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Pattern formation in higher-order lumps of the Kadomtsev-Petviashvili I equation at large time
is analytically studied. For a broad class of these higher-order lumps, we show that two types of
solution patterns appear at large time. The first type of patterns comprise fundamental lumps
arranged in triangular shapes, which are described analytically by root structures of the Yablonskii–
Vorob’ev polynomials. As time evolves from large negative to large positive, this triangular pattern
reverses itself along the x-direction. The second type of patterns comprise fundamental lumps
arranged in non-triangular shapes in the outer region, which are described analytically by nonzero-
root structures of the Wronskian–Hermit polynomials, together with possible fundamental lumps
arranged in triangular shapes in the inner region, which are described analytically by root structures
of the Yablonskii–Vorob’ev polynomials. When time evolves from large negative to large positive,
the non-triangular pattern in the outer region switches its x and y directions, while the triangular
pattern in the inner region, if it arises, reverses its direction along the x-axis. Our predicted patterns
at large time are compared to true solutions, and excellent agreement is observed.

I. INTRODUCTION

The Kadomtsev-Petviashvili (KP) equation was derived as a two-dimensional generalization of the Korteweg-de
Vries equation for the evolution of weakly nonlinear plasma waves and shallow water waves [1, 2]. In the water wave
context, this equation reads [2] [

2ft + 3ffx + (
1

3
− T )fxxx

]
x

+ fyy = 0, (1)

where the spatial coordinate x is relative to a certain moving frame, f(x, y, t) represents the water surface elevation,
and T is a dimensionless surface tension parameter. If the surface tension is large, i.e., T > 1/3, which corresponds
to very thin sheets of water, this equation is called KP-I. In this case, rescaling variables by

y =
ŷ√

3(T − 1
3 )
, t = − 2t̂

T − 1
3

, f = −2(T − 1

3
)u (2)

and dropping the hats, this equation becomes

(ut + 6uux + uxxx)x − 3uyy = 0. (3)

Note that the KP-I equation also arises in other branches of physics, such as nonlinear optics [3] and Bose-Einstein
condensates [4].

The KP-I equation (3) is solvable by the inverse scattering transform [5, 6]. It admits stable fundamental lump
solutions that are bounded rational functions decaying in all spatial directions [7–9]. These lumps are the counterparts
of solitons in the Korteweg-de Vries equation. In the water wave context, these lumps physically correspond to dips
on the water surface due to the negative sign in the f scaling above. The KP-I equation also admits a broad class of
rational solutions that describe the interactions of these lumps. If individual lumps have distinct asymptotic velocities,
then they would pass through each other without change in velocities or phases [8, 9]. But if they have the same
asymptotic velocities, they would undergo novel anomalous scattering, where the lumps would separate from each
other in new spatial directions that are very different from their original incoming directions [10–12]. In this article, we
are concerned with this latter type of solutions, which we will call higher-order lumps (they are also called multi-pole
lumps in the literature [11, 12]).

Analytical expressions of higher-order lumps have been derived by a wide variety of methods before [10–21]. Gor-
shkov, et al. [10] reported a second-order lump solution that describes the interaction and anomalous scattering of
two lumps. Ablowitz et al. [11, 12] derived higher-order lumps by the inverse scattering transform and Darboux
transformation, and reproduced the solution in [10] as a special case. They also showed that when |t| → ∞, these
higher-order lumps generically split into a certain number of fundamental lumps, whose relative spatial separations
grow in proportion to |t|q, where 1

3 ≤ q ≤
1
2 . In addition, some new lump patterns such as squares at large time were
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reported. Pelinovsky and Stepanyants [13] reported a class of higher-order lump solutions that are stationary in a
moving frame. Pelinovsky [14] studied rational solutions of the KP hierarchy and linked them to the dynamics of the
Calogero–Moser hierarchy (but his Wronskian-form solutions for KP-I were not made real-valued and thus were not
physical solutions). Dubard et al. [15, 16] constructed a class of higher-order KP-I lump solutions from higher-order
rogue waves of the nonlinear Schrödinger equation, and graphically showed that such second- and third-order lump
solutions split into triangles of fundamental lumps when |t| → ∞. Chen et al. [17] considered a certain class of higher-
order lump solutions, and graphically observed that these solutions evolve from a vertical line of fundamental lumps
to a horizontal line of fundamental lumps in the (x, y) plane when time goes from negative infinity to infinity. They
also predicted the locations of fundamental lumps inside the solution complex at t = 0 by roots of certain polynomial
equations; but such polynomial equations were not justified. Clarkson and Dowie [18] derived a second-order lump
solution which incorporates the ones in [10, 15, 16] as special cases. Gaillard [19] studied a special class of higher-order
lump solutions and reported lump patterns such as triangles and pentagons at t = 0 when some internal parameters
in such solutions get large. Chang [20] studied the large-time asymptotics of higher-order lumps and showed that, for
some special solutions, all lumps are located on a vertical line in the (x, y) plane at large negative time but rotate
to a horizontal line at large positive time. Ma [21] derived a fundamental lump solution which contains more free
parameters; but that solution can be made equivalent to the original lump solution as reported in [8, 9]. We note by
passing that non-rational KP-I solutions in the form of a linear periodic chain of lumps, and those that describe the
resonant collision between lumps and line solitons, have also been reported recently [22, 23].

In this article, we study pattern formation in higher-order lumps of the KP-I equation (3). This work is motivated
by our earlier work on pattern formation of rogue waves in various integrable systems [24, 25], where we showed
that universal rogue patterns appear when one of the internal parameters in rogue waves gets large, and those rogue
patterns are analytically described by root structures of the Yablonskii–Vorob’ev polynomial hierarchy. For higher-
order lumps of the KP-I equation, however, we will focus on their pattern formation at large time rather than at large
parameters. In particular, we are interested to know how their patterns at large positive time relate to their patterns
at large negative time. For a broad class of higher-order lump solutions, we will show that two types of lump patterns
appear at large time. The first type of patterns comprise fundamental lumps arranged in triangular shapes, which
are described analytically by root structures of the Yablonskii–Vorob’ev polynomials. As time evolves from large
negative to large positive, this triangular pattern reverses itself along the x-direction. The second type of patterns
comprise fundamental lumps arranged in non-triangular shapes in the outer region, which are described analytically
by nonzero-root structures of the Wronskian–Hermit polynomials, together with possible fundamental lumps arranged
in triangular shapes in the inner region, which are described analytically by root structures of the Yablonskii–Vorob’ev
polynomials. When time evolves from large negative to large positive, the non-triangular pattern in the outer region
switches its x and y directions, plus some rescaling along each direction, while the triangular pattern in the inner
region, if it arises, reverses its direction along the x-axis. These dramatic pattern transformations with the elapse of
time are fascinating. We have also compared these predicted patterns with true solutions, and excellent agreement is
observed.

This paper is organized as follows. In Sec. 2, we present general higher-order lump solutions in the KP-I equation
through Schur polynomials, and introduce Yablonskii–Vorob’ev and Wronskian–Hermit polynomials. In Sec. 3, we
present our main analytical results on solution patterns at large time, and explain how these patterns transform from
large negative time to large positive time. In Sec. 4, we illustrate our pattern predictions and compare them with true
solutions. In Sec. 5, we provide proofs for our analytical results in Sec. 3. The last section summarizes our results,
together with some discussions. In the Appendix, a brief derivation of our general higher-order lump solutions in
Sec. 2 is given.

II. PRELIMINARIES

The KP equation (3) admits three important invariances. The first one is that it is invariant when (x, t)→ (−x,−t).
This invariance is important because it shows that KP-solution patterns are reversible in time (albeit with a sign
switch in x). In earlier works [17, 20], the authors showed that certain higher-order KP lumps evolve from a vertical
line of fundamental lumps to a horizontal line of fundamental lumps in the (x, y) plane when time goes from negative
infinity to infinity. The above invariance indicates that a reverse pattern transformation could also occur, i.e., those
higher-order KP lumps can also evolve from a horizontal line to a vertical line when time goes from negative infinity
to infinity.

The second invariance of the KP equation (3) is the Galilean invariance [17, 26], i.e., when

(x, y, t)→ (x+ 2ky + 12k2t, y + 12kt, t), (4)

the KP solution u(x, y, t) remains a solution. Here, k is an arbitrary real constant. This invariance indicates that, if the
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overall solution complex has a y-direction velocity 12k, then we can apply this invariance to remove that y-direction
velocity. In doing so, the solution pattern in the (x, y) plane would change as well through a linear transformation of
shear type. This Galilean invariance is important, because it allows us to remove the overall y-direction velocity in a
higher-order lump solution. More will be said on it later in this section.

The third invariance of the KP equation is scaling invariance, i.e., when

(x, y, t, u)→ (αx, α2y, α3t, α−2u), (5)

the KP equation remains invariant. Here, α is any nonzero real constant. This invariance is useful since, when
combined with the Galilean invariance above, it allows us to normalize the spectral parameter in the KP-lump
solutions to be unity without any loss of generality. This we will do in Sec. 3.

A. Explicit expressions of higher-order lumps

In this paper, we consider pattern formation of higher-order lumps in the KP-I equation (3). General higher-order
lump solutions have been derived by Ablowitz et al. [12] through Darboux transformation. Their solutions were given
through determinants whose matrix elements involve differential operators with respect to the spectral parameter.
For our analysis, those solution expressions are not explicit enough. Thus, we have derived these higher-order lumps
again by the bilinear method. To present our solutions, we first introduce elementary Schur polynomials Sk(x) with
x = (x1, x2, . . .), which are defined by the generating function

∞∑
n=0

Sn(x)εn = exp

( ∞∑
n=1

xnε
n

)
. (6)

More explicitly,

S0(x) = 1, S1(x) = x1, S2(x) =
1

2
x2

1 + x2, · · · , Sn(x) =
∑

l1+2l2+···+mlm=n

 m∏
j=1

x
lj
j

lj !

 .

Under these notations, our general higher-order KP-I lumps are given by the following theorem.

Theorem 1 General higher-order lumps of the KP-I equation (3) are

uΛ(x, y, t) = 2∂2
x lnσ, (7)

where

σ(x, y, t) = det
1≤i,j≤N

(mij) , (8)

mi,j =

min(ni,nj)∑
ν=0

[
|p|2

(p+ p∗)2

]ν
Sni−ν(x+ + νs + a i)Snj−ν [(x+)∗ + νs∗ + a∗j ], (9)

N is an arbitrary positive integer, Λ ≡ (n1, n2, · · ·nN ) is a vector of arbitrary positive integers, p is
an arbitrary non-imaginary complex number, the asterisk ‘*’ represents complex conjugation, the vector
x+ =

(
x+

1 , x
+
2 , · · ·

)
is defined by

x+
k = p

1

k!
x+ p2 2k

k!
iy + p3 3k

k!
(−4)t, (10)

the vector s = (s1, s2, · · · ) is defined through the expansion

ln

[
1

κ
(p+ p∗)

(
eκ − 1

peκ + p∗

)]
=

∞∑
j=1

sj κ
j , (11)

vectors ai are

a i = (ai,1, ai,2, · · · , ai,ni
) , (12)

and ai,j (1 ≤ i ≤ N, 1 ≤ j ≤ ni) are free complex constants.
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The proof of this theorem will be given in the Appendix.
Remark 1. In this theorem, positive integers (n1, n2, · · ·nN ) do not have to be distinct if their corresponding

vectors a i are different. In such cases, by first rewriting the σ determinant (8) as a larger determinant as was
done in Ref. [27], then linking Schur polynomials with different a i vectors in that larger determinant by relations
similar to Eq. (167) in Ref. [28], and finally applying row operations and parameter redefinitions to the resulting
determinant, we can show that this σ determinant (8) with non-distinct integers (n1, n2, · · ·nN ) can be reduced to
one where the new integers (n̂1, n̂2, · · · n̂N ) become distinct. Thus, in this paper, we will require positive integers
(n1, n2, · · ·nN ) to be distinct without loss of generality. In this case, we will also arrange them in the ascending order,
i.e., n1 < n2 < · · · < nN .

Remark 2. The higher-order lumps in Theorem 1 contain free complex parameters p and a i (1 ≤ i ≤ N), totaling
1 + n1 + n2 + · · ·nN . However, using techniques similar to that outlined in Remark 1, we can show that N(N − 1)/2
of those parameters in {a i} can be eliminated. Thus, the number of free complex parameters in these higher-order
lumps can be reduced to 1 + ρ, where

ρ =

N∑
i=1

ni −
N(N − 1)

2
. (13)

This number of free parameters matches that given in Ref. [12] for solutions produced by Darboux transformation. In
fact, from the derivation of Theorem 1 in the Appendix, we can see that our higher-order lumps given in this theorem
by the bilinear method are equivalent to those derived in [12] by Darboux transformation, except that our expressions
are more explicit.

Remark 3. The fundamental lump can be derived by taking N = 1 and n1 = 1 in Eq. (8). Through a shift of the
(x, y) axes, we can normalize a1,1 = 0. Then, the resulting σ1(x, y, t) function can be reduced to

σ1 =
∣∣x+ 2ipy − 12p2t

∣∣2 +
1

(p+ p∗)2

=
[
x− 2piy − 12(p2

r − p2
i )t
]2

+ [2pr(y − 12pi t)]
2

+
1

4p2
r

, (14)

where pr and pi are the real and imaginary parts of the spectral parameter p. The corresponding solution u1(x, y, t)
through Eq. (7) moves at x-direction velocity of 12|p|2 and y-direction velocity of 12pi. By applying the Galilean
invariance (4) with k = pi, we can remove the y-direction velocity 12pi and reduce σ1(x, y, t) to

σ1 =
(
x− 12p2

rt
)2

+ (2pry)
2

+
1

4p2
r

. (15)

This means that, under Galilean invariance, we can take p in the original fundamental lump to be purely real without
loss of generality. Then, by utilizing the scaling invariance (5) with α = pr, we can further normalize pr in the above
σ1 to be unity. The final simplified fundamental-lump expression is

u1(x, y, t) = 2∂2
x ln

[
(x− 12t)

2
+ 4y2 +

1

4

]
. (16)

This is a moving single lump with peak amplitude 16, which is attained at the spatial location of (x, y) = (12t, 0).
Remark 4. In the general higher-order lump of Theorem 1, the whole solution complex moves at x-direction

velocity 12|p|2 and y-direction velocity 12pi, plus some possible slower motion relative to that moving frame. In this
general case, we can also use the Galilean invariance (4) to remove the y-direction velocity 12pi of the complex, i.e.,
pi can be made to be zero. In addition, we can use the scaling invariance (5) to normalize pr to unity. Thus, without
any loss of generality, we can choose p in the higher-order lump solution of Theorem 1 to be equal to one. For this
reason, we will set p = 1 in the remainder of this paper.

Remark 5. In [13], a class of higher-order lump solutions that are stationary in a moving frame was reported.
Those special solutions satisfy the Boussinesq equation. Thus, they are special cases of Boussinesq rogue waves [29].
Those stationary higher-order lumps are also special cases of our solutions in Theorem 1 when the index vector
(n1, n2, · · ·nN ) and internal parameters {a i} are properly chosen. Indeed, rational solutions in Theorem 1 would be
stationary if the σ function in (8) satisfies the dimension-reduction condition σt − V σx = 0, where V is the velocity
of the moving frame along the x-direction. In the bilinear derivation of Boussinesq rogue waves [29], one needs to
solve the bilinear τ equation of KP-I, together with this τ ’s dimension reduction condition τx3

− 3τx1
= Cτ , where

x1 is proportional to x, x3 proportional to t, and C is a constant. Since this τ function turns out to be equal to
σ multiplying an exponential of a linear function of x and t [29], we see that τ ’s dimension reduction condition is
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equivalent to σ’s dimension reduction condition after proper variable scalings. This means that constraints from
τ ’s dimension-reduction condition can be borrowed over and imposed on solutions of Theorem 1 in order to obtain
stationary higher-order KP lumps. One of such constraints is on the index vector (n1, n2, · · ·nN ), where ni = 2i− 1
must be chosen [29]. In addition, internal parameters {a i} also need to be constrained. For a different choice of
differential operators than those in Eq. (101) of the Appendix, this parameter constraint was derived in [29]. For the
present choice of differential operators in Eq. (101), this parameter constraint would be more complex. In this case,
such a parameter constraint was worked out in [30] for another integrable system under a different parameterization.

B. Yablonskii–Vorob’ev polynomials and Wronskian-Hermit polynomials

We will show in later text that patterns of certain higher-order lump solutions at large time are described by root
structures of the Yablonskii–Vorob’ev polynomials and Wronskian-Hermit polynomials. Thus, these polynomials and
their root structures will be introduced first.

1. Yablonskii–Vorob’ev polynomials and their root structures

Yablonskii-Vorob’ev polynomials arose in rational solutions of the second Painlevé equation (PII) [31, 32]. Later, a
determinant expression for these polynomials was found in [33]. Let pk(z) be polynomials defined by

∞∑
k=0

pk(z)εk = exp

(
zε− 4

3
ε3
)
. (17)

Then, Yablonskii-Vorob’ev polynomials QN (z) are given by the N ×N determinant [33]

QN (z) = cN

∣∣∣∣∣∣∣∣∣
p1(z) p0(z) · · · p2−N (z)
p3(z) p2(z) · · · p4−N (z)

...
...

...
...

p2N−1(z) p2N−2(z) · · · pN (z)

∣∣∣∣∣∣∣∣∣ , (18)

where cN =
∏N
j=1(2j − 1)!!, and pk(z) ≡ 0 if k < 0. This determinant is a Wronskian since one can see from

Eq. (17) that p′k+1(z) = pk(z), where the prime represents differentiation. Yablonskii-Vorob’ev polynomials are monic
polynomials with integer coefficients [34], and the first four of them are

Q1(z) = z,

Q2(z) = z3 + 4,

Q3(z) = z6 + 20z3 − 80,

Q4(z) = z(z9 + 60z6 + 11200).

Root structures of these polynomials have been studied in [34–38], and the following facts are known.

1. The degree of the QN (z) polynomial is N(N + 1)/2, which can be easily seen from Eq. (18).

2. All roots of QN (z) are simple [35]. Thus, QN (z) has N(N + 1)/2 simple roots.

3. Zero is a root of QN (z) if and only if N ≡ 1 mod 3 [36].

4. QN (z) can be factorized as QN (z) = zmf(ζ), where m = 1 when N ≡ 1 mod 3 and m = 0 otherwise, ζ ≡ z3,
and f(ζ) is a polynomial of ζ with integer coefficients and a nonzero constant term [34]. This factorization
shows that the root structure of QN (z) is invariant under 120◦-angle rotation in the complex z plane.

5. Roots of QN (z) exhibit a triangular pattern in the complex plane for all N ≥ 2 [34, 37, 38]. This fact is not
surprising given the 120◦ rotational symmetry of QN (z)’s root structure mentioned above.

6. Roots of QN (z) are also symmetric with respect to the real-z axis, since the coefficients of QN (z) are real and
thus complex roots appear in conjugate pairs. This conjugate symmetry, together with the 120◦ rotational
symmetry, implies that one vertex of the triangular root structure of QN (z) is on the real-z axis.

Due to importance of these root structures to our work, we reproduce some of them in Fig. 1 for 2 ≤ N ≤ 5.
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FIG. 1: Root structures of Yablonskii-Vorob’ev polynomials QN (z) in the complex z plane for 2 ≤ N ≤ 5.

2. Wronskian-Hermit polynomials and their root structures

Next, we introduce Wronskian-Hermit polynomials. Let qk(z) be polynomials defined by

∞∑
k=0

qk(z)εk = exp
(
zε+ ε2

)
. (19)

These qk(z) polynomials are related to Hermit polynomials through simple variable scalings. Then, for any positive
integer N and index vector Λ = (n1, n2, . . . , nN ), where {ni} are positive and distinct integers in ascending order,
i.e., n1 < n2 < · · · < nN , the Wronskian-Hermite polynomial WΛ(z) is defined as the Wronskian of qk(z) polynomials

WΛ(z) = Wron [qn1
(z), qn2

(z), . . . , qnN
(z)] , (20)

or equivalently,

WΛ(z) =

∣∣∣∣∣∣∣∣∣
qn1

(z) qn1−1(z) · · · qn1−N+1(z)
qn2

(z) qn2−1(z) · · · qn2−N+1(z)
...

...
...

...
qnN

(z) qnN−1(z) · · · qnN−N+1(z)

∣∣∣∣∣∣∣∣∣ , (21)

since we can see q′k+1(z) = qk(z) from the definition (19). In the above determinant, qk(z) ≡ 0 when k < 0.
Regarding root structures of Wronskian-Hermite polynomials WΛ(z), we have the following facts.

1. The degree of the polynomial WΛ(z) is equal to ρ, where ρ is given in Eq. (13). This fact can be seen from the
definition (21).

2. The multiplicity of the zero root in WΛ(z) is equal to d(d+ 1)/2, where

d = kodd − keven, (22)

and kodd, keven are the numbers of odd and even elements in the index vector (n1, n2, . . . , nN ) respectively. This
fact was mentioned in [39, 40] and proved in [41]. If d(d+ 1)/2 = 0, i.e., d = 0 or −1, then zero is not a root of
WΛ(z).

3. The number of nonzero roots (counting multiplicity) in WΛ(z), which we denote as NW , is

NW = ρ− d(d+ 1)

2
. (23)

4. The polynomial WΛ(z) can be factored as WΛ(z) = zd(d+1)/2f(ζ), where d is given in Eq. (22), ζ ≡ z2, and f(ζ)
is a polynomial of ζ with real coefficients and a nonzero constant term [41].
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5. If z0 is a root of WΛ(z), so are −z0, z
∗
0 and −z∗0 . This quartet root symmetry can be seen from the above

factorization of WΛ(z) and the fact that the coefficients of the polynomial WΛ(z) are real. As a consequence of
this quartet symmetry, the root structure of WΛ(z) is non-triangular. This is a big difference from Yablonskii-
Vorob’ev polynomials, which feature triangular root structures.

In addition, we have the following lemma.

Lemma 1. The Wronskian-Hermite polynomial WΛ(z) has only zero roots, i.e., NW = 0, if and only if
(n1, n2, . . . , nN ) = (1, 3, 5, · · · , 2N − 1).

Proof. Since kodd + keven = N , we have from Eq. (23) that

NW =

N∑
i=1

ni − k2
odd − keven(keven − 1). (24)

Since {ni} are distinct positive integers, their smallest possible values, after reordering, are {1, 3, · · · 2kodd −
1, 2, 4, · · · , 2keven}. Thus,

N∑
i=1

ni ≥ [1 + 3 + · · · (2kodd − 1)] + (2 + 4 + · · ·+ 2keven) = k2
odd + keven(keven + 1). (25)

Then,

NW ≥ 2keven. (26)

For WΛ(z) to have only zero roots, NW must be zero; so keven = 0, i.e., all numbers in {ni} must be odd. In addition,
for the equality in (26) to hold, all these odd and distinct numbers must be the lowest, i.e., (n1, n2, . . . , nN ) =
(1, 3, 5, · · · , 2N − 1). This completes the proof.

This lemma tells us that, as long as Λ 6= (1, 3, 5, · · · , 2N − 1), the Wronskian-Hermit polynomial WΛ(z) would
always have nonzero roots. This result is important to us, as we will show in later text that the presence or absence
of nonzero roots in WΛ(z) will have direct consequences on the solution patterns of higher-order lumps.

On roots of Wronskian-Hermite polynomials, beside the above facts, the following conjecture has also been proposed.

Conjecture 1 [39]. All roots of every Wronskian-Hermite polynomial WΛ(z) are simple, except possibly
the zero root.

This conjecture will be useful, as we will show in later text that the multiplicity of a root in the Wronskian-Hermite
polynomial has direct implications on the wave structure of higher-order lumps. Based on this conjecture, WΛ(z)
would have NW nonzero simple roots, where NW is given in Eq. (23). We have checked this conjecture on a number
of examples of WΛ(z), and found it to always hold.

To illustrate root structures of Wronskian-Hermite polynomials, we choose two index vectors

Λ1 = (2, 3, 4, 5), Λ2 = (3, 4, 5, 7, 9). (27)

The corresponding polynomials are found to be

WΛ1
(z) =

z8 − 16z6 + 120z4 + 720

2880
, (28)

WΛ2(z) = −
z6
(
z12 − 12z10 + 180z8 + 672z6 − 7056z4 − 181440z2 − 1270080

)
2743372800

. (29)

Root structures of these two polynomials are plotted in Fig. 2. It is seen that for the first polynomial, its root
structure is rectangular and does not contain zero. For the second polynomial, its root structure is quasi-rectangular
with a zero root (of multiplicity six) in the center. All nonzero roots in these two polynomials are simple, which is
consistent with the earlier conjecture.
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FIG. 2: Root structures of Wronskian-Hermite polynomials WΛ1(z) (left) and WΛ2(z) (right) in the complex plane z, where
index vectors Λ1 and Λ2 are given in Eq. (27).

III. PATTERNS OF HIGHER-ORDER LUMPS AT LARGE TIMES

In this section, we study patterns of higher-order lumps at large times. In this study, we will set the spectral
parameter p = 1 without loss of generality (see Remark 4 in the previous section). In this case, the constant factor in
Eq. (9) simplifies to 1/4ν . In addition, the definition (11) of the s vector reduces to

ln

[
2

κ
tanh

(κ
2

)]
=

∞∑
k=1

sk κ
k, (30)

which is identical to the s vector in the earlier work [27] on rogue waves of the NLS equation. In particular, all
odd-indexed elements sodd of s are zero since the function on the left side of the above equation is even.

It turns out that pattern analysis of lumps depends on whether vectors of internal parameters {a i} are the same
vectors (i.e., whether vector elements ai,j depend on the i index). In this paper, we only consider the case where these
{a i} vectors are the same, i.e., a i = a . In this case, through a shift of the (x, y) axes, we can make the first element
of a to be zero. Thus, our parameter choices are

a i = a = (0, a2, a3, · · · ). (31)

Under these parameters, we have two theorems on patterns of higher-order lumps at large times, depending on whether
the index vector Λ is equal to (1, 3, 5, . . . , 2N − 1).

A. Large-time lump patterns when Λ = (1, 3, 5, . . . , 2N − 1)

Our first theorem is for the case where the index vector Λ is equal to (1, 3, 5, . . . , 2N − 1).

Theorem 2. If the index vector Λ = (1, 3, 5, . . . , 2N − 1), then, when |t| � 1, the higher-order lump
solution uΛ(x, y, t) asymptotically separates into N(N + 1)/2 fundamental lumps u1(x − x0, y − y0, t),
where u1(x, y, t) is given in Eq. (16),

x0 = <(z0) (12t)1/3, y0 =
=(z0)

2
(12t)1/3, (32)

z0 is each of the N(N+1)/2 simple roots of the Yablonskii–Vorob’ev polynomial QN (z), and <, = represent
the real and imaginary parts of a complex number. The peak of each fundamental lump is spatially located
at (x, y) = (12t+ x0, y0). The absolute error of this fundamental-lump approximation is O(|t|−1/3) when
z0 6= 0 and O(|t|−1) when zero is a root and z0 = 0. Expressed mathematically, when (x, y) is in the
neighborhood of each of these fundamental lumps, i.e., (x − 12t − x0)2 + (y − y0)2 = O(1), we have the
following solution asymptotics for |t| � 1,

uΛ(x, y, t) =

{
u1(x− x0, y − y0, t) +O

(
|t|−1/3

)
, if z0 6= 0,

u1(x− x0, y − y0, t) +O
(
|t|−1

)
, if z0 = 0.

(33)
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When (x, y) is not in the neighborhood of any of these N(N + 1)/2 fundamental lumps, uΛ(x, y, t) asymp-
totically approaches zero as |t| → ∞.

The proof of this theorem will be provided in Sec. V.
This theorem indicates that, wave patterns at large times are formed by N(N + 1)/2 fundamental lumps. Relative

to the moving frame of x-direction velocity 12, positions (x0, y0) of these fundamental lumps are just a simple linear
transformation of the root structure of the Yablonskii–Vorob’ev polynomial QN (z), i.e.,[

x0

y0

]
= (12t)1/3

[
1 0
0 1

2

] [
<(z0)
=(z0)

]
. (34)

Since the transformation matrix is diagonal, this transformation is simply a stretching along both horizontal and
vertical directions. Recall that the Yablonskii–Vorob’ev root structure is triangular (see Fig. 1). The resulting lump
pattern is then triangular as well. When t � 1, this triangular lump pattern preserves the same orientation of the
original triangle of the Yablonskii–Vorob’ev root structure. But when t� −1, the triangular lump pattern would be
oriented opposite of the Yablonskii–Vorob’ev root structure. Indeed, it is easy to see from Eq. (34) that, when time
changes from large negative to large positive, i.e., from −t to +t, their lump positions would be related as[

x+
0

y+
0

]
= −

[
x−0
y−0

]
. (35)

Thus, these triangular lump patterns have reversed directions along the x-axis (the y-direction reversal does not
matter since the pattern is symmetric in y). This x-direction reversal of triangular lump patterns when time changes
from large negative to large positive is a dramatic pattern transformation in the KP-I equation. This phenomenon
has been graphically reported in [16] on several low-order solution examples. Here, we established this fact for the
general case.

Theorem 2 also indicates that, at large time, fundamental lumps in the solution complex separate from each other
in proportion to |t|1/3. This rate of separation is very slow, relative to the overall (linear) speed 12 of the whole
complex.

One more feature of Theorem 2 is that, positions (x0, y0) in Eq. (32) for individual fundamental lumps in the
solution complex are independent of the solution’s internal parameters a . This means that, when |t| → ∞, solutions
uΛ(x, y, t) with different internal parameters a would approach the same limit solution.

B. Large-time lump patterns when Λ 6= (1, 3, 5, . . . , 2N − 1)

When Λ 6= (1, 3, 5, . . . , 2N−1), the Wronskian-Hermite polynomial WΛ(z) has a zero root of multiplicity d(d+1)/2,
with d given in Eq. (22), as well as nonzero roots that are conjectured to be all simple (see Sec. II B 2). Note that
the zero root would be absent if d = 0 or −1; but nonzero roots always exist. In this case, our results on solution
patterns at large time are summarized in the following theorem.

Theorem 3. Suppose the index vector Λ 6= (1, 3, 5, . . . , 2N −1), and all nonzero roots of the Wronskian-
Hermite polynomial WΛ(z) are simple. Then, for |t| � 1, the following asymptotics for the solution
uΛ(x, y, t) holds.

1. In the outer region — the region that is O
(
|t|1/2

)
away from the wave center (x, y) = (12t, 0), or√

(x− 12t)2 + y2 = O
(
|t|1/2

)
, the higher-order lump uΛ(x, y, t) asymptotically separates into NW

fundamental lumps u1(x−x0, y−y0, t), where NW is given in Eq. (23), u1(x, y, t) is given in Eq. (16),

x0 = <
[
z0(−12t)1/2

]
+O(1), y0 =

=
[
z0(−12t)1/2

]
2

+O(1), (36)

and z0 is each of the NW nonzero simple roots of WΛ(z). The absolute error of this fundamental-lump
approximation is O(|t|−1/2). Expressed mathematically, when (x, y) is in the neighborhood of each
of these fundamental lumps, i.e., (x− 12t− x0)2 + (y − y0)2 = O(1), we have the following solution
asymptotics

uΛ(x, y, t) = u1(x− x0, y − y0, t) +O
(
|t|−1/2

)
, |t| � 1. (37)
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2. If zero is a root of WΛ(z), i.e., d 6= 0 and −1, then in the inner region — the region that is within

O(|t|1/3) of the wave center (x, y) = (12t, 0), or
√

(x− 12t)2 + y2 ≤ O
(
|t|1/3

)
, lies d(d+ 1)/2 funda-

mental lumps u1(x− x0, y − y0, t), where u1(x, y, t) is given in Eq. (16),

x0 = <(z0) (12t)1/3 +O(1), y0 =
=(z0)

2
(12t)1/3 +O(1), (38)

and z0 is each of the d(d + 1)/2 simple roots of the Yablonskii–Vorob’ev polynomial Qd̂(z), with d̂
defined as

d̂ =

{
d, when d ≥ 0,
|d| − 1, when d ≤ −1.

(39)

Notice that d(d + 1)/2 = d̂(d̂ + 1)/2. The absolute error of this fundamental-lump approxima-
tion is O(|t|−1/3) when z0 6= 0 and O(|t|−1) when zero is a root of Qd̂(z) and z0 = 0. Ex-
pressed mathematically, when (x, y) is in the neighborhood of each of these fundamental lumps,
i.e., (x − 12t − x0)2 + (y − y0)2 = O(1), with (x0, y0) given in (38), we have the following solution
asymptotics for |t| � 1,

uΛ(x, y, t) =

{
u1(x− x0, y − y0, t) +O

(
|t|−1/3

)
, if z0 6= 0,

u1(x− x0, y − y0, t) +O
(
|t|−1

)
, if z0 = 0.

(40)

3. When (x, y) is not in the neighborhood of any of the above fundamental lumps, uΛ(x, y, t) asymptot-
ically approaches zero as |t| → ∞.

Remark 6. In this theorem, we assumed all nonzero roots of WΛ(z) simple, which is true for all examples we
tested, such as the two in Eqs. (28)-(29). In view of Conjecture 1 in the previous section, this assumption is expected
to hold in all cases. If this conjecture is false, i.e., some nonzero roots of WΛ(z) are not simple, then this theorem for
the outer region, i.e., Eqs. (36)-(37), would still hold, but only for nonzero simple roots z0 of WΛ(z).

Now, we explain what Theorem 3 says regarding solution patterns at large times when Λ 6= (1, 3, 5, . . . , 2N − 1).
In this case, Theorem 3 indicates that, the whole wave field is generically split up into two regions featuring different
patterns.

1. In the outer region — the region that is O(|t|1/2) away from the wave center (x, y) = (12t, 0), the wave field
at large time comprises NW fundamental lumps, whose positions are given through the nonzero roots of the
Wronskian-Hermite polynomial WΛ(z). Specifically, relative to the moving frame of x-direction velocity 12,
positions (x0, y0) of these fundamental lumps, to the leading order of large time, are just a linear transformation
of WΛ(z)’s nonzero-root structure. The reader is reminded from Sec. II B 2 that when Λ 6= (1, 3, 5, . . . , 2N − 1),
nonzero roots of WΛ(z) always exist, and their shape in the z-plane is non-triangular. When t is large negative,
these fundamental-lump positions to the leading order are[

x−0
y−0

]
= (12|t|)1/2

[
1 0
0 1

2

] [
<(z0)
=(z0)

]
, (41)

where z0 is any nonzero root of WΛ(z). However, when t is large positive, these lump positions become[
x+

0

y+
0

]
= (12|t|)1/2

[
0 −1
1
2 0

] [
<(z0)
=(z0)

]
. (42)

In the former case, the wave pattern formed by these fundamental lumps is simply a stretching of the Wronskian-
Hermite nonzero-root structure along both horizontal and vertical directions. But in the latter case, on top of
this stretching, the horizontal and vertical directions are also swapped. In both cases, the resulting wave patterns
from transformations (41)-(42) are non-triangular since the root structure of WΛ(z) is non-triangular.

From the above two transformations, we see that fundamental lumps at large negative time −t and large positive
time +t in the outer region are related as [

x+
0

y+
0

]
=

[
0 −2
1
2 0

] [
x−0
y−0

]
. (43)

Thus, when time goes from large negative to large positive, outer-region lump patterns in the (x, y) plane
have swapped horizontal and vertical directions. In addition, stretching of different amounts has also occurred
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along the two directions. This swapping of horizontal and vertical directions is another type of dramatic
pattern transformation, and it is very different from the triangular x-direction reversal that occurs when Λ =
(1, 3, 5, . . . , 2N − 1). For certain single-line patterns of fundamental lumps, a change from a vertical line to a
horizontal line in the (x, y) plane has been graphically reported in [17] and analytically explained in [20]. Here,
we proved this fact for the general case, where patterns of fundamental lumps based on Wronskian-Hermite root
structures can be arbitrary, not just lines (see the next section for examples).

In this outer region, fundamental lumps at large time separate from each other in proportion to |t|1/2. This is
another big difference between the present solutions and those with Λ = (1, 3, 5, . . . , 2N − 1) in the previous
subsection, where lumps separate in proportion to |t|1/3 instead.

2. In the inner region — the region that is within O(|t|1/3) of the wave center (x, y) = (12t, 0), if d 6= 0 and −1,
then the solution uΛ(x, y, t) at large time would comprise d(d + 1)/2 fundamental lumps, whose positions are

given through roots of the Yablonskii–Vorob’ev polynomial Qd̂(z), with d̂ defined in Eq. (39). The reader is

reminded that d̂(d̂+1)/2 = d(d+1)/2. Relative to the moving frame of x-direction velocity 12, positions (x0, y0)
of these fundamental lumps, to the leading order of large time, are just a linear transformation of Qd̂(z)’s root
structure, i.e., [

x0

y0

]
= (12t)1/3

[
1 0
0 1

2

] [
<(z0)
=(z0)

]
, (44)

where z0 is each of the d(d+ 1)/2 simple roots of Qd̂(z). This lump-position formula in the inner region is very
similar to (34) of the Λ = (1, 3, 5, . . . , 2N − 1) case. Thus, the pattern of these d(d + 1)/2 fundamental lumps
in the inner region at large time is a simple stretching of Qd̂(z)’s root structure, and the resulting pattern is

triangular if d̂ > 1. In addition, as time evolves from large negative to large positive, these triangular lump
patterns would reverse direction along the x-axis. Furthermore, fundamental lumps in this inner region separate
from each other in proportion to |t|1/3 at large time, similar to the Λ = (1, 3, 5, . . . , 2N − 1) case in Theorem 2.

If d̂ = 0, i.e., d = 0 or −1, this inner region would be absent.

The above results reveal that, the pattern of the solution uΛ(x, y, t) for Λ 6= (1, 3, 5, . . . , 2N − 1) at large time
is richer, with the outer region exhibiting the non-triangular shape of the stretched nonzero-root structure of the
Wronskian-Hermite polynomial WΛ(z), and with the inner region exhibiting the triangular shape of the stretched
root structure of the Yablonskii–Vorob’ev polynomial Qd̂(z). As time changes from large negative to large positive,
the outer pattern swaps horizontal and vertical directions, while the inner pattern reverses the horizontal direction.
These different types of pattern transformations in the outer and inner regions of the same solution are fascinating.
When Λ 6= (1, 3, 5, . . . , 2N − 1), the outer pattern is always present since WΛ(z) always has nonzero roots, but the
inner pattern is present only when d 6= 0 and −1 and absent otherwise. When Λ = (1, 3, 5, . . . , 2N − 1), the outer
pattern disappears, since WΛ(z) has only zero roots (see Lemma 1). In this special case, our results for the inner
region in Theorem 3 are consistent with those in Theorem 2. However, Theorem 2 for this special case is stronger,
since it shows that positions (x0, y0) of fundamental lumps now have no O(1) shifts [see Eq. (32)] — a more accurate
prediction than Eq. (38) of Theorem 3 which shows O(1) shifts in general.

In the end, we note that in the earlier work [12], it was reported that at large time, fundamental lumps in the
higher-order lump complex separate from each other in proportion to |t|q, where 1

3 ≤ q ≤
1
2 . Our results in Theorems

2 and 3 indicate that this q value can only be 1/3 or 1/2, nothing in between.

IV. COMPARISON BETWEEN TRUE LUMP PATTERNS AND ANALYTICAL PREDICTIONS

In this section, we compare our analytical predictions of lump patterns with true solutions.

A. Pattern transformation when Λ = (1, 3, 5, . . . , 2N − 1)

First, we do the comparison when Λ = (1, 3, 5, . . . , 2N − 1), where a triangular pattern of lumps at large time is
predicted. To be specific, we take N = 4; so Λ = (1, 3, 5, 7). Root structure of the corresponding Yablonskii-Vorob’ev
polynomial Q4(z) has been displayed in Fig. 1. Using those roots and formulae (32), predicted solutions from Theorem
2 at large times t = −10 and 10 are plotted in Fig. 3.

Now, we compare these predicted solutions with true ones. In the true solution uΛ(x, y, t), we select its internal
parameters as a = (0, 0, 0, 0, 0, 0, 0). Then, evolutions of this true solution, at six time values of t = −10, −1, 0, 0.2, 1
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FIG. 3: Predicted solutions uΛ(x, y, t) with Λ = (1, 3, 5, 7) at time values of t = −10 (left) and t = 10 (right).

and 10, are plotted in Fig. 4. When comparing these true solutions at large times t = ±10 to those predicted in
Fig. 3, they clearly match each other. First, the true solutions at t = ±10 indeed exhibit a triangular pattern,
as the prediction says. Second, the triangular pattern at t = 10 is indeed a x-direction reversal of the triangular
pattern at t = −10, relative to a frame moving with x-direction velocity 12. Thirdly, we have quantitatively compared
the predicted and true solutions at t = ±10, and found them to match each other as well. For example, we have
quantitatively compared the difference between the true peak location of individual lumps and its analytical prediction
(32), similar to what we did in Figs. 5-6 of Ref. [24] on the error analysis of rogue-pattern predictions. This comparison
shows that this difference is indeed O(|t|−1/3) when z0 6= 0 and O(|t|−1) when z0 = 0, as our analytical formula (33)
says. Thus, our asymptotic theory on patterns of higher-order lumps at large times for Λ = (1, 3, 5, . . . , 2N − 1) is
fully confirmed.

In addition to large times, Fig. 4 also displays the true solution uΛ(x, y, t) at intermediate times, where our asymp-
totic theory does not apply. These intermediate panels shed light on how the dramatic x-direction reversal of triangular
patterns takes place as time changes from large negative to large positive. We see that in this solution, as time in-
creases from −10 to 10, the triangle of fundamental lumps first approach each other and shrink in size, then coalesce
at t = 0 and form a single lump of extreme height that is ten times that of original fundamental lumps, and then
separate into a triangle of fundamental lumps again but with reversed x-direction. This transformation process is
fascinating.

How will this uΛ(x, y, t) solution evolve if its internal parameters a are different from (0, 0, 0, 0, 0, 0, 0)? Theorem
2 tells us that in this case, the uΛ(x, y, t) solution would approach the same asymptotic state as that shown in Fig. 4
at large times. At intermediate times, however, this uΛ(x, y, t) solution could look very different from that in Fig. 4.
For instance, by suitably choosing the a values, we can get uΛ(x, y, t) solutions whose graphs at t = 0 exhibit very
different patterns such as a pentagon or a heptagon — a phenomenon that has been reported in [19]. Thus, although
these uΛ(x, y, t) solutions with different a values exhibit the same large-time triangular patterns, how this triangular
pattern at large negative time transforms to its x-reversed pattern at large positive time is a process that strongly
depends on the choices of the internal a values.

B. Pattern transformation when Λ 6= (1, 3, 5, . . . , 2N − 1)

Next, we perform the comparison when Λ 6= (1, 3, 5, . . . , 2N − 1), where the solution pattern at large time is
determined by nonzero-root structure of the Wronskian-Hermit polynomial WΛ(z) in the outer region, and by root

structure of the Yablonskii-Vorob’ev polynomial Qd̂(z) in the inner region (if d̂ > 0). Since this inner region can be
present or absent depending on the d value [see Eq. (22)], we will present two examples, one for each case.

Our first example is N = 4 and Λ = (2, 3, 4, 5). In this case, d = 0, and thus zero is not a root of WΛ(z) and the
inner region is absent. Root structure of the corresponding Wronskian-Hermit polynomial has been displayed in Fig. 2
(the left panel). It was seen that this WΛ(z) admits eight simple nonzero roots which form a rectangle pattern. Using
those roots and leading-order terms in formulae (36), predicted solutions from Theorem 3 at large times t = −6 and
6 are plotted in Fig. 5. The predicted patterns contain eight fundamental lumps which also form a rectangular shape
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FIG. 4: The true solution uΛ(x, y, t) with Λ = (1, 3, 5, 7) and a = (0, 0, 0, 0, 0, 0, 0) at various time values shown inside the
panels.

in the (x, y) plane. At t = −6, this lump pattern is just a stretching of the Wronskian-Hermit root structure. But at
t = 6, this lump pattern has swapped its x and y directions and changed from its original x-direction orientation to
the new y-direction orientation.

To confirm these asymptotic predictions, we plot in Fig. 6 the corresponding true solution uΛ(x, y, t) at six time val-
ues of t = −6,−2,−0.5, 0, 2 and 6. In this true solution, we have selected its internal parameters as a = (0, 0, 0, 0, 800).
It is seen that at large times of t = ±6, the true solutions indeed comprise eight fundamental lumps forming a rect-
angular shape, and their orientations have changed from the x-direction to the y-direction, exactly as our asymptotic
theory has predicted. In addition, quantitative comparisons between these true rectangular patterns and the predicted
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FIG. 5: Predicted solutions uΛ(x, y, t) with Λ = (2, 3, 4, 5) at time values of t = −6 (left) and t = 6 (right).

ones in Fig. 5 show good agreement. Thus, our asymptotic theory on patterns of higher-order lumps at large times is
fully confirmed for Λ = (2, 3, 4, 5).

By inspecting Fig. 6, we can also see how this dramatic rectangular-pattern reorientation takes place as time
increases. First, these eight fundamental lumps of rectangular shape with x-direction orientation get closer to each
other and rearrange their shapes. At t = 0, the solution has evolved into a pentagon of five fundamental lumps
surrounding a higher-peak lump near the center. Afterwards, this pentagon structure further adjusts its shape in
significant ways, until eight new fundamental lumps emerge as a rectangular with y-direction orientation in the end.
Again, this transformation process is amazing.

Our second example is N = 5 and Λ = (3, 4, 5, 7, 9). In this case, d = 3, and thus zero is a root of multiplicity
six in WΛ(z), and the inner region is present. Root structure of the corresponding Wronskian-Hermit polynomial has
been displayed in Fig. 2 (the right panel). It is seen that this WΛ(z) admits 12 simple nonzero roots which form a
quasi-rectangular shape, plus the zero root of multiplicity six at the center of the quasi-rectangle. Using those roots
and leading-order terms in formulae (36) and (38), predicted solutions from Theorem 3 at large times t = −10 and
10 are plotted in Fig. 7. The predicted patterns contain 12 fundamental lumps which also form a quasi-rectangular
pattern in the outer region of the (x, y) plane, plus six fundamental lumps which form a triangle in the inner region. At
t = −10, the outer lump pattern is a stretching of the Wronskian-Hermit polynomial WΛ(z)’s nonzero-root structure,
while the inner lump pattern is a stretching of the Yablonskii–Vorob’ev polynomial Q3(z)’s root structure. At t = 10,
however, the predicted outer lump pattern has rotated by 90◦ from its t = −10 state [plus additional (x, y)-direction
stretching], while the predicted inner triangular lump pattern has reversed its direction along the x-axis.

To confirm these asymptotic predictions, we plot in Fig. 8 the corresponding true solution uΛ(x, y, t) at six time
values of t = −10,−2,−0.2, 0, 2 and 10. In this true solution, we have selected all-zero internal parameters of
a = (0, 0, 0, 0, 0, 0, 0, 0, 0). It is seen that at large times of t = ±10, the true solutions closely match our predictions
in the previous figure. Specifically, the true solutions at these large times also split into outer and inner regions,
with outer quasi-rectangular patterns and inner triangular patterns closely resembling our predicted ones in Fig. 7.
Quantitative comparisons between these true patterns and predicted ones show good agreement as well. Thus, our
asymptotic theory on higher-order lump patterns at large times is fully confirmed for Λ = (3, 4, 5, 7, 9).

True solution graphs at intermediate time values in Fig. 8 reveal how these striking pattern transformations in outer
and inner regions take place. It is seen that all fundamental lumps in the inner and outer regions at large negative
time first move toward each other. Then they merge and coalesce at t ≈ 0. Afterwards, all these fundamental lumps
re-emerge and move away from each other, but not returning to their pre-merging state. Instead, the quasi-rectangular
outer lumps have swapped their x and y directions, and the triangular inner lumps have reversed the x-direction.
These pattern transformations are visually miraculous and mysterious. But due to our Theorem 3, they can now be
completely understood from a mathematical point of view.

V. PROOFS OF THE TWO THEOREMS

Now, we prove our two theorems stated in Sec. 3. The reader is reminded that in these proofs, p = 1 and a i are
chosen as (31) in the higher-order lump solutions of Theorem 1, for reasons which have been explained earlier in the
paper. Thus, solution expressions in Theorem 1 can be simplified. Notably, the constant factor in Eq. (9) simplifies
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FIG. 6: True solutions uΛ(x, y, t) with Λ = (2, 3, 4, 5) and a = (0, 0, 0, 0, 800), at various times whose values are shown inside
the panels.

to 1/4ν , and the s vector is real with sodd = 0 (see the beginning of Sec. 3).

A. Proof of Theorem 2

In this case, Λ = (1, 3, 5, . . . , 2N − 1). First, we rewrite the determinant (8) as a larger 3N × 3N determinant
[24, 27]

σ =

∣∣∣∣ ON×N ΦN×2N

−Ψ2N×N I2N×2N

∣∣∣∣ , (45)

where

Φi,j = 2−(j−1)S2i−j
[
x+ + (j − 1)s + a

]
, Ψi,j = 2−(i−1)S2j−i

[
(x+)∗ + (i− 1)s + a∗

]
, (46)
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FIG. 7: Predicted solutions uΛ(x, y, t) with Λ = (3, 4, 5, 7, 9) at time values of t = −10 (left) and t = 10 (right).

Sj ≡ 0 for j < 0, and vectors x+ and s are given in Eqs. (10) and (30). This determinant can be further simplified.
Indeed, using the technique outlined in Appendix A of Ref. [24], we can eliminate all x+

even and aeven terms from the
vectors x+ and a , and reduce the above matrix element formulae to

Φi,j = 2−(j−1)S2i−j
[
x̂+ + (j − 1)s + â

]
, Ψi,j = 2−(i−1)S2j−i

[
(x̂+)∗ + (i− 1)s + â∗

]
, (47)

where

x̂+ ≡
(
x+

1 , 0, x
+
3 , 0, x

+
5 , 0, · · ·

)
, â ≡ (0, 0, a3, 0, a5, 0, · · · ) . (48)

The elimination of the solution’s dependence on x+
2 is a key feature of the index vector Λ = (1, 3, 5, . . . , 2N − 1), and

this feature is responsible for the distinctive pattern behaviors described in Theorem 2.
Now, we analyze the large-time asymptotics of the above determinant σ. For this purpose, we introduce a moving

x-frame coordinate

x̂ ≡ x− 12t. (49)

Then, the elements x+
k in Eq. (10) become

x+
1 = x̂+ 2iy, x+

k =
1

k!
x̂+

2k

k!
iy + Tk, (50)

where Tk ≡ 12(1− 3k−1)t/k!. In particular,

T2 = −12t, T3 = −16t. (51)

In this moving x-frame, when |t| is large and
√
x̂2 + y2 = O(|t|1/3), we have the leading-order asymptotics for

Sk
(
x̂+ + νs + â

)
as

Sk
(
x̂+ + νs + â

)
∼ Sk(v), |t| � 1, (52)

where

v =
(
x+

1 , 0, T3, 0, 0, 0, · · ·
)
. (53)

By comparing the definition of Schur polynomials Sk(v) to the definition of pk(z) polynomials in Eq. (17), we see that

Sk(v) = (−3T3/4)
k/3
pk(z), (54)

where

z = (−3T3/4)−1/3x+
1 = (−3T3/4)−1/3 (x̂+ 2iy) . (55)
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FIG. 8: True solutions uΛ(x, y, t) with Λ = (3, 4, 5, 7, 9) and a = (0, 0, 0, 0, 0, 0, 0, 0, 0), at various times whose values are shown
inside the panels.

Using these formulae and the Laplace expansion of the 3N × 3N determinant (45)

σ =
∑

0≤ν1<ν2<···<νN≤2N−1

det
1≤i,j≤N

[
1

2νj
S2i−1−νj (x̂+ + νjs + â)

]
× det

1≤i,j≤N

[
1

2νj
S2i−1−νj [(x̂+)∗ + νjs + â∗]

]
, (56)

together with the fact that the highest order term of |t| in this σ comes from the index choices of νj = j − 1, we can
readily show that the highest t-power term of σ is

σ ∼ |α0|2 |3T3/4|
N(N+1)

3 |QN (z)|2 , |t| � 1, (57)
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where α0 = 2−N(N−1)/2c−1
N . Inserting this leading-order term of σ into Eq. (7), we see that the solution uΛ(x, y, t)

approaches zero when |t| → ∞, except at or near (x̂, y) locations (x0, y0), i.e., at or near (x, y) locations (12t+ x0, y0),
where

z0 = (−3T3/4)−1/3 (x0 + 2iy0) (58)

is a root of the polynomial QN (z). Solving this equation, we get the (x0, y0) locations given by Eq. (32) in Theorem

2. Due to our requirement of
√
x̂2 + y2 = O(|t|1/3), z0 in the above equation should be nonzero.

In order to derive the solution behavior near this (x, y) = (12t+ x0, y0) location, we need to perform a more refined
asymptotic analysis and calculate the next-order terms in t, since the leading-order term in Eq. (57) vanishes at this
point. Recalling s1 = 0, this refined analysis is very similar to that we did for rogue waves in the NLS equation
[24]. For z0 6= 0 in the (x0, y0) formula (32), i.e., if the (12t+ x0, y0) location is O(|t|1/3) away from the wave center
(12t, 0), then in the O(1) neighborhood of (12t+ x0, y0), i.e., when (x − 12t − x0)2 + (y − y0)2 = O(1), we have an
asymptotics more refined than (52), which is

Sk
(
x̂+ + νs + â

)
= Sk(v)

[
1 +O(|t|−2/3)

]
. (59)

This O(|t|−2/3) relative error is due to our omission of x̂/6 + 4iy/3 relative to T3 in x+
3 , and omission of x+

5 relative
to x+

3 . Using this refined asymptotics and repeating the same steps as in [24], we find that

σ(x, y, t) = |α0|2 |Q′N (z0)|2 |3T3/4|
N(N+1)−2

3

[
(x− 12t− x0)

2
+ 4(y − y0)2 +

1

4

] [
1 +O

(
|t|−1/3

)]
, (60)

where α0 is given below Eq. (57). For Yablonskii-Vorob’ev polynomials QN (z), all roots are simple. Thus, Q′N (z0) 6= 0.
In the O(1) neighborhood of the wave center (12t, 0), where (x− 12t)2 + y2 = O(1), we need to perform a separate

asymptotic analysis, because the earlier Sk asymptotics (52) and (59) do not hold in this region. In this case, due to
Eq. (50), when we lump T2k+1 and a2k+1 together in Eq. (47) and recall T2k+1 is proportional to t, the large-time
analysis of the present σ determinant (45) is almost identical to that in Appendix C of Ref. [24] for the analysis of
NLS rogue patterns when its internal parameters (a3, a5, · · · ) are all large and of the same order. Repeating that
analysis, we find that if zero is a root of the Yablonskii-Vorob’ev polynomial QN (z), i.e., N ≡ 1 mod 3, then

σ(x, y, t) = β0 |t|
N(N+1)−2

3

[
(x− 12t)

2
+ 4y2 +

1

4

] [
1 +O

(
|t|−1

)]
, (61)

where β0 is a N -dependent positive constant. If zero is not a root of QN (z), then σ(x, y, t) ∼ β0 |t|
(N+2)(N−1)

3 .
Substituting the above two σ asymptotics (60)-(61) into the solution expression (7) and performing a little simpli-

fication, we then get the asymptotics (33). Theorem 2 is then proved.

B. Proof of Theorem 3

In this case, Λ 6= (1, 3, 5, . . . , 2N−1). We first rewrite the determinant σ in (8) as a larger (N+nN+1)×(N+nN+1)
determinant

σ =

∣∣∣∣ ON×N ΦN×(nN+1)

−Ψ(nN+1)×N I(nN+1)×(nN+1)

∣∣∣∣ , (62)

where

Φi,j = 2−(j−1)Sni+1−j
[
x+ + (j − 1)s + a

]
, Ψi,j = 2−(i−1)Snj+1−i

[
(x+)∗ + (i− 1)s + a∗

]
, (63)

and vectors x+ and s are given in Eqs. (10) and (30). Unlike the previous case, we cannot eliminate x+
2 from this

solution now. Our large-time asymptotics of this determinant proceeds as follows.

1. Proof for the outer region

First, we prove the asymptotics (36)-(37) for the outer region. In this region,
√
x̂2 + y2 = O(|t|1/2). Thus, we have

the leading-order asymptotics for Sk (x+ + νs + a) as

Sk
(
x+ + νs + a

)
∼ Sk(w), |t| � 1, (64)
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where

w =
(
x+

1 , T2, 0, 0, 0, · · ·
)
, (65)

and T2 is as given in Eq. (51). By comparing the definition of Schur polynomials Sk(w) to the definition of qk(z)
polynomials in Eq. (19), we see that

Sk(w) = T
k/2
2 qk(z), (66)

where

z = T
−1/2
2 x+

1 = T
−1/2
2 (x̂+ 2iy) . (67)

Using these formulae and the Laplace expansion of the determinant (62) for σ, we can readily show that the highest
t-power term of σ is

σ ∼ |µ0|2 |T2|ρ |WΛ(z)|2 , |t| � 1, (68)

where ρ is given in Eq. (13), and µ0 = 2−N(N−1)/2. Inserting this leading-order term of σ into Eq. (7), we see that
the solution uΛ(x, y, t) approaches zero when |t| → ∞, except at or near (x̂, y) locations (x̂0, ŷ0), i.e., at or near (x, y)
locations (12t+ x̂0, ŷ0), where

z0 = T
−1/2
2 (x̂0 + 2iŷ0) (69)

is a root of the Wronskian-Hermit polynomial WΛ(z). Solving this equation, we get

x̂0 = <
[
z0T

1/2
2

]
, ŷ0 =

=
[
z0T

1/2
2

]
2

, (70)

which are the leading-order terms of (x0, y0) in Eq. (36) of Theorem 3. Due to our requirement of
√
x̂2 + y2 =

O(|t|1/2), z0 in the above equation should be nonzero.
To derive the solution behavior near this (x, y) = (12t+ x̂0, ŷ0) location, we perform a more refined asymptotic

analysis. Our starting point is a more accurate asymptotics for Sk (x+ + νs + a),

Sk(x+ + νs + a) = Sk(ŵ)
[
1 +O

(
|t|−1

)]
, |t| � 1, (71)

where

ŵ =
(
x+

1 , x
+
2 , T3, 0, 0, 0, · · ·

)
= w +

(
0, x̂+

2 , T3, 0, 0, 0, · · ·
)
, (72)

w is given in (65), and

x̂+
2 ≡

1

2
x̂+ 2iy. (73)

The asymptotics (71) holds since a1 = s1 = 0. From the definition (6) of Schur polynomials and the above equation,
we can relate Sk(ŵ) and Sk(w) as

Sk(ŵ) =

k∑
j=0

bjSk−j(w), (74)

where bj are the coefficients in the expansion

ex̂
+
2 ε

2+T3 ε
3

=

∞∑
j=0

bjε
j . (75)

Notice that b0 = 1, b1 = 0, b2 = x̂+
2 , and b3 = T3. In addition, (x̂, y) = O(|t|1/2) from Eq. (70), and Sk(w) = O(|t|k/2)

in view of Eq. (66). Utilizing these relations, we find that

Sk(x+ + νs + a) =
[
Sk(w) + x̂+

2 Sk−2(w) + T3Sk−3(w)
] [

1 +O
(
|t|−1

)]
, |t| � 1. (76)
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With this formula (76), we can now determine the asymptotic expression of σ in Eq. (62) in the neighborhood of
(x, y) = (12t+ x̂0, ŷ0) at large t. The Laplace expansion of this determinant is very similar to Eq. (56) of the previous
subsection. Using this Laplace expansion and similar techniques as in Refs. [24, 25], we can readily find that

σ(x, y, t) = |µ0|2 |W ′Λ(z0)|2 |T2|ρ−1

(
|(x− 12t− x̂0) + 2i(y − ŷ0) + ∆|2 +

1

4

)[
1 +O

(
|t|−1/2

)]
, (77)

where µ0 is given below Eq. (68), and ∆ = ∆(Λ, z0) is an O(1) complex constant given by

∆ =
1

W ′Λ(z0)

λ
N∑
j=1

det
1≤i≤N

[
qni , · · · , qni−(j−2), qni−(j−1)−2, qni−j , · · · , qni−(N−1)

]
z=z0

+
4

3

N∑
j=1

det
1≤i≤N

[
qni , · · · , qni−(j−2), qni−(j−1)−3, qni−j , · · · , qni−(N−1)

]
z=z0

 , (78)

and

λ =

{
1
2<(z0) + i=(z0), when t < 0,
<(z0) + 1

2 i=(z0), when t > 0.
(79)

The former determinant in Eq. (78) is the Wronskian-Hermit determinant in Eq. (21) but with the j-th column
{qni−(j−1)} replaced by {qni−(j−1)−2}, i.e., reducing the subindex value of this column by two, while the latter
determinant in (78) is the Wronskian-Hermit determinant (21) with the j-th column replaced by {qni−(j−1)−3}, i.e.,
reducing its subindex value by three.

The complex constant ∆ in Eq. (77) can be absorbed into (x̂0, ŷ0). After this absorption and rearranging terms,
Eq. (77) becomes

σ(x, y, t) = |µ0|2 |W ′Λ(z0)|2 |T2|ρ−1

[
(x− 12t− x0)

2
+ 4(y − y0)2 +

1

4

] [
1 +O

(
|t|−1/2

)]
, (80)

where

x0 = <
[
z0(−12t)1/2

]
−<(∆), y0 =

=
[
z0(−12t)1/2

]
2

− =(∆)

2
. (81)

These (x0, y0) formulae contain the explicit O(1) corrections to the leading O(|t|1/2) terms, and are thus more complete
than Eq. (36) in Theorem 3. Substituting the above σ asymptotics (80) into Eq. (7), the asymptotics (36)-(37) for
the outer region of Theorem 3 are then proved.

2. Proof for the inner region

In the inner region, where
√
x̂2 + y2 ≤ O(|t|1/3), a separate asymptotic analysis is needed, because the previous Sk

asymptotics (64) and (71) do not hold. In this inner region, our analysis needs to split into two cases, depending on

whether
√
x̂2 + y2 is O(|t|1/3) or O(1).

When
√
x̂2 + y2 = O(|t|1/3), it is easy to see from the Laplace expansion of the σ determinant (62) that, at large

|t|, the highest t-power term of σ comes from the index choices of νj = j − 1, i.e.,

σ ∼
∣∣∣∣ det
1≤i,j≤N

[
1

2j−1
Sni+1−j(x

+ + (j − 1)s + a)

]∣∣∣∣2 , |t| � 1. (82)

For the determinant in the above equation, we reorganize its rows by grouping odd-ni rows together (in ascending
order of ni), followed by even-ni rows (also in ascending order of ni). We also rewrite Sk(x+ + νs + a) as

Sk(x+ + νs + a) =

[k/2]∑
j=0

T j2
j!
Sk−2j(h + νs + a), (83)
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where

h ≡ x+ − (0, T2, 0, 0, · · · ) = (x+
1 , x̂

+
2 , x

+
3 , x

+
4 , · · · ), (84)

and [a] represents the largest integer less than or equal to a. In addition, we notice that when
√
x̂2 + y2 = O(|t|1/3),

Sk(h + νs + a) ∼ Sk(ĥ), (85)

where

ĥ = (x+
1 , 0, T3, 0, 0, · · · ), (86)

and

Sk(ĥ) = (−3T3/4)
k/3

pk(z), (87)

where z is as given in Eq. (55). Inserting these formulae into the above reorganized determinant and performing row
operations to eliminate certain high powers of T2 in lower rows of the odd-ni-index group as well as the even-ni-index
group, we find that the highest t-power term of σ from Eq. (82) is

σ ∼ γ0 |T2|NW |3T3/4|
d̂(d̂+1)

3 |H(z)|2 , (88)

where γ0 is a certain positive constant, NW is given in Eqs. (23)-(24), d̂ is defined in Eq. (39), H(z) is the determinant

H(z) = det



p1(z) p0(z) p−1(z) · · ·
p3(z) p2(z) p1(z) · · ·

...
...

...
...

p2kodd−1(z) p2kodd−2(z) p2kodd−3(z) · · ·
p0(z) p−1(z) p−2(z) · · ·
p2(z) p1(z) p0(z) · · ·

...
...

...
...

p2keven−2(z) p2keven−3(z) p2keven−4(z) · · ·


, (89)

and kodd, keven are the numbers of odd and even elements in the index vector (n1, n2, . . . , nN ) respectively. Clearly,
this H determinant can be reduced to

H(z) = Qd̂(z). (90)

Thus, when
√
x̂2 + y2 = O(|t|1/3),

σ ∼ γ0 |T2|NW |3T3/4|
d̂(d̂+1)

3

∣∣Qd̂(z)∣∣2 . (91)

In view of Eq. (7), this asymptotics shows that the solution uΛ(x, y, t) is asymptotically zero in this region, except

when d̂ > 0 (i.e., zero is a root of the Wronskian-Hermit polynomial WΛ(z)), and when (x, y) is at or near the location
(12t+ x̂0, ŷ0), where

z0 = (−3T3/4)−1/3 (x̂0 + 2iŷ0) (92)

is a root of the Yablonskii–Vorob’ev polynomial Qd̂(z). Solving this equation, we get (x̂0, ŷ0) values that are the

leading-order terms in Eq. (38) of Theorem 3. Since
√
x̂2 + y2 = O(|t|1/3), root z0 in the above equation should be

nonzero.
We can further show that, near this (x, y) = (12t+ x̂0, ŷ0) location lies a fundamental lump. This calculation is

similar to that we did in the proof of Theorem 2 and the earlier part of this proof of Theorem 3. Specifically, we can
show that in the O(1) neighborhood of this location,

σ(x, y, t) = γ0 |T2|NW |3T3/4|
d̂(d̂+1)−2

3

∣∣∣Q′
d̂
(z0)

∣∣∣2(∣∣∣(x− 12t− x̂0) + 2i(y − ŷ0) + ∆̂
∣∣∣2 +

1

4

)[
1 +O

(
|t|−1/3

)]
, (93)
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where ∆̂ = ∆̂(Λ, z0) is an O(1) constant. This ∆̂ is the analog of a similar quantity ∆ which we derived in Eq. (78)
for a fundamental lump in the outer region. It is easy to see that the above σ(x, y, t) gives a fundamental lump, whose
position is at (x, y) = (12t+ x0, y0), where

x0 = <(z0) (12t)1/3 −<(∆̂), y0 =
=(z0)

2
(12t)1/3 − 1

2
=(∆̂), (94)

which matches (38) in Theorem 3. In addition, the error of this prediction is O
(
|t|−1/3

)
.

In the center region where x̂2 + y2 = O(1), we can use the technique of Appendix C in Ref. [24] to show that at

large time, if zero is a root of the Yablonskii–Vorob’ev polynomial Qd̂(z), i.e., if d̂ ≡ 1 mod 3, then uΛ(x, y, t) would
approach a fundamental lump located in the O(1) neighborhood of the wave center (x̂, y) = (0, 0). If zero is not a root
of Qd̂(z), then uΛ(x, y, t) would approach zero in this center region as |t| → ∞. Details will be omitted for brevity. It
may be more illuminating for us to point out that, the leading-order term of the previous asymptotic formula (93),

which was derived for the region of
√
x̂2 + y2 = O(|t|1/3) and nonzero roots z0 of Qd̂(z), turns out to be valid for the

x̂2 + y2 = O(1) region and the zero root z0 of Qd̂(z) as well [except for the relative error term, which is now O(|t|−1)

rather than O(|t|−1/3)]. In other words, if zero is a root of Qd̂(z), then setting z0 = 0 in the leading term of (93), we
would get the correct asymptotic fundamental lump in the x̂2 + y2 = O(1) region. In particular, the location of this
fundamental lump would be at (x̂, y) = (x0, y0), i.e., (x, y) = (12t + x0, y0), where x0 and y0 are given by (94) with

z0 = 0 and ∆̂ = ∆̂|z0=0. This completes the proof of Theorem 3.

VI. SUMMARY AND DISCUSSION

In this article, we have analytically studied pattern formation in higher-order lumps of the KP-I equation at large
time. For a broad class of these higher-order lumps, we have shown that two types of solution patterns appear
at large time. The first type of patterns comprise fundamental lumps arranged in triangular shapes, which are
described analytically by root structures of Yablonskii–Vorob’ev polynomials. As time evolves from large negative
to large positive, this triangular pattern reverses its x-direction. The second type of solution patterns comprise
fundamental lumps arranged in non-triangular shapes in the outer region, which are described analytically by nonzero-
root structures of Wronskian–Hermit polynomials, together with possible fundamental lumps arranged in triangular
shapes in the inner region, which are described analytically by root structures of Yablonskii–Vorob’ev polynomials.
When time evolves from large negative to large positive, the non-triangular pattern in the outer region switches its
x and y directions, while the triangular pattern in the inner region reverses its x-direction. We have also compared
these predicted patterns with true solutions, and excellent agreement is observed.

In this pattern analysis of higher-order lumps, we have set the spectral parameter p = 1 without any loss of generality
(see Remark 4 of Sec. 2). Because of this, lump patterns we have predicted at large time are all y-symmetric (see
Figs. 3, 5 and 7), since root structures of Yablonskii–Vorob’ev and Wronskian-Hermit polynomials are symmetric
with respect to the real-z axis. However, under the Galilean transformation (4), these y-symmetric lump patterns
can become skewed and y-asymmetric, and these y-asymmetric patterns correspond to complex spectral parameters
p. Thus, y-asymmetric lump patterns also exist in the KP-I equation, and such patterns can be obtained from the
y-symmetric ones through the Galilean transformation.

Are there other patterns of higher-order lumps at large time? The answer is yes. Notice that in this article, we
have assumed internal-parameter vectors a i of higher-order lumps to be equal to each other [see Eq. (31)]. If these
parameter vectors are allowed to differ from each other, then the analytical results at large time will become different.
This problem will not be pursued in this paper, and will be left for future studies.

In a very recent preprint [42], the authors also derived higher-order lumps in the KP-I equation and studied
their large-time patterns through Darboux transformation, and showed that their large-time patterns are described
analytically by root structures of Yablonskii–Vorob’ev polynomials. Obviously, the higher-order lump solutions they
derived are a very special class of solutions which correspond to the index vector Λ = (1, 3, 5, . . . , 2N − 1) and under
a i parameter constraints (31) in our general solutions of Theorem 1, and their large-time pattern results are largely
equivalent to our Theorem 2. However, their error estimate of O(|t|−2/3) for fundamental-lump predictions far away
from the wave center is different from our O(|t|−1/3) in Theorem 2, and we have verified numerically that their error
estimate is incorrect. More importantly, those authors have not considered the more general higher-order lumps
corresponding to the index vector Λ 6= (1, 3, 5, . . . , 2N − 1) in our Theorem 1, nor their large-time solution patterns.
These latter patterns are the contents of our Theorem 3 (see also our Figs. 5-8).
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Appendix

In this appendix, we briefly derive the bilinear higher-order lump solutions presented in Theorem 1.
Under the variable transformation u = 2(log τ)xx and notations of x1 = x, x2 = iy and x3 = −4t, the KP-I equation

(3) is converted to the bilinear equation

(D4
x1
− 4Dx1

Dx3
+ 3D2

x2
) τ · τ = 0, (95)

where D is Hirota bilinear differential operator. It is well known that if mij , φi and ψj are functions of (x1, x2, x3)
and satisfy the following differential equations

∂x1
mij = φiψj , (96)

∂xn
φi = ∂nx1

φi, n = 2, 3, (97)

∂xn
ψj = (−1)n−1∂nx1

ψj , n = 2, 3, (98)

then the τ function

τ = det
1≤i,j≤N

(mij) (99)

would satisfy the above bilinear equation [43]. To derive higher-order lump solutions, we define mij , φi and ψj as

mij = AiBj
1

p+ q
eξi+ηj , φi = Aieξi , ψj = Bjeηj , (100)

where

Ai =
1

ni!
(p∂p)

ni , Bj =
1

nj !
(q∂q)

nj , (101)

ξi = px1 + p2x2 + p3x3 + ξi,0(p), ηj = qx1 − q2x2 + q3x3 + ηj,0(q), (102)

(n1, n2, · · · , nN ) is a vector of arbitrary positive integers, p, q are arbitrary complex constants, and ξi,0(p), ηj,0(q) are
arbitrary complex functions of p and q. It is easy to see that these mij , φi and ψj functions satisfy the differential
equations (96)-(98). Thus, the above τ function would satisfy the bilinear equation (95). To guarantee that this τ
function is real-valued, we impose the parameter constraints

q = p∗, ηj,0(q) = [ξj,0(p)]∗. (103)

Under these constraints, ηj = ξ∗j , m∗ni,nj
= mnj ,ni

, and thus τ in (99) is real. Following the technique of Ref. [27], we

can further show this τ is positive. Thus, the resulting function u = 2(log τ)xx is a real-valued solution to the KP-I
equation (3).

Next, we need to simplify the matrix elements of this τ determinant and derive their more explicit algebraic
expressions. This simplification is very similar to that we performed in [27, 28]. By expanding ξi,0(p) into a certain
series containing complex parameters a i = (ai,1, ai,2, · · · ) and repeating the calculations of [27, 28], we can show that
the matrix element mij in (100) can be reduced to the expression given in Eq. (9) of Theorem 1.

We would like to make a comment here regarding the choice of differential operators in Eq. (101). Obviously, we
can also choose more general forms of these differential operators, such as

Ai =
1

ni!
[f(p)∂p]

ni , Bj =
1

nj !
[f(q)∂q]

nj , (104)

where f(p) is an arbitrary function, and the resulting τ function (99) would still satisfy the bilinear equation (95).
However, such additional freedoms in the differential operators will not produce new higher-order lump solutions. To
see why, we can rewrite this Ai as

Ai =
1

ni!

[
f(p)

p
p∂p

]ni

=

ni∑
k=0

ci,k
1

(ni − k)!
(p∂p)

ni−k, (105)
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where ci,k are p-dependent complex constants. Similar treatments can be made on Bj . These differential operators
in summation form are similar to those taken in Ref. [27]. We can directly show that the mij matrix element with
these differential operators of summation form can be converted to one with these differential operators as a single
term in (101), after parameters a i in the series expansion of ξj,0(p) are redefined properly. Thus, no new solutions
are produced.
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[34] P.A. Clarkson and E.L. Mansfield, “The second Painlevé equation, its hierarchy and associated special polynomials”,

Nonlinearity 16, R1 (2003).
[35] S. Fukutani, K. Okamoto and H. Umemura, “Special polynomials and the Hirota bilinear relations of the second and the

fourth Painlevé equations”, Nagoya Math. J. 159, 179-200 (2000).
[36] M. Taneda, “Remarks on the Yablonskii-Vorob’ev polynomials”, Nagoya Math. J. 159, 87-111 (2000).
[37] R.J. Buckingham and P.D. Miller, “Large-degree asymptotics of rational Painlevé-II functions: noncritical behaviour”,
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