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Abstract

We establish a bilinear framework for elliptic soliton solutions which are composed by the

Lamé-type plane wave factors. τ functions in Hirota’s form are derived and vertex operators

that generate such τ functions are presented. Bilinear identities are constructed and an

algorithm to calculate residues and bilinear equations is formulated. These are investigated

in detail for the KdV equation and sketched for the KP hierarchy. Degenerations by the

periods of elliptic functions are investigated, giving rise to the bilinear framework associated

with trigonometric/hyperbolic and rational functions. Reductions by dispersion relation are

considered by employing the so-called elliptic N -th roots of the unity. τ functions, vertex

operators and bilinear equations of the KdV hierarchy and Boussinesq equation are obtained

from those of the KP. We also formulate two ways to calculate bilinear derivatives involved

with the Lamé-type plane wave factors, which shows that such type of plane wave factors

result in quasi-gauge property of bilinear equations.

Key Words: elliptic soliton solution, τ function, vertex operator, bilinear identity, Weier-

strass function, Lamé function.
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1 Introduction

The profound theory developed by Sato and his collaborators in 1980s brings a deep insight

on integrable systems [32]. τ functions, vertex operators and bilinear identities together play

a central role in this celebrated theory. In particular, via vertex operators, τ functions and

hence soliton equations are connected to affine Lie algebras. These τ functions, generically, are

composed by a plane wave factor (PWF) with a linear exponential function ekt1+k2t2+k3t3+···.

In this paper we will develop Sato’s theory for integrable systems, aiming to establish a bi-

linear framework for the τ functions, vertex operators and bilinear identities that are associated

with a Lamé-type PWF
σ(x+ k)

σ(x)σ(k)
e−ζ(k)x+ζ′(k)t2−

1
2!
ζ′′(k)t3+···. (1.1)

The Lamé function, y = σ(x+k)
σ(x)σ(k)e

−ζ(k)x, is a doubly periodic function with respect to k, bearing

the name as it is a solution of the Lamé equation (the Schrödinger equation with an elliptic

potential ℘(x))

y′′ + (A+B℘(x))y = 0, (1.2)

where A = −℘(k) and B = −2. Here σ, ζ and ℘ are the Weierstrass σ, ζ and ℘ functions, where

℘(x) is an elliptic function, i.e. doubly periodic and meromorphic. Elliptic curves can paly a role

in integrable systems either as elliptic type solutions or as elliptic deformations of the equations

themselves, either way brings richer insight to integrable systems than trigonometric/hyperbolic

and rational cases. Apart from the famous finite-gap integration method developed by Novikov,

Matveev, Dubrovin, Its and Krichever (see [6, 30] and the references therein), a second pioneer

work is [3] which extended the connection between the Korteweg-de Vries (KdV) equation

and Calogero-Moser model from rational to elliptic case. Soliton solutions based on the Lamé

function have emerged in [38] in 1976 for the KdV equation. In 2010 Nijhoff and Atkinson

[33] developed a direct approach to obtain elliptic N -soliton solutions for some quadrilateral

equations that are consistent-around-cube and classified in [2]. Their approach relies on Cauchy

matrix and discrete (and elliptic) Lamé type PWFs. The obtained solutions are termed as

elliptic N -soliton solutions [33]. Later, their approach was applied to the lattice potential

Kadomtsev-Petviashvili (KP) equation [39]. More recently, an elliptic direction linearisation
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approach was established in [37], and elliptic N -th roots of unity was introduced to construct

elliptic soliton solutions of the discrete Boussinesq type equations and to deal with dimension

reductions [37].

We shall now sketch the plan of this paper and describe main results in more detail. The

KdV equation will serve as our first introductory model to bear details. We will follow [33]

and still use the term elliptic soliton solutions, although in continuous case these solutions are

no longer elliptic (but still doubly periodic with respect to parameters kj (see, e.g. Theorem

3.3) and expressed in terms of Weierstrass functions). We will begin with an elliptic 1-soliton

solution of the lattice potential KdV (lpKdV) equation. By showing continuum limits of the

equation and solution, we are able to have a full profile as well as a comparison of the Lamé-

type PWFs from fully discrete to continuous. As a new feature, all these PWFs are no longer

solutions to the linear part of the corresponding nonlinear equations. This is different from the

case of usual solitons composed by linear exponential functions.

Section 3 will play a role to present details that how a τ function for elliptic N -soliton

solutions is obtained from a Wronskian and from vertex operators, how a bilinear identity

is constructed and how explicit bilinear equations arise from the bilinear identity. The KdV

equation is still the model equation of this section. We will begin by deriving its elliptic 1- and

2-soliton solutions from the bilinear KdV equation (3.1) using the standard Hirota’s procedure,

but the procedure is more complicated than the usual soliton case. These two solutions are

presented in Eq.(3.6) and (3.7). Details of the derivation and some bilinear derivative formulae

involved with the Lamé-type PWFs are given in Appendix B. A key and new feature is the

gauge property for bilinear derivatives of the usual soliton case is not valid any longer for the

Lamé-type PWFs, and instead, we have quasi-gauge property (see Proposition B.1). As a

consequence, a KdV-type bilinear equation does not always admit an elliptic 2-soliton solution

and even elliptic 1-soliton. This is also different from the usual soliton case where a KdV-type

bilinear equation always has a 2-soliton solution [24,25]. The formula of τ function in Hirota’s

form for the elliptic N -soliton solution is secured from a Wronskian that satisfies the bilinear

KdV equation. This formula is presented in Eq.(3.26) in Theorem 3.2. To obtain it, the quasi-

gauge property and some formulae and identities of the Weierstrass functions are employed.

The vertex operator to generate such a τ function is given in Theorem 3.3. After that, we

will present a bilinear identity (3.43) and its residue form (3.44) in Theorem 3.4. The identity

is constructed by using double-periodicity of the integrand and implementing the integration

around the fundamental period parallelogram. It turns out that the integrand has 2N simple

poles and an essential singularity at q = 0 (mod period lattice). Similar to the usual soliton

case, the integral bilinear identity equals to the residue of the integrand at q = 0, but the way to

achieve the residue is not straightforward at all. We will develop an algorithm for this matter in

Sec.3.4 and a practical formula for calculating residues as well as bilinear equations is presented

Eq.(3.55) in Theorem 3.5. After the exploration of the KdV equation with necessary details,

we will move to the KP equation in Sec.4 and sketch the main results in Theorems 4.2, 4.3, 4.4

and 4.5.

In section 5 we will discuss period degenerations of the elliptic soliton solutions when the dis-

criminant ∆ = g32−27g23 = 0. This will give rise to soliton solutions of trigonometric/hyperbolic

type and rational type. The degenerations are straightforward. That is to say, one can directly

substitute the degenerated Weierstrass functions (see Proposition A.2) into the τ functions and

bilinear equations we obtain in sections 3 and 4. The degenerated results for the KP hierarchy

are given in Theorem 5.1 and 5.2. Three types of PWFs of the KP hierarchy are given in (4.25),

(5.10) and (5.15), respectively. Note that Theorem 5.1 presents a more concise expression for
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the trigonometric/hyperbolic-type τ function and the associated vertex operator, which allows

a direct replacement of σ(x) and ζ(x) by sin(αx) and α cot(αx) respectively. In section 5 we

will also investigate reductions by dispersion relations (corresponding to periodic reductions of

the usual soliton case). Elliptic N -th roots of the unity (see [37] and Definition A.1 in this

paper) will be used. However, different from the usual soliton case, when N ≥ 3, the elliptic

N -th roots of the unity are not simultaneously the elliptic (kN)-th roots of the unity where

k ∈ N, (see Remark A.1 in Appendix A). This means one cannot get elliptic soliton solutions

for the Gel’fand-Dickey (with N ≥ 3) hierarchy from those of the KP hierarchy by reduction

using elliptic N -th roots of the unity.

We have introduced the plan of our paper as well as the main results and some new features

associated with the Lamé-type PWFs. The paper also contains a section where we will present

conclusions and mention some further topics based on the framework of this paper. In addition,

there are three appendices, which include a collection of theWeierstrass functions and the related

properties and identities, some calculating formulae involved with Hirota’s bilinear operator and

the Lamé-type PWFs, and proofs for the elliptic N -soliton solutions in Wronskian forms that

satisfy respectively the bilinear KdV equation and KP equation.

2 Lamé-type plane wave factors

PWF is an elementary block of N -soliton solutions. In this section we begin by exploring PWFs

and dispersion relations of elliptic solitons, for fully discrete, semi-discrete and continuous cases.

We will consider usual 1-soliton solution and elliptic 1-soliton solution of the lpKdV equation

and implement continuum limits of both the equation and solution, so that one can make a

comparison for the usual and elliptic cases.

Recalling the KdV equation (with scaled coefficients for our convenience)

ut =
3

2
uux +

1

4
uxxx (2.1)

and its potential form (u = vx)

vt =
3

4
v2x +

1

4
vxxx, (2.2)

which admits 1-soliton solution

v =
4ke2kx+2k3t

1 + e2kx+2k3t
. (2.3)

The PWF is

ρ(k) = e2kx+2k3t, (2.4)

which is a solution of the linear part of the (potential) KdV equation and indicates the dispersion

relation of the equation.

The lpKdV equation reads [21,34,35]

(w − ̂̃w)(ŵ − w̃) = p2 − q2, (2.5)

where we adopt notations

w = w(n,m), w̃ = w(n + 1,m), ŵ = w(n,m+ 1), ̂̃w = w(n+ 1,m+ 1),

n,m ∈ Z, p and q are spacing parameters of the n-direction and m-direction, respectively. This

equation has a background solution w0 = pn+ qm+ c and a usual 1-soliton solution [22]

w = w0 +
k(1− ρ)

1 + ρ
, (2.6)
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where

ρ =

(
p+ k

p− k

)n(q + k

q − k

)m

ρ00 (2.7)

is the PWF. Here c, k and ρ00 are constants. Removing the background w0 by introducing

v = w − w0, the lpKdV equation (2.5) is converted to

(v − ̂̃v − p− q)(v̂ − ṽ − p+ q) = p2 − q2. (2.8)

The PWF (2.7) solves the linear part of the above equation.

With new parametrizations

p2 = ℘(δ)− e1, q2 = ℘(ε) − e1, (2.9)

the lpKdV equation (2.5) allows a background solution

w0 = ζ(ξ)− nζ(δ)−mζ(ε)− c0 (2.10)

where

ξ = nδ +mε, (2.11)

e1, c0 ∈ C, and δ, ε serve as lattice parameters. For the Weierstrass functions σ(x), ζ(x) and

℘(x) and related notations and properties please refer to Appendix A. The elliptic 1-soliton

solution of the lpKdV equation is [33]

w = w0 +
η−k(ξ) + ηk(ξ)ρ

1 + ρ
, (2.12)

where

ηx(y) = ζ(x+ y)− ζ(x)− ζ(y), (2.13)

and the PWF is

ρ =
σ(k + ξ)

σ(k − ξ)

(
σ(k − δ)

σ(k + δ)

)n(σ(k − ε)

σ(k + ε)

)m

ρ00, (2.14)

with k, ρ00 ∈ C. Again, removing the background w0 from (2.5) by v = w −w0 yields

(v − ̂̃v + χδ,ε(ξ))(v̂ − ṽ − χ−δ,ε(ξ + δ)) = ℘(δ) − ℘(ε), (2.15)

where

χδ,ε(γ) = ζ(δ) + ζ(ε) + ζ(γ)− ζ(δ + ε+ γ). (2.16)

Equation (2.15) admits a solution

v =
η−k(ξ) + ηk(ξ)ρ

1 + ρ
(2.17)

with PWF (2.14). Note that for given n,m and constant ρ00 that are independent of (k, δ, ε),

the PWF ρ and η±k(ξ) are elliptic functions of (k, δ, ε), and so is v given above. However, the

PWF (2.14) is no longer a solution of the linear part of the equation (2.15).

To show the Lamé-type PWFs in semi-discrete and continuous form, we consider continuum

limits of the lpKdV equation (2.15) together with its elliptic soliton solution (2.17). Let m →

∞, ε → 0 while µ = mε be finite. Noticing those Laurent series listed in (A.6) and

χδ,ε(ξ) =
1

ε
− ηδ(µ+ nδ) + ε℘(µ+ (n+ 1)δ) +

ε2

2
℘′(µ + (n+ 1)δ) +O(ε3),

χ−δ,ε(ξ + δ) =
1

ε
+ ηδ(µ + nδ) + ε℘(µ+ nδ) +

ε2

2
℘′(µ+ nδ) +O(ε3),
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in continuum limits the lpKdV equation (2.15) yields the semi-discrete pKdV equation (with a

n-dependent coefficient ηδ(µ+ nδ))

∂µ(v + ṽ) + (ṽ − v)2 + 2ηδ(µ+ nδ)(ṽ − v) = 0, (2.18)

which admits an elliptic 1-soliton solution

v =
η−k(nδ + µ) + ηk(nδ + µ)ρ

1 + ρ
(2.19)

where the PWF is (with ρ0 ∈ C)

ρ =
σ(k + nδ + µ)

σ(k − nδ − µ)

(
σ(k − δ)

σ(k + δ)

)n

e−2ζ(k)µρ0. (2.20)

Strictly speaking, this PWF is doubly periodic with respect to k but not elliptic as there is an

essential singularity at k = 0 due to e−2ζ(k)µ. However, we would like to inherit the term elliptic

N -soliton solutions introduced in [33]. Note also that the PWF does not solve the linear part

of Eq.(2.18) either. In the full continuum limit, first, we let n → ∞, δ → 0 while ν = nδ be

finite, and then introduce x = µ + ν, t = 1
3δ

2ν. The resulting equation with coordinates (x, t)

is

vt −
3

2
v2x + 3℘(x)vx −

1

4
vxxx = 0, (2.21)

and its elliptic 1-soliton solution takes a form

v =
η−k(x) + ηk(x)ρ

1 + ρ
, (2.22)

where the PWF for the continuous elliptic soliton solution is

ρ =
σ(k + x)

σ(k − x)
e−2ζ(k)x+℘′(k)t+ξ(0) , (2.23)

with parameter ξ(0) ∈ C independent of k or being a doubly periodic function of k. Note that

employing the transformation

v̄ = 2(v + ζ(x) +
1

8
g2t) (2.24)

one can convert Eq.(2.21) into the usual pKdV equation (i.e. (2.2))

v̄t −
3

4
v̄2x −

1

4
v̄xxx = 0. (2.25)

Besides, the nonpotential form of Eq.(2.21) is (u = vx)

ut − 3uux + 3℘(x)ux + 3℘′(x)u−
1

4
uxxx = 0, (2.26)

which, by transformation u → 1
2u+℘(x), is written as the usual KdV equation (2.1). However,

the PWF (2.23) is not a solution of the linear part of any of equations, (2.21) or (2.25) or (2.26)

or (2.1). Note that the elliptic 1-soliton solution u = vx with (2.22) emerged in [38].

Now let us make a comparison for the two PWFs, (2.23) and (2.4), i.e. the PWFs for elliptic

solitons and usual solitons. Considering the exponential parts of them, asymptotically, it follows

from (A.6) that

e−2ζ(k)x+℘′(k)t+ξ(0) ∼ e−
2
k
x− 2

k3
t,
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which corresponds to the dispersion relation in (2.4). This observation motivates us to introduce

a general Lamé-type PWF (the extended Lamé function)

ρ = Φx(k) exp
(
−ζ(k)t1 + ζ ′(k)t2 + · · · +

(−1)j

(j − 1)!
ζ(j−1)(k)tj + · · ·

)
, (2.27)

which is an elliptic analogue of the usual one

ρ = exp
(
kt1 + k2t2 + · · ·+ kjtj + · · ·

)
, (2.28)

where t1 = x and

Φx(k) =
σ(k + x)

σ(x)σ(k)
. (2.29)

Note that the doubly-periodic feature of the PWF (2.23) can also be illustrated in its alternative

form

ρ = exp

(
ξ(0) + 2℘′(k)t−

∞∑

n=1

2

(2n + 1)!
℘(2n−1)(k)x2n+1

)
. (2.30)

For the KdV equation (2.1), its elliptic 1-soliton solution can be written as (cf. Eq.3.6)

u = −2℘(x) + 2(ln(1 + Φx(2k)e
−2ζ(k)x+℘′(k)t+ξ(0)))xx, (2.31)

where the −2℘(x) is a 1-gap and 1-genus solution in light of the so-called Dubrovin’s equations

in finite-gap integration [14,15] (also see [26] by Ince), but the whole solution (2.31) is a doubly

periodic function of k (not periodic with respect to x).

Noting that (℘(k), ℘′(k)), k ∈ D (see Fig.1) are points on the elliptic curve (A.2), along the

line of [3], we can say that the elliptic soliton solution corresponds to the torus (A.2), while its

degenerations by fixing g2 = 4
3(

π
2w1

)4, g3 = 8
27 (

π
2w1

)6 and g2 = g3 = 0 (i.e. degenerations by

periods) correspond to a cylinder and Riemann sphere, respectively, cf. [3].

3 τ function, vertex operator and bilinear identity: KdV

We will extend the obtained elliptic 1-soliton solution of the KdV equation to its elliptic N -

soliton solution and then establish a bilinear framework for such type of solutions. The frame-

work will consist of τ function in Hirota’s form, a vertex operator for generating the τ function,

a bilinear identity and an algorithm for calculating residues that gives rise to bilinear equations.

3.1 τ function of elliptic N-soliton solutions

3.1.1 Bilinear form and elliptic 1- and 2-soliton solutions

We begin by exploring Hirota’s procedure to calculate elliptic 1- and 2-soliton solutions for a

bilinear KdV equation. The potential KdV equation (2.25) can be converted into a bilinear

form

(D4
x − 4DxDt − 12℘(x)D2

x)τ · τ = 0 (3.1)

via the transformation

v̄ = 2ζ(x) +
1

4
g2t+ 2(ln τ)x, (3.2)

where D is Hirota’s bilinear operator defined by [23]

Dm
t Dn

xf · g = (∂t − ∂t′)
m(∂x − ∂x′)nf(t, x)g(t′, x′)|t′=t,x′=x, m, n = 0, 1, 2 · · · .
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Equation (3.1) is also a bilinear form of the KdV equation (2.1) while the transformation is

u = −2℘(x) + 2(ln τ)xx. (3.3)

Both (3.2) and (3.3) have nonzero backgrounds. An alternative bilinear form for the KdV

equation is

(D4
x − 4DxDt − g2)τ

′ · τ ′ = 0, (3.4)

while the associated transformations are

u = 2(ln τ ′)xx, v̄ =
1

4
g2t+ 2(ln τ ′)x. (3.5)

By direct calculation (see Appendix B), one can find that Eq.(3.1) admits the following

solutions,

τ = f1 = 1 + ρ1(x, t) = 1 + Φx(2k1)e
ξ1 , (3.6)

and

τ = f2 = 1 + ρ1(x, t) + ρ2(x, t) + f (2)(x, t)

= 1 + Φx(2k1)e
ξ1 +Φx(2k2)e

ξ2 +A12
σ(x+ 2k1 + 2k2)

σ(x)σ(2k1)σ(2k2)
eξ1+ξ2 , (3.7)

where

ρi(x, t) = Φx(2ki)e
ξi , ξi = −2ζ(ki)x+ ℘′(ki)t+ ξ

(0)
i , A12 =

σ2(k1 − k2)

σ2(k1 + k2)
, (3.8)

ki, ξ
(0)
i ∈ C. These are formally similar to the usual 1-soliton and 2-soliton solutions of the

KdV equation but there is an essential difference in 2-soliton case: the last term f (2) in f2 is

A12e
4ζ(k1)k2ρ1(x+2k2, t)ρ2(x, t), rather than A12ρ1(x, t)ρ2(x, t) as in a usual two-soliton solution.

In Appendix B we provide details of deriving f1 and f2, as well as some formulae for higher

order bilinear derivatives and properties (e.g. the quasi-gauge property, see Proposition B.1)

involved with the Lamé-type PWF ρi. We also remark that it is well known a KdV-type bilinear

equation (with constant coefficients) always admits 1-soliton solution and 2-soliton solution [24],

however, such a convention does not hold even for admitting elliptic 1-soliton solution.

A τ function in Hirota’s form for elliptic N -soliton solution is needed to introduce vertex

operator. However, for higher order elliptic soliton solutions, the calculation is much more

complicated. Next, we will first present a N -soliton solution in terms of Wronskian, from which

we can secure the τ function in Hirota’s form.

3.1.2 τ function in Wronskian form

Introduce a N -th order column vector

ϕ = (ϕ1, ϕ2, · · · , ϕN )T , (3.9)

where ϕj = ϕj(x, t) are functions of (x, t). A N -th order Wronskian is defined as

f = |ϕ, ∂xϕ, ∂
2
xϕ, · · · , ∂

N−1
x ϕ| = |0, 1, 2, · · · , N − 1| = |N̂ − 1|,

where we employ the conventional shorthand introduced in [17]. For an elliptic N -soliton

solution of the KdV equation, we have the following.

8



Theorem 3.1. The bilinear equation (3.1) admits a Wronskian solution

τ = |N̂ − 1| (3.10)

composed by vector ϕ = (ϕ1, ϕ2, · · · , ϕN )T where each element ϕj satisfies

ϕj,xx = (℘(kj) + 2℘(x))ϕj , (3.11a)

ϕj,t = ϕj,xxx − 3℘(x)ϕj,x −
3

2
℘′(x)ϕj , (3.11b)

for j = 1, 2, · · · , N and kj ∈ C. A general solution to the above equations is

ϕj = a+j ϕ
+
j + a−j ϕ

−
j , (3.12a)

where ϕ±
j are Lamé functions

ϕ±
j = Φx(±kj)e

∓γj , γj = ζ(kj)x−
1

2
℘′(kj)t+ γ

(0)
j , (3.12b)

where a±j , kj , γ
(0)
j ∈ C, Φx(k) is defined in (2.29), and in practice, kj takes value in the funda-

mental period parallelogram D of the Weierstrass ℘ function (see Fig.1).

The proof will be sketched in Appendix C. Note that such a solution in Wronskian form for

the KdV equation can be alternatively obtained using the Darboux transformation by taking

u = −2℘(x) as a seed solution and assigning a proper dispersion relation (see [31]), but we

do need to have a τ function that serves for elliptic N -soliton solutions and satisfies a definite

bilinear KdV equation.1

3.1.3 τ function in Hirota’s form

To convert Wronskian (3.10) into Hirota’s form, we first investigate the Wronskian composed

by ϕ− = (ϕ−
1 , ϕ

−
2 , · · · , ϕ

−
N )T and its derivatives, where {ϕ−

j } are defined as in (3.12b). Such a

Wronskian can be written as an explicit form.

Lemma 3.1. For the forementioned ϕ−, we have

|ϕ−, ∂xϕ
−, ∂2

xϕ
−, · · · , ∂N−1

x ϕ−|

=(−1)N
σ(x−

∑N
i=1 ki)

σ(x)
·

∏
1≤i<j≤N σ(ki − kj)

σN (k1) · · · σN (kN )
exp

(
N∑

i=1

γj

)
. (3.13)

Proof. For convenience we introduce notations k = (k1, k2, · · · , kN )T , f(k) = (f(k1), f(k2),

· · · , f(kN ))T , f(k)g(k) = (f(k1)g(k1), f(k2)g(k2), · · · , f(kN )g(kN ))T , and we consider theWron-

skian

f− = |Φx(−k)eζ(k)x, ∂x(Φx(−k)eζ(k)x), · · · , ∂N−1
x (Φx(−k)eζ(k)x)|, (3.14)

where for conciseness we have dropped off ℘′(kj)t and γ
(0)
j in γj since the structure of the

Wronskian is irrelevant to time. For each ϕ−
j we have

∂xϕ
−
j = ηx(−k)ϕ−

j ,

1Due to the quasi-gauge property (see Proposition B.1) of bilinear derivatives with respect to the Lamé-type

PFWs, it is necessary have some τ function to satisfy a definite bilinear equation.
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where ηx(k) is defined as (2.13). In addition, ϕ−
j is a Lamé function, satisfying (3.11a), which

indicates that

∂n
xφ

−
j = (℘(kj) + 2℘(x)) ∂n−2

x φ−
j + 2

n−2∑

i=1

(
n− 2

i

)
(∂i

x℘(x))∂
n−2−i
x φ−, (n ≥ 2).

Using the above relations we can replace the column ∂j
x(Φx(−k)eζ(k)x) in (3.14), and after

simplification it turns out that

f− =

(
exp

N∑

i=1

ζ(ki)x

)


N∏

j=1

Φx(−kj)




× |1, ηx(−k), ℘(k), ℘(k)ηx(−k), ℘2(k), ℘2(k)ηx(−k), · · · , ℘[
N−1

2 ](k)h1(k, x)|,

(3.15)

where in the last column h1(k, x) stands for

h1(k, x) =

{
1, N odd,

ηx(−k), N even,

and [x] is the floor function of x.

Next, for the column ℘n(k)ηx(−k) in (3.15), in light of the relation (A.8), we have (for

n ≥ 1)

℘n(k)ηx(−k) = −
1

2
℘n−1(k)℘′(k)−

1

2
℘n−1(k)℘′(x) + ℘n−1(k)ηx(−k)℘(x),

where the last two terms on the right hand side will be eliminated by those front columns in

(3.15). We can examine all such columns in (3.15) successively from right to left. As a result,

we are able to have f− in the form

f− =

(
−
1

2

)[N2 ]−1
(
exp

N∑

i=1

ζ(ki)x

)


N∏

j=1

Φx(−kj)




× |1, ηx(−k), ℘(k), ℘′(k), ℘2(k), ℘(k)℘′(k), ℘3(k), ℘2(k)℘′(k), · · · , ℘[
N−1

2 ]−1(k)h2(k)|,

where in the last column h2(k) is

h2(k) =

{
℘(k), N odd,

℘′(k), N even.

By virtue of the fact that (℘(x), ℘′(x)) is a point on the elliptic curve (A.2), i.e.

(℘′(k))2 = 4℘3(k)− g2℘(k)− g3,

we know that both ℘(2n−2)(x) and ℘(2n+1)(x)
℘′(x) can be expressed as a linear combination of {℘s(x)}

with s = n, n− 2, n− 3, · · · , 2, 1, 0. Then, we are led to

f− =

(
exp

N∑

i=1

ζ(ki)x

)


N∏

j=1

Φx(−kj)


 1

1!2! · · · (N − 2)!

× |1, ηx(−k), ℘(−k), ℘′(−k), ℘′′(−k), ℘′′′(−k), · · · , ℘(N−3)(−k)|,

10



which is further written into

f− =

(
exp

N∑

i=1

ζ(ki)x

)
(−1)N−1Φx(−k1 − · · · − kN )

1!2! · · · (N − 2)!(N − 1)!

× |1, ℘(−k), ℘′(−k), ℘′′(−k), ℘′′′(−k), · · · , ℘(N−2)(−k)|, (3.16)

where use has been made of relation (A.12). Then, employing the elliptic van der Monde

determinant formula (A.11), we have

f− = (−1)N
σ(x−

∑N
i=1 ki)

σ(x)

∏
1≤i<j≤N σ(ki − kj)

σN (k1) · · · σN (kN )
exp

(
N∑

i=1

ζ(ki)x

)
, (3.17)

which yields (3.13).

Next, in order to obtain the τ -function in Hirota’s form, we consider the Wronskian (3.10)

composed specially by an elementary column vector (cf.(3.12a))

ϕj = ϕ+
j + (−1)jϕ−

j , (3.18)

where ϕ±
j are defined by (3.12b). The corresponding Wronskian

τ = |N̂ − 1| (3.19)

can be split and then written as a sum of 2N distinct Wronskians, each of which is generated

by the elementary column vector of the following form,

ϕ = (φ1, φ2, · · · , φN )T , φj = (εj)
jΦx(εjkj)e

−εjγj (3.20)

where {ε1, ε2, · · · , εN} run over {1,−1}. In light of Lemma 3.1, the Wronskian generated by

the above ϕ is

τε = (−1)
N(N−1)

2

N∏

j=1

(εj)
j ·

σ(x+
∑N

i=1 εiki)

σ(x)
·

∏
1≤i<j≤N σ(εiki − εjkj)

σN (ε1k1) · · · σN (εNkN )
exp

(
−

N∑

i=1

εiγi

)

= (−1)
N(N−1)

2 ·
σ(x+

∑N
i=1 εiki)

σ(x)
·

∏
1≤i<j≤N εiσ(εiki − εjkj)

σN (k1) · · · σN (kN )
exp

(
−

N∑

i=1

εiγi

)
, (3.21)

where ε indicates cluster ε = {ε1, ε2, · · · , εN}. Introduce length of ε by |ε| to denote the number

of positive εj ’s in the cluster ε. Rearrange the 2N terms in the τ function (3.19) in terms of |ε|

such that

τ =

N∑

l=0

∑

|ε|=l

τε =

N∑

l=0

τ (l), (3.22)

where τ (l) =
∑

|ε|=l τε, and in particular, by g we denote τ (0), i.e.

g = τ (0) = (−1)
N(N−1)

2
σ(x−

∑N
i=1 ki)

σ(x)
·

∏
1≤i<j≤N σ(ki − kj)

σN (k1) · · · σN (kN )
exp

(
N∑

i=1

γi

)
. (3.23)

Here, for convenience of this subsection, for a function f = f(x), by f̃ we specially denote

the f shifted in x by
∑N

i=1 ki, i.e. f̃ = f(x+
∑N

i=1 ki). Then we have the following.
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Theorem 3.2. Let

f =
τ̃

g̃
, (3.24)

where τ and g are given by (3.19) and (3.23). Then we have

(D4
x − 4DxDt − 12℘(x)D2

x)f · f = 0. (3.25)

f is the τ function in Hirota’s form, written as

f =
∑

µ=0,1

σ(x+ 2
∑N

i=1 µiki)

σ(x)
∏N

j=1 σ
µj (2kj)

exp




N∑

j=1

µjθj +

N∑

1≤i<j

µiµjaij


 , (3.26)

i.e.

f = 1 +
N∑

i=1

Φx(2ki)e
θi +

∑

1≤l<p≤N

σ(x+ 2kl + 2kp)

σ(x)σ(2kl)σ(2kp)
Al,pe

θl+θp

+ · · · +
σ(x+ 2

∑N
i=1 ki)

σ(x)
∏N

j=1 σ(2kj)


 ∏

1≤i<j≤N

Ai,j




N∏

i=1

eθi ,

where the summation of µ means to take all possible µi = {0, 1} for i = 1, 2, · · · , N ,

θi = −2ζ(ki)x+ ℘′(ki)t+ θ
(0)
i , θ

(0)
i ∈ C, (3.27a)

eaij = Aij =

(
σ(ki − kj)

σ(ki + kj)

)2

. (3.27b)

Proof. The proof consists of two parts. First, we will prove that f defined by (3.24) solves the

bilinear KdV equation (3.25). In the second part we will prove f can be written into Hirota’s

form (3.26).

Recalling formulae (B.7) and (B.8), for the function g defined in (3.23), we have

D2
x g̃ · g̃ = 2

(
℘(x+

∑N
i=1 ki)− ℘(x)

)
g̃2,

D4
x g̃ · g̃ = 12℘(x+

∑N
i=1 ki)D

2
x g̃ · g̃.

Then, noticing that τ̃ = f g̃, and using the above relations and the quasi-gauge property de-

scribed in Proposition B.1, by calculation we find

0 = (D4
x − 4DxDt − 12℘(x+

∑N
i=1 ki)D

2
x)τ̃ · τ̃

= g̃2(D4
x − 4DxDt − 12℘(x)D2

x)f · f,

which indicates that f = τ̃ /g̃ solves the bilinear KdV equation (3.25).

In the second part, we are going to prove f = τ̃ /g̃ can be written as in (3.26). In light of

(3.22), a generic term in f is

τ̃ε
g̃

=
σ(x+

∑N
j=1(1 + εj)kj)

σ(x)
·


 ∏

1≤i<j≤N

εiσ(εiki − εjkj)

σ(ki − kj)


 exp


−

N∑

j=1

(1 + εj)γ̃j


 . (3.28)

In particular, when |ε| = 1, e.g. only εj0 = 1 while all other εi’s are −1, such a term is

Φx(2kj0)e
αj0 e−2γ̃j0 ,
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where

eαj0 = σ(2kj0)
∏

1≤i≤N
i6=j0

σ(kj0 + ki)

σ(kj0 − ki) · sgn[i− j0]
.

To proceed, we introduce

S = {1, 2, · · · , N}, Jε = {n1, n2, · · · , nl} ⊂ S,

where Jε is associated with ε via

εi =

{
1, i ∈ Jε,

−1, i ∈ S \ Jε.

Eq.(3.28) is then written as

τ̃ε
g̃

=
σ(x+ 2

∑
i∈Jε

ki)

σ(x)
∏

i∈Jε
σ(2ki)

(
∏

i∈Jε

eβi

)
exp

(
−2
∑

i∈Jε

γ̃i

)
, (3.29)

where

eβi = σ(2ki)
∏

j∈S\Jε

σ(ki + kj)

σ(ki − kj) · sgn[j − i]
.

Then, noticing that

eβi−αi =
∏

j∈Jε
j 6=i

σ(ki − kj)

σ(ki + kj) · sgn[j − i]
,

which indicates that

∏

i∈Jε

eβi−αi =
∏

i,j∈Jε
i<j

(
σ(ki − kj)

σ(ki + kj)

)2

=
∏

i,j∈Jε
i<j

Aij,

where Aij is defined as in (3.27b), the term (3.29) is written as

τ̃ε
g̃

=
σ(x+ 2

∑
i∈Jε

ki)

σ(x)
∏

i∈Jε
σ(2ki)

·



∏

i,j∈Jε
i<j

Aij


 exp

(
∑

i∈Jε

θi

)
,

where θi = −2γ̃i + αi, defined as in (3.27a). This indicates that f = τ̃ /g̃ can be written into

Hirota’s form (3.26) coupled with (3.27).

The proof is completed.

3.2 Vertex operator

We look for a vertex operator that generates the τ function (3.26) for elliptic solitons. To pro-

ceed, let us first list some notations. Let t = (t1 = x, t2, · · · , tn, · · · ), ∂̃ = (∂t1 ,
1
2∂t2 , · · · ,

1
n∂tn , · · · ),

t = (t1 = x, t3, · · · , t2n+1, · · · ), ∂̃ = (∂t1 ,
1
3∂t3 , · · · ,

1
(2n+1)∂t2n+1 , · · · ),

ξ(t, k) =

∞∑

n=1

kntn, ξ[e](t, k) =

∞∑

n=1

(−1)n
ζ(n−1)(k)

(n− 1)!
tn, ζ(i)(k) = ∂i

kζ(k), (3.30a)

θ(t, k) = ξ(t, k) − ξ(t,−k) = 2

∞∑

n=0

k2n+1t2n+1, (3.30b)

θ[e](t, k) = ξ[e](t, k)− ξ[e](t,−k) = −2

∞∑

n=0

ζ(2n)(k)

(2n)!
t2n+1. (3.30c)

13



Consider the following τ function which is equivalent to (3.26),

τN (t) =
∑

J⊂S

(
∏

i∈J

ci

)(
∏

i,j∈J
i<j

Aij

)
σ(t1 + 2

∑
i∈J ki)

σ(t1)
∏

i∈J σ(2ki)
exp

(
∑

i∈J

θ[e](t, ki)

)
, (3.31)

where ci are arbitrary constants, Aij is defined as in (3.27b), S = {1, 2, · · · , N}, J is a subset

of S, and
∑

J⊂S means the summation runs over all subsets of S. The vertex operator that

generates the above τ function is described below.

Theorem 3.3. The τ function (3.31) can be generated by the vertex operator

X(k) = Φt1(2k)e
θ[e](t,k)eθ(∂̃,k) (3.32)

via

τN (t) = ecNX(kN ) ◦ τN−1(t), τ0(t) = 1, (3.33)

i.e.

τN (t) = ecNX(kN ) · · · ec2X(k2)ec1X(k1) ◦ 1. (3.34)

In addition, τN (t) is doubly periodic with respect to any ki, for i = 1, 2, · · · , N , where the two

periods are those of ℘(k).

Let us prove the theorem through the following lemmas.

Lemma 3.2. For θ and θ[e] defined in (3.30), we have

eθ(∂̃,ki)eθ[e](t,kj) = Aij e
θ[e](t,kj)eθ(∂̃,ki), (3.35)

where Aij is defined as (3.27b).

Proof. Considering the Taylor series in the neighbourhood of q = 0, we have

ln
σ(p− q)

σ(p+ q)
= θ[e](ε(q), p), (3.36)

which indicates

Aij = e2θ[e](ε(kj),ki), (3.37)

where ε(q) = (q, q
3

3 , · · · ,
q2n+1

(2n+1) , · · · ). Then, for any C∞ function h(t), one can directly verify

that

eθ(∂̃,ki)eθ[e](t,kj) ◦ h(t) = Aij e
θ[e](t,kj)eθ(∂̃,ki) ◦ h(t),

i.e. relation (3.35) holds.

Note that (3.35) is formally similar to the result in the usual soliton case, cf. [13, 32]. We

are led by this lemma to the following.

Lemma 3.3. For the vertex operator X(k) defined by (3.32), we have

X(ki)X(kj) = Ai,j
σ(t1 + 2ki + 2kj)

σ(t1)σ(2ki)σ(2kj)
eθ[e](t,ki,)+θ[e](t,kj)eθ(∂̃,ki)+θ(∂̃,kj), (3.38a)

X(ks) · · ·X(k2)X(k1)

=




∏

1≤i<j≤s

Aij


 σ(t1 + 2

∑s
i=1 ki)

σ(t1)
∏s

i=1 σ(2ki)
exp

(
s∑

i=1

θ[e](t, ki)

)
· exp

(
s∑

i=1

θ(∂̃, ki)

)
, (3.38b)

and hence

X(k)2 = 0, ecX(k) = 1 + cX(k). (3.39)
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With the above two lemmas in hand, we can confirm that τN (t) can be generated by the

vertex operator X(k) via (3.34), with (3.33) as a consequence. In addition, noticing that

τ1(t) = ec1X(k1) ◦ 1 is doubly periodic with respect to k1, and X(ki) and X(kj) commute (see

(3.38a) where we should consider Aij to be a rational function rather than a Laurent series of

ki/kj or kj/ki, cf. [13]), it follows that τN (t) defined by (3.34) is doubly periodic with respect

to any ki, for i = 1, 2, · · · , N . Thus Theorem 3.3 holds.

3.3 Bilinear identity of the KdV hierarchy

With the vertex operator and τ function in hand, we can have bilinear forms of the KdV

hierarchy that admit elliptic soliton solutions.

To achieve that, let us first introduce a doubly periodic function.

Lemma 3.4. Consider a vertex operator

X(t, q) =
σ(t1 + q)

σ(q)
e

1
2
θ[e](t,q)e

1
2
θ(∂̃,q), (3.40)

and introduce a function of q,

h(t, q) = X(t, q)τ(t), (3.41)

where τ(t) = τN (t) is defined by (3.31). Then, h(t, q) is a doubly periodic function of q with

periods 2w1 and 2w2, where wi are the half periods of ℘(q).

Proof. Making use of relation (3.36), h(t, q) can be explicitly written as

h(t, q) =
σ(t1 + q)

σ(q)
e

1
2
θ[e](t,q)

×
∑

J⊂S




 ∏

i<j∈J

Aij


 σ(t1 + 2

∑
i∈J ki + q)

σ(t1 + q)
∏

i∈J σ(2ki)

(
∏

i∈J

ci
σ(ki − q)

σ(q + ki)

)
× e

∑
i∈J θ[e](t,ki)


 .

(3.42)

Note that in 1
2θ[e](t, q), except the first term −ζ(q)t1, the rest part −

∑∞
n=1

ζ(2n)(q)
(2n)! t2n+1 is

already doubly periodic with respect to q. Following Proposition A.1, one can check that

σ(t1 + q)

σ(q)
e−ζ(q)t1 ,

σ(t1 + 2
∑

i∈J ki + q)

σ(t1 + q)
∏

i∈J σ(2ki)

∏

i∈J

ci
σ(ki − q)

σ(q + ki)

are doubly periodic too. This indicates h(t, q) is a doubly periodic function of q. Note that

h(t, q) is not elliptic as it has an essential singularity q = 0 (mod periodic lattice).

Then we come up with an integral bilinear identity.

Theorem 3.4. For the function h(t, q) defined in (3.41), we have the following bilinear identity
∮

Ω

dq

2πi
h(t, q)h(t

′
,−q) = 0, (3.43)

which gives rise to

Res
q=0

[
h(t, q)h(t

′
,−q)

]
= 0, (3.44)

where the contour Ω takes the boundary, anticlockwise, of the open fundamental period parallel-

ogram D (see Fig.1) and all {±ki} are distinct and belong to D.
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Figure 1: Fundamental period parallelogram D

Proof. In light of Lemma 3.4, it is obvious the integrand h(t, q)h(t
′
,−q) is a double-periodic

function of q. Meanwhile, noticing that in D the integrand has only 2N isolated simple poles

{±ki}
N
i=1 and one isolated essential singularity q = 0, there is a domain which contains the

curve Ω and where the integrand is continuous. It then turns out that the integral in (3.43) is

zero due to the integrand being double-periodic.

To prove the second identity (3.44), we examine residues of the integrand at q = ±ki. For

given j0 ∈ S, q = kj0 is a simple pole of h(t
′
,−q) but h(t, q) is analytic at this point. Thus we

have

Res
q=kj0

[
h(t, q)h(t

′
,−q)

]
= h(t, kj0)× Res

q=kj0

[
h(t

′
,−q)

]
. (3.45)

h(t
′
,−q) has a similar summation expression as (3.42). For any J that does not contain j0, the

associated terms in the summation expression of h(t
′
,−q) contribute nothing to the residue at

q = kj0 . Therefore we have

Res
q=kj0

[
h(t

′
,−q)

]
= Res

q=kj0

[
g(t

′
, q)
]
, (3.46)

where g(t
′
, q) is a collection of all those kj0-related terms in h(t

′
,−q), which is

g(t
′
, q) =

−e
1
2
θ[e](t

′
,−q)

σ(q)

∑

J⊂S\{j0}




 ∏

i<j∈J

Aij



(
∏

i∈J

ci
σ(ki + q)

σ(ki − q)

)
×

e
∑

i∈J θ[e](t
′
,ki)

∏
i∈J σ(2ki)

×Bj0




where

Bj0 = cj0σ(t
′
1 + 2

∑
i∈J ki + 2kj0 − q)

(
∏

i∈J

σ2(ki − kj0)

σ2(ki + kj0)

)
σ(kj0 + q)

σ(kj0 − q)
·
eθ[e](t

′
,kj0)

σ(2kj0)
.

Note that q = kj0 is a simple pole of Bj0 . A direct calculation yields

Res
q=kj0

[
g(t

′
, q)
]

=
cj0e

1
2
θ[e](t

′
,kj0)

σ(kj0)

×
∑

J⊂S\{j0}




 ∏

i<j∈J

Aij



(
∏

i∈J

ci
σ(ki − kj0)

σ(ki + kj0)

)
σ(t′1 + 2

∑
i∈J ki + kj0)∏

i∈J σ(2ki)
· e

∑
i∈J θ[e](t

′
,ki)


 ,

where we have made use of

lim
q→kj0

(
∏

i∈J

ci
σ(ki + q)

σ(ki − q)

)(
∏

i∈J

σ2(ki − kj0)

σ2(ki + kj0)

)
=
∏

i∈J

ci
σ(ki − kj0)

σ(ki + kj0)
.

16



Recalling the expression (3.42) for h(t, q), in the summation, such terms will vanish as they are

generated by J that contains j0. Thus from (3.45) we have

Res
q=kj0

[
h(t, q)h(t

′
,−q)

]

=
cj0e

1
2
θ[e](t,kj0 )+

1
2
θ[e](t

′
,kj0 )

σ2(kj0)

×
∑

J⊂S\{j0}





∏

i<j∈J

Aij



(
∏

i∈J

ci
σ(ki − kj0)

σ(ki + kj0)

)
σ(t1 + 2

∑
i∈J ki + kj0)∏

i∈J σ(2ki)
· e

∑
i∈J θ[e](t,ki)




×
∑

J⊂S\{j0}




 ∏

i<j∈J

Aij



(
∏

i∈J

ci
σ(ki − kj0)

σ(ki + kj0)

)
σ(t′1 + 2

∑
i∈J ki + kj0)∏

i∈J σ(2ki)
· e

∑
i∈J θ[e](t

′
,ki)


 .

In a similar way we can calculate the residue of the integrand at q = −kj0 . It turns out that

Res
q=−kj0

[
h(t, q)h(t

′
,−q)

]
= − Res

q=kj0

[
h(t, q)h(t

′
,−q)

]
,

which means finally all residues at q = ±ki cancel, and the remained residue at q = 0 gives rise

to the bilinear identity (3.44).

The proof is completed.

3.4 Algorithm for calculating residues

In the following we formulate an algorithm to calculate residues from the identity (3.44) so that

the bilinear KdV hierarchy with elliptic solitons can be obtained.

Redefining τ ′(t) = σ(t1)τ(t), the bilinear identity (3.43) is written as

∮

Ω

dq

2πi

1

σ2(q)
e

1
2
θ[e](t−t

′
,q)τ ′(t+ ε(q))τ ′(t

′
− ε(q)) = 0. (3.47)

Then, introducing t = x+y and t′ = x−y, where x = (x1, x3, · · · ), y = (y1, y3, · · · ), the above

equation is written as
∮

Ω

dq

2πi

1

σ2(q)
eθ[e](y,q)e(y+ε(q))·Dxτ ′(x) · τ ′(x) = 0, (3.48)

and from (3.44) we have

Res
q=0

[
1

σ2(q)
eθ[e](y,q)e(y+ε(q))·Dxτ ′(x) · τ ′(x)

]
= 0, (3.49)

where Dx = (Dx1 ,Dx3 ,Dx5 , · · · ), and for two vectors a = (a1, a2, · · · ) and b = (b1, b2, · · · ) their

vector product is defined as a · b =
∑

i=1 aibi. Note that in the usual soliton case, the term
1

σ2(q)
eθ[e](y,q) in (3.49) is 1

q2
eθ(y,1/q) instead, cf. [27,32]; eθ(y,1/q) has a definite expansion in terms

of q but eθ[e](y,q) does not.2 This is the obstacle when calculating the residue at q = 0. We need

to design an algorithm to calculate the residue in (3.49).

To develop the algorithm we write (3.49) into the following form

Res
q=0

[
e(B+Dx)·y

1

σ2(q)
eξ(D̃x, q)τ ′(x) · τ ′(x)

]
= 0, (3.50)

2One can formally write eθ[e](y,q) =
∑∞

j=−∞ hj(y)q
j but hj(y) can not be expressed explicitly.
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where ξ is defined as in (3.30) and

B = −2(ζ(q),
ζ ′′(q)

2!
, · · ·

ζ(2n)(q)

(2n)!
, · · · ), D̃x = (Dx1 , 0,

1

3
Dx3 , 0,

1

5
Dx5 , · · · ).

For convenience, we introduce polynomials {pn(t)} by [32]

eξ(t,k) =

∞∑

n=0

pn(t)k
n, (3.51)

where

pn(t) =
∑

‖α‖=n

tα

α!
,

t = (t1, t2, · · · ), α = (α1, α2, · · · ),

‖α‖ =

∞∑

j=0

jαj , α! = α1!α2! · · · , tα = tα1
1 tα2

2 · · · .

The first few {pn(t)}’s are

p0(t) = 1, p1(t) = t1, p2(t) =
1

2
t21 + t2,

p3(t) =
1

3!
t31 + t1t2 + t3, p4(t) =

1

4!
t41 +

1

2
t21t2 +

1

2
t22 + t1t3 + t4.

Meanwhile, 1/σ2(q) is expanded as

1

σ2(q)
=

∞∑

j=0

µjq
j−2 =

1

q2
(1 +

g2
120

q4 +
g3
420

q6 +
13g22

201600
q8 + · · · ). (3.52)

Then, the bilinear identity (3.50) is written as

0 = Res
q=0






∞∑

|β|=0

(B+Dx)
β

β!
yβ






∞∑

n=0

n∑

j=0

pj(D̃x)µn−jq
n−2


 τ ′(x) · τ ′(x)




=
∞∑

|β|=0

Res
q=0


(B+Dx)

β

β!




∞∑

n=0

n∑

j=0

pj(D̃x)µn−jq
n−2


 τ ′(x) · τ ′(x)


yβ, (3.53)

where β = (β1, β3, · · · , β2j+1, · · · ) and |β| =
∑∞

j=0 β2j+1. Since {yi} are arbitrary, it then follows

that

Res
q=0


(B+Dx)

β




∞∑

n=0

n∑

j=0

pj(D̃x)µn−jq
n−2


 τ ′(x) · τ ′(x)


 = 0. (3.54)

In the above equation,
∑∞

n=0

∑n
j=0 pj(D̃x)µn−jq

n−2 is a Laurent series of q starting from q−2.

For another term (B + Dx)
β , first, given β, contains only finite number of nonzero βj . Thus

assume β = (β1, β3, · · · , β2n+1, 0, 0, · · · ) without loss of generality. Meanwhile, we shall note

that the entries in B have a form B2j+1 = −2 ζ(2j)(q)
(2j)! where ζ(q) can be expanded as (A.6b).

Since |β| is finite, (B + Dx)
β is a Laurent series of q as well and it starts from q−||β|| where

||β|| =
∑n

j=0(2j + 1)β2j+1 is finite and positive. This means, to calculate the residue (3.54),

it is sufficient to consider the finite number of terms from q−||β|| to q1 in (B + Dx)
β and the

finite number of terms from q−2 to q||β||−1 in
∑∞

n=0

∑n
j=0 pj(D̃x)µn−jq

n−2. Thus, we are led to

the following theorem which formulates an algorithm to derive bilinear KdV hierarchy through

calculating residues (3.54).
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Theorem 3.5. The bilinear KdV hierarchy are given by

Res
q=0


(B+Dx)

β |≤1




||β||−1∑

n=0

n∑

j=0

pj(D̃x)µn−jq
n−2


 τ ′(x) · τ ′(x)


 = 0, (3.55)

where β is set of nonnegative integers with finite and positive |β|, and (B + Dx)
β|≤1 means

those terms of qj with j ≤ 1 in the Laurent series of (B+Dx)
β .

As examples, when β = (3, 0, 0, · · · ), from the above theorem we find

(D4
x1

− 4Dx1Dx3 − g2)τ
′ · τ ′ = 0,

which is the bilinear KdV equation (3.4). For the cases β = (2, 1, 0, · · · ) and β = (5, 0, 0, · · · ),

we have, respectively,

(D6
x1

+ 4D3
x1
Dx3 − 32D2

x3
+ 3g2D

2
x1

− 24g3)τ
′ · τ ′ = 0, (3.56a)

(D6
x1

+ 40D3
x1
Dx3 + 40D2

x3
− 216Dx1Dx5 + 3g2D

2
x1

− 24g3)τ
′ · τ ′ = 0. (3.56b)

When g2, g3 are 0, these equations degenerate to those in the KdV hierarchy for the usual

soliton case, cf. [27].

4 τ function, vertex operator and bilinear identity: KP

Both the KdV and KP equation serve as representative models in integrable systems, while

the latter plays a more fundamental role in Sato’s theory of integrable systems. Based on the

exploration in the previous section for the KdV equation, in this section we will focus on the KP

equation and investigate its τ function, vertex operator and bilinear identity associated with

elliptic solitons.

4.1 Elliptic N-solitons and τ function in Hirota’s form

The KP equation is3

4ut − uxxx − 6uux − 3∂−1uyy = 0, (4.1)

or in the potential form (u = vx)

4vt − vxxx − 3(vx)
2 − 3∂−1vyy = 0. (4.2)

By the transformation

u = −2℘(x) + 2(ln τ)xx, (4.3)

or

v = 2ζ(x) +
g2
4
t+ 2(ln τ)x, (4.4)

the KP equation is bilinearised as

(D4
x − 4DxDt − 12℘(x)D2

x + 3D2
y)τ · τ = 0, (4.5)

or

(D4
x − 4DxDt + 3D2

y − g2)τ
′ · τ ′ = 0, (4.6)

where τ ′ = σ(x)τ . The bilinear KP equation allows elliptic soliton solutions.

3Usually,

4ut − uxxx − 6uux − 3α2
∂
−1

uyy = 0

is known as KP-I when α2 = −1 and KP-II when α2 = 1. We consider KP-II without loss of generality.
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Theorem 4.1. The following Wronskian

τ = |N̂ − 1| (4.7)

is a solution to the bilinear KP equation (4.5), where τ is composed by vector ϕ = (ϕ1, · · · , ϕN )T

with entries

ϕj(x, y, t) = Φx(kj)e
−γ(kj) +Φx(lj)e

−γ(lj ), (4.8a)

where

γ(k) = ζ(k)x+ ℘(k)y −
℘′(k)

2
t+ γ(0)(k), k ∈ C (4.8b)

with a constant γ(0)(k) related to k. Note that ϕj satisfies

ϕj,y = −ϕj,xx + 2℘(x)ϕj ,

ϕj,t = ϕj,xxx − 3℘(x)ϕj,x −
3

2
℘′(x)ϕj .

(4.9)

The proof will be given in Appendix C.

To find out a corresponding Hirota’s form of the τ function (4.7), we consider (4.7) to be a

summation of 2N terms, i.e. τ =
∑

J⊂S τJ , where the generic term τJ is the Wronskian |N̂ − 1|

generated by

ϕ = (φ1, φ2, · · · , φN )T , (4.10)

in which φj = Φx(kj)e
−γ(kj) for j ∈ J and φj = Φx(lj)e

−γ(lj ) for j ∈ S\J , J is a subset of

S = {1, 2, · · · , N}. In light of Lemma 3.1, we immediately get the following result.

Lemma 4.1. The Wronskian τJ generated by vector (4.10) can be expressed as

τJ =(−1)
N(N−1)

2

σ(x+
∑

i∈J ki +
∑

j∈S\J lj)

σ(x)

∏
i∈J

j∈S\J
σ(ki − lj)sgn[j − i]

(∏
i∈J σ

N (ki)
) (∏

j∈S\J σ
N (li)

)

×


 ∏

i<j∈J

σ(ki − kj)




 ∏

i<j∈S\J

σ(li − lj)


 exp


−

∑

i∈J

γ(ki)−
∑

j∈S\J

γ(lj)


 , (4.11)

especially, when J is the empty set ∅, we have

g(x, y, t) = τ∅ = (−1)
N(N−1)

2

σ(x+
∑

j∈S lj)

σ(x)

∏
i<j∈S σ(li − lj)∏

j∈S σ
N (li)

exp


−

∑

j∈S

γ(lj)


 . (4.12)

Next, for a function f(x), we introduce notation f̃(x) = f(x −
∑N

j=1 lj). Then, similar to

the KdV case, we have the following.

Theorem 4.2. For the function τ in Wronskian form (4.7) and g given by (4.12),

f =
τ̃

g̃
(4.13)

is a solution to the bilinear KP equation (4.5), i.e.

(D4
x − 4DxDt − 12℘(x)D2

x + 3D2
y)f · f = 0, (4.14)

and f is written in Hirota’s form as

f =
∑

µ=0,1

σ(x+
∑N

i=1 µi(ki − li))

σ(x)
∏N

i=1 σ
µi(ki − li)

exp




N∑

j=1

µjθj +
N∑

1≤i<j

µiµjaij


 , (4.15)
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where the summation of µ means to take all possible µi = {0, 1} for i = 1, 2, · · · , N ,

θi = −(ζ(ki)− ζ(li))x− (℘(ki)− ℘(li))y +
1

2
(℘′(ki)− ℘′(li))t+ θ

(0)
i , θ

(0)
i ∈ C, (4.16a)

eaij = Aij =
σ(ki − kj)σ(li − lj)

σ(ki − lj)σ(li − kj)
. (4.16b)

Proof. First, by virtue of the quasi-gauge property of bilinear equations (see Proposition B.1)

and making use of identity (B.11), equation (4.14) can be derived from

(D4
x − 4DxDt − 12℘(x−

∑N
i=1 li)D

2
x + 3D2

y)τ̃ · τ̃ = 0,

where τ̃ = f g̃.

Next, to write τ̃ /g̃ into an explicit form, let us look at the generic term τ̃J/g̃ in f . It follows

from Lemma 4.1 that

τ̃J
g̃

=
σ(x+

∑
i∈J(ki − li))

σ(x)
∏

i∈J σ(ki − li)
·


 ∏

i<j∈J

σ(ki − kj)

σ(li − lj)



(
∏

i∈J

eβi

)
exp

[
−
∑

i∈J

(γ̃(ki)− γ̃(li))

]
, (4.17)

where γ̃(k) = γ(k)|x→x−
∑N

i=1 li
and

eβi = σ(ki − li)
σN (li)

σN (ki)

∏

j∈S\J

σ(ki − lj)

σ(li − lj)
.

In particular, if J contains a single element, e.g. J = {i}, we have

τ̃{i}

g̃
= Φx(ki − li)e

αie−γ̃(ki)+γ̃(li),

where

eαi = σ(ki − li)
σN (li)

σN (ki)

∏

j∈S

j 6=i

σ(ki − lj)

σ(li − lj)
.

Define θ
(0)
i = αi−γ(0)(ki)+γ(0)(li)+

∑N
j=1 lj(ζ(ki)−ζ(li)) such that eαie−γ̃(ki)+γ̃(li) = eθi where

θi is defined as in (4.16a). Then, the generic term (4.17) in f is written into

τ̃J
g̃

=
σ(x+

∑
i∈J(ki − li))

σ(x)
∏

i∈J σ(ki − li)


 ∏

i<j∈J

Aij


 exp

(
∑

i∈J

θi

)
,

where we have made use of

∏

i∈J

eβi−αi =
∏

i,j∈J

i6=j

σ(li − lj)

σ(ki − lj)
=
∏

i<j∈J

σ2(li − lj)

σ(ki − lj)σ(li − kj)

and Aij is defined as in (4.16b). It then turns out that f =
∑

J⊂S τ̃J/g̃ takes the explicit

Hirota’s form (4.15).
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4.2 Vertex operator

We now present a vertex operator that can generate τ functions for elliptic soliton solutions of

the KP hierarchy. Introduce a vertex operator

X(k, l) = Φt1(k − l)eξ[e](t,k)−ξ[e](t,l)eξ(∂̃,k)−ξ(∂̃,l), (4.18)

where ξ and ξ[e] are defined in (3.30), and ∂̃ = (∂t1 ,
1
2∂t2 , · · · ,

1
n∂tn , · · · ). Similar to the relation

(3.36) and Lemma 3.2, for Aij defined in (4.16b), it can be proved that

lnAij = ξ[e](ε(kj)− ε(lj), ki)− ξ[e](ε(kj)− ε(lj), li) (4.19)

and

X(ki, li)X(kj , lj) = Ai,j
σ(t1 + ki − li + kj − lj)

σ(t1)σ(ki − li)σ(kj − lj)
:X(ki, li)X(kj , lj) :, (4.20a)

where ε(q) = (q, q
2

2 ,
q3

3 , · · · ,
qn

n , · · · ), and by :X: we denote the normalization of the exponential

part of the vertex operator X by moving all differential operators in X to the right, e.g., here

we have

:X(ki, li)X(kj , lj) := eξ[e](t,ki)−ξ[e](t,li)eξ[e](t,kj)−ξ[e](t,lj)eξ(∂̃,ki)−ξ(∂̃,li)eξ(∂̃,kj)−ξ(∂̃,lj). (4.20b)

A more general version of (4.20a) is

N∏

i=1

X(ki, li) =


 ∏

1≤i<j≤N

Ai,j


 σ(t1 +

∑N
i=1(ki − li))

σ(t1)
∏N

i=1 σ(ki − li)
:
N∏

i=1

X(ki, li) : . (4.21)

It then follows that

X2(k, l) = 0, ecX(k,l) = 1 + cX(k, l), ecX(k,l) ◦ 1 = 1 + cΦt1(k − l)eξ[e](t,k)−ξ[e](t,l),

which leads us to the following result for elliptic N -soliton solution.

Theorem 4.3. For the KP hierarchy, its τ function of elliptic N -soliton solution,

τN (t) =
∑

J⊂S

(
∏

i∈J

ci

)
 ∏

i<j∈J

Aij


 σ(t1 +

∑
i∈J(ki − li))

σ(t1)
∏

i∈J σ(ki − li)
e
∑

i∈J(ξ[e](t,ki)−ξ[e](t,li)), (4.22)

is generated by the vertex operator (4.18) via

τN (t) = ecNX(kN ,lN ) · · · ec2X(k2,l2)ec1X(k1,l1) ◦ 1, (4.23)

or via transformation

τN (t) = ecNX(kN ,lN ) ◦ τN−1(t), τ0(t) = 1. (4.24)

In addition, τN (t) is a doubly periodic function with respect to any ki and lj for i, j = 1, 2, · · · , N .

The proof is similar to Theorem 3.3 for the KdV equation and we skip it. Note also that

the single Lamé-type PWF of the KP hierarchy is

ρ = X(k, l) ◦ 1 = Φt1(k − l)eξ[e](t,k)−ξ[e](t,l). (4.25)
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4.3 Bilinear identity

Define two functions of q,

h(t, q) = X(t, q)τ(t), (4.26a)

h∗(t, q) = X∗(t, q)τ(t), (4.26b)

where τ(t) = τN (t) is given by (4.22), X(t, q) and X∗(t, q) are vertex operators

X(t, q) =
σ(t1 + q)

σ(q)
eξ[e](t,q)eξ(∂̃,q), (4.27a)

X∗(t, q) =
σ(t1 − q)

σ(−q)
e−ξ[e](t,q)e−ξ(∂̃,q). (4.27b)

Similar to Lemma 3.4 for the KdV case, we can write h(t, q) and h∗(t, q) in their explicit forms,

h(t, q) =
σ(t1 + q)

σ(q)
eξ[e](t,q)

×
∑

J⊂S


 ∏

i<j∈J

Ai,j


 σ(t1 +

∑
i∈J(ki − li) + q)

σ(t1 + q)
∏

i∈J σ(ki − li)

(
∏

i∈J

ci
σ(li)σ(q − ki)

σ(ki)σ(q − li)
eθ[e](t,ki,li)

)
,

h∗(t, q) =
σ(t1 − q)

σ(−q)
e−ξ[e](t,q)

×
∑

J⊂S



∏

i<j∈J

Ai,j


 σ(t1 +

∑
i∈J(ki − li)− q)

σ(t1 − q)
∏

i∈J σ(ki − li)

(
∏

i∈J

ci
σ(ki)σ(q − li)

σ(li)σ(q − ki)
eθ[e](t,ki,li)

)
,

where θ[e](t, ki, li) = ξ[e](t, ki)−ξ[e](t, li). Then it can be verified that both functions are doubly

periodic with respect to q with the same periods as ℘(q).

Obviously, the double-periodic property yields a bilinear identity for the KP hierarchy.

Theorem 4.4. For the functions h(t, q) and h∗(t′, q) defined in (4.26), we have

∮

Ω

dq

2πi
h(t, q)h∗(t′, q) = 0, (4.28)

which gives rise to

Res
q=0

[
h(t, q)h∗(t′, q)

]
= 0, (4.29)

where the contour Ω takes the boundary, anticlockwise, of the open fundamental period parallel-

ogram D (see Fig.1) and all {ki} and {li} are distinct and belong to D.

Proof. The first identity (4.28) is obvious.

For the second one, first, note that the integrand h(t, q)h∗(t′, q) has only 2N isolated simple

poles {ki}
N
i=1, {li}

N
i=1, and one isolated essential singularity q = 0 in D. Then, for given j0 ∈ S,

we are going to prove the following relation,

Res
q=kj0

[
h(t, q)h∗(t′, q)

]
= −Res

q=lj0

[
h(t, q)h∗(t′, q)

]
. (4.30)
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In fact, similar to the KdV case, for given j0 ∈ S, we have

Res
q=kj0

[
h(t, q)h∗(t′, q)

]

= −
cj0

σ(kj0)σ(lj0)
eξ[e](t,kj0)−ξ[e](t

′,lj0 )

×
∑

J⊂S\{j0}




 ∏

i<j∈J

Aij



(
∏

i∈J

ci
σ(li)σ(kj0 − ki)

σ(ki)σ(kj0 − li)

)
σ(t1 +

∑
i∈J(ki − li) + kj0)∏

i∈J σ(ki − li)
e
∑

i∈J θ[e](t,ki,li)




×
∑

J⊂S\{j0}





∏

i<j∈J

Aij



(
∏

i∈J

ci
σ(ki)σ(lj0 − li)

σ(li)σ(lj0 − ki)

)
σ(t′1 +

∑
i∈J(ki − li)− lj0)∏

i∈J σ(ki − li)
e
∑

i∈J θ[e](t
′,ki,li)


 ,

and Res
q=lj0

[h(t, q)h∗(t′, q)] has the same form but with “+” sign instead. Thus, (4.30) holds and

then (4.29) follows.

In what follows, we derive bilinear hierarchy from the identity (4.29). We introduce τ ′(t) =

σ(t1)τ(t) and t = x+ y and t′ = x− y, where x = (x1, x2, x3, · · · ), y = (y1, y2, y3, · · · ). Then,

the bilinear identity (4.29) gives rise to

Res
q=0

[
1

σ2(q)
e2ξ[e](y,q)τ ′(x+ y + ε(q))τ ′(x− y − ε(q))

]
= 0, (4.31)

i.e.

Res
q=0

[
1

σ2(q)
e2ξ[e](y,q)e(y+ε(q))·Dxτ ′(x) · τ ′(x)

]
= 0, (4.32)

which, by rearranging terms with respect to yβ , is written as

∞∑

|β|=0

Res
q=0


(B+Dx)

β




∞∑

n=0

n∑

j=0

pj(D̃x)µn−jq
n−2


 τ ′(x) · τ ′(x)


yβ = 0. (4.33)

Here,

Dx = (Dx1 ,Dx2 ,Dx3 , · · · ), D̃x = (Dx1 ,
1
2Dx2 ,

1
3Dx3 , · · · ),

B = 2(−ζ(q), ζ ′(q),− ζ′′(q)
2! , · · · (−1)n ζ(n−1)(q)

(n−1)! , · · · ),

β = (β1, β2, β3, · · · ), |β| =
∑∞

j=1 βj , yβ = yβ1
1 yβ2

2 · · · ,

(4.34)

{pj(x)} are defined by (3.51) and {µj} by (3.52). By a similar analysis as for the KdV case in

Sec.3.4, we can formulate an algorithm for calculating residues at q = 0, which gives rise to a

bilinear KP hierarchy.

Theorem 4.5. The bilinear KP hierarchy with elliptic solitons are given by

Res
q=0


(B+Dx)

β |≤1




||β||−1∑

n=0

n∑

j=0

pj(D̃x)µn−jq
n−2


 τ ′(x) · τ ′(x)


 = 0, (4.35)

where β stands for the set of nonnegative integers (β1, β2, · · · , βn, 0, 0, · · · ), and (B +Dx)
β|≤1

means those terms of qj with j ≤ 1 in the Laurent series of (B +Dx)
β, ||β|| =

∑n
j=1 jβj and

pj(t) are polynomials defined by (3.51).
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Below are bilinear equations corresponding to β = (3, 0, 0, 0, · · · ), (4, 0, 0, 0, · · · ), (5, 0, 0, 0, · · · ),

(3, 1, 0, 0, · · · ) and (2, 0, 1, 0, · · · ), respectively,

(D4
x1

+ 3D2
x2

− 4Dx1Dx3 − g2)τ
′ · τ ′ = 0, (4.36a)

(D3
x1
Dx2 + 2Dx2Dx3 − 3Dx1Dx4)τ

′ · τ ′ = 0, (4.36b)

(D6
x1

+ 45D2
x1
D2

x2
+ 20D3

x1
Dx3 + 40D2

x3
+ 90Dx2Dx4 − 216Dx1Dx5 + 3g2D

2
x1

− 24g3)τ
′ · τ ′ = 0,

(4.36c)

(D6
x1

− 45D2
x1
D2

x2
− 20D3

x1
Dx3 − 80D2

x3
+ 144Dx1Dx5 + 3g2D

2
x1

− 24g3)τ
′ · τ ′ = 0, (4.36d)

(D6
x1

− 9D2
x1
D2

x2
+ 4D3

x1
Dx3 − 32D2

x3
+ 36Dx2Dx4 + 3g2D

2
x1

− 24g3)τ
′ · τ ′ = 0. (4.36e)

When g2, g3 are 0, these bilinear equations degenerate to the usual soliton case, cf. [27].

5 Degenerations and reductions

In the following we investigate deformations of τ functions and bilinear equations under the

degenerations of periods and under the reductions of dispersion relations.

5.1 Degenerations by periods

When the invariants g2 and g3 of the elliptic curve (A.2) take g2 = 4
3(

π
2w1

)4, g3 = 8
27(

π
2w1

)6

and g2 = g3 = 0, the elliptic curve degenerates to be a cylinder and Riemann sphere, respec-

tively. These correspond to the degenerations from doubly periodic case to the singly period

case and non-periodic case. The Weierstrass functions will become trigonometric/hyperbolic

functions and rational functions, which we list in Proposition A.2 in Appendix A. Obviously,

such deformations hold in τ functions and bilinear equations. In the following we present τ

functions and bilinear equations of the trigonometric/hyperbolic case and rational case. It is

worth mentioning that we will give more concise formulae for the trigonometric/hyperbolic case.

5.1.1 Trigonometric/hyperbolic case

One can directly replace those Weierstarss functions in the bilinear form (4.32) and τ function

(4.22) using (A.15). As a result, for those explicit bilinear equations in (4.36), one needs to

replace g2 and g3 by (A.14), and the τ function τ ′ is then given by

τ ′ = e
1
6
(αx1)2 sin(αx1) τN (x),

where τN (x) is defined as in (4.22) but in which the Weierstarss functions are replaced accord-

ingly using (A.15).

Such a τN (x) for the trigonometric/hyperbolic case can have a more concise form. To achieve

that, we introduce notation

ξ[t](x, k) = α

∞∑

n=1

(−1)nxn
∂n−1
k cot(αk)

(n− 1)!
, (5.1)

where by the index [t] we indicate the trigonometric/hyperbolic case. Then, similar to the

formula (4.19), we can prove that

sin(α(ki − kj))

sin(α(ki − lj))
= eξ[t](ε(kj)−ε(lj),ki) (5.2)

where ε(k) = (k, k
2

2 ,
k3

3 , · · · ) defined as before. Next, we present a simple form of τN (x) and the

related vertex operator.
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Theorem 5.1. The bilinear hierarchy (4.35) with degeneration (A.14) have a solution

τ ′ = e
1
6
(αx1)2 sin(αx1) τN (x), (5.3)

where

τN (x) =
∑

J⊂S

(
∏

i∈J

c′i

)
 ∏

i<j∈J

A′
ij


 sin(α(x1 +

∑
i∈J(ki − li)))

sin(αx1)
∏

i∈J sin(α(ki − li))
e
∑

i∈J(ξ[t](x,ki)−ξ[t](x,li)). (5.4)

Here c′i ∈ C and

A′
ij =

sin(α(ki − kj)) sin(α(li − lj))

sin(α(ki − lj)) sin(α(li − kj))
. (5.5)

The related vertex operator is

X(k, l) =
sin(α(x1 + k − l))

sin(α(x1)) sin(α(k − l))
eξ[t](x,k)−ξ[t](x,l)eξ(∂̃,k)−ξ(∂̃,l). (5.6)

The τ function (5.4) is defined by the vertex operator via

τN (x) = ec
′
NX(kN ,lN ) · · · ec

′
2X(k2,l2)ec

′
1X(k1,l1) ◦ 1, (5.7)

i.e.

τN (x) = ec
′
NX(kN ,lN ) ◦ τN−1(x), τ0(x) = 1. (5.8)

Proof. Let us look at the τN (x) defined in (4.22) where t = x. We will show that, with σ, ζ, ℘

taking the form (A.15), the τN (x) can be written as in (5.4). First, for a single PWF, we have

ci
σ(x1 + ki − li)

σ(x1)σ(ki − li)
eξ[e](x,ki)−ξ[e](x,li)

∣∣
(A.15) = c′i

sin(α(x1 + ki − li))

sin(αx1) sin(α(ki − li))
eξ[t](x,ki)−ξ[t](x,li)

where we take

c′i = cie
1
6
α2(ki−li)2 . (5.9)

Secondly, for the general term in τN (x), we have
(
∏

i∈J

ci

)
σ(x1 +

∑
i∈J(ki − li))

σ(x1)
∏

i∈J σ(ki − li)
e
∑

i∈J(ξ[e](x,ki)−ξ[e](x,li))|(A.15)

=

(
∏

i∈J

ci

)
e

1
6
α2(

∑
i∈J(ki−li))2

sin(α(x1 +
∑

i∈J(ki − li)))

sin(αx1)
∏

i∈J sin(α(ki − li))
e
∑

i∈J (ξ[t](x,ki)−ξ[t](x,li))

=

(
∏

i∈J

c′i

)
e

1
3
α2

∑
i<j∈J (ki−li)(kj−lj)

sin(α(x1 +
∑

i∈J(ki − li)))

sin(αx1)
∏

i∈J sin(α(ki − li))
e
∑

i∈J (ξ[t](x,ki)−ξ[t](x,li)).

Thirdly, for the phase factor Aij , we have

Aij |(A.15) =
σ(ki − kj)σ(li − lj)

σ(ki − lj)σ(li − kj)

∣∣∣∣
(A.15)

= e−
1
3
α2

∑
i<j∈J (ki−li)(kj−lj)A′

ij.

All these together lead us to the form (5.4) for the τ function (4.22) with (A.15).

For the vertex operator (5.6), using relation (5.2), one can find that

X(ki, li)X(kj , lj) = A′
i,j

sin(α(x1 + ki − li + kj − lj))

sin(α(x1)) sin(α(ki − li)) sin(α(kj − lj))
:X(ki, li)X(kj , lj) :,

where

:X(ki, li)X(kj , lj) := eξ[t](x,ki)−ξ[t](x,li)eξ[t](x,kj)−ξ[t](x,lj)eξ(∂̃,ki)−ξ(∂̃,li)eξ(∂̃,kj)−ξ(∂̃,lj).

Then, equation (5.7) follows immediately.
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Compared with Theorem 4.3, it turns out that Theorem 5.1 can be obtained from Theorem

4.3 by formally replacing σ(x) and ζ(x) with sin(αx) and α cot(αx). This also agrees with

the fully discrete case, cf. [39]. The trigonometric/hyperbolic PWF of the KP hierarchy is (cf.

Eq.(4.25))

ρ = X(k, l) ◦ 1 =
sin(α(x1 + k − l))

sin(α(x1)) sin(α(k − l))
eξ[t](x,k)−ξ[t](x,l). (5.10)

5.1.2 Rational case

The τ function and vertex operator of rational case are obtained from Theorem 4.3 by direct

substitution of (A.16). Bilinear equations are those of doubly periodic case with degeneration

g2 = g3 = 0, which are the same as the bilinear equations for usual solitons. We skip proof and

only present main results in the following.

Theorem 5.2. In the rational case the bilinear KP hierarchy are the same as the usual soliton

case, namely, the bilinear equations derived from (4.33) with g2 = g3 = 0; τ function is given

by

τ ′ = x1 τN (x), (5.11)

where

τN (x) =
∑

J⊂S

(
∏

i∈J

ci

)
 ∏

i<j∈J

Aij


 x1 +

∑
i∈J(ki − li)

x1
∏

i∈J(ki − li)
e
∑

i∈J (ξ[r](x,ki)−ξ[r](x,li)). (5.12a)

Here

Aij =
(ki − kj)(li − lj)

(ki − lj)(li − kj)
, (5.12b)

ξ[r](x, k) = −
∞∑

n=1

1

kn
xn, (5.12c)

and the subscript [r] stands for the rational case.

The related vertex operator is

X(k, l) =
x1 + k − l

(k − l)x1
eξ[r](x,k)−ξ[r](x,l)eξ(∂̃,k)−ξ(∂̃,l), (5.13)

and the τ function (5.12a) is generated via

τN (x) = ec
′
N
X(kN ,lN ) · · · ec

′
2X(k2,l2)ec

′
1X(k1,l1) ◦ 1. (5.14)

Note that the rational-type PWF of the KP hierarchy is (cf. Eq.(4.25) and (5.10))

ρ = X(k, l) ◦ 1 =
x1 + k − l

(k − l)x1
eξ[r](x,k)−ξ[r](x,l). (5.15)

5.2 Reductions by dispersion relations

5.2.1 Elliptic case

For the KP hierarchy, the vertex operator of its usual soliton solution is

X(k, l) = eξ(t,k)−ξ(t,l)eξ(∂̃,k)−ξ(∂̃,l), (5.16)
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which is governed by ξ(t, k). Reduction by dispersion relation can be implemented through

imposing constraints on l such that lN = kN , i.e. l = ωk where ω is some N -th root of

unity and in practice we require ωs 6= 1 for s = 1, 2, · · · , N − 1. The bilinear KP hierarchy

together with its τ function will reduce to the lower dimension for the Gel’fand-Dickey hierarchy,

including the KdV for N = 2, the Boussinesq for N = 3, etc. For the case of elliptic solitons,

however, the vertex operator (4.18) is governed by ξ[e](t, k) and ξ(∂̃, k) together. To implement

reduction of elliptic solitons by dispersion relation, one needs to make use of elliptic N -th roots

of the unity, which is introduced in [37] (also see Definition A.1 in Appendix).

In the elliptic case, the τ function and bilinear equations of the KP hierarchy are reduced to

those of the KdV hierarchy by taking lj = −kj . This is because when l = −k the the coordinate

variables t2n in ξ[e](t, k) − ξ[e](t, l) and ∂t2n in ξ(∂̃, k) − ξ(∂̃, l) in the vertex operator (4.18)

vanish.

However, recalling the Remark A.1 we give at the end of Appendix A, except ω0(δ) ≡ δ, the

other two elliptic cube roots of the unity are not the elliptic 6-th roots of the unity. This means,

in principle, when N ≥ 3 we cannot get elliptic N -soliton solution for the Gel’fand-Dickey

hierarchy from those of the KP hierarchy by using elliptic N -th roots of the unity.

In the following we only present the τ function and bilinear equation for the Boussinesq

equation (not the hierarchy), which can be reduced from those of the KP equation using elliptic

cube roots of the unity. Let ω0(δ) ≡ δ, ω1(δ) and ω2(δ) be three elliptic cube roots of the unity,

then

f =
∑

µ=0,1

σ(x+
∑N

i=1 µi(ki − ω1(ki)))

σ(x)
∏N

i=1 σ
µi(ki − ω1(ki))

exp




N∑

j=1

µj θ̂j +

N∑

1≤i<j

µiµjaij


 (5.17)

is a solution of the bilinear Boussinesq equation

(D4
x − 12℘(x)D2

x + 3D2
y)f · f = 0, (5.18)

where the summation of µ means to take all possible µi = {0, 1} for i = 1, 2, · · · , N ,

θ̂i = −(ζ(ki)− ζ(ω1(ki)))x − (℘(ki)− ℘(ω1(ki)))y + θ̂
(0)
i , θ̂

(0)
i ∈ C, (5.19a)

eaij = Aij =
σ(ki − kj)σ(ω1(ki)− ω1(kj))

σ(ki − ω1(kj))σ(ω1(ki)− kj)
. (5.19b)

Note that it is easy to write out a vertex operator for the τ function (5.17). We skip it.

5.2.2 Trigonometric/hyperbolic case

Similar to the elliptic case, to consider reduction, we need to introduce trigonometric/hyperbolic

N -th roots of the unity. This can be done by considering period degeneration in Definition A.1.

After suitable scaling of independent variables, we have the following.

Definition 5.1. There exist distinct {ωj(δ)}
N−1
j=0 , up to the periods kπ , such that the following

equation holds,

N−1∏

j=0

Ψκ(ωj(δ)) =
1

(N − 1)!
(∂N−2

κ csc2(−κ)− ∂N−2
κ csc2(δ)) = 0, (5.20)

where

Ψa(b) =
sin(a+ b)

sin(a) sin(b)
, (5.21)

ω0(δ) = δ and all {ωj(δ)} are independent of κ. {ωj(δ)}
N−1
j=0 are called trigonometric/hyperbolic

N -th roots of the unity.
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These roots also satisfy
N−1∑

j=0

ωj(δ) = 0 (5.22)

and
N−1∑

j=0

cot(l)(ωj(δ)) = 0, (l = 0, 1, · · · , N − 2). (5.23)

When N = 2, i.e. reduction to the KdV, we take lj = −kj in the KP τ function (5.4), and

we have the trigonometric/hyperbolic τ function of the KdV hierarchy:

τN (x) =
∑

J⊂S

(
∏

i∈J

c′i

)
 ∏

i<j∈J

A′
ij


 sin(α(x1 + 2

∑
i∈J ki))

sin(αx1)
∏

i∈J sin(2αki)
e2

∑
i∈J ξ[t](x,ki), (5.24)

where

A′
ij =

sin2(α(ki − kj))

sin2(α(ki + kj))
, (5.25)

and by x we denote (x1, 0, x3, 0, x5, · · · ) for the sake of using the results of the KP hierarchy in

Sec.5.1.1. The above τ function is generated by vertex operator

X(k) =
sin(α(x1 + 2k))

sin(α(x1)) sin(2αk)
e2ξ[t](x,k)e2ξ(∂̃,k), (5.26)

where ∂̃ = (∂x1 , 0,
1
3∂x3 , 0,

1
5∂x5 , · · · ). Bilinear equations are those derived from (4.33) by re-

moving all Dx2n terms and imposing g2 =
4
3α

4, g3 =
8
27α

6. These equations have solution

τ ′ = e
1
6
(αx1)2 sin(αx1) τN (x), (5.27)

where τN (x) is given by (5.24).

Same as the elliptic case, when N ≥ 3 we cannot get τ function and bilinear equations of

the Gel’fand-Dickey hierarchy from those of the KP hierarchy by reduction using triginamet-

ric/hyperbolic N -th roots of the unity. For the Boussinesq equation (not hierarchy), it allows a

τ function

f =
∑

µ=0,1

sin(α(x1 + µi(ki − ω1(ki))))

sin(αx1)
∏N

i=1 sin
µi(α(ki − w1(ki)))

exp




N∑

j=1

µj θ̂j +

N∑

1≤i<j

µiµjaij


 , (5.28)

where the summation of µ means to take all possible µi = {0, 1} for i = 1, 2, · · · , N ,

θ̂i = −α(cot(αki)− cot(αω1(ki)))x− α2(csc2(αki)− csc2(αω1(ki)))y + θ̂
(0)
i , θ̂

(0)
i ∈ C,

(5.29a)

eaij = Aij =
sin(α(ki − kj)) sin(α(ω1(ki)− ω1(kj)))

sin(α(ki − ω1(kj))) sin(α(ω1(ki)− kj))
, (5.29b)

αω1(k) is one of trigonometric/hyperbolic cube root of the unity by Definition 5.1, i.e.

∂κ csc
2(κ)|κ=αk = ∂κ csc

2(κ)|κ=αω1(k).

Such a τ function is a solution to the bilinear Boussinesq equation

(D4
x + 4α2D2

x − 12α2 csc2(αx)D2
x + 3D2

y)f · f = 0. (5.30)

Note that it is easy to write out a vertex operator for the τ function (5.29). We skip it.
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5.2.3 Rational case

Reduction of this case is as same as the usual soliton case. For example, reductions lj = −kj
and lj = ωkj where ω3 = 1, ω 6= 1 reduce the results in Sec.5.1.2 of the KP hierarchy to the

KdV hierarchy and the Boussinesq hierarchy, respectively. Note that for the KdV equation its

solution of this case has been obtained via the Marchenko integral equation in [1] and a direct

linearisation approach in [16], and now it is clear how these solutions originate from the elliptic

soliton solutions.

6 Conclusions and discussions

We have established a bilinear framework for the elliptic soliton solutions that are composed by

the Lamé type PWFs. Employing the KdV equation and KP equation as examples, we presented

τ functions for these elliptic N -soliton solutions in Hirota’s form, and the corresponding vertex

operators and bilinear identities. An algorithm has been developed to calculate residues and ob-

tain bilinear equations. Such a framework allows degenerations to the trigonometric/hyperbolic

and rational cases when the invariants g2 and g3 are specified for one period and non-period.

Reductions by dispersion relations can be implemented using elliptic N -th roots of the unity,

but except the KdV hierarchy, the reductions of elliptic and trigonometric/hyperbolic soliton

solutions are not applicable to the Boussinesq hierarchy and other higher order Gel’fand-Dickey

hierarchies.

We would like to address some related topics for further consideration. First, are there

any algebras to characterize this type of vertex operators? In other words, are these vertex

operators the representations of some algebras? Date, Kashiwara and Miwa [13] found that the

vertex operator related to affine Lie algebra A
(1)
1 [29] can be used to define a symmetry group

of the KdV τ function. This then built up a beautiful connection between integrable systems

and affine Lie algebras via vertex operators [7, 13, 27, 32]. However, so far we did not find any

similar algebraic structures behind our vertex operators (excluding the rational case). The

vertex operators (3.32) and (4.18) can be considered as elliptic deformations of the usual vertex

operators of the KdV equation and KP equation. Without algebraic structure, one can still

investigate such deformations on vertex operators of other integrable systems (e.g. [7,27]), and

in particular, of discrete integrable systems (e.g. [8–12]). In addition, note that u = −2℘(x)

is an initial solution in our scheme, and meanwhile it is the 1-gap and 1-genus solution in

light of the finite-gap integration approach [14, 15]. It would be interesting to make clear the

eigenvalue distribution of the corresponding spectral problem where the potential is elliptic

multi-solitons, and recover these elliptic soliton solutions form some analytic approach, e.g.

the inverse scattering transform. Finally, there are vertex representations for quantum affine

algebras [18]. It would be also interesting if such elliptic deformations could be extended to

quantum vertex operators.
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A Weierstrass functions

We collect some notations and properties of the Weierstrass functions that we may use in the

paper. One may refer to [4], [21] and [37].

Three Weierstrass functions ζ(z), ℘(z) and σ(z) are connected via

ζ(z) =
σ′(z)

σ(z)
, ℘(z) = −ζ ′(z).

Among them only ℘(z) is a truly elliptic function by the definition of an elliptic function, i.e.

meromorphic and doubly periodic. By w1 and w2 we denote two half periods of ℘(z). ζ(z) and

σ(z) are quasi-periodic with respect to wi, in the sense that

ζ(z + 2wi) = ζ(z) + 2ζ(wi), (A.1a)

σ(z + 2wi) = −σ(z)e2ζ(wi)(z+wi), i = 1, 2. (A.1b)

It is easy to check the following holds.

Proposition A.1. For a generalized Lamé function σ(a+q)
σ(b+q) e

cζ(q) where a, b, c are constants, it

is doubly periodic with respect to q if a− b+ c = 0.

Let ei = ℘(wi) for i = 1, 2, 3 where w3 = −w1−w2. (℘(z), ℘
′(z)) is a point on the Weierstrass

elliptic curve

y2 = R(x) = 4x3 − g2x− g3 = 4(x− e1)(x− e2)(x− e3), (A.2)

i.e.

(℘′(z))2 = 4℘3(z)− g2℘(z)− g3, (A.3)

where g2 = −4(e1e2 + e2e3 + e3e1) and g3 = 4e1e2e3 are invariants of the curve. Differentiating

(A.3) yields

2℘′′(z) = 12℘2(z)− g2 (A.4)

and further

℘(3)(z) = 12℘(z)℘′(z). (A.5)

The latter is the stationary KdV equation, in other words, u = −2℘(x) is a stationary solution

to the KdV equation (2.1).

℘(z) is an even function, while ζ(z) and σ(z) are odd. σ(z) is an entire function. As for

expansions, they have

℘(z) =
1

z2
+

g2
20

z2 +
g3
28

z4 +O(z6), (A.6a)

ζ(z) =
1

z
−

g2
60

z3 −
g3
140

z5 +O(z7), (A.6b)

σ(z) = z −
g2
240

z5 −
g3
840

z7 +O(z9). (A.6c)

Some useful identities of the Weierstrass functions are given below.

℘(z)− ℘(u) = −
σ(z + u)σ(z − u)

σ2(z)σ2(u)
, (A.7)

ηu(z) = ζ(z + u)− ζ(z)− ζ(u) =
1

2

℘′(z) − ℘′(u)

℘(z)− ℘(u)
, (A.8)

℘(z) + ℘(u) + ℘(z + u) = η2u(z) (A.9)
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and

χu,v(z) = ζ(u) + ζ(v) + ζ(z)− ζ(u+ v + z) =
σ(u+ v)σ(u + z)σ(z + v)

σ(u)σ(v)σ(z)σ(z + u+ v)
. (A.10)

The famous Frobenius-Stickelberger determinant (also known as elliptic van der Monde deter-

minant) is [19]

|1, ℘(k), ℘′(k), ℘′′(k), · · · , ℘(n−2)(k)|

=(−1)
(n−1)(n−2)

2

(
n−1∏

s=1

s!

)
σ(k1 + · · ·+ kn)

∏
i<j σ(ki − kj)

σn(k1)σn(k2), · · · σn(kn)
,

(A.11)

where f(k) denotes a column vector with entries f(kj), i.e. f(k) = (f(k1), f(k2), · · · , f(kn))
T .

One more formula is (see (C.7) in [36])

n∏

j=1

Φx(kj) =
(−1)n−1

(n− 1)!
Φx(k1 + · · ·+ kn)

|1, ℘(k), ℘′(k), · · · , ℘(n−2)(k)|

|1, ηx(k), ℘(k), ℘′(k), · · · , ℘(n−3)(k)|
, (A.12)

where Φa(b) =
σ(a+b)
σ(a)σ(b) .

Degenerations of the Weierstrass functions take place when the discriminant is zero, i.e.

∆ = g32 − 27g23 = 0. (A.13)

The degenerations are described as the following [4].

Proposition A.2. With parametrisation

g2 =
4

3
α4, g3 =

8

27
α6, α =

π

2w
, (A.14)

the Weierstrass functions degenerate to the trigonometric/hyperbolic case,4

σ(q) =
1

α
e

1
6
(αq)2 sin(αq), (A.15a)

ζ(q) =
1

3
α2q + α cot(αq), (A.15b)

℘(q) = −
1

3
α2 + α2 csc2(αq). (A.15c)

And when g2 = g3 = 0, the Weierstrass functions degenerate to the rational case,

σ(q) = q, ζ(q) =
1

q
, ℘(q) =

1

q2
. (A.16)

In what follows we present the definition of elliptic N -th roots of the unity that was intro-

duced in [37].

Definition A.1. [37] There exist distinct {ωj(δ)}
N−1
j=0 , up to the periodicity of the periodic

lattice, such that the following equation holds,

N−1∏

j=0

Φκ(ωj(δ)) =
1

(N − 1)!
(℘(N−2)(−κ)− ℘(N−2)(δ)) = 0, (A.17)

where ω0(δ) = δ and all {ωj(δ)} are independent of κ. {ωj(δ)}
N−1
j=0 are called elliptic N -th roots

of the unity.

4We do not discriminate between trigonometric and hyperbolic cases, as α (or the period 2w) can be either

real or pure imaginary, corresponding to the two cases (g3 being positive or negative) to define the period through

elliptic integrals [4].
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These roots also satisfy [37]
N−1∑

j=0

ωj(δ) = 0 (A.18)

and
N−1∑

j=0

ζ(l)(ωj(δ)) = 0, (l = 0, 1, · · · , N − 2). (A.19)

Remark A.1. In usual case if ω is a n-th root of the unity, it is also a (kn)-th root of the

unity where k ∈ N. This is not true in the elliptic case. Note that the elliptic square roots of

the unity are also the elliptic 2k-th roots of the unity because ℘(2n)(x) is even. However, for

the elliptic cube root of the unity, ω1(δ) 6= δ, it is not an elliptic 6th-root of the unity. In other

words, ℘′(ω1(δ)) = ℘′(δ) holds does not guarantee that the validity of ℘(4)(ω1(δ)) = ℘(4)(δ),

where ω1(δ) 6= δ (mod the periodic lattice). In fact, using the formulae (A.3), (A.4) and (A.5),

we have

℘(4)(ω1(δ)) − ℘(4)(δ) = 30(℘′(ω1(δ)) − ℘′(δ))(℘′(ω1(δ)) + ℘′(δ)) + 12g2(℘(ω1(δ)) − ℘(δ)).

In the case ℘′(ω1(δ)) = ℘′(δ), it reduces to

℘(4)(ω1(δ)) − ℘(4)(δ)) = 12g2(℘(ω1(δ)) − ℘(δ)),

which does not vanish for arbitrary δ unless g2 = 0 or ω1(δ) = δ.

B Elliptic 1- and 2-soliton solutions and bilinear formulae

The purpose of this section is not only to show details of deriving elliptic 1-soliton and 2-soliton

solutions of the KdV equation, but also to explore some calculating formulae of the Lamé-type

PWFs (cf. ekx+lt) under Hirota’s D operator.

The Lamé-type PWF defined in (3.8), i.e.

ρi(x, t) = Φx(x+ 2ki)e
ξi , ξi = e−2ζ(ki)x+℘′(ki)t+ξ

(0)
i , (B.1)

satisfies the following relations

ρi,x = −χki,ki(x)ρi, (B.2a)

ρi,xx = 2ηki(x)ρi,x, (B.2b)

ρi,xxx = (6℘(x) + 2℘(x+ ki) + 4℘(ki))ρi,x, (B.2c)

where ηx(y) and χx,y(z) are defined in (2.13) and (2.16). There are equivalent expressions for

these derivatives. For example, noticing that

χk,k(x) = η−k(x+ k)− ηk(x+ k)

and making use of (A.8), we have

ρi,x =
−℘′(ki)

℘(x+ ki)− ℘(ki)
ρi. (B.3)

Using this formula to replace ℘(ki)ρi,x in (B.2c) yields

ρi,xxx = 6(℘(x+ ki) + ℘(x))ρi,x + 4℘′(ki)ρi, (B.4)
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which gives another expression of ρi,xxx. To calculate ρi,xxxx, differentiating (B.4) once with

respect to x yields

ρi,xxxx = 6(℘′(x+ ki)− ℘′(−x))ρi,x + 6(℘(x+ ki) + ℘(x))ρi,xx + 4℘′(ki)ρi,x,

which then, by making use of (A.8) and (B.2b), gives rise to a simpler form for ρi,xxxx,

ρi,xxxx = 12℘(x)ρi,xx + 4℘′(ki)ρi,x. (B.5)

Hirota’s procedure for deriving usual solitons relies on the property

Dn
xD

m
t eax+bt · eax+bt = 0, a, b ∈ C,

but this does not hold any longer for the Lamé-type PWF ρi. For example, one can verify that

DxDtρi · ρi = 0 (B.6)

but

D2
xρi · ρi = 2(℘(x) − ℘(x+ 2ki))ρ

2
i , (B.7)

which is not zero. In addition, using the expressions (B.2b), (B.3), (B.4), (B.5) and formula

(A.9), we have

D4
xρi · ρi = 12℘(x)D2

xρi · ρi, (B.8)

which does not vanish either. There could be a more general result. We have checked the

following formula,

D2n
x ̺ · ̺ =

℘(2n−1)(x)

℘′(x)
D2

x ̺ · ̺, ̺ = Φx(a)e
bx+ct, a, b, c ∈ C, (B.9)

up to n = 10 using Mathematica. The ‘coefficient’ ℘(2n−1)(x)
℘′(x) is a linear combination of {℘s(x)}

with s = n−1, n−3, n−4, · · · , 1, 0. In checking the above relation we made use of the following

formula (see Eq.(1.188) in [25])

2 cosh(δ∂x) ln ̺ = ln(cosh(δDx)̺ · ̺)

and (ln ̺)xx = ℘(x) − ℘(x+ a). However, a proof for arbitrary n is absent. Note that Hirota’s

D operator allows gauge property with respect to linear exponential function, i.e.

Dn
xD

m
t (eax+btf) · (eax+btg) = e2(ax+bt)Dn

xD
m
t f · g,

but the formula (B.9) indicates that such a property no longer holds when the linear exponential

function is replaced by the Lamé function. Instead of that, we have the following.

Proposition B.1. (Quasi-gauge property) For the generalized Lamé-type PWF ̺ defined in

(B.9) and C∞ functions f(x, t) and g(x, t), we have

Dn
xD

m
t (̺f) · (̺g) = ̺2Dn

xD
m
t f · g +

[n2 ]∑

l=1

(
n

2l

)
(D2l

x ̺ · ̺)D
n−2l
x Dm

t f · g. (B.10)

In light of (B.9) the term D2l
x ̺ ·̺ can be replaced by ℘(2l−1)(x)

℘′(x) D2
x̺ ·ρ or 2(℘(x)−℘(x+a))℘(2l−1)(x)

℘′(x) ̺2.
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Proof. The proof is direct by using the identity [25]

exp(D1)(fh) · (gk) = (exp(D1)h · k)(exp(D1)f · g), (B.11)

where f, g, h, k are functions of (x, t) and D1 = εDx + δDt with constants ε and δ.

We now look for elliptic soliton solutions in Hirota’s form. For elliptic 1-soliton solution

with the form f1 = 1 + ρ1(x, t), thanks to (B.6) and (B.8), one only needs to verify

(∂4
x − 4∂xt − 12℘(x)∂2

x)ρ1 = 0, (B.12)

which is nothing but (B.5) in light of

ρi,t = ℘′(ki)ρi. (B.13)

Thus, the elliptic 1-soliton (3.6) is obtained.

Then we look for 2-soliton solution of the form

f2 = 1 + ρ1(x, t) + ρ2(x, t) + f (2)(x, t), (B.14)

subject to

(D4
x − 4DtDx − 12℘(x)D2

x)f2 · f2 = 0, (B.15)

where

f (2)(x, t) = A12e
4ζ(k1)k2 ρ̃1ρ2, ρ̃1(x, t) = ρ1(x+ 2k2, t), (B.16)

and A12 is a parameter to be fixed later. In light of relations (B.6) and (B.8), equation (B.15)

is reduced to two equations,

(D4
x − 4DtDx − 12℘(x)D2

x) ρ1 · ρ2 = −(∂4
x − 4∂xt − 12℘(x)∂2

x)f
(2) (B.17)

and

(D4
x − 4DtDx − 12℘(x)D2

x) ρi · f
(2) = 0, i = 1, 2. (B.18)

Let us first work on (B.17). By virtue of the fact (B.12) which holds for ρ2 as well, we have

(D4
x − 4DtDx − 12℘(x)D2

x) ρ1 · ρ2

=4ρ1,xρ2,t + 4ρ1,tρ2,x − 4ρ1,xxxρ2,x − 4ρ1,xρ2,xxx + 6ρ1,xxρ2,xx + 24℘(x)ρ1,xρ2,x. (B.19)

Making use of (B.13), (B.2b) and (B.2c), we can express ρi,t, ρi,xx and ρi,xxx in terms of ρi,x.

After that, using formula (A.9), we arrive at

(D4
x − 4DtDx − 12℘(x)D2

x) ρ1 · ρ2 =− 12(ηk1(x)− ηk2(x))
2ρ1,xρ2,x

=− 12χ2
−k1,k2(x+ k1)ρ1,xρ2,x, (B.20)

where use has been made of χ−k1,k2(x+ k1) = ηk1(x)− ηk2(x).

For the right hand side of (B.17), by virtue of (B.12), we have

− (∂4
x − 4∂xt − 12℘(x)∂2

x)f
(2)

=−A12e
4ζ(k1)k2

[
−4ρ̃1,xρ2,t − 4ρ̃1,tρ2,x + 4ρ̃1,xxxρ2,x + 4ρ̃1,xρ2,xxx + 6ρ̃1,xxρ2,xx

+ 12(℘(x+ 2k2)− ℘(x))ρ̃1,xxρ2 − 24℘(x)ρ̃1,xρ2,x

]
,
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in which

12(℘(x + 2k2)− ℘(x))ρ̃1,xxρ2 = 24(ηk2(x+ k2)− ηk2(x))ηk1(x+ 2k2)ρ̃1,xρ2,x,

where use has been made of (A.9), (B.2a) and (B.2b). Then, similar to the treatment for (B.19),

we have

−(∂4
x − 4∂xt − 12℘(x)∂2

x)f
(2) =− 12A12 e

4ζ(k1)k2χ2
k1,k2(x+ k2)ρ̃1,xρ2,x

=− 12A12 χ
2
k1,k2(x+ k2)

Φ2
k1
(x+ 2k2)

Φ2
k1
(x)

ρ1,xρ2,x, (B.21)

where we have used

ρ̃1,x = e−4ζ(k1)k2
Φ2
k1
(x+ 2k2)

Φ2
k1
(x)

ρ1,x.

Then, combining (B.20) and (B.21) together and expressing χa,b(c) in terms of σ function using

(A.10), we finally find

A12 =
σ2(k1 − k2)

σ2(k1 + k2)
,

with which (B.17) holds.

Equation (B.18) can be verified straightforwardly. The idea is as same as for verifying (B.17),

i.e. using (B.12) to eliminate those 4-th order derivatives of ρi and ρ̃1, and using (B.13), (B.2b)

and (B.2c) to express the equation in terms of ρi,x and ρ̃1,x. After long and tedious calculation,

we can verify (B.18) for i = 1, 2. Thus, the elliptic 2-soliton solution (3.7) in Hirota’s form is

obtained.

In the above calculation, we expressed the bilinear equations in terms of ρi,x and implemented

verification by evaluating coefficients of ρ1,xρ2,x, etc. There is an alternative way to calculate

bilinear derivatives of ρi using the Bell polynomials. Let us define

̺i = Φx(ai)e
bix+cit, ai, bi, ci ∈ C. (B.22)

Then we have

̺i,x = αi(x)̺i, (B.23)

where

αi(x) = ζ(x+ ai)− ζ(x) + bi. (B.24)

Introduce functions

Gm(x) = ∂m−1
x α1(x) + (−1)m∂m−1

x α2(x). (B.25)

Then, it can be proved that (see Eq.(3.4) in [20] and Eq.(10) in [28])

Dn
xD

m
t ̺1 · ̺2 = (c1 − c2)

mYn(G1, G2, · · · , Gn)̺1̺2, (B.26)

in which Yn is the Bell polynomials defined via (see Eq.(7.2) in [5])

Yn(y1, y2, · · · , yn) = e−y∂n
x e

y,

where y = y(x) is a C∞ function with respect to x and yi stands for ∂
i
xy(x). Yn can be generated

by

Yn(y1, y2, · · · , yn) =
∑ n!

(
∏n

s=1 cs!) (
∏n

s=1(s!)
cs)

n∏

s=1

ycss ,
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where the sum is to be taken over all partitions of n =
∑n

s=1 scs. The first few {Yn} are

Y0 = 1, Y1 = y1, Y2 = y2 + y21,

Y3 = y3 + 3y1y2 + y31,

Y4 = y4 + 4y1y3 + 3y22 + 6y21y2 + y41 .

The pioneer work that associates bilinearisation of soliton equations with the Bell polynomials

is due to [20,28].

For the Lamé-type function (B.22), Yn(G1, G2, · · · , Gn) is composed by functions such as

ζ(x+a) and their derivatives with respect to x, which might be finally converted to the expres-

sions in terms of σ function by using the formulae given in Appendix A.

C Proof of Theorem 3.1 and Theorem 4.1

Before presenting the proof, we recall two determinantal identities which are often used when

verifying bilinear equations with Wronskian solutions.

Proposition C.1. [17] The relation

|M,a,b||M, c,d| − |M,a, c||M,b,d| + |M,a,d||M,b, c| = 0 (C.1)

holds, where M is a N × (N − 2) matrix, a,b, c and d are N -th order column vectors.

Proposition C.2. [40] Suppose that Ξ = (Ξi,j) is a N × N matrix with column vector set

{Ξj}, Ω = (Ωi,j) is a N × N operator matrix with column vector set {Ωj} where entries are

operators. Then we have
N∑

j=1

|Ωj ∗ Ξ| =

N∑

j=1

|(ΩT )j ∗ Ξ
T |, (C.2)

where for any N -th order column vectors Aj = (A1,j , · · · , AN,j)
T and Bj = (B1,j , · · · , BN,j)

T

we define

Aj ◦Bj = (A1,jB1,j , A2,jB2,j, · · · , AN,jBN,j)
T (C.3)

and

|Aj ∗ Ξ| = |Ξ1, · · · ,Ξj−1, Aj ◦ Ξj,Ξj+1, · · · ,ΞN |. (C.4)

Now we start to prove Theorem 3.1. For the τ function given in Wronskian form (3.10),

where entries {ϕj} obey relations (3.11), by direct calculation, we have

τx = |N̂ − 2, N |,

τxx = |N̂ − 3, N − 1, N |+ |N̂ − 2, N + 1|,

τxxx = |N̂ − 4, N − 2, N − 1, N |+ 2|N̂ − 3, N − 1, N + 1|+ |N̂ − 2, N + 2|,

τxxxx = |N̂ − 5, N − 3, N − 2, N − 1, N | + 3|N̂ − 4, N − 2, N − 1, N + 1|

+2|N̂ − 3, N,N + 1|+ 3|N̂ − 3, N − 1, N + 2|+ |N̂ − 2, N + 3|,

τt = |N̂ − 4, N − 2, N − 1, N | − |N̂ − 3, N − 1, N + 1|+ |N̂ − 2, N + 2|

−3
2N

2℘′(x)τ − 3℘(x)τx,

τtx = |N̂ − 2, N + 3| − |N̂ − 3, N,N + 1|+ |N̂ − 5, N − 3, N − 2, N − 1, N |

−3
2N

2℘′′(x)τ − 3
2(N

2 + 2)℘′(x)τx − 3℘(x)τxx.
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Substituting them into the left hand side of (3.1) yields

4τxτt − 4τxtτ + τxxxxτ − 4τxxxτx + 3τ2xx − 12℘(x)(τxxτ − τ2x)

= τ
(
6N2℘′′(x)τ + 12℘′(x)τx − 3|N̂ − 2, N + 3|+ 6|N̂ − 3, N,N + 1|+ 3|N̂ − 3, N − 1, N + 2|

+3|N̂ − 4, N − 2, N − 1, N + 1| − 3|N̂ − 5, N − 3, N − 2, N − 1, N |
)

− 12|N̂ − 2, N ||N̂ − 3, N − 1, N + 1|+ 3(|N̂ − 3, N − 1, N |+ |N̂ − 2, N + 1|)2.
(C.5)

With the help of Proposition C.2 where we take Ωj,s = ℘(kj), from identity
(∑N

j=1 ℘(kj)τ
)2

=

τ
∑N

j=1 ℘(kj)
(∑N

j=1 ℘(kj)τ
)
we have

0 = τ
(
−2N2℘′′(x)τ − 4℘′(x)τx + |N̂ − 2, N + 3|+ 2|N̂ − 3, N,N + 1| − |N̂ − 3, N − 1, N + 2|

−|N̂ − 4, N − 2, N − 1, N + 1|+ |N̂ − 5, N − 3, N − 2, N − 1, N |
)

− (|N̂ − 2, N + 1| − |N̂ − 3, N − 1, N |)2,
(C.6)

using which equation (C.5) is reduced to

12(|N̂ − 3, N,N + 1||N̂ − 1| − |N̂ − 2, N ||N̂ − 3, N − 1, N + 1|

+|N̂ − 3, N − 1, N ||N̂ − 2, N + 1|),
(C.7)

which vanishes in light of Proposition C.1. Thus Theorem 3.1 is proved.

In a similar way we can prove Theorem 4.1 for the KP equation. In this case, the Wronskian

entries {ϕj} satisfy relation (4.9). Derivatives of τ with respect x and t are the same as those

for the KdV equation. Besides them, we also have

τy = 2N℘(x)τ + |N̂ − 3, N − 1, N | − |N̂ − 2, N + 1|,

τyy = 4N2℘2(x)τ + 4N℘(x)(|N̂ − 3, N − 1, N | − |N̂ − 2, N + 1|)− 4℘′(x)τx − 2N2℘′′(x)τ

+|N̂ − 5, N − 3, N − 2, N − 1, N | + 2|N̂ − 3, N,N + 1| − |N̂ − 3, N − 1, N + 2|

−|N̂ − 4, N − 2, N − 1, N + 1|+ |N̂ − 2, N + 3|.

For the KP equation, we do not have identity (C.6). However, τyyτ − τ2y contributes the same

terms as the right hand side of (C.6). It then follows that

(D4
x − 4DtDx − 12℘(x)D2

x + 3D2
y)τ · τ

is reduced to (C.7) as well, which is zero. Thus, we complete the proof for Theorem 4.1.
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[38] H.D. Wahlquist, Bäcklund transformations of potentials of the Korteweg-de Vries equation

and the interaction of solitons with conidal waves, In: Bäcklund Transformations, the
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