Skip to main content
Log in

Spatial Dynamics of Species with Annually Synchronized Emergence of Adults

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

Synchronized maturation has been extensively studied in biological science on its evolutionary advantages. This paper is devoted to the study of the spatial dynamics of species growth with annually synchronous emergence of adults by formulating an impulsive reaction–diffusion model. With the aid of the discrete-time semiflow generated by the 1-year solution map, we establish the existence of the spreading speed and traveling waves for the model on an unbounded spatial domain. It turns out that the spreading speed coincides with the minimal speed of traveling waves, regardless of the monotonicity of the birth rate function. We also investigate the model on a bounded domain with a lethal exterior to determine the critical domain size to reserve species persistence. Numerical simulations are illustrated to confirm the analytical results and to explore the effects of the emergence maturation delay on the spatial dynamics of the population distribution. In particular, the relationship between the spreading speed and the emergence maturation delay is found to be counterintuitively variable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altwegg, R.: Trait-mediated indirect effects and complex life-cycles in two European frogs. Evol. Ecol. Res. 4, 519–536 (2002)

    Google Scholar 

  • Borowsky, R., Diffley, J.: Synchronized maturation and breeding in natural populations of Xiphophorus variatus (Poeciliidae). Environ. Biol. Fish. 6, 49–58 (1981)

    Article  Google Scholar 

  • Coville, J., Dupaigne, L.: On a nonlocal equation arising in population dynamics. Proc. R. Soc. Edinb. Sect. A 137, 727–755 (2007)

    Article  Google Scholar 

  • Fang, J., Gourley, S., Lou, Y.: Stage-structured models of intra-and inter-specific competition within age classes. J. Differ. Equ. 260, 1918–1953 (2016)

    Article  MathSciNet  Google Scholar 

  • Fazly, M., Lewis, M., Wang, H.: On impulsive reaction–diffusion models in higher dimensions. SIAM J. Appl. Math. 77, 224–246 (2017)

    Article  MathSciNet  Google Scholar 

  • Fazly, M., Lewis, M., Wang, H.: Analysis of propagation for impulsive reaction–diffusion models. SIAM J. Appl. Math. 80, 521–542 (2020)

    Article  MathSciNet  Google Scholar 

  • Gourley, S., Ruan, S.: A delay equation model for oviposition habitat selection by mosquitoes. J. Math. Biol. 65, 1125–1148 (2012)

    Article  MathSciNet  Google Scholar 

  • Hoppensteadt, F.C., Keller, J.B.: Synchronization of periodical cicada emergences. Science 194, 335–337 (1976)

    Article  Google Scholar 

  • Hsu, S.-B., Zhao, X.-Q.: Spreading speeds and traveling waves for nonmonotone integrodifference equations. SIAM J. Math. Anal. 40, 776–789 (2008)

    Article  MathSciNet  Google Scholar 

  • Jin, W., Smith, H.L., Thieme, H.R.: Persistence and critical domain size for diffusing populations with two sexes and short reproductive season. J. Dyn. Differ. Equ. 28, 689–705 (2016)

    Article  MathSciNet  Google Scholar 

  • Jin, W., Thieme, H.R.: Persistence and extinction of diffusing populations with two sexes and short reproductive season. Discret. Contin. Dyn. Syst. 19, 3209–3218 (2014)

    MathSciNet  MATH  Google Scholar 

  • Kao, C.-Y., Lou, Y., Shen, W.: Random dispersal vs. nonlocal dispersal. Discre. Contin. Dyn. Syst. 26, 551–596 (2010)

    Article  Google Scholar 

  • Lewis, M.A., Li, B.: Spreading speed, traveling wave, and minimal domain size in impulsive reaction–diffusion models. Bull. Math. Biol. 74, 2383–2402 (2012)

    Article  MathSciNet  Google Scholar 

  • Li, W.T., Wang, J.B., Zhao, X.-Q.: Spatial dynamics of a nonlocal dispersal population model in a shifting environment. J. Nonlinear Sci. 28, 1189–1219 (2018)

    Article  MathSciNet  Google Scholar 

  • Liang, J., Yan, Q., Xiang, C., Tang, S.: A reaction–diffusion population growth equation with multiple pulse perturbations. Commun. Nonlinear Sci. Numer. Simul. 74, 122–137 (2019)

    Article  MathSciNet  Google Scholar 

  • Liang, X., Yi, Y., Zhao, X.-Q.: Spreading speeds and traveling waves for periodic evolution systems. J. Differ. Equ. 231, 57–77 (2006)

    Article  MathSciNet  Google Scholar 

  • Liang, X., Zhao, X.-Q.: Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Commun. Pure Appl. Math. 60, 1–40 (2007)

    Article  MathSciNet  Google Scholar 

  • Lin, Y., Wang, Q.-R.: Spreading speed and traveling wave solutions in impulsive reaction–diffusion models. Commun. Nonlinear Sci. Numer. Simul. 23, 185–191 (2015)

    Article  MathSciNet  Google Scholar 

  • Lu, J., Guan, Z.: Numerical Solutions of Partial Differential Equations, 2nd edn. Tsinghua University Press, Beijing (2004)

    Google Scholar 

  • Mohring, M.B., Wernberg, T., Kendrick, G.A., et al.: Reproductive synchrony in a habitat-forming kelp and its relationship with environmental conditions. Mar. Biol. 160, 119–126 (2013)

    Article  Google Scholar 

  • Peng, R., Zhao, X.-Q.: The diffusive logistic model with a free boundary and seasonal succession. Discret. Contin. Dyn. Syst. 33, 2007–2031 (2013)

    Article  MathSciNet  Google Scholar 

  • Riehl, C.: Reproductive synchrony. In: Vonk, J., Shackelford, T. (eds.) Encyclopedia of Animal Cognition and Behavior. Springer, Cham (2018)

    Google Scholar 

  • Santos, R.G., Pinheiro, H.T., Martins, A.S., et al.: The anti-predator role of within-nest emergence synchrony in sea turtle hatchlings. Proc. R. Soc. B: Biol. Sci. 283, 20160697 (2016)

    Article  Google Scholar 

  • Shlesinger, T., Loya, Y.: Breakdown in spawning synchrony: a silent threat to coral persistence. Science 365, 1002–1007 (2019)

    Article  Google Scholar 

  • Smith, H.L.: Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems. In: Mathematical Surveys and Monographs, vol. 41. American Mathematical Society, Providence, RI (1995)

  • Taylor, C.M., Hastings, A.: Allee effects in biological invasions. Ecol. Lett. 8, 895–908 (2005)

    Article  Google Scholar 

  • Veprauskas, A.: Synchrony and the dynamic dichotomy in a class of matrix population models. SIAM J. Appl. Math. 78, 2491–2510 (2018)

    Article  MathSciNet  Google Scholar 

  • Veprauskas, A., Cushing, J.M.: A juvenile-adult population model: climate change, cannibalism, reproductive synchrony, and strong Allee effects. J. Biol. Dyn. 11, 1–24 (2017)

    Article  MathSciNet  Google Scholar 

  • Wang, Z., Wang, H.: Persistence and propagation of a PDE and discrete-time map hybrid animal movement model with habitat shift driven by climate change. SIAM J. Appl. Math. 80, 2608–2630 (2020)

    Article  MathSciNet  Google Scholar 

  • Williams, K.S., Smith, K.G., Stephen, F.M.: Emergence of 13-Yr periodical cicadas (Cicadidae: Magicicada): phenology, mortality, and predators satiation. Ecology 74, 1143–1152 (1993)

    Article  Google Scholar 

  • Wu, R., Zhao, X.-Q.: Spatial invasion of a birth pulse population with nonlocal dispersal. SIAM J. Appl. Math. 79, 1075–1097 (2019)

    Article  MathSciNet  Google Scholar 

  • Wu, R., Zhao, X.-Q.: The evolution dynamics of an impulsive hybrid population model with spatial heterogeneity. Commun. Nonlinear Sci. Numer. Simul. 107, 106181 (2022)

    Article  MathSciNet  Google Scholar 

  • Yu, X., Zhao, X.-Q.: A periodic reaction–advection–diffusion model for a stream population. J. Differ. Equ. 258, 3037–3062 (2015)

    Article  MathSciNet  Google Scholar 

  • Zhang, L., Liu, K., Lou, Y., Wang, Z.-C.: Spatial dynamics of a nonlocal model with periodic delay and competition. Eur. J. Appl. Math. 31, 1070–1100 (2020)

    Article  MathSciNet  Google Scholar 

  • Zhao, X.-Q.: Dynamical Systems in Population Biology, 2nd edn. Springer, New York (2017)

    Book  Google Scholar 

Download references

Acknowledgements

The authors are grateful to two anonymous referees for their valuable comments which led to improvements of our original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yijun Lou.

Additional information

Communicated by Philip K. Maini.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported in part by the NSF of China [11971369, 12071393], the Fundamental Research Funds for the Central Universities [JB210711], the General Research Fund from The Hong Kong Research Grants Council [15304821], and the NSERC of Canada [RGPIN-2019-05648].

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Z., Lou, Y. & Zhao, XQ. Spatial Dynamics of Species with Annually Synchronized Emergence of Adults. J Nonlinear Sci 32, 78 (2022). https://doi.org/10.1007/s00332-022-09836-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-022-09836-3

Keywords

Mathematics Subject Classification

Navigation