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Abstract

We establish a bilinear framework for elliptic soliton solutions which are composed by the
Lamé-type plane wave factors. 7 functions in Hirota’s form are derived and vertex operators
that generate such 7 functions are presented. Bilinear identities are constructed and an
algorithm to calculate residues and bilinear equations is formulated. These are investigated
in detail for the KdV equation and sketched for the KP hierarchy. Degenerations by the
periods of elliptic functions are investigated, giving rise to the bilinear framework associated
with trigonometric/hyperbolic and rational functions. Reductions by dispersion relation are
considered by employing the so-called elliptic N-th roots of the unity. 7 functions, vertex
operators and bilinear equations of the KdV hierarchy and Boussinesq equation are obtained
from those of the KP. We also formulate two ways to calculate bilinear derivatives involved
with the Lamé-type plane wave factors, which shows that such type of plane wave factors
result in quasi-gauge property of bilinear equations.

Key Words: elliptic soliton solution, 7 function, vertex operator, bilinear identity, Weier-
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1 Introduction

The profound theory developed by Sato and his collaborators in 1980s brings a deep insight
on integrable systems [32]. 7 functions, vertex operators and bilinear identities together play
a central role in this celebrated theory. In particular, via vertex operators, 7 functions and
hence soliton equations are connected to affine Lie algebras. These 7 functions, generically, are
composed by a plane wave factor (PWF) with a linear exponential function ehtitk?ta+ktat-.
In this paper we will develop Sato’s theory for integrable systems, aiming to establish a bi-

linear framework for the 7 functions, vertex operators and bilinear identities that are associated
with a Lamé-type PWF

0(& + k) —cyotc! (k)ta— k¢ (k)tat- (1.1)

o(x)o(k)

The Lamé function, y = Jg(mx)j(klg) e~$()z_ig a doubly periodic function with respect to k, bearing

the name as it is a solution of the Lamé equation (the Schrédinger equation with an elliptic
potential p(x))
y'+ (A+ Bp(x))y =0, (1.2)

where A = —p(k) and B = —2. Here 0, and p are the Weierstrass o, ( and p functions, where
p(x) is an elliptic function, i.e. doubly periodic and meromorphic. Elliptic curves can paly a role
in integrable systems either as elliptic type solutions or as elliptic deformations of the equations
themselves, either way brings richer insight to integrable systems than trigonometric/hyperbolic
and rational cases. Apart from the famous finite-gap integration method developed by Novikov,
Matveev, Dubrovin, Its and Krichever (see [6,30] and the references therein), a second pioneer
work is [3] which extended the connection between the Korteweg-de Vries (KdV) equation
and Calogero-Moser model from rational to elliptic case. Soliton solutions based on the Lamé
function have emerged in [38] in 1976 for the KdV equation. In 2010 Nijhoff and Atkinson
[33] developed a direct approach to obtain elliptic N-soliton solutions for some quadrilateral
equations that are consistent-around-cube and classified in [2]. Their approach relies on Cauchy
matrix and discrete (and elliptic) Lamé type PWFs. The obtained solutions are termed as
elliptic N-soliton solutions [33]. Later, their approach was applied to the lattice potential
Kadomtsev-Petviashvili (KP) equation [39]. More recently, an elliptic direction linearisation



approach was established in [37], and elliptic N-th roots of unity was introduced to construct
elliptic soliton solutions of the discrete Boussinesq type equations and to deal with dimension
reductions [37].

We shall now sketch the plan of this paper and describe main results in more detail. The
KdV equation will serve as our first introductory model to bear details. We will follow [33]
and still use the term elliptic soliton solutions, although in continuous case these solutions are
no longer elliptic (but still doubly periodic with respect to parameters k; (see, e.g. Theorem
3.3) and expressed in terms of Weierstrass functions). We will begin with an elliptic 1-soliton
solution of the lattice potential KdV (IpKdV) equation. By showing continuum limits of the
equation and solution, we are able to have a full profile as well as a comparison of the Lamé-
type PWFs from fully discrete to continuous. As a new feature, all these PWF's are no longer
solutions to the linear part of the corresponding nonlinear equations. This is different from the
case of usual solitons composed by linear exponential functions.

Section 3 will play a role to present details that how a 7 function for elliptic N-soliton
solutions is obtained from a Wronskian and from vertex operators, how a bilinear identity
is constructed and how explicit bilinear equations arise from the bilinear identity. The KdV
equation is still the model equation of this section. We will begin by deriving its elliptic 1- and
2-soliton solutions from the bilinear KdV equation (3.1) using the standard Hirota’s procedure,
but the procedure is more complicated than the usual soliton case. These two solutions are
presented in Eq.(3.6) and (3.7). Details of the derivation and some bilinear derivative formulae
involved with the Lamé-type PWFs are given in Appendix B. A key and new feature is the
gauge property for bilinear derivatives of the usual soliton case is not valid any longer for the
Lamé-type PWFs, and instead, we have quasi-gauge property (see Proposition B.1). As a
consequence, a KdV-type bilinear equation does not always admit an elliptic 2-soliton solution
and even elliptic 1-soliton. This is also different from the usual soliton case where a KdV-type
bilinear equation always has a 2-soliton solution [24,25]. The formula of 7 function in Hirota’s
form for the elliptic N-soliton solution is secured from a Wronskian that satisfies the bilinear
KdV equation. This formula is presented in Eq.(3.26) in Theorem 3.2. To obtain it, the quasi-
gauge property and some formulae and identities of the Weierstrass functions are employed.
The vertex operator to generate such a 7 function is given in Theorem 3.3. After that, we
will present a bilinear identity (3.43) and its residue form (3.44) in Theorem 3.4. The identity
is constructed by using double-periodicity of the integrand and implementing the integration
around the fundamental period parallelogram. It turns out that the integrand has 2N simple
poles and an essential singularity at ¢ = 0 (mod period lattice). Similar to the usual soliton
case, the integral bilinear identity equals to the residue of the integrand at ¢ = 0, but the way to
achieve the residue is not straightforward at all. We will develop an algorithm for this matter in
Sec.3.4 and a practical formula for calculating residues as well as bilinear equations is presented
Eq.(3.55) in Theorem 3.5. After the exploration of the KdV equation with necessary details,
we will move to the KP equation in Sec.4 and sketch the main results in Theorems 4.2, 4.3, 4.4
and 4.5.

In section 5 we will discuss period degenerations of the elliptic soliton solutions when the dis-
criminant A = g5 —27g3 = 0. This will give rise to soliton solutions of trigonometric/hyperbolic
type and rational type. The degenerations are straightforward. That is to say, one can directly
substitute the degenerated Weierstrass functions (see Proposition A.2) into the 7 functions and
bilinear equations we obtain in sections 3 and 4. The degenerated results for the KP hierarchy
are given in Theorem 5.1 and 5.2. Three types of PWFs of the KP hierarchy are given in (4.25),
(5.10) and (5.15), respectively. Note that Theorem 5.1 presents a more concise expression for



the trigonometric/hyperbolic-type 7 function and the associated vertex operator, which allows
a direct replacement of o(x) and ((z) by sin(az) and « cot(ax) respectively. In section 5 we
will also investigate reductions by dispersion relations (corresponding to periodic reductions of
the usual soliton case). Elliptic N-th roots of the unity (see [37] and Definition A.1 in this
paper) will be used. However, different from the usual soliton case, when N > 3, the elliptic
N-th roots of the unity are not simultaneously the elliptic (kNN)-th roots of the unity where
k € N, (see Remark A.1 in Appendix A). This means one cannot get elliptic soliton solutions
for the Gel’fand-Dickey (with N > 3) hierarchy from those of the KP hierarchy by reduction
using elliptic N-th roots of the unity.

We have introduced the plan of our paper as well as the main results and some new features
associated with the Lamé-type PWFs. The paper also contains a section where we will present
conclusions and mention some further topics based on the framework of this paper. In addition,
there are three appendices, which include a collection of the Weierstrass functions and the related
properties and identities, some calculating formulae involved with Hirota’s bilinear operator and
the Lamé-type PWF's, and proofs for the elliptic /N-soliton solutions in Wronskian forms that
satisfy respectively the bilinear KdV equation and KP equation.

2 Lamé-type plane wave factors

PWF is an elementary block of N-soliton solutions. In this section we begin by exploring PWF's
and dispersion relations of elliptic solitons, for fully discrete, semi-discrete and continuous cases.
We will consider usual 1-soliton solution and elliptic 1-soliton solution of the IpKdV equation
and implement continuum limits of both the equation and solution, so that one can make a
comparison for the usual and elliptic cases.

Recalling the KdV equation (with scaled coefficients for our convenience)

3 1

up = Uty + 7 Uase (2.1)
and its potential form (u = v,)
345 1
Vg = va + ZU$$$7 (22)
which admits 1-soliton solution
4k62kx+2k3t
V= —————. (2.3)
1+ e2ka+2kt
The PWF is
,O(k?) — tem—f—QkSt, (2‘4)

which is a solution of the linear part of the (potential) KdV equation and indicates the dispersion
relation of the equation.
The 1IpKdV equation reads [21, 34, 35]

(w —w)(® — @) = p? - ¢*, (2.5)
where we adopt notations
w=w(n,m), w=wnh+1m), ©=wn,m+1), @ =wn+1,m+1),

n,m € Z, p and ¢ are spacing parameters of the n-direction and m-direction, respectively. This
equation has a background solution wy = pn + gm + ¢ and a usual 1-soliton solution [22]
k(1 —p)



where

p+E\"(q+k\"
_ 2.7
/ (p_k) (q_k) oo (2.7)

is the PWF. Here ¢,k and pgg are constants. Removing the background wgy by introducing
v = w — wp, the IpKdV equation (2.5) is converted to

(W—0-p—q)@—T—p+q)=p"— ¢ (2.8)

The PWF (2.7) solves the linear part of the above equation.
With new parametrizations

P’ =p(0) —e1, ¢"=ple) —e, (2.9)

the IpKdV equation (2.5) allows a background solution

wo = (&) —n¢(8) —m((e) —co (2.10)
where
£ =nd + me, (2.11)

e1,¢p € C, and ¢, ¢ serve as lattice parameters. For the Weierstrass functions o(z),((z) and
p(x) and related notations and properties please refer to Appendix A. The elliptic 1-soliton
solution of the IpKdV equation is [33]

n-k() + n()p

where
12(y) = C(x +y) — ¢(z) = C(y), (2.13)
and the PWF is (k1) (k= )\" (o(k—)\"
o(k+ o(k — ok —e¢
=%y (o) (Gieg) ™ —
with k, pgo € C. Again, removing the background wy from (2.5) by v = w — wq yields
(0 =0+ X5(E) (B = T = x-5( +9)) = 9(9) — (), (2.15)
where
Xs.2(7) = C(8) + ¢(e) + C(v) = C(0 + & +). (2.16)
Equation (2.15) admits a solution
o = =68 e (&)p (2.17)

1+p

with PWF (2.14). Note that for given n,m and constant pgy that are independent of (k,d,¢),
the PWF p and n4x(&) are elliptic functions of (k,d,¢), and so is v given above. However, the
PWF (2.14) is no longer a solution of the linear part of the equation (2.15).

To show the Lamé-type PWF's in semi-discrete and continuous form, we consider continuum
limits of the IpKdV equation (2.15) together with its elliptic soliton solution (2.17). Let m —
00, € — 0 while g = me be finite. Noticing those Laurent series listed in (A.6) and

2

X36) = £ — sl + 1) + g+ (0 1)8) + S0/ (1 + (n+ 1)8) + O(E?),
2

Xael€+8) = = gl -+ 16) + el + nd) + S0/ () + O(?),



in continuum limits the IpKdV equation (2.15) yields the semi-discrete pKdV equation (with a
n-dependent coefficient ns(u + nd))

Opw+7) + (T — 0)? + 25 (s + ) (T — v) =0, (2.18)
which admits an elliptic 1-soliton solution

. N-k(nd + p) + ne(nd 4+ p)p (2.19)
1+

where the PWF is (with pg € C)

_ok+nd+u) (o(k=0)\" _acwm
ok —nd—p) <a<k+5>> o (2:20)

Strictly speaking, this PWF is doubly periodic with respect to k& but not elliptic as there is an
essential singularity at k& = 0 due to e~ 2")#, However, we would like to inherit the term elliptic
N -soliton solutions introduced in [33]. Note also that the PWF does not solve the linear part
of Eq.(2.18) either. In the full continuum limit, first, we let n — oo, § — 0 while v = nd be
finite, and then introduce z = u+ v, t = %52% The resulting equation with coordinates (x,t)
is 3, 1

vy — 5% + 3p(z)vy — vam =0, (2.21)
and its elliptic 1-soliton solution takes a form

k(@) + 77k(55)/0, (2.92)

T+p

where the PWF for the continuous elliptic soliton solution is

0B+ %) _ockyate (k)t4€©
p_a(k—x)e , (2.23)

with parameter £ e C independent of k or being a doubly periodic function of k. Note that
employing the transformation

b =2(0+((x) + 5oot) (2.24)

one can convert Eq.(2.21) into the usual pKdV equation (i.e. (2.2))
34 1
U — Zvi — 3 Uwez = 0. (2.25)

Besides, the nonpotential form of Eq.(2.21) is (u = v,)
, 1
up — 3uuy + 3p(x)u, + 3" (x)u — 7 Uaze = 0, (2.26)

which, by transformation u — u+ (), is written as the usual KdV equation (2.1). However,
the PWF (2.23) is not a solution of the linear part of any of equations, (2.21) or (2.25) or (2.26)
r (2.1). Note that the elliptic 1-soliton solution u = v, with (2.22) emerged in [38].
Now let us make a comparison for the two PWFs, (2.23) and (2.4), i.e. the PWFs for elliptic
solitons and usual solitons. Considering the exponential parts of them, asymptotically, it follows
from (A.6) that

o~ 2 (R)atg (4@ —Fa—t

)



which corresponds to the dispersion relation in (2.4). This observation motivates us to introduce
a general Lamé-type PWF (the extended Lamé function)

p = (k) exp(~C(R) +C(R)ta - + (j.‘_”f)! IR +), @)
which is an elliptic analogue of the usual one
p=exp(kty + k*s + -+ Kt;+--), (2.28)
where t; = x and .
o, (k) = %. (2.29)

Note that the doubly-periodic feature of the PWF (2.23) can also be illustrated in its alternative
form

[e o]

p = exp <g<0> Lokt -3 ﬁp@"l)(zﬁ)x?m) . (2.30)

n=1

For the KdV equation (2.1), its elliptic 1-soliton solution can be written as (cf. Eq.3.6)
u=—2p(x) + 2(In(1 + D, (2k)e~ 2K Rrte' Wty (2.31)

where the —2p(z) is a 1-gap and 1-genus solution in light of the so-called Dubrovin’s equations
in finite-gap integration [14,15] (also see [26] by Ince), but the whole solution (2.31) is a doubly

periodic function of k (not periodic with respect to x).
Noting that (p(k), ©'(k)), k € D (see Fig.1) are points on the elliptic curve (A.2), along the
line of [3], we can say that the elliptic soliton solution corresponds to the torus (A.2), while its
us 8 ( s

degenerations by fixing go = 3(35-)%, 93 = 25 (55-

periods) correspond to a cylinder and Riemann sphere, respectively, cf. [3].

)6 and go = g3 = 0 (i.e. degenerations by

3 7 function, vertex operator and bilinear identity: KdV

We will extend the obtained elliptic 1-soliton solution of the KdV equation to its elliptic N-
soliton solution and then establish a bilinear framework for such type of solutions. The frame-
work will consist of 7 function in Hirota’s form, a vertex operator for generating the 7 function,
a bilinear identity and an algorithm for calculating residues that gives rise to bilinear equations.

3.1 7 function of elliptic N-soliton solutions

3.1.1 Bilinear form and elliptic 1- and 2-soliton solutions

We begin by exploring Hirota’s procedure to calculate elliptic 1- and 2-soliton solutions for a
bilinear KdV equation. The potential KdV equation (2.25) can be converted into a bilinear
form

(DY —4D,D;y — 12p(z)D*)7-7=0 (3.1)

via the transformation 1
v =2((z) + Zth +2(InT),, (3.2)

where D is Hirota’s bilinear operator defined by [23]

D;anf g = (at - 8t’)m(al‘ - a:v')nf(t7x)g(t/7x/)’t’=t,m/=$7 m,n = 07 17 2.



Equation (3.1) is also a bilinear form of the KdV equation (2.1) while the transformation is
u=—2p(x) 4+ 2(In 7). (3.3)

Both (3.2) and (3.3) have nonzero backgrounds. An alternative bilinear form for the KdV
equation is
(Dy — 4D, Dy — go)7' - 7' = 0, (3.4)

while the associated transformations are

1
u=2(In7")p,, V= Zth +2(In7"),. (3.5)

By direct calculation (see Appendix B), one can find that Eq.(3.1) admits the following

solutions,
T=fi=1+p(z,t) =1+ q)m(kal)egl, (3.6)
and
= fo=1+4pi(z,t)+ pa(a,t) + fP(x,t)
+ 2k1 + 2ks)
1 By (2 )t + By (2 + App L Gte .
P2kt + e (2ho)e + A o (3.7)
where 2(k; )
) — N pli o . (1. (0) _ ok — R
pl(m,t) (IDJC(ka)e ) fz QC(kz)x + § (kz)t + fl ) A12 Uz(kl + k‘g)’ (3-8)

k‘i,&i(o) € C. These are formally similar to the usual 1-soliton and 2-soliton solutions of the
KdV equation but there is an essential difference in 2-soliton case: the last term f) in f, is
Ajpetkkz 5 (x+42ko, t)pa(x, t), rather than Aj9p;(x,t)p2(x,t) as in a usual two-soliton solution.
In Appendix B we provide details of deriving f; and f2, as well as some formulae for higher
order bilinear derivatives and properties (e.g. the quasi-gauge property, see Proposition B.1)
involved with the Lamé-type PWF p;. We also remark that it is well known a KdV-type bilinear
equation (with constant coefficients) always admits 1-soliton solution and 2-soliton solution [24],
however, such a convention does not hold even for admitting elliptic 1-soliton solution.

A 7 function in Hirota’s form for elliptic N-soliton solution is needed to introduce vertex
operator. However, for higher order elliptic soliton solutions, the calculation is much more
complicated. Next, we will first present a N-soliton solution in terms of Wronskian, from which

we can secure the 7 function in Hirota’s form.

3.1.2 7 function in Wronskian form

Introduce a N-th order column vector

@ =(¢1,92, ,on)", (3.9)
where p; = ¢;(x,t) are functions of (x,t). A N-th order Wronskian is defined as
f: |30aargpaa§90"" ’aé\/'flg0| = |0’1a2"" aN_1| = |N_ 1|’

where we employ the conventional shorthand introduced in [17]. For an elliptic N-soliton
solution of the KdV equation, we have the following.



Theorem 3.1. The bilinear equation (3.1) admits a Wronskian solution

r=|N—1] (3.10)
composed by vector o = (1,02, ,on)T where each element @; satisfies
Piax = (9(kj) + 20(2))p;, (3.11a)
Pit = Piazz — 39(T) @)z — ;p’(x)% (3.11b)
forj=1,2,--- N and k;j € C. A general solution to the above equations is
pj = af ¢ +aj;, (3.12a)
where gpjﬁ are Lamé functions
BF = Bk, 5 = () — 50/ ()t + 2, (3.120)

where a;t,kj,'y](.o) € C, ®,(k) is defined in (2.29), and in practice, k; takes value in the funda-

mental period parallelogram D of the Weierstrass o function (see Fig.1).

The proof will be sketched in Appendix C. Note that such a solution in Wronskian form for
the KdV equation can be alternatively obtained using the Darboux transformation by taking
u = —2p(z) as a seed solution and assigning a proper dispersion relation (see [31]), but we
do need to have a 7 function that serves for elliptic N-soliton solutions and satisfies a definite
bilinear KdV equation.’

3.1.3 7 function in Hirota’s form

To convert Wronskian (3.10) into Hirota’s form, we first investigate the Wronskian composed
by ¢~ = (p],¢5,+ ,on)T and its derivatives, where {¢; } are defined as in (3.12b). Such a
Wronskian can be written as an explicit form.

Lemma 3.1. For the forementioned ¢~ , we have

|Q0_a 8:1:%0_a aa%@_’ ) 8913\[_190_|
N
~wol@ =N k) [hagavolki — k) .
=(-1) o(z) oN (k1) oN(ky) P ;% ' (3.13)

Proof. For convenience we introduce notations k = (ki,ks,--- ,kn)T, f(k) = (f(k1), f(ko),
o fRN)T, f(K)g(k) = (f(k1)g(k1), f(k2)g(ka), -+, f(kn)g(kn))T, and we consider the Wron.

skian

f7 =1 (k)97 9, (u (L)t M), o 9y T (@(—k)et M), (3.14)

where for conciseness we have dropped off ©'(k;)t and 7(0)

; In 7; since the structure of the

Wronskian is irrelevant to time. For each ¢; we have

;= nu(—k)p;

'Due to the quasi-gauge property (see Proposition B.1) of bilinear derivatives with respect to the Lamé-type
PFWs, it is necessary have some 7 function to satisfy a definite bilinear equation.



where 7, (k) is defined as (2.13). In addition, ¢; is a Lamé function, satisfying (3.11a), which
indicates that

n—2
005 = (o(ky) +20(2)) 0207 +2) ( " ’ ) (09(2))0; 7107, (n>2).
i=1

Using the above relations we can replace the column & (®,(—k)eS®%) in (3.14), and after
simplification it turns out that

N N
fm= (epo«k@-):c) [ 2:(~%))
i=1 j=1
% |1, ne(=K), p(k), p)n.(=k), ©*(K), p*K)n.(=k), -, pl" 2 1K) (k )|,
(3.15)

where in the last column hq (k, z) stands for

1, N odd,
ne(—k), N even,

hl (k, .%') = {

and [z] is the floor function of x.
Next, for the column " (k)n,(—k) in (3.15), in light of the relation (A.8), we have (for
n>1)

O (k) = 0" (K9 () — 26" 106/ (@) + 0" (e (~K)p(a),

where the last two terms on the right hand side will be eliminated by those front columns in
(3.15). We can examine all such columns in (3.15) successively from right to left. As a result,
we are able to have f~ in the form

VR v N |
=(-3) (exp;ak»m) I o)
x |1, m0(=k), p(k), ¢ (k), 9 (), p(k)g' (K), 9> (), 92 (k)¢ (k), - ,pl 7 1 (K)ha(K)],

where in the last column hy(k) is

) o(k), N odd,
ha(k) = { ¢'(k), N even.

By virtue of the fact that (p(x), ' (z)) is a point on the elliptic curve (A.2), i.e.

(¢'(K))? = 49° (k) — g20(k) — g3,

we know that both p**~2)(z) and % can be expressed as a linear combination of {p®(x)}
with s =n,n—2,n—3,---,2,1,0. Then, we are led to
N N 1
[ = (exp;g‘(ki)x) j1]1<1>x<—kj) Tl (V2]
X ‘17 77$(_k)7 p(—k)7 p/(—k), p”(—k% p///(_k)v ) p(N73)(_k)‘7

10



which is further written into

. DNy (—hy — o — k)
= (eXpZC > 1191. (N—QI)!(N— 1)!

X |1’ p(—k), p/(—k), pu(_k)’ pm(_k)’ T p(N_Q)(_k)|’ (3'16)

where use has been made of relation (A.12). Then, employing the elliptic van der Monde
determinant formula (A.11), we have

B o(z — N k) Ticicjon o (ki — ky) (N )
fm==DN =l ! exp [ > ((ki)z |, (3.17)
o(z) oN (k) oN(ky) D\ A

which yields (3.13).
O

Next, in order to obtain the 7-function in Hirota’s form, we consider the Wronskian (3.10)
composed specially by an elementary column vector (cf.(3.12a))

vi=of +(=1y;, (3.18)
where <p;t are defined by (3.12b). The corresponding Wronskian
7=|N—1] (3.19)

can be split and then written as a sum of 2V distinct Wronskians, each of which is generated
by the elementary column vector of the following form,

0= (P1,00, -, on)", @5 = () ®u(ejkj)e (3.20)

where {£1,e2, -+ ,en} run over {1,—1}. In light of Lemma 3.1, the Wronskian generated by
the above ¢ is

N(N-1) N j J(m—kzij\i eiki) H1§i<'§N o(eiki —
Te=(-1) @ jHl(ej)' a(:c)l ‘O'N(cfljkl)' (5NkN exp( Z&%)

vovey o+ N eiky) Thicicjn gioleiki —
= (-1 : = Nba s A~ (3.21
( ) 2 0’(%) O’N(/ﬁ)---O’N(/{:N exp 287 ( )

where € indicates cluster € = {e1,€2,--- ,en}. Introduce length of € by || to denote the number
of positive €;’s in the cluster e. Rearrange the 2V terms in the 7 function (3.19) in terms of |e|

such that
= Z Z T. = ZT(l) (3.22)

=0 |e|=l

where 7() = Z\e|:l Te, and in particular, by g we denote 7O e,

N(N-1 — N . g kj
_ T(O) _ (_1)% 0'(.%' 2221 kz) H1<Z<j<N ( eX < Z> ) (323)
¢ e R e e 20

Here, for convenience of this subsection, for a function f = f(z), by fwe specially denote
the f shifted in = by Z@]L ki, ie. f=flx+ Zf\;l k;). Then we have the following.
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Theorem 3.2. Let _
=

f== 3.24
Z (3.24)
where T and g are given by (3.19) and (3.23). Then we have
(DY —4D,D; — 12p(x)D2)f - f = 0. (3.25)
f is the T function in Hirota’s form, written as
o(z+2 Z 1 kiki)
f= = ;65 + HifljQig | 5 (3.26)
MZO:,l o(x) va 1 019 (2k;) Z 12;
1.e.
al o(x + 2k +2k,)
f=1+) o, + ) Lpe” O
i—1 1<I<p<N o(x)o(2k)o (2k )
95N ki N
T szzl ) IT A ) ITe™
o(z) Hj:l o(2k;) 1<i<j<N i=1
where the summation of p means to take all possible pu; = {0,1} fori=1,2,--- /N,
0; = —2C(ki)z + o' (k)t + 6, 6 e C, (3.27a)
3 o(ki — k) \?
Gj — A, = AP 3.27b
c <U(kz+kj)> 2]

Proof. The proof consists of two parts. First, we will prove that f defined by (3.24) solves the
bilinear KdV equation (3.25). In the second part we will prove f can be written into Hirota’s
form (3.26).

Recalling formulae (B.7) and (B.8), for the function g defined in (3.23), we have

D2G-5=2(pl+ LN, k) - <x>)§2,
D g- g—lQp(ac—i—ZZ 1 )D2~ q

Then, noticing that 7 = fg, and using the above relations and the quasi-gauge property de-
scribed in Proposition B.1, by calculation we find

0= (D} —4D,D; — 120(x + XN k) D)7 -7
=9°(Dy — 4Dy Dy = 120(x) D7) f - £,
which indicates that f = 7/g solves the bilinear KdV equation (3.25).

In the second part, we are going to prove f = 7/g can be written as in (3.26). In light of
(3.22), a generic term in f is

7o ole+ X (L+e)ky) 1T gio(eiki — ¢;

- o (ki — kj)

k; al _
== @) ) exp —;(1+€j)*yj . (3.28)

1<i<j<N
In particular, when |e| =1, e.g. only ¢, = 1 while all other ¢;’s are —1, such a term is

O, (2k;, )0 e~ %o ,

12



where

. o(kj, + ki)
%o = g (2k.: Jo Z. —
(2F0) 1<1;[N o (kjy — ki) - sgnli — jo]
i#50
To proceed, we introduce
S = {152, ’N}’ JE = {nlyn2a"' anl} C S,

where J; is associated with € via

o 1, 1€ Jg,
) —1, i€ S\ ..

Eq.(3.28) is then written as

Te  o(@x+2) 05 ki)
T o) ey 0‘22/%) <H ) exp ( 2 Z %) : (3.29)

1€Je 1€Je
where
. ki +k;)
Bi — (2k;) H o (ki J
e o(2k; ——.
AL o=k el
Then, noticing that
Bi—ai _ o (ki — k;)
e —,
- v
J#i

which indicates that

Moo= 11 (55) -

1€Je i, JiJe i, JEJE
1<jJ <]

where A;; is defined as in (3.27b), the term (3.29) is written as

Te ol +2) 5 ki)
e _ e v/ ”Al exp 591‘7
g o(x) HieJe o (2k;) ij€Je ’ ic€Je

1<J

where 6; = —27; + «;, defined as in (3.27a). This indicates that f = 7/g can be written into
Hirota’s form (3.26) coupled with (3.27).
The proof is completed.

3.2 Vertex operator

We look for a vertex operator that generates the 7 function (3.26) for elliptic solitons. To pro-

ceed, let us first list some notatio_ns. Lett = (t1 = z,to,  ,tn, "), = (04, %@2’ e %3%’ ),
t= (tl =T,13, - ’t2"+1"")7 0= (81517%81537"' ’(QTL;-FUathHV"%
Z’f n €t k)= (=) ICES ¢ (k) = B¢ k), (3.30a)
n=1 '
08, k) = £(t, k) — &b, —k) =2 k> g1, (3.30D)
n=0

t < ¢(2n)
By (B K) = €1 (6. k) — (b —k) = 23 & A)

Wt2n+1. (330C)
n=0

13



Consider the following 7 function which is equivalent to (3.26),

NOESY <H ) <H Aw> o(h HZZGJ eXp <Z O (T, K > (3.31)

JCS \ieJ i,jeJ ieJ

where ¢; are arbitrary constants, A;; is defined as in (3.27b), S = {1,2,--- , N}, J is a subset
of S, and ) ;-¢ means the summation runs over all subsets of S. The vertex operator that
generates the above 7 function is described below.

Theorem 3.3. The 7 function (3.31) can be generated by the vertex operator

X (k) = By, (2k) %11 ER) H@R) (3.32)

via
() = eV XEN) o 7y 1 (]), To(t) =1, (3.33)

i.e.
v (B) = een X)L geaX(h2) gerX (k1) o (3.34)

In addition, T (t) is doubly periodic with respect to any k;, for i = 1,2,--- | N, where the two
periods are those of p(k).

Let us prove the theorem through the following lemmas.

Lemma 3.2. For 0 and 0|, defined in (3.30), we have
0@k 1 (B _ = Ay ela®kie 6@.k:), (3.35)

where A;j is defined as (3.27b).

Proof. Considering the Taylor series in the neighbourhood of ¢ = 0, we have

o(p—q) _
mZP "D _ g (=(q).p), 3.36

e ) (E(a),p) (3.36)
which indicates

Ajj = 2011 (E(kj),ki)7 (3.37)
where 2(q) = (g, %, e ,(%2:—:11), -++). Then, for any C* function h(t), one can directly verify
that _

0@k:) 01 k) o h(E) = Ajj e’ (6.5) DOk:) o (),

i.e. relation (3.35) holds. O

Note that (3.35) is formally similar to the result in the usual soliton case, cf. [13,32]. We
are led by this lemma to the following.

Lemma 3.3. For the vertex operator X (k) defined by (3.32), we have

(’51+2k'+2kj) 0 (E .k k) 0(0,k)+0(D.k;
X (k)X (ki) = A; 5 PUBICY 17)+0[e](t7k1)66(87k1)+0(87k1)’ 3.38a

i=1

(t1
)

= II 44 ot £2> k) Ze (t, ki) | - ex fje@m (3.38D)
L o(t) [T, o(2k:) P el P B )

and hence
X(k)?2 =0, X®) =14cX(k). (3.39)

14



With the above two lemmas in hand, we can confirm that 7x(t) can be generated by the
vertex operator X (k) via (3.34), with (3.33) as a consequence. In addition, noticing that
m1(t) = eX(*1) 6 1 is doubly periodic with respect to k1, and X (k;) and X (k;) commute (see
(3.38a) where we should consider A;; to be a rational function rather than a Laurent series of
ki/k; or kj/k;, cf. [13]), it follows that 7y (t) defined by (3.34) is doubly periodic with respect
to any k;, for i =1,2,--- , N. Thus Theorem 3.3 holds.

3.3 Bilinear identity of the KdV hierarchy

With the vertex operator and 7 function in hand, we can have bilinear forms of the KdV
hierarchy that admit elliptic soliton solutions.
To achieve that, let us first introduce a doubly periodic function.

Lemma 3.4. Consider a vertex operator

X(t,q) = %eé%@”e%@(%), (3.40)

and introduce a function of q,

h(t,q) = X(t,q)7(t), (3.41)

where T(t) = 7)(t) is defined by (3.31). Then, h(t,q) is a doubly periodic function of q with
periods 2wy and 2wy, where w; are the half periods of p(q).

Proof. Making use of relation (3.36), h(t,q) can be explicitly written as

h(t,q) :%e%% (£.)

o(t1 +2> .., ki+q) o(ki —q) e
X A i€J i————— | X 2ies O (:k:)
Z H ot + @) Ties 0(2k:) H ‘ o(q+ ki) ‘

Jcs |\i<jes ic

(3.42)

. _ (2n) .
Note that in %H[G](t,q), except the first term —((g)t1, the rest part —» 7, %thA,l is

already doubly periodic with respect to ¢q. Following Proposition A.1, one can check that

o(ti+q) e—C@h o(t1+23 e ki +4q) CAU(ki —q)
a(q) ©oo(ti+ @) [Lieso(2ki) o " ola + ki)

are doubly periodic too. This indicates h(t,q) is a doubly periodic function of q. Note that
h(t,q) is not elliptic as it has an essential singularity ¢ = 0 (mod periodic lattice).

O

Then we come up with an integral bilinear identity.

Theorem 3.4. For the function h(t,q) defined in (3.41), we have the following bilinear identity

dq — —
— h(t,q) h(t,—q) = 4
$ 5 hE ) h(E—0) =0 (3.43)
which gives Tise to
Res |n(€,0) A(E', —0)| = 0, (3.44)
q:

where the contour S takes the boundary, anticlockwise, of the open fundamental period parallel-
ogram D (see Fig.1) and all {£k;} are distinct and belong to D.
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Figure 1: Fundamental period parallelogram D

Proof. In light of Lemma 3.4, it is obvious the integrand h(t, q)h(f/, —q) is a double-periodic
function of q. Meanwhile, noticing that in D the integrand has only 2N isolated simple poles
{ikl}f\i 1 and one isolated essential singularity ¢ = 0, there is a domain which contains the
curve ) and where the integrand is continuous. It then turns out that the integral in (3.43) is
zero due to the integrand being double-periodic.

To prove the second identity (3.44), we examine residues of the integrand at ¢ = +k;. For
given jo € S, ¢ = kj, is a simple pole of h(f’, —q) but h(t,q) is analytic at this point. Thus we
have

Res |h(t,q) h(f’,—q)] = h(t,kj,) X Res [h(f,,—q)] : (3.45)

q=kj, q=kj,

h(f’, —q) has a similar summation expression as (3.42). For any J that does not contain jo, the
associated terms in the summation expression of h(f/, —q) contribute nothing to the residue at
q = kj,- Therefore we have

Res [h(f’, —q)} = Res [g(f’,q)}, (3.46)

q:kjo
where g(f’, q) is a collection of all those kjj-related terms in h(f’, —q), which is

_e30a®—a) o (k;
o == 3 I (Mgt

JCS\{jo} | \i<jeJ ieJ

ezie‘] 0[6] (Elvk‘l) B
Meyo2k) %

where

H o (ki — kjo)) o(kj, +q) Pl (ki)

o?(k; + kjo) U(kjo —q) ‘ J(2kj0) .

Note that ¢ = kj, is a simple pole of Bj;. A direct calculation yields

Bjo = CjOO'(tll + 22@'6] k; + 2]{3]'0 — q) <
ieJ

Res [g(f', q)}

a=kj,
B cjoe%(?[e](f',kjo)
o (kjo)
ki — k; th+2> . ki + ks —_
% Z H Aij (ch‘a( ]0)) oty + ZzeJ + jO) e Xies Ol (F ki)

JCS\{jo} [ \i<jed ieJ o (ki + kjo) HieJU(%i)

where we have made use of
. o(ki +q) o? (ki — kj,) o (ki — kj,)
lim CGG——F 2 o) ¢—— I
a—rkj (g o(ki — Q)> <g o? (ki + kjo) g o (ki + kjo)
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Recalling the expression (3.42) for h(t, ¢), in the summation, such terms will vanish as they are
generated by J that contains jp. Thus from (3.45) we have

s |h(E, @b, —
Res [1(E 0h(E, ~a)]
Cjo6%0[5](E’kjo)+%€[6](flvkjo)
0'2(]{3]' )
ok — k) | ot + 25y ki + ) -
A 3 v Jo ieJ J0) ey 0 (Bika)
* Z H ! (Hcg(ki+kjo)> [Licso(2k;) e

JCS\{jo} |\i<ied

o(ki — ki) \ oL +22 i ki +kjo) s o @ k)
- . . i [e]\P i
X | (T ) Spetel o

JCS\{jo} | \i<ieJ ieJ J

In a similar way we can calculate the residue of the integrand at ¢ = —k;j,. It turns out that

Res |:h(f7 q)h(fla —Q):| = — Res [h(fa Q)h(fl7 _Q)] 9
qukjo q:kjo
which means finally all residues at ¢ = +k; cancel, and the remained residue at ¢ = 0 gives rise
to the bilinear identity (3.44).
The proof is completed. O

3.4 Algorithm for calculating residues

In the following we formulate an algorithm to calculate residues from the identity (3.44) so that
the bilinear KdV hierarchy with elliptic solitons can be obtained.
Redefining 7/(t) = o(t1)7(t), the bilinear identity (3.43) is written as

di 1 ap e
%}2—737/ 0_2(q)e;€[6](t t 7(]),7_/(.t + e(q))T/(t/ . e(q)) —0. (347)

Then, introducing t = X+¥ and t’ = X —y, where X = (21,23,---), ¥ = (y1,%3, - - ), the above

equation is written as

1 _ — . —
?ég ;_72 Uz(q)ee[e](y,q>e(y+e(q>)-D;T'(g) 7(X) =0, (3.48)

and from (3.44) we have

el (?,Q)G(VJFE(Q))'DfT’(g) (X)) =0, (3.49)

1
Res[ 5
=0 [0*(q
where Dx = (Dy,, Dyy, Dy, - - - ), and for two vectors a = (ay, az,---) and b = (by, b, - - -) their
vector product is defined as a-b = >, ; a;b;. Note that in the usual soliton case, the term

Ugl(q) e ¥:9) in (3.49) is q%eg(y’l/q) instead, cf. [27,32]; ¢/™1/9) has a definite expansion in terms

of ¢ but €’lel (%:9) does not.2 This is the obstacle when calculating the residue at ¢ = 0. We need

to design an algorithm to calculate the residue in (3.49).
To develop the algorithm we write (3.49) into the following form

1 eﬂﬁf’q)T'i (X)) =
i ®)-7(®)| =0 (3.50)

h;(¥)¢’ but h;(¥) can not be expressed explicitly.

Res |e(BPx)Y
q=0

oo

2 H 9 e 77 p—
One can formally write ¢%le1 &9 = ijioo
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where ¢ is defined as in (3.30) and

_ " (2n) -
B = _Q(C(Q)’ CQ(!q)" o C(Qng?)’ : ')a D§ = (Dmuoa

For convenience, we introduce polynomials {p,(t)} by [32]

R I L (3.51)
n=0

1 1
gDmgaOa gD:B5a e )

where
tCl{
llal|=n

t:(t17t27"')7 (X:(Oél,OéQ,"'),

o
l|laf] = Zjaj, al = aglagl-+ )t =115
=0

The first few {p,(t)}’s are
1
po(t) =1, pu(t) =11, pa(t) = 515% + t2,

1, 1, 1
—t1+ tt2+2t2+t1t3+t4.

1t + it + ¢t (t)
1 112 3, P4 Al 5

3!
Meanwhile, 1/02(q) is expanded as

p3(t) =

_ @i (14 2 3 40 2 84 ... 3.52
> Hid 20T 204"+ 1209 * Zor605% ) (3.52)

Then, the bilinear identity (3.50) is written as

0o =Y 73 -
0 = Res Zw?ﬁ ZZPJ Kn—id" > | 7'(X) - 7' (%)

= |
S AV R n=0,;=0
B + Dx) — — | =B
ZRes (f ZZp] i 27X -7 ®) | 7, (3.53)
|B|=0 n=0 j=0

where 3 = (81,83, , Baj11,--) and |B] = Z?io Boj+1. Since {y;} are arbitrary, it then follows
that

E{_eg (B + Dx) ZZp] pin—iq" 2 | 7'(X) - T'(X)| =0. (3.54)
N n=0 j=0

In the above equation, > ° Z?:o pj(ﬁ;) ,un_jq"*2 is a Laurent series of ¢ starting from ¢ 2.
For another term (B + D;)ﬁ , first, given B, contains only finite number of nonzero Bj. Thus
assume 8 = (B1,83,- -+, Bons1, 0,0,---) without loss of generality. Meanwhile, we shall note

that the entries in B have a form Byj i = 24((2]))(,‘1) where ((¢q) can be expanded as (A.6b).

Since || is finite, (B + D;)E is a Laurent series of ¢ as well and it starts from ¢/l where
118l = > i=0(2j + 1)B2j+1 is finite and positive. This means, to calculate the residue (3.54),

it is sufficient to consider the finite number of terms from q =Bl to q' in (B + Dx ) and the

finite number of terms from ¢~2 to q”ﬁH Lin > ijo pJ(DX),un,]q" 2. Thus, we are led to
the following theorem which formulates an algorithm to derive bilinear KdV hierarchy through
calculating residues (3.54).
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Theorem 3.5. The bilinear KdV hierarchy are given by

1Bl-1 n

Res B+D2) <1 | Y > piDun " | 7 ®) @) =0, (3.55)
n=0 j=0

where B is set of nonnegative integers with finite and positivg]ﬁ], and (B + Dg)g‘gl means
those terms of ¢ with j < 1 in the Laurent series of (B + Dx)?.
As examples, when 8 = (3,0,0,---), from the above theorem we find
(D3, — 4Dy, Dyy — go)7' - 7' =0,
which is the bilinear KdV equation (3.4). For the cases 8 = (2,1,0,---) and 8 = (5,0,0,---),

we have, respectively,
(DS, +4D3, Dyy — 32D3, + 3g2 D2, — 24g3)7" - 7' = 0, (3.56a)
(DS, +40D32 Dy, +40D2, — 216D, Dy, + 3g2D2 — 24g3)7' - 7/ = 0. (3.56b)

When ¢o, g3 are 0, these equations degenerate to those in the KdV hierarchy for the usual

soliton case, cf. [27].

4 7 function, vertex operator and bilinear identity: KP

Both the KdV and KP equation serve as representative models in integrable systems, while
the latter plays a more fundamental role in Sato’s theory of integrable systems. Based on the
exploration in the previous section for the KdV equation, in this section we will focus on the KP
equation and investigate its 7 function, vertex operator and bilinear identity associated with
elliptic solitons.

4.1 Elliptic N-solitons and 7 function in Hirota’s form

The KP equation is?

4uy — Uggy — BUUL — 38*1uyy =0, (4.1)
or in the potential form (u = v,)
4vy — Vpgy — 3(2};,3)2 — 3(9712}% =0. (4.2)
By the transformation
u=—=2p(x) +2(In7) 4, (4.3)
or
v =2¢(x) + %t +2(1n7)q, (4.4)
the KP equation is bilinearised as
(D} — 4Dy Dy — 12p(x) D3 + 3D2)7 - 7 =0, (4.5)
or
(D} —ADyDy + 3D} — go)7' - 7' =0, (4.6)

where 7/ = o(x)7. The bilinear KP equation allows elliptic soliton solutions.

3Usually,
4us — Ugpr — OUUL — 3a2871uyy =0

is known as KP-I when o? = —1 and KP-II when o = 1. We consider KP-II without loss of generality.
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Theorem 4.1. The following Wronskian

7r=|N—1 (4.7)
is a solution to the bilinear KP equation (4.5), where T is composed by vector ¢ = (p1,--- ,on)T
with entries

i (@, y,) = Oy(ky)e 1) 4 Dy (1)), (4.8a)
where /)
(k) = (k) + p(k)y — 5=t +O k), keC (4.8b)

with a constant %) (k) related to k. Note that ¢; satisfies

iy = ~Pjzz + 2@(1')90%
3, (4.9)
Vit = Piae = 30(2)Pja — 50 (2)@5.
The proof will be given in Appendix C.
To find out a corresponding Hirota’s form of the 7 function (4.7), we consider (4.7) to be a
summation of 2V terms, i.e. 7 =347, where the generic term 7 is the Wronskian |]ﬁ|
generated by

o= (¢1,02,,on)7, (4.10)
in which ¢; = ®,(k;)e %) for j € J and ¢; = ®,(I;)e %) for j € S\J, J is a subset of
S={1,2,--- ,N}. In light of Lemma 3.1, we immediately get the following result.

Lemma 4.1. The Wronskian 7; generated by vector (4.10) can be expressed as

2

JES\

o(x) (ILies o (%:)) (HjES\J UN(li))

TJ :(—1

x| T otk = k) I o=t |exp | =D k)= D )|, (411)

i<jed 1<jeS\J ieJ jeS\J

especially, when J is the empty set &, we have

vov-1 (T + ZjeS ;) Hi<j€S o(li — 1) _ Z,y(l )

gz, y,t) =15 = (—1)" 2 = oo™ @) exp (4.12)

jes

Next, for a function f(z), we introduce notation f(z) = f(x — ZjV:1 l;). Then, similar to
the KdV case, we have the following.

Theorem 4.2. For the function 7 in Wronskian form (4.7) and g given by (4.12),
;

f= 7 (4.13)

is a solution to the bilinear KP equation (4.5), i.e.
(Dy — 4Dy Dy — 12p(x) D% 4+ 3D2) f - f =0, (4.14)

and f is written in Hirota’s form as

N N
oz + ity pilki = 1)
F=Y o L) P ;Mj9j+ > minjaig | (4.15)

w01 o@) 12y ot (ki — 1<i<j
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where the summation of u means to take all possible p; = {0,1} fori=1,2,--- /N,

oks) — o)y + ~(e/ (k) — L)+ 02, 6 eC,  (4.16a)

2
_ alki — kj)o(ls , (4.16b)

aij — A..
‘ Yok —1j)o(li — ky)

Proof. First, by virtue of the quasi-gauge property of bilinear equations (see Proposition B.1)
and making use of identity (B.11), equation (4.14) can be derived from

(D% — 4D, Dy — 12p(x — S ;) D2 + 3D2)7 -7 =0,

where T = f7g.
Next, to write 7/g into an explicit form, let us look at the generic term 7, /g in f. It follows
from Lemma 4.1 that

7 _ ot Yiey ki~ 1) I ‘;((’;7:21)) (H em) exp [_ S Gik) _wi))] . (4.17)

g o(x)[Lieso(ki — 1) i<ied icJ icJ

where 7(k) = V(k)|m~>:vfzf\;1[z’ and

In particular, if J contains a single element, e.g. J = {i}, we have

T, (ky — 1)o7+

g
where N( ) ( )
at¥ (l; olk; —1;
eai :O'(kil—lz) . . J .
O'N(k‘z ]EHS O'(ZZ — l])
J#i

Define Hi(O) = a; — 7O (k) + 7O (1)) —|—Z§V:1 1;(¢ (ki) — ¢ (1;)) such that e®ie7F)+7E) = i where
0; is defined as in (4.16a). Then, the generic term (4.17) in f is written into

7, ol@+ e (ki — 1))
5‘] = @) HigJi(ki ~1) H Ajj | exp (Z 91‘) )

i<jed ic

where we have made use of

2

Bi—oi _ o(li — lj) _ o”(l; — lj)

e = gl

ilgl zl;e[J o (ki —1;) i<1;£J o(ki—1j)o(l; — kj)
i#]

and A;; is defined as in (4.16b). It then turns out that f = ) ;-¢7;/g takes the explicit
Hirota’s form (4.15).
O
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4.2 Vertex operator

We now present a vertex operator that can generate 7 functions for elliptic soliton solutions of
the KP hierarchy. Introduce a vertex operator

X(k,1) = @, (k — l)eg[e](t,k)—g[e](t,l)eg(g,k)—f(g,l)7 (4.18)

where § and §| are defined in (3.30), and d = (8, 20,,-+ ,10,,,--+). Similar to the relation
(3.36) and Lemma 3.2, for A;; defined in (4.16b), it can be proved that

In Aj; = &iy(e(ky) — e(ly), ki) — ey (e(ky) —e(l), 1i) (4.19)
and
X (e, 1) X (1) = A, SO ER TR = 1) v ). (4.20a)
1y Y1 12%) — Z,]U(tl)a(kz —ll)o'(kj —l]) . 7y Y1 793 ) .
where €(q) = (q, %, %, cee %, --+), and by :X: we denote the normalization of the exponential

part of the vertex operator X by moving all differential operators in X to the right, e.g., here

we have

(X (i, 1) X (kj, 1) = o816 (6.K0) =€1e] (4.015) o1 (6.5) —E1e] (805 L (D,ki) —E(D,1i) LE(Biks)—E(DL;) (4.20Db)

A more general version of (4.20a) is

N N
HX(]CZ, ll) = H Ai,j U(tl + sz\il(kl — lZ)) HX(]CZ, ll) . (421)

i=1 1<i<j<N o(t1) Hf\il o(ki— L) 3

It then follows that
X2k, 1) =0, eXED =14 eX(k,01), eXEDo1=1+4cdy, (k—1)eSaER=Ee®h),
which leads us to the following result for elliptic N-soliton solution.

Theorem 4.3. For the KP hierarchy, its 7 function of elliptic N -soliton solution,

t (ki —1; N ,
()= (H) IT Ay | Dot 2sestli b)) s gero-gaan (499)

JCS \ieJ i<jed O-(tl) H’iEJ J(kl — lZ)

is generated by the vertex operator (4.18) via

TN(t) _ eCNX(kNle) o eCQX(kz,IQ)emX(kl,ll) o1, (423)

or via transformation
v (t) = eN X (knoIn) o ~-1(t), 7o(t) =1. (4.24)

In addition, Ty (t) is a doubly periodic function with respect to any k; andl; fori,j =1,2,--- | N.

The proof is similar to Theorem 3.3 for the KdV equation and we skip it. Note also that
the single Lamé-type PWF of the KP hierarchy is

p=X(k,1)ol=d, (k—1)ellel &R =Eetl), (4.25)
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4.3 Bilinear identity

Define two functions of ¢,

h(t,q) = X (t,q)7(t), (4.26a)
h*(t, q) = X*(t, q)7(t), (4.26b)

where 7(t) = 7, (t) is given by (4.22), X(t,q) and X*(t,q) are vertex operators

X(t,q) = %ei[e](hﬂeé(a@, (4.27a)
X*(t,q) = %ewt’q)eﬁ@q). (4.27D)

Similar to Lemma 3.4 for the KdV case, we can write h(t, q) and h*(t, ) in their explicit forms,

t
h(t,q) :0(017;_(1)66[@] (t.9)

oty + e (ki — i) +q) o(li)o(q — ki) L
X Z H AZ,] €J Hc. i ee[e](tvkulz) ,

Jcs \i<jet ot +q) [lies o (ki = 1) e ‘o(ki)a(q — ;)

R

oty + e (ki — 1) — q) o(ki)o(q—1;) L
X Z H AZ,_] eJ Hci—ee[e](t,k“ll) ’
icJ

Jcs \i<jed ot —q) [Licsjolki — 1) o(l)o(q — k;)

where 0y (t, ki, li) = &g (t, ki) — &) (t, ;). Then it can be verified that both functions are doubly
periodic with respect to ¢ with the same periods as p(q).
Obviously, the double-periodic property yields a bilinear identity for the KP hierarchy.

Theorem 4.4. For the functions h(t,q) and h*(t',q) defined in (4.26), we have

dg /
— h(t,q) h*(t =0 4.28
5t nto 0 o (1.28)
which gives Tise to
Res [n(t, ) h* (¥, )] = 0. (4.29)
q:

where the contour ) takes the boundary, anticlockwise, of the open fundamental period parallel-
ogram D (see Fig.1) and all {k;} and {l;} are distinct and belong to D.

Proof. The first identity (4.28) is obvious.

For the second one, first, note that the integrand h(t, ¢) h*(t', ¢) has only 2N isolated simple
poles {k;}¥,, {l;})¥,, and one isolated essential singularity ¢ = 0 in . Then, for given jy € S,
we are going to prove the following relation,

Res [h(t,q) h*(t',q)] = — Res [h(t,q) h*(t',q)] . (4.30)

a=kjq q=lj,
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In fact, similar to the KdV case, for given jy € S, we have

Res [h(t,q) h*(t',q)]
a=kjq
- _ #eﬁ[e](tykm)*i[e](t/yljo)
J(kjo)a(ljo)

o) (kjy — k) \ ot + ies ki — 1)+ kio) s o er s
X Z H Ayj (H Ci—- : ‘ i L) ey Btk
JCS\{jo} L 1<jeJ O-(k:l)o-(kj - lz) HieJ o'(kz _ lz)

icJ

3 o(ki)o(lio — 1) Yol + 2 ics (ki — L) = Lio) s> ot kanks)
X Z H Aij (H cza(li)a(ljo —k;) Hz‘eJ o(k; —1;) e

JCS\{joy | \i<ies icJ

=ljq

then (4.29) follows.

and R?s [h(t,q) h*(t', q)] has the same form but with “+” sign instead. Thus, (4.30) holds and
q

O

In what follows, we derive bilinear hierarchy from the identity (4.29). We introduce 7/(t) =
o(t1)7(t) and t =x+y and t' = x — y, where x = (21, 22,23, ), ¥y = (y1,Y2,¥3, -+ ). Then,
the bilinear identity (4.29) gives rise to

Res Lz@ YN (x +y +2(g)T (x —y - e<q>>} =0, (4.31)
ie.
Res | 37500000 D) /)| = (132

which, by rearranging terms with respect to y?, is written as

Z E{:eg (B +D,)? Z ij(f)x),un_jq"_Q (x)-7'(x)| y¥ = 0. (4.33)
|8]=0 n=0 j=0

Here, N
Dx - (DZ'UDZ'Q,DZ'S,' o )a Dx = (D:BU %Dzvga %D:B'g,,' o )a
" (n—1)

ﬂ:(/ﬁ17527/837"')7 ’/8‘:2.})0:15]7 yﬁ:yflng7

{p;j(x)} are defined by (3.51) and {u;} by (3.52). By a similar analysis as for the KdV case in
Sec.3.4, we can formulate an algorithm for calculating residues at ¢ = 0, which gives rise to a

bilinear KP hierarchy.
Theorem 4.5. The bilinear KP hierarchy with elliptic solitons are given by

1BlI=1 n

Res |(B+Dx) l<i | 3 > pi(Dxunya" ™ | 7'(x) - 7(x)| =0, (4.35)
n=0 j—0

where (3 stands for the set of nonnegative integers (1,82, , Bn,0,0,--+), and (B + Dx)5|§1
means those terms of ¢ with j < 1 in the Laurent series of (B + Dy)?, ||5]| = Z?ﬂ JjBj and
p;(t) are polynomials defined by (3.51).
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Below are bilinear equations corresponding to g = (3,0,0,0,---), (4,0,0,0,---), (5,0,0,0,---),

, L, U, Uy -0 ) all y Uy Ly Uy e 7reSp€Cth€y,

3,1,0,0 d (2,0,1,0 ivel

(Dil + 3Dg2 — 4Dy, Dy, — 92)7—/ Tl = 0, (4.36&)

(D2 Dy, + 2Dy, Dyy — 3Dy, Dy, )7 -7 =0, (4.36b)

(DS, +45D2% D2, +20D3 Dy, +40D2, + 90Dy, Dy, — 216D, Dy + 392 D2 — 24g3)7" - 7/ = 0,
(4.36¢)

(DS, — 45D2 D2, — 20D2 D, — 80D2, + 144D, Dy, + 392 D2 — 24g3)7' -7/ =0,  (4.36d)

(Dgl - 9D9261D9262 + 4D21D$3 - 32D9203 + 36D, Dy, + 392D3251 - 2493)7', - =0. (4.36¢)

When g, g3 are 0, these bilinear equations degenerate to the usual soliton case, cf. [27].

5 Degenerations and reductions

In the following we investigate deformations of 7 functions and bilinear equations under the
degenerations of periods and under the reductions of dispersion relations.

5.1 Degenerations by periods

When the invariants go and g3 of the elliptic curve (A.2) take go = %(ﬁ)‘l, g3 = %(ﬁ)(ﬁ

and go = g3 = 0, the elliptic curve degenerates to be a cylinder and Riemann sphere, respec-
tively. These correspond to the degenerations from doubly periodic case to the singly period
case and non-periodic case. The Weierstrass functions will become trigonometric/hyperbolic
functions and rational functions, which we list in Proposition A.2 in Appendix A. Obviously,
such deformations hold in 7 functions and bilinear equations. In the following we present 7
functions and bilinear equations of the trigonometric/hyperbolic case and rational case. It is
worth mentioning that we will give more concise formulae for the trigonometric/hyperbolic case.

5.1.1 Trigonometric/hyperbolic case

One can directly replace those Weierstarss functions in the bilinear form (4.32) and 7 function
(4.22) using (A.15). As a result, for those explicit bilinear equations in (4.36), one needs to
replace go and g3 by (A.14), and the 7 function 7’ is then given by

o e%(axl)Q sin(ax) TN (%),

where 7y (x) is defined as in (4.22) but in which the Weierstarss functions are replaced accord-
ingly using (A.15).

Such a 7 (x) for the trigonometric/hyperbolic case can have a more concise form. To achieve
that, we introduce notation

>0 =1 cot(a
{iy(x, k) = o Z(—l)nxnak(Ttl()!k)a (5.1)
n=1

where by the index [t] we indicate the trigonometric/hyperbolic case. Then, similar to the
formula (4.19), we can prove that

sin(aki = £5) _ ey (e(k)—e).00) (5.2)
sin(a(k; — 1))
where e(k) = (k, ]““2—2, %, .-+ ) defined as before. Next, we present a simple form of 7 (x) and the

related vertex operator.
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Theorem 5.1. The bilinear hierarchy (4.35) with degeneration (A.14) have a solution

/

1
7' = eslaz)?

sin(azx) TN (%), (5.3)

where

() = Z (H ci) H A;j sin(a(zy + 3 ey (ki — 1)) e2ies E (k) =Em k) (5 4)

Jcs \ieJ i<jeJ sin(ay) [T s sin(a(k; — ;)

Here ¢, € C and
, sin(alk; — kj)) sin(a(l; — 1))

= . 5.9
Y sin(ak; — 1)) sin(a(l; — kj)) (5:5)
The related vertex operator is
X 1) = — @ R D) g )-gx0) £ @0-6GD), (5.6)
sin(a(z1)) sin(a(k — 1))
The T function (5.4) is defined by the vertex operator via
TN(X) _ eclNX(k‘N,lN) L eCIQX(k27l2)eC/1X(kl7ll) o 1, (57)
i.e.
v (x) = eNEXENIN) o 1y (%), To(x) = 1. (5.8)

Proof. Let us look at the 7y (x) defined in (4.22) where t = x. We will show that, with o,(, p
taking the form (A.15), the 7x(x) can be written as in (5.4). First, for a single PWF, we have

ciwei[e] (%,ki)—Epey (3,14)
0'(5[71)0'(]{3@' — ll)

where we take

~, sin(a(zy + Kk — ;) €1y (%) =€y (x,14)
(A15) = G sin(aw1) sin(a(k; —1;)) )

¢ = cies®” (kimhi)?, (5.9)

Secondly, for the general term in 7x(x), we have

HC‘ o(x1+ > iy (ki — li))ezie](f[e](x,ki)—f[e](x,li))’ ALs
o(21) [Ticso(ki = i) (19

icJ

_ (H cz‘) ohad (e himt)2 ST+ D iy (R = 1)) 5. (e ek ()

icJ sin(azy) [[;e; sin(a(k; —1;))

_ (H cé) 03 Zi<jeJ(ki—li)(kj—lj)Sisri:(lg;(m + ZZEJUQ —iz))) o ier (€ (ki) =€ (x.4a)
ieJ 1) [Liesin(a(k; — 1))
Thirdly, for the phase factor A;;, we have
Aijlas = o (ki — kj)o(li — 1)
o (ki —1;)o(li — k;) (A.15)
All these together lead us to the form (5.4) for the 7 function (4.22) with (A.15).
For the vertex operator (5.6), using relation (5.2), one can find that

g sin(oz(:vl + kjl — lz + k‘j — l]))
“sin(a(z1)) sin(a(k; — ;) sin(a(k; —1;))

- e*%O‘Q Picjes(ki=li)(kj=1;) g
7/]'

X (Kiy 1) X (Kj,15) X (Kiy 1) X (Kj, 1) s,

where

:X (i, 1) X (g, 1) : = €610 (ki) =E10) (xe,li) 1) (6,7 ) = €10y (x,15) (9. ki) —E(DLi) (€ (D) ~E(D L)

Then, equation (5.7) follows immediately.
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Compared with Theorem 4.3, it turns out that Theorem 5.1 can be obtained from Theorem
4.3 by formally replacing o(x) and ((x) with sin(ax) and acot(ax). This also agrees with
the fully discrete case, cf. [39]. The trigonometric/hyperbolic PWF of the KP hierarchy is (cf.
Eq.(4.25))

_ — Sin(a(xl +k— l)) ﬁ[t](ka)*g[t] (x,0)
p=Xk ) el = o) sn(ath - 1) ' (5.10)

5.1.2 Rational case

The 7 function and vertex operator of rational case are obtained from Theorem 4.3 by direct
substitution of (A.16). Bilinear equations are those of doubly periodic case with degeneration
g2 = g3 = 0, which are the same as the bilinear equations for usual solitons. We skip proof and
only present main results in the following.

Theorem 5.2. In the rational case the bilinear KP hierarchy are the same as the usual soliton
case, namely, the bilinear equations derived from (4.33) with go = g3 = 0; T function is given
by

7=z 7Nn(%), (5.11)

where

1+ e (ki —li) ki) —Er (3L
™w(x) = Z (HC’> H Ay o Hlej{kz 3 e2mica (Epr) O6:ki) =€ (%,00)) (5.12a)

JCS \ieJ 1<jeJ
Here
(ki — k) (li = 1)
A = , (5.12b)
T (ki = 1)l — kj)
=1
(%, k) = — ;::1 T (5.12¢)

and the subscript [r] stands for the rational case.
The related vertex operator is

X(k,1) = x(}fti];);lleﬁ[r](x,k)£[r](xvl)e€(57k)£(5,l)’ (5.13)
and the T function (5.12a) is generated via
(%) = N XN L b X (haida) e X (ki) 6 1 (5.14)
Note that the rational-type PWF of the KP hierarchy is (cf. Eq.(4.25) and (5.10))
_y _ Ttk e k) =)
p (k,1)o1l = e . (5.15)
5.2 Reductions by dispersion relations
5.2.1 Elliptic case
For the KP hierarchy, the vertex operator of its usual soliton solution is
X (k, 1) = eSER—E®D @R —E@D (5.16)
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which is governed by £(t, k). Reduction by dispersion relation can be implemented through
imposing constraints on [ such that IV = kY, ie. | = wk where w is some N-th root of
unity and in practice we require w® # 1 for s = 1,2,--- , N — 1. The bilinear KP hierarchy
together with its 7 function will reduce to the lower dimension for the Gel’fand-Dickey hierarchy,
including the KdV for N = 2, the Boussinesq for N = 3, etc. For the case of elliptic solitons,
however, the vertex operator (4.18) is governed by & (t, k) and § (5, k) together. To implement
reduction of elliptic solitons by dispersion relation, one needs to make use of elliptic N-th roots
of the unity, which is introduced in [37] (also see Definition A.1 in Appendix).

In the elliptic case, the 7 function and bilinear equations of the KP hierarchy are reduced to
those of the KdV hierarchy by taking [; = —k;. This is because when [ = —k the the coordinate
variables t2, in {(t, k) — {¢(t, 1) and O, in £(0,k) — £(8,1) in the vertex operator (4.18)
vanish.

However, recalling the Remark A.1 we give at the end of Appendix A, except wy(d) = ¢, the
other two elliptic cube roots of the unity are not the elliptic 6-th roots of the unity. This means,
in principle, when N > 3 we cannot get elliptic N-soliton solution for the Gel’fand-Dickey
hierarchy from those of the KP hierarchy by using elliptic IN-th roots of the unity.

In the following we only present the 7 function and bilinear equation for the Boussinesq
equation (not the hierarchy), which can be reduced from those of the KP equation using elliptic
cube roots of the unity. Let wy(d) = d, wi(d) and we(d) be three elliptic cube roots of the unity,
then

N ok — oo (ks N al
I Z o(x 43 pilki 1((]:));)exp Zﬂjej + Z [hifj i (5.17)
j=1

N .
uo1 (@) [1isy ot (ki — wi(ks — 52

is a solution of the bilinear Boussinesq equation

(D2 —12p(2)D2 +3D2)f - f =0, (5.18)

where the summation of x4 means to take all possible u; = {0,1} for i =1,2,--- | N,
;= —(C(ks) = Clun(ki)z = (plks) = plur(ki))y + 8, 87 e C, (5.192)
o — g, — Ok — kj)o(wi(ki) —wi(ky)) (5.19b)

T (ki — wi (k) (i (k) — k)

Note that it is easy to write out a vertex operator for the 7 function (5.17). We skip it.

5.2.2 Trigonometric/hyperbolic case

Similar to the elliptic case, to consider reduction, we need to introduce trigonometric/hyperbolic
N-th roots of the unity. This can be done by considering period degeneration in Definition A.1.
After suitable scaling of independent variables, we have the following.

Definition 5.1. There exist distinct {w;(9) ;V:_Ol, up to the periods km , such that the following

equation holds,

N-1
U, (w;(8)) = ﬁ(a{j 2 o5e2(—k) — AN 2 esc2(8)) = 0, (5.20)
=0
where
w,(h) = St (5.21)
¢ sin(a) sin(b)’

wo(0) =6 and all {w;(0)} are independent of k. {w;(9) ;Y;OI are called trigonometric/hyperbolic
N-th roots of the unity.
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These roots also satisfy

N—-1
wi(8) =0 (5.22)
j=0
and
N-1
> et (w;(8) =0, (1=0,1,---,N—2). (5.23)
7=0

When N = 2, i.e. reduction to the KdV, we take [; = —k; in the KP 7 function (5.4), and
we have the trigonometric/hyperbolic 7 function of the KdV hierarchy:

TN(X) = Z <H Cé) H A;j sin(alry 22 iy i) e? Lies S (ki) (5.24)

JCS \ieJ i<jed Sin(CMﬂ?l) HiEJ SIH(QCM]CZ)
where
;o sin2(a(kzi —k;))
1) T sin2(a(/<:,~ + k?j)),

and by x we denote (z1,0,x3,0, x5, - ) for the sake of using the results of the KP hierarchy in

(5.25)

Sec.5.1.1. The above 7 function is generated by vertex operator

sin(a(wy +2k)) 5 5
) — 1) (x,k) 26(0,1) 5
(k) sin(a(uvl))sin(%ck)6 ‘ ’ (5.26)

where & = (8,,,0, 2045,0, 20,5, -+ ). Bilinear equations are those derived from (4.33) by re-

moving all D,, terms and imposing g = %0/1, g3 = %a6. These equations have solution

7 = es(@21)’ sin(awy) TN (%), (5.27)
where 7 (x) is given by (5.24).

Same as the elliptic case, when N > 3 we cannot get 7 function and bilinear equations of
the Gel’fand-Dickey hierarchy from those of the KP hierarchy by reduction using triginamet-

ric/hyperbolic N-th roots of the unity. For the Boussinesq equation (not hierarchy), it allows a

7 function
. N N
sin(a(xy + pi(k; — wi(k; ~
f= - (a ~ .ZEMZ (k:))) exp Zuﬂj + Z Hihiagg | (5.28)
=01 sin(axq) [[;2 sin® (a(ks — w1 (ki))) = 15
where the summation of y means to take all possible pu; = {0,1} for i =1,2,--- | N,

~

0; = —a(cot(ak;) — cot(aw (k;)))z — o (esc?(ak;) — csc®(awr (ki)))y + (9}-0), 6750) e C,

(5.29a)
o A, — Sl = k) sin(ae (k) —w (k) (5.290)
sin(au(ki — wi(k;))) sin(a(wi (ki) — k;))
aw1 (k) is one of trigonometric/hyperbolic cube root of the unity by Definition 5.1, i.e.
O ¢5C2(K) | pmak = Ok CSCQ(K)‘R:awl(k).
Such a 7 function is a solution to the bilinear Boussinesq equation
(D% + 40 D2 — 1202 esc®(ax) D2 + 3D2)f - f = 0. (5.30)

Note that it is easy to write out a vertex operator for the 7 function (5.29). We skip it.
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5.2.3 Rational case

Reduction of this case is as same as the usual soliton case. For example, reductions l; = —k;
and [; = wk; where w® = 1,w # 1 reduce the results in Sec.5.1.2 of the KP hierarchy to the
KdV hierarchy and the Boussinesq hierarchy, respectively. Note that for the KdV equation its
solution of this case has been obtained via the Marchenko integral equation in [1] and a direct
linearisation approach in [16], and now it is clear how these solutions originate from the elliptic

soliton solutions.

6 Conclusions and discussions

We have established a bilinear framework for the elliptic soliton solutions that are composed by
the Lamé type PWFs. Employing the KdV equation and KP equation as examples, we presented
7 functions for these elliptic N-soliton solutions in Hirota’s form, and the corresponding vertex
operators and bilinear identities. An algorithm has been developed to calculate residues and ob-
tain bilinear equations. Such a framework allows degenerations to the trigonometric/hyperbolic
and rational cases when the invariants g and g3 are specified for one period and non-period.
Reductions by dispersion relations can be implemented using elliptic N-th roots of the unity,
but except the KdV hierarchy, the reductions of elliptic and trigonometric/hyperbolic soliton
solutions are not applicable to the Boussinesq hierarchy and other higher order Gel’fand-Dickey
hierarchies.

We would like to address some related topics for further consideration. First, are there
any algebras to characterize this type of vertex operators? In other words, are these vertex
operators the representations of some algebras? Date, Kashiwara and Miwa [13] found that the
vertex operator related to affine Lie algebra Agl) [29] can be used to define a symmetry group
of the KAV 7 function. This then built up a beautiful connection between integrable systems
and affine Lie algebras via vertex operators [7,13,27,32]. However, so far we did not find any
similar algebraic structures behind our vertex operators (excluding the rational case). The
vertex operators (3.32) and (4.18) can be considered as elliptic deformations of the usual vertex
operators of the KdV equation and KP equation. Without algebraic structure, one can still
investigate such deformations on vertex operators of other integrable systems (e.g. [7,27]), and
in particular, of discrete integrable systems (e.g. [8-12]). In addition, note that u = —2p(x)
is an initial solution in our scheme, and meanwhile it is the 1-gap and 1-genus solution in
light of the finite-gap integration approach [14,15]. It would be interesting to make clear the
eigenvalue distribution of the corresponding spectral problem where the potential is elliptic
multi-solitons, and recover these elliptic soliton solutions form some analytic approach, e.g.
the inverse scattering transform. Finally, there are vertex representations for quantum affine
algebras [18]. It would be also interesting if such elliptic deformations could be extended to
quantum vertex operators.
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A Weierstrass functions

We collect some notations and properties of the Weierstrass functions that we may use in the
paper. One may refer to [4], [21] and [37].
Three Weierstrass functions ((z), p(z) and o(z) are connected via

Among them only p(z) is a truly elliptic function by the definition of an elliptic function, i.e.
meromorphic and doubly periodic. By wy and we we denote two half periods of p(z). ((z) and

o(z) are quasi-periodic with respect to w;, in the sense that

C(z 4 2w;) = ((2) + 2¢(wy), (A.1a)
o(z 4 2w;) = —o(2)e2WilHwi) 4 — 1 9, (A.1b)

It is easy to check the following holds.

Proposition A.1. For a generalized Lamé function %ecq‘” where a,b,c are constants, it

is doubly periodic with respect to q if a — b+ c = 0.

Let e; = p(w;) for i = 1,2,3 where wg = —wi—ws. (p(z), p'(2)) is a point on the Weierstrass
elliptic curve

y? = R(x) = 42 — gox — g3 = 4(x — e1)(z — e2)(z — e3), (A.2)
i.e.

(¢'(2))" = 49°(2) — g2(2) — gs, (A.3)
where go = —4(e1ea + ezes + eseq) and g3 = 4ejeges are invariants of the curve. Differentiating
(A.3) yields

20"(2) = 120°(2) - 92 (A4)
and further

PP (2) = 120(2)¢' (2). (A.5)
The latter is the stationary KdV equation, in other words, u = —2p(x) is a stationary solution

to the KdV equation (2.1).
©(z) is an even function, while {(z) and o(z) are odd. o(z) is an entire function. As for

expansions, they have

1 g 9 g3y 6
p(z) = ) + 207 + 28° + O(2"), (A.6a)
L 923 9 5 7
— - — A.
¢(2) -~ 60° " 140” +0(z"), (A.6b)
_ ., _ 92 5 93 x 9
o(z) ==z 910° 8407 + O0(z7). (A.6¢)

Some useful identities of the Weierstrass functions are given below.

_o(zF+uo(z —u)

p(z) - p(u) = O_Q(Z)O_Q(u) ) (A7)
M) = Gle ) = 6(2) = ¢l = 3 ZE =P, (A8
0(2) + p(u) + p(z + u) = 72(2) (A.9)
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and
o(u+v)o(u+ z)o(z+v)

Xup(2) = C(u) +((v) +((2) = C(utv+z) = o(u)o(v)o(z)o(z +u+wv)

(A.10)
The famous Frobenius-Stickelberger determinant (also known as elliptic van der Monde deter-
minant) is [19]

‘1 p( ) pl(k)7 pu(k)v T p(n_Q)(k)’

(n Dn=2) ok + -+ kn) [[c; 0(ki — k) (A.11)
o= ()

where f(k) denotes a column vector with entries f(k;), i.e. f(k) = (f(k1), f(k2), -+, f(ko))T.
One more formula is (see (C.7) in [36])

‘ 0" 1, oK), ¢'(k), -, "2 (K
1L o n—l) B I 7 N N7 e e R )

where ®,(b) = UU(E;;;FE)IZ).

Degenerations of the Weierstrass functions take place when the discriminant is zero, i.e.

A= g3 —27g5 =0. (A.13)
The degenerations are described as the following [4].

Proposition A.2. With parametrisation

4 4 8 6 0

92:§oz, ggzﬁa, a:%, (A.14)
the Weierstrass functions degenerate to the trigonometric/hyperbolic case,*
o(q) = ée%(aq)Q sin(ag), (A.15a)
C(q) = éoﬂq + acot(ag), (A.15D)
p(q) = —%aQ + a? esc?(aq). (A.15¢)
And when go = g3 = 0, the Weierstrass functions degenerate to the rational case,
o(q) =q, C(a)= % plq) = ;—2 (A.16)

In what follows we present the definition of elliptic N-th roots of the unity that was intro-

duced in [37].
Definition A.1. [37] There exist distinct {w;(8)}YN 3!, up to the periodicity of the periodic

J=0>
lattice, such that the following equation holds,
N-1 1
11 2x(w;(8)) = = (6™ (=r) — N 2)(6)) = 0, (A.17)
o (N -1)!

where wo(d) = 0 and all {w;(8)} are independent of k. {w;(d )}N,O are called elliptic N-th roots
of the unity.

4We do not discriminate between trigonometric and hyperbolic cases, as « (or the period 2w) can be either
real or pure imaginary, corresponding to the two cases (gs being positive or negative) to define the period through
elliptic integrals [4].
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These roots also satisfy [37]

N-1
wj((S) =0 (A.18)
7=0
and
N-1
¢D(w;@) =0, (1=0,1,---,N—2). (A.19)
7=0

Remark A.1. In usual case if w is a n-th root of the unity, it is also a (kn)-th root of the
unity where k € N. This is not true in the elliptic case. Note that the elliptic square roots of
the unity are also the elliptic 2k-th roots of the unity because p*™ (x) is even. However, for
the elliptic cube root of the unity, wy () # 9§, it is not an elliptic 6th-root of the unity. In other
words, ¢'(w1(6)) = ¢'(8) holds does not guarantee that the validity of ¥ (wi(0)) = P (6),
where w1 (0) # & (mod the periodic lattice). In fact, using the formulae (A.3), (A.4) and (A.5),
we have

o (w1(6)) — W (6) = 30(p' (w1(6)) — ¢/ () (¢ (@1(8)) + ¢'(9)) + 12g2(p(w1(8)) — (6))-
In the case @' (w1(0)) = ¢'(8), it reduces to
p (w1(8) — o1 (6)) = 12g2(p(w1(8)) — 0(6)),

which does not vanish for arbitrary § unless go = 0 or wi(d) = 4.

B Elliptic 1- and 2-soliton solutions and bilinear formulae

The purpose of this section is not only to show details of deriving elliptic 1-soliton and 2-soliton
solutions of the KdV equation, but also to explore some calculating formulae of the Lamé-type
PWFs (cf. e¥*+!) under Hirota’s D operator.

The Lamé-type PWF defined in (3.8), i.e.

() = Dyl + 2hy)ebi, & = e X kwte (ke B.1
P

satisfies the following relations

Piz = — Xk ki (x)pl’ (B2a)
Pigz = 21k, (T)Piz; (B.2b)
Pipaz = (6p(x) + 20(x + ki) + 4p(ki)) pi,zs (B.2¢)

where 1, (y) and xz4(2) are defined in (2.13) and (2.16). There are equivalent expressions for
these derivatives. For example, noticing that

X k() = n-p(2 + k) — m(z + k)
and making use of (A.8), we have

— ¢/ (ki)
o+ ki) — p(ki)

Using this formula to replace p(k;)p; in (B.2c) yields

iz = Pi- (B.3)
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which gives another expression of p; zz2. To calculate p; zgq., differentiating (B.4) once with
respect to x yields

Pizzre = 6(60/(x + ki) — @,(_$))Pi,x + 6(p(x + k;) + @(x))/)i,:m: + 460/(1451‘),0@',1,

which then, by making use of (A.8) and (B.2b), gives rise to a simpler form for p; zzq,

Pigece = 120()piga + 49 (ki) pie- (B.5)
Hirota’s procedure for deriving usual solitons relies on the property
DP D car it — g p e C,
but this does not hold any longer for the Lamé-type PWF p;. For example, one can verify that
Dy Dyp; - p; =0 (B.6)
but

D3p;i - pi = 2(p(x) — p(x + 2k;))p} (B.7)

which is not zero. In addition, using the expressions (B.2b), (B.3), (B.4), (B.5) and formula
(A.9), we have

Dyp; - pi = 12p(x) D2 p; - pi, (B.8)

which does not vanish either. There could be a more general result. We have checked the
following formula,

W 2. o- 0, 0= <I>$(a)ebm+0t, a, b, c € C, (Bg)

up to n = 10 using Mathematica. The ‘coefficient’ % is a linear combination of {p®(x)}

withs=n—1,n—3,n—4,---,1,0. In checking the above relation we made use of the following
formula (see Eq.(1.188) in [25])

2 cosh(00; ) In o = In(cosh(dD,)e - 0)

and (In 0), = p(x) — p(z + a). However, a proof for arbitrary n is absent. Note that Hirota’s
D operator allows gauge property with respect to linear exponential function, i.e.

D;LDZn(eax-‘rbtf) . (eam—l—btg) _ eZ(ax-i—bt) DgD;nf - g,

but the formula (B.9) indicates that such a property no longer holds when the linear exponential
function is replaced by the Lamé function. Instead of that, we have the following.

Proposition B.1. (Quasi-gauge property) For the generalized Lamé-type PWF o defined in
(B.9) and C*° functions f(x,t) and g(x,t), we have

5]

n m n m n n— m
DD} (of) - (eg) = & DiD{"f g+ > < ol > (Do 0)Dy "D f - g. (B.10)
=1

In light of (B.9) the term D% - can be replaced by %D%g-p or Q(K’(”C)_p(???))p(m—l)(x) 0.
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Proof. The proof is direct by using the identity [25]

exp(D1)(fh) - (gk) = (exp(Dy)h - k)(exp(D1)f - g), (B.11)

where f, g, h, k are functions of (x,t) and Dy = D, + 6D, with constants ¢ and J.
O

We now look for elliptic soliton solutions in Hirota’s form. For elliptic 1-soliton solution
with the form f; = 1+ p;(z,t), thanks to (B.6) and (B.8), one only needs to verify

(03 — 40, — 120(2)02)p1 = 0, (B.12)
which is nothing but (B.5) in light of
pip = ¢ (ki)pi- (B.13)

Thus, the elliptic 1-soliton (3.6) is obtained.
Then we look for 2-soliton solution of the form

fg:1—{—pl(x,t)—}—pQ(x,t)—}—f(Q)(x,t), (B14)
subject to
(D} —4DyD, —12p(x)D2) fa - fo = 0, (B.15)
where
FO(2,t) = Appe®F0R25 50 51 (2, t) = p1(x + 2ks, 1), (B.16)

and A9 is a parameter to be fixed later. In light of relations (B.6) and (B.8), equation (B.15)

is reduced to two equations,
(Dy = 4Dy Dy — 120(2)D?) p1 - p2 = (0 — 405t — 120(2)03) f* (B.17)

and
(D} —4D,D, — 12p(x)D?) p; - fP =0, i=1,2. (B.18)

Let us first work on (B.17). By virtue of the fact (B.12) which holds for ps as well, we have
(Dy — 4D, D, — 12p(x) D) p1 - p2
:4/)1,1/)2,15 + 4p1,tp2,m - 4,01,3:3:3:,02,3: - 4,01,3:,02,;):3:3: + 6,01,3:3:/)2,m + 24@(37)/01,:1:/)2,1- (B19)

Making use of (B.13), (B.2b) and (B.2c), we can express pit, pi gz and p; pe. in terms of p; 4.
After that, using formula (A.9), we arrive at

(D — 4D Dy — 12p(x)D2) p1 - p2 = — 12(mk, () — My (2)) p1.22,2
=— 12X2—k1,k2 (x + k1)p1,zp2,2, (B.20)

where use has been made of x_g, k, (@ + k1) = 1k, () — iy ().
For the right hand side of (B.17), by virtue of (B.12), we have

— (02 — 400 — 120()02) f @
= - A12€4C(k1)k2 |:_4,51,x[)2,t - 4ﬁl,tp2,az + 4ﬁl,mm$p2,x + 4ﬁl,mp2,mmx + Gﬁl,xxPQ,xx

+12(p(x + 2h2) = 9(@))1,00p2 — 240() PP

35



in which
12(p(x + 2k2) — () p1,22p2 = 24(Mky (2 4 k2) — Ny (7)) 11, (2 + 2k2) P1,2P2,24

where use has been made of (A.9), (B.2a) and (B.2b). Then, similar to the treatment for (B.19),

we have

— (0% — 405 — 12p(2)02) f D) = — 12419 k232 (2 4 ko)1 wpoa
@il (.%' + 2/<?2)

P1,zP2,x5 (B21)
q)zl(x) xP2,x

=— 12419 X%l’]@ (x + kﬁg)

where we have used
@il (1‘ + 2k2)

o7, ()

e = KR

Pl,z-
Then, combining (B.20) and (B.21) together and expressing X, 4(c) in terms of o function using
(A.10), we finally find
0'2(1451 — kﬁg)
Arp = 57—,
o?(k1 + k2)

with which (B.17) holds.

Equation (B.18) can be verified straightforwardly. The idea is as same as for verifying (B.17),
i.e. using (B.12) to eliminate those 4-th order derivatives of p; and p;, and using (B.13), (B.2b)
and (B.2c) to express the equation in terms of p; ; and py 5. After long and tedious calculation,
we can verify (B.18) for ¢ = 1,2. Thus, the elliptic 2-soliton solution (3.7) in Hirota’s form is
obtained.

In the above calculation, we expressed the bilinear equations in terms of p; , and implemented
verification by evaluating coefficients of p1 ;p2 ., etc. There is an alternative way to calculate

bilinear derivatives of p; using the Bell polynomials. Let us define

0i = (I)x(ai)ebim+cit, a;,b;,c; € C. (B22)
Then we have
0iz = o;()0i, (B.23)
where
ai(z) = ¢(z + a;) — ((x) + bi. (B.24)
Introduce functions
Gn(z) = 8;”_1a1(3:) + (—1)7”(921_1(12@). (B.25)

Then, it can be proved that (see Eq.(3.4) in [20] and Eq.(10) in [28])
DyDi" 01 - 02 = (c1 — 2)"Yn(G1, G2, -+, Gn)o102, (B.26)
in which Y,, is the Bell polynomials defined via (see Eq.(7.2) in [5])
Yo(y1, 92, -+, yn) = € Y0y €Y,

where y = y(z) is a C* function with respect to z and y; stands for 9’y(z). Y,, can be generated
by

n! e
Vol 0n) = 2 T ) L
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where the sum is to be taken over all partitions of n =3 ., sc;. The first few {Y,,} are

Yo=1, Yi=y, Yo=yo+3,
Y3 = y3 + 3y1y2 + v,
Yy = ya + dy1ys + 3y3 + 6yiys + ui.

The pioneer work that associates bilinearisation of soliton equations with the Bell polynomials
is due to [20,28].

For the Lamé-type function (B.22), Y,,(G1,Ga2, -+ ,G,) is composed by functions such as
((x+ a) and their derivatives with respect to =, which might be finally converted to the expres-
sions in terms of o function by using the formulae given in Appendix A.

C Proof of Theorem 3.1 and Theorem 4.1

Before presenting the proof, we recall two determinantal identities which are often used when
verifying bilinear equations with Wronskian solutions.

Proposition C.1. [17] The relation
|M,a,b||M,c,d| — |M,a,c||M,b,d| +|M,a,d||M,b,c| =0 (C.1)
holds, where M is a N x (N — 2) matriz, a,b,c and d are N-th order column vectors.

Proposition C.2. [/0] Suppose that = = (Z;;) is a N x N matriz with column vector set
{Z;}, Q= () is a N x N operator matricz with column vector set {Q;} where entries are
operators. Then we have
N
Ty , =T
=) l@"); «=7], (C.2)

=

[1]

N
PR
j=1

—_

where for any N-th order column vectors Aj = (A1 j,--- ,AN,j)T and Bj = (Byj,- - ,BNJ)T
we define

Ajo Bj = (A1;Buj, A2;Baj, - AngBng)" (C.3)
and

|Aj *Z| =21, ,Ej-1,4; 0}, Ejt1,- -+, EN|. (C.4)

Now we start to prove Theorem 3.1. For the 7 function given in Wronskian form (3.10),
where entries {¢;} obey relations (3.11), by direct calculation, we have

7 =|N —2,N|,

Tox = |N—3,N—1,N|+|N —2,N +1],

Tose = |N —4,N —2,N — I, N|+2|N —3,N — 1N +1|+ [N —2,N +2],

Toses = |[N —5,N —3,N —2,N —1,N|+ 3N —4,N —2,N — 1, N + 1|
2N —3,N,N+1/+3|N —3,N—1,N+2|+|N —2,N +3],

m=|N—4,N—-2N—1,N|—|N—3,N—1,N+1|+|N—2 N +2|

v,

7w =|N—2,N+3/—|N—3,N,N+1/+|N—5N-3N—-2N—1,N|

—%N2p"(x)7' — %(N2 +2)¢ ()7 — 3p(2) o
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Substituting them into the left hand side of (3.1) yields

ATy T — AT T + TogeeT — ezaTe + 372, — 120(2) (T — 72)
=7 (6N2p”(m)7' 1120/ (2)75 — 3N —2,N + 3|+ 6N —3,N,N + 1|+ 3|N —3,N —1,N +2|
43N —4,N —2,N —1,N +1] —3|J7—\5,N—3,N—2,N—1,N|>

—12[N —2,N||[N=3,N—1,N+1|+3(N —3,N — 1, N| + |[N — 2, N + 1])2.
(C.5)

2
With the help of Proposition C.2 where we take 25, = p(k;), from identity <Z§V:1 p(k;j)q—) =
T Zjvzl o(kj) <Z§V:1 p(k‘j)T) we have

0O=r (—2N2p"(x)7 — 4/ (2)T + [N —2,N+3|+2]N —3,N,N+1|— [N —3,N —1,N +2|
IN“4N—-2,N—1,N+1|+|N—5N—-3,N—2 N — 1,Ny>
—(IN=2,N+1|—|N=3,N - 1,N|)?,
(C.6)

using which equation (C.5) is reduced to

12(N =3,N,N+1||[N —1|— |[N—2,N|[|[N —=3,N — 1, N + 1|

LS Y- (C.7)
+|N=3,N—1,N||]N —2,N +1]),

which vanishes in light of Proposition C.1. Thus Theorem 3.1 is proved.

In a similar way we can prove Theorem 4.1 for the KP equation. In this case, the Wronskian
entries {p;} satisfy relation (4.9). Derivatives of 7 with respect z and t are the same as those
for the KdV equation. Besides them, we also have

7,=2Np(x)r +|N —3,N—1,N|— [N —2,N + 1],

Tyy = 4N?9° ()7 + AN(2)(IN =3, N = 1, N| = [N = 2, N +1|) — 4¢/ ()7, — 2N*¢"(2)7
+|N=B,N-3,N-2N—-1,N|+2N—-3,N,N+1/—|N—3,N—1,N +2|
—|N—-4,N—-2,N—1,N+1|+|N —2,N +3|.

For the KP equation, we do not have identity (C.6). However, 7,7 — Ty2 contributes the same
terms as the right hand side of (C.6). It then follows that

(D — 4D Dy — 12p(x)D2 + 3D2)7 - 7

is reduced to (C.7) as well, which is zero. Thus, we complete the proof for Theorem 4.1.

References

[1] M.J. Ablowitz, H. Cornille, On solutions of the Korteweg-de Vries equation, Phys. Lett.,
72A (1979) 277-280.

[2] V.E. Adler, A.I. Bobenko, Yu.B. Suris, Classification of integrable equations on quad-
graphs. The consistency approach, Commun. Math. Phys., 233 (2003) 513-543.

(3] H. Airault, H.P. McKean, J. Moser, Rational and elliptic solutions of the Korteweg-de
Vries equation and a related many-body problem, Commun. Pure Appl. Math., 30 (1977)
95-148.

38



[4]

[13]

[14]

[15]

[16]

[17]

N.I. Akhiezer, Elements of the Theory of Elliptic Functions. Translated from the Russian
edition by H.H. McFaden, Translations of Mathematical Monographs 79, American Math.
Soc., Providence, 1990.

E.T. Bell, Exponential polynomials, Ann. Math., 35 (1934) 258-277.

E.D. Belokolos, A.I. Bobenko, V.Z. Enol’skii, A.R. Its, V.B. Matveev, Algebro-geometric
Approach to Nonlinear Integrable Equations, Spinger, Berlin, 1994.

E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Transformation groups for soliton equations
— Euclidean Lie algebras and reduction of the KP hierarchy, Publ. RIMS, Kyoto Univ.,
18 (1982), 1077-1110.

E. Date, M. Jimbo, T. Miwa, Method for generating discrete soliton equations, I, J. Phys.
Soc. Japan, 51 (1982) 4116-4124.

E. Date, M. Jimbo T. Miwa, Method for generating discrete soliton equations, II, J. Phys.
Soc. Japan, 51 (1982) 4125-4131.

E. Date, M. Jimbo, T. Miwa, Method for generating discrete soliton equations, I11, J. Phys.
Soc. Japan, 52 (1983) 388-393.

E. Date, M. Jimbo, T. Miwa, Method for generating discrete soliton equations, IV, J. Phys.
Soc. Japan, 52 (1983) 761-765.

E. Date, M. Jimbo, T. Miwa, Method for generating discrete soliton equations, V, J. Phys.
Soc. Japan, 52 (1983) 766-771.

E. Date, M. Kashiwara, T. Miwa, Transformation groups for soliton equations. II. Vertex
operators and 7 functions, Proc. Japan Acad. Ser. A Math. Sci., 57 (1981) 387-392.

B.A. Dubrovin, Periodic problems for the Korteweg-de Vries equation in the class of finite
band potentials, Funct. Anal. Appl., 9 (1975) 215-223.

B.A. Dubrovin, S.P. Novikov, Periodic and conditionally periodic analogs of the many
soliton solutions of the Korteweg-de Vries equation, Soviet Phys. JETP, 40 (1975) 1058-
1063. (Zh. Eksp. Teor. Fiz., 67 (1974) 2131-2144).

A.S. Fokas, M.J. Ablowitz, Direct linearizations of the Korteweg-deVries equations, AIP
Conf. Proc., 88 (1982) 237-241.

N.C. Freeman, J.J.C. Nimmo, Soliton solutions of the KdV and KP equations: the Wron-
skian technique, Phys. Lett., 95A (1983) 1-3.

I.B. Frenkel, N.H. Jing, Vertex representations of quantum affine algebras, Proc. Nati.

Acad. Sci. USA, 85 (1988) 9373-9377.

G. Frobenius, L. Stickelberger, Ueber die addition und multiplication der elliptischen func-
tionen, J. Reine Angew. Math., 88 (1880) 146-184.

C. Gilson, F. Lambert, J.J.C. Nimmo, R. Willox, On the combinations of the Hirota D-
operators, Proc. R. Soc. Lond. A, 452 (1996) 223-234.

39



[21]

[27]

28]

[29]

[30]

[31]

[32]

33]

J. Hietarinta, N. Joshi, F.W. Nijhoff, Discrete Systems and Integrability, Camb. Univ.
Press, Cambridge, 2016.

J. Hietarinta, D.J. Zhang, Soliton solutions for ABS lattice equations: II Casoratians and
bilinearization, J. Phys. A: Math. Theor., 42 (2009) No0.404006 (30pp).

R. Hirota, A new form of Backlund transformations and its relation to the inverse scattering
problem, Prog. Theor. Phys., 52 (1974) 1498-1512.

R. Hirota, Direct methods in soliton theory, In: Solitons (eds. R.K. Bullough, P.J. Cau-
drey), Springer-Verlag, Berlin, 1980, p157-176.

R. Hirota, The Direct Method in Soliton Theory (in English), Camb. Univ. Press, Cam-
bridge, 2004.

E.L. Ince, Further investigations into the periodic Lamé functions, Proc. Roy. Soc. Edin-

burgh, 60 (1940) 83-99.

M. Jimbo, T. Miwa, Solitons and infinite-dimensional Lie algebras, Publ. RIMS, Kyoto
Univ., 19 (1983) 943-1001.

F. Lambert, 1. Loris, J. Springael, R. Willox, On a direct bilinearization method: Kaup’s
higher-order water wave equation as a modified nonlocal Boussinesq equation, J. Phys. A:
Math. Gen., 27 (1994) 5325-5334.

J. Lepowsky, R.L. Wilson, Construction of the affine Lie algebra Agl), Commun. Math.
Phys., 62 (1978) 43-53.

V.B. Matveev, 30 years of finite-gap integration theory, Philos. Trans. R. Soc. A, 366 (2008)
837-875.

V.B. Matveev, M.A. Salle, Darboux Transformations and Solitons, Springer-Verlag, Berlin,
1991.

T. Miwa, M. Jimbo, E. Date, Solitons: Differential Equations, Symmetries and Infinite
Dimensional Algebras, Camb. Univ. Press, Cambridge, 1999.

F.W. Nijhoff, J. Atkinson, Elliptic N-soliton solutions of ABS lattice equations, Int. Math.
Res. Not., 2010 (2010) 3837-3895.

F.W. Nijhoff, H.-W. Capel, The discrete Korteweg-de Vries equation, Acta Appl. Math., 39
(1995) 133-158.

F.W. Nijhoff, HW. Capel, G.L. Wiersma, Integrable lattice systems in two and three
dimensions, In: Geometric Aspects of the Einstein Equations and Integrable Systems (ed.
R. Martini), Lecture Notes in Physics, Springer, Berlin, 1985, p263-302.

F.W. Nijhoff, N. Delice, On elliptic Lax pairs and isomonodromic deformation systems for
elliptic lattice equations, Adv. Stud. Pure Math, 76 (2018) 487-525.

F.W. Nijhoff, Y.Y. Sun, D.J. Zhang, Elliptic solutions of Boussinesq type lattice equations
and the elliptic N-th root of unity, preprint, arXiv:1909.02948.

40



[38] H.D. Wahlquist, Béacklund transformations of potentials of the Korteweg-de Vries equation
and the interaction of solitons with conidal waves, In: Béacklund Transformations, the
Inverse Scattering Method, Solitons, and Their Applications (ed. R.M. Miura), Springer-
Verlag, Berlin, 1976, p162-183.

[39] S. Yoo-Kong, F.W. Nijhoff, Elliptic (N, N')-soliton solutions of the lattice Kadomtsev-
Petviashvili equation, J. Math. Phys., 54 (2013) No.043511 (20pp).

[40] D.J. Zhang, S.L. Zhao, Y.Y. Sun, J. Zhou, Solutions to the modified Korteweg-de Vries
equation, Rev. Math. Phys., 26 (2014) No.1430006 (42pp).

41



	1 Introduction
	2 Lamé-type plane wave factors
	3  function, vertex operator and bilinear identity: KdV
	3.1  function of elliptic N-soliton solutions
	3.1.1 Bilinear form and elliptic 1- and 2-soliton solutions
	3.1.2  function in Wronskian form
	3.1.3  function in Hirota's form

	3.2 Vertex operator
	3.3 Bilinear identity of the KdV hierarchy
	3.4 Algorithm for calculating residues

	4  function, vertex operator and bilinear identity: KP
	4.1 Elliptic N-solitons and  function in Hirota's form
	4.2 Vertex operator
	4.3 Bilinear identity

	5 Degenerations and reductions
	5.1 Degenerations by periods
	5.1.1 Trigonometric/hyperbolic case
	5.1.2 Rational case

	5.2 Reductions by dispersion relations
	5.2.1 Elliptic case
	5.2.2 Trigonometric/hyperbolic case
	5.2.3 Rational case


	6 Conclusions and discussions
	A Weierstrass functions
	B Elliptic 1- and 2-soliton solutions and bilinear formulae
	C Proof of Theorem 3.1 and Theorem 4.1

