Skip to main content
Log in

A \({\bar{\partial }}\)-Steepest Descent Method for Oscillatory Riemann–Hilbert Problems

  • Research
  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We study the long-time asymptotic behavior of oscillatory Riemann–Hilbert problems (RHPs) arising in the mKdV hierarchy (reducing from the AKNS hierarchy). Our analysis is based on the idea of \({\bar{\partial }}\)-steepest descent. We consider RHPs generated from the inverse scattering transform of the AKNS hierarchy with weighted Sobolev initial data. The asymptotic formula for three regions of the spatial- and temporal-dependent variables is presented in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Due to Zhou’s theorem (Zhou 1998), R(z) belongs to \(H^{1,n-1}(dz)\), then the time evolving reflection coefficient \(R(z)e^{\pm 2it\theta }\) will stay in \(H^{1,1}(\mathrm{d}z)\) since the degree of \(\theta \) is n.

  2. This guarantees the time evolving of the initial data will stay in \(H^{1,1}\). Roughly speaking, from Zhou’s work, we know \(q(x,0)\in H^{n-1,1}\subset H^{1,1}\) is mapped to \(R(z)\in H^{1,n-1}\). Time evolution of the reflection coefficient gives \(R(z)e^{itz^n}\), which belongs to \(H^{1,1}\) due to the fact that \(R(z)\in H^{1,n-1}\), and then the inverse scattering leads to \(q(x,t)\in H^{1,n-1}\).

  3. A good summary of this method can be found in Deift et al. (1993).

  4. Here, \(R(z)\in C^1({\mathbb {R}})\) means R(z) is a function defined on the real line with continuous first-order derivative. While since O(z) is a matrix-valued function defined on the complex plan, so \(O(z)\in C^1({\mathbb {R}}^2)\) means all the entries have continuous first-order derivatives with respect to z and \({\bar{z}}\).

  5. In the middle steps, c means a generic positive constant.

  6. The existence and uniqueness will be discussed later.

  7. Here the \(L^\infty (\Sigma )\) norm \(\Vert f(z)\Vert _{\infty }\) means \(\sup _{z\in \Sigma }|f(z)|\), where \(|f(z)|=\max _{i,j=1,2,z\in \Sigma }|f_{i,j}(z)|\).

  8. \((w^-,w^+)\) will be called the factorization data for the jump matrix.

  9. Here, \(w=w^++w^-\).

  10. The fact is nontrivial, but the derivation is in Deift and Zhou (1993), see equation (4.47)

  11. Compare with formulas (4.27) in Deift and Zhou (1993), we only differ by a sign, but since the sign does not affect the parabolic-cylinder equation, we can pass the sign to (47), where we have borrowed the result (4.45) in Deift and Zhou (1993).

  12. The first description of this model RHP was presented by Its Its (1981). Later examples of the model can be find in Deift and Zhou (1993), Deift and Zhou (2003), Dieng and McLaughlin (2008), Do (2010), Varzugin (1996), Ma (2019) and Ma (2020).

  13. Surprisingly, the dependence on \(p_j,q_j\) will disappear.

  14. Such a choice of \(\alpha \) guarantees that the new contours will stay within the regions where the corresponding exponential term will decay (considering Fig. 7).

  15. As for the existence of the RHP \(m^{[3]}\), which is not completely trivial due to the fact that solutions to the Painlevé II equations have poles, we refer the readers to the book (Fokas et al. 2006) for the details

References

  • Ablowitz, M.A., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  • Ablowitz, M.J., Segur, H.: Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38, 1103–1106 (1977)

    Article  MathSciNet  Google Scholar 

  • Beals, R., Coifman, R.R.: Scattering and inverse scattering for first order systems. Commun. Pure Appl. Math. 37(1), 39–90 (1984)

    Article  MathSciNet  Google Scholar 

  • Beals, R., Deift, P., Tomei, C.: Direct and Inverse Scattering on the Line. American Mathematical Society, Providence (1988)

    Book  Google Scholar 

  • Borghese, M., Jenkins, R., McLaughlin, K.D.-R.: Long time asymptotic behavior of the focusing nonlinear Schrödinger equation. Annales de l’Institut Henri Poincaré C, Analyse non linéaire 35(4), 887–920 (2018)

  • Cafasso, M., Claeys, T., Girotti, M.: Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes. Int. Math. Res. Not. 2021(4), 2437–2478 (2019)

    Article  Google Scholar 

  • Chen, G., Liu, J.: Long-time asymptotics of the modified KdV equation in weighted Sobolev spaces (2019). arXiv: 1903.03855

  • Chen, G., Liu, J., Lu, B.: Long-time asymptotics and stability for the sine-Gordon equation (2020). arXiv: 2009.04260

  • Claeys, T., Krasovsky, I., Its, A.: Higher-order analogues of the Tracy–Widom distribution and the Painlevé II hierarchy. Commun. Pure Appl. Math. 63(3), 362–412 (2010)

    MATH  Google Scholar 

  • Clarkson, P., Joshi, N., Mazzocco, M.: The Lax pair for the mKdV hierarchy. Théories Asymptotiques Et équations De Painlevé, Sémin. Congr 14, 53–64 (2006)

    MathSciNet  MATH  Google Scholar 

  • Clarkson, P.A., Joshi, N., Pickering, A.: Bäcklund transformations for the second Painlevé hierarchy: a modified truncation approach. Inverse Probl 15(1), 175–187 (1999)

    Article  Google Scholar 

  • Deift, P., Kriecherbauer, T., McLaughlin, K.-R.: New results on the equilibrium measure for logarithmic potentials in the presence of an external field. J. Approx. Theory 95(3), 388–475 (1998)

    Article  MathSciNet  Google Scholar 

  • Deift, P., Kriecherbauer, T., McLaughlin, K.T.-R., Venakides, S., Zhou, X.: Strong asymptotics of orthogonal polynomials with respect to exponential weights. Commun. Pure Appl. Math. 52(12), 1491–1552 (1999)

    Article  MathSciNet  Google Scholar 

  • Deift, P., Zhou, X.: A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation. Ann. Math. 137(2), 295–368 (1993)

    Article  MathSciNet  Google Scholar 

  • Deift, P., Zhou, X.: Long-time asymptotics for solutions of the NLS equation with initial data in a weighted Sobolev space. Commun. Pure Appl. Math. 56(8), 1029–1077 (2003)

    Article  MathSciNet  Google Scholar 

  • Deift, P.A., Its, A.R., Zhou, X.: Long-Time Asymptotics for Integrable Nonlinear Wave Equations. Springer Series in Nonlinear Dynamics Important Developments in Soliton Theory, pp. 181–204. Springer, Berlin (1993)

    MATH  Google Scholar 

  • Dieng, M., McLaughlin, K.D.T.R.: Long-time asymptotics for the NLS equation via dbar methods (2008). arXiv:0805.2807

  • Dieng, M., McLaughlin, K.D.T.R., Miller, P.D.: Dispersive asymptotics for linear and integrable equations by the \(\overline{\partial }\) steepest descent method (2018). arXiv: 1809.01222

  • Do, Y.: A nonlinear stationary phase method for oscillatory Riemann–Hilbert problems. Int. Math. Res. Not. 2011(12), 2650–2765 (2010)

    MathSciNet  MATH  Google Scholar 

  • Fokas, A.S., Its, A.R., Novokshenov, V.Y., Kapaev, A.A., Kapaev, A.I., Novokshenov, V.Y.: Painlevé Transcendents: The Riemann–Hilbert Approach, vol. 128. American Mathematical Society, Providence (2006)

    Book  Google Scholar 

  • Giavedoni, P.: Long-time asymptotic analysis of the Korteweg–de Vries equation via the dbar steepest descent method: the soliton region. Nonlinearity 30(3), 1165 (2017)

    Article  MathSciNet  Google Scholar 

  • Its, A.R.: Asymptotics of solutions of the nonlinear schrodinger equation and isomonodromic deformations of systems of linear differential equations. Doklady Akademii Nauk 261(1), 14–18 (1981)

    MathSciNet  Google Scholar 

  • Liu, N., Chen, M., Guo, B.: Long-time asymptotic behavior of the fifth-order modified KdV equation in low regularity spaces (2019). arXiv:1912.05342

  • Ma, W.X.: A soliton hierarchy associated with \(so(3,{\mathbb{R}})\). Appl. Math. Comput. 220, 117–122 (2013)

    MathSciNet  Google Scholar 

  • Ma, W.X.: Long-time asymptotics of a three-component coupled mKdV system. Mathematics 7(7), 573 (2019)

    Article  Google Scholar 

  • Ma, W.X.: Long-time asymptotics of a three-component coupled nonlinear Schrödinger system. J. Geom. Phys. 153, 103669 (2020)

    Article  MathSciNet  Google Scholar 

  • McLaughlin, K.T.R., Miller, P.D.: The dbar steepest descent method and the asymptotic behavior of polynomials orthogonal on the unit circle with fixed and exponentially varying nonanalytic weights (2004). arXiv: math/040648

  • Miller, P.D., Sheng, Y.: Rational solutions of the Painlevé-II equation revisited. Symmetry Integr. Geom. Methods Appl. 13, 065 (2017)

    MATH  Google Scholar 

  • Tu, G.: The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems. J. Math. Phys. 30(2), 330–338 (1989)

    Article  MathSciNet  Google Scholar 

  • Varzugin, G.: Asymptotics of oscillatory Riemann–Hilbert problems. J. Math. Phys. 37, 5869–5892 (1996)

    Article  MathSciNet  Google Scholar 

  • Zhou, X.: \(L^2\)-Sobolev space bijectivity of the scattering and inverse scattering transforms. Commun. Pure Appl. Math. 51(7), 697–731 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fudong Wang or Wen-Xiu Ma.

Additional information

Communicated by Peter Miller.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Ma, WX. A \({\bar{\partial }}\)-Steepest Descent Method for Oscillatory Riemann–Hilbert Problems. J Nonlinear Sci 32, 10 (2022). https://doi.org/10.1007/s00332-021-09765-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-021-09765-7

Keywords

Mathematics Subject Classification

Navigation