\hbox {d}x\hbox {d}y\\\le & {} C \sum _{k\ge q-1}\sum _{|k-l|\le 1}\left\| \Delta _k {\widetilde{f}}^{2}\right\| _{L^2}\left\| \partial _{2} \Delta _l{\widetilde{g}}\right\| _{L^2} \left\| \Delta _{q} {\bar{h}}\right\| _{L^\infty _y} \\\le & {} C\sum _{k\ge q-1}\sum _{|k-l|\le 1}\left\| \Delta _k {\widetilde{f}}^{2}\right\| _{L^2}^{\frac{1}{2}}2^{-\frac{k}{2}}\left\| \nabla \Delta _k {\widetilde{f}}^{2}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _{2} \Delta _l{\widetilde{g}}\right\| _{L^{2}} 2^{\frac{q}{2}}\left\| \Delta _{q} {\bar{h}}\right\| _{L^{2}_y}\\\le & {} C\sum _{k\ge q-1}2^{\frac{q}{2}}2^{-\frac{k}{2}}\left\| \partial _1\Delta _k {\widetilde{f}}\right\| _{L^2}\left\| \partial _1\partial _{2} {\widetilde{g}}\right\| _{L^{2}} \left\| \Delta _{q} {\bar{h}}\right\| _{L^{2}_y} \\\le & {} C2^{-2qs}b_q\left\| \partial _1\partial _2{g}\right\| _{L^2} \left\| \partial _{1} {f}\right\| _{H^s} \left\| h\right\| _{H^s}. \end{aligned}$$

The same estimate remains valid for \(Q_{34}\) that

$$\begin{aligned} \begin{aligned} Q_{34}\le C2^{-2qs}b_q\left\| \partial _1\partial _2{g}\right\| _{L^2} \left\| \partial _{1} {f}\right\| _{H^s} \left\| h\right\| _{H^s}. \end{aligned} \end{aligned}$$

Using Young’s inequality, we can get the estimate for \(Q_3\) that

$$\begin{aligned} \begin{aligned} Q_{3}&\le C2^{-2qs}b_q\left\| \partial _1\partial _2{g}\right\| _{L^2}^2\left\| h\right\| _{H^s}^2+C\varepsilon _02^{-2qs}b_q\left\| \partial _{1} {f}\right\| _{H^s}^2\\&\quad +C2^{-2qs}b_q\left\| \partial _2{g}\right\| _{L^2} (\left\| \partial _{1} {f}\right\| _{H^s}^2+ \left\| \partial _1h\right\| _{H^s}^2). \end{aligned} \end{aligned}$$

Taking the estimates for \(Q_{1}-Q_{3}\), \(P_{1}-P_{3}\) into account, finally we can obtain

$$\begin{aligned} \begin{aligned}&-\int _{\Omega }\Delta _q(f\cdot \nabla g)\cdot \Delta _q h\,\hbox {d}x\hbox {d}y\\&\quad \le C2^{-2qs}b_q(\left\| \partial _1{f}\right\| _{L^2}\left\| \partial _1\partial _2 {f}\right\| _{L^2}+\left\| {f}\right\| _{L^2}^2\left\| \partial _1 {f}\right\| _{L^2}^2+\left\| {f}\right\| _{L^2}^2\left\| \partial _1\partial _2 {f}\right\| _{L^2}^2\\&\qquad +\left\| \partial _1{g}\right\| _{L^2}\left\| \partial _1\partial _2 {g}\right\| _{L^2}+\left\| {\partial _1\partial _2g}\right\| _{L^2}^2)\times (\left\| {f}\right\| _{H^s}^2+ \left\| g\right\| _{H^s}^2+\left\| h\right\| _{H^s}^2 ) \\&\qquad +2^{-2qs}b_q(\left\| {f}\right\| _{L^2}^{\frac{1}{2}}\left\| \partial _2 {f}\right\| _{L^2}^{\frac{1}{2}}+\left\| {\partial _2g}\right\| _{L^2})\times (\left\| \partial _1{f}\right\| _{H^s}^2+\left\| \partial _{1} {g}\right\| _{H^s}^2+ \left\| \partial _1h\right\| _{H^s}^2)\\&\qquad +C\varepsilon _02^{-2qs}b_q(\left\| \partial _1{f}\right\| _{H^s}^2+\left\| \partial _{1} {g}\right\| _{H^s}^2+ \left\| \partial _1 h\right\| _{H^s}^2)-\int _{\Omega }{S}_{q}{\widetilde{f}}^2\partial _2\Delta _q g\cdot \Delta _q h\,\hbox {d}x\hbox {d}y, \end{aligned} \end{aligned}$$

which completes the proof of this lemma. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paicu, M., Zhu, N. Global Regularity for the 2D MHD and Tropical Climate Model with Horizontal Dissipation. J Nonlinear Sci 31, 99 (2021). https://doi.org/10.1007/s00332-021-09759-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-021-09759-5

Keywords

Mathematics Subject Classification

Navigation