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Abstract

Differential buoyancy sources at an ocean surface may induce a density-driven flow that joins

faster flow components to create a multi-scale, 3D flow. Potential temperature and salinity are

active tracers that determine the ocean’s potential density: their distribution strongly affects the

density-driven component while the overall flow affects their distribution. We present a robust

framework that allows one to study the effects of a general prescribed 3D flow on a density-driven

velocity component through temperature and salinity transport, by constructing a modular 3D

model of intermediate complexity. The model contains an incompressible velocity that couples two

advection-diffusion equations for the two tracers. Instead of solving the Navier-Stokes equations

for the velocity, we consider a prescribed flow composed of several spatially predetermined modes.

One of these modes models the density-driven flow: its spatial form describes a density-driven

flow structure and its strength is determined dynamically by averaged density differences. The

other modes are completely predetermined, consisting of any incompressible, possibly unsteady,

3D flow, e.g. as determined by kinematic models, observations, or simulations. The result is a

hybrid kinematic-dynamic model, formulated as a non-linear, weakly coupled system of two non-

local PDEs. We prove its well-posedness in the sense of Hadamard, and obtain a priori rigorous

bounds regarding analytical solutions. When the relevant Rayleigh number is small enough, we

show, both rigorously and numerically, that for all initial conditions, the corresponding solutions

converge to a unique steady state. Motivated by the Atlantic Meridional Overturning Circulation,

the model’s relevance to oceanic systems is demonstrated by tuning the parameters to mimic the

North Atlantic ocean. We show that in one limit the model may recover a simplified oceanic box

model, including a bi-stable regime, and in another limit a kinematic model of oceanic chaotic

advection, suggesting it can be utilized to study spatially dependent feedback processes in the

ocean.
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1 Introduction

In various oceanic systems, significant horizontal density differences are induced by differential

surface buoyancy sources, such as spatially varying heating, precipitation, evaporation, ice formation,

and ice melting. These drive a sedate flow that leads, eventually, to the sinking of heavier water

under lighter water. While transient sources allow the system to equilibrate through stratification and

mixing, a continuous differential horizontal forcing may sustain a stable circulation. One well-known

geophysical example is the Atlantic Meridional Overturning Circulation (AMOC), an important

component of Earth’s climate system (Buckley & Marshall, 2016; Johnson et al., 2019), induced in

part by differential heating and freshwater sources between the equator and high latitudes (Ferreira

et al., 2018).

Density-driven flows have been studied qualitatively by dynamic box models, presented in the

seminal work by Henry Stommel (Stommel, 1961) as minimal models that capture some of the

main qualitative features of ocean dynamics; see review by Dijkstra & Ghil (2005) for a survey

and motivation. Since their initial presentation, box models have been extended in, to name a few,
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Huang et al. (1992); Tziperman et al. (1994); Cessi (1994); Griffies & Tziperman (1995); Gildor &

Tziperman (2001); Pasquero & Tziperman (2004); Calmanti et al. (2006); Ashkenazy & Tziperman

(2007); Barham & Grooms (2019); An et al. (2021); Budd et al. (2021). In these models, a 2D

ocean basin, forced from its surface border by temperature and precipitation/evaporation, is divided

into instantaneously mixed boxes. The interbox transport scales like the average density differences

between the boxes, as determined by the advected, forced, and mixed temperature and salinity tracers.

The scaling can be derived from a finite-difference approximation to the Boussinesq equations, and has

been tested in some observational and numerical studies (Sijp et al., 2012; Butler et al., 2016; Cheng

et al., 2018). The opposing effects of temperature and salinity on the density result in bi-stability

and hysteresis; this theoretical prediction has been observed in complex models as well (Rahmstorf,

2005), and has incited works regarding the stability of the AMOC (Weijer et al. (2019) and references

therein).

Geophysical flows contain additional fast-varying large-scale phenomena that affect tracer trans-

port. To address some of these effects, box models have been extended to study effects of varying

weather patterns (Cessi, 1994; Griffies & Tziperman, 1995; Ashkenazy & Tziperman, 2007; Barham

& Grooms, 2019; An et al., 2021; Budd et al., 2021) and simple wind-driven flows (Pasquero &

Tziperman, 2004; Ashkenazy & Tziperman, 2007; Barham & Grooms, 2019). These additions tend

to stimulate dynamical tipping points between different modes, and enhance the variability of the

overturning circulation. In a different class of toy models, the transport in time-varying flows is com-

monly studied by kinematic models. These models illustrate that tracer transport is greatly affected by

chaotic advection, i.e. chaotic Lagrangian transport of passive scalars in a (generally non-turbulent)

prescribed flow (Aref, 1984; Koshel & Prants, 2006; Aref, 2017; Ghil, 2017). A canonical example

is the oscillating double-gyre kinematic flow model, where a laminar flow that models the oceanic

double-gyre flow with a strong seasonal variability leads to chaotic advection in the ocean and non-

trivial transport statistics (Yang & Liu, 1997, 1994; Yang, 1996; Koshel & Prants, 2006; Aharon et al.,

2012; Ghil, 2017). However, employed to provide a qualitative understanding of physical processes

associated with passive fluid mixing and transport, such studies do not include any feedback mecha-

nism. Note that the box models and the kinematics models have an important common feature: they

both use a prescribed spatial form of the velocity field to study transport phenomena.

Here we present, explore, and analyze a novel kinematic-dynamic 3D model, that couples idealized
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box models with kinematic transport models that may exhibit chaotic advection. The model consists of

two advection-diffusion equations for the temperature and salinity, coupled by a velocity field that has

an externally driven component and an internal component with an amplitude that is determined, like

in traditional box models, by averaged density differences between different regions of the basin. Thus,

our model isolates the effect of a prescribed, general, time-dependent, 3D velocity mode on a density-

driven velocity component, and specifically on its strength, stability and variability. The distributions

of temperature and salinity in the basin are affected by the overall flow, while determining the density

and thus affecting the density-driven velocity component. The model is the natural extension of 2D

box models into a 3D setting that takes into account additional flows and innerbox density variations:

each box is not fully mixed instantaneously, as in most box models. Our model allows a more natural

mixing resulting from advection, diffusion, and sources. Although these innerbox density variations

do not impact the strength of the dynamical velocity component (it is a result of density averages

inside each box as in regular box models), they do impact the quantity of tracers that is transported

between the boxes at each time step. Thus, indirectly, innerbox density variations impact the temporal

dependence of the average density in each box, and, correspondingly, impact the strength of the

overturning velocity component. Adjusting the parameters appropriately, the model recovers various

box-model versions, as we show both rigorously and numerically. Despite its apparent simplicity,

the model can be tuned to imitate the current-day North Atlantic ocean, including semi-realistic

results of temperature, salinity, and AMOC strength. This kinematic-dynamic framework can easily

be modified to a large variety of settings: different domains, spherical geometry, various types of

boundary conditions, or more complicated scaling laws.

The model is a non-local, non-linear, coupled system of PDEs, for which basic properties such

as the very existence of solutions are not obvious. A desired property of a PDE model is global

well-posedness in the sense of Hadamard, defined as the existence and uniqueness of solutions to

the system for all times, along with a smooth dependence on the problem’s data (Hadamard, 1902).

This property has been shown to be satisfied in some oceanic and atmospheric models: see, e.g.,

the survey papers Temam & Ziane (2005); Li & Titi (2018) and references therein. Since explicit

solutions to nonlinear evolution equations are generally inaccessible, and these models are probed

by approximated numerical solutions, such a proof strengthens the physical viability of employed

models. We address this issue rigorously, proving the global well-posedness of our model in the
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sense of Hadamard: if the boundary conditions satisfy a compatibility condition, we prove that the

corresponding initial-boundary-value problem has a unique strong solution for all times, along with a

smooth dependence of solutions on the problem data. The proof reveals several bounds on averages of

solutions. In the case of time-independent sources and boundary conditions, we also calculate a bound

for the Rayleigh number of the problem below which the system has a globally stable unique steady

state solution, and above which the system may exhibit nontrivial long-time dynamics. For example,

in our simulations, when using time-independent forcing, we observe bi-stability when the Rayleigh

number is large enough; see section 4. Moreover, regardless of the size of the Rayleigh number, one

can show that the infinite-dimensional dynamical system generated by this model is dissipative and

possesses a finite-dimensional non-empty global attractor, a subject that we postpone to future study.

The structure of the work is as follows. In section 2 we present the model formulation. We

describe the relevance of its numerical solutions to the North Atlantic ocean given an appropriate

tuning of the parameters in section 3. In section 4 we show that our model is a natural generalization

of the box model scheme, and in particular we illustrate that it is mathematically equivalent to the

popular 2 × 2 box model for certain values of the parameters. Rigorous mathematical analysis of our

model - a proof of the system’s well-posedness, in the sense of Hadamard, as well as some useful

bounds - is detailed in section 5. We discuss the results and outline future directions in section 6.

2 Model construction

The evolution of the temperature 𝑇 (𝒓, 𝑡) and salinity 𝑆(𝒓, 𝑡) is modelled by the coupled advection-

diffusion equations with sources, and subject to the relevant physical boundary conditions, as described

below,

𝜕𝑡𝑇 (𝒓, 𝑡) + 𝒖(𝒓, 𝑡; 𝜌(𝑇, 𝑆)) · ∇𝑇 (𝒓, 𝑡) = ∇ · (κ∇𝑇 (𝒓, 𝑡)) + 𝑓𝑇 (𝒓, 𝑡), (1)

𝜕𝑡𝑆(𝒓, 𝑡) + 𝒖(𝒓, 𝑡; 𝜌(𝑇, 𝑆)) · ∇𝑆(𝒓, 𝑡) = ∇ · (κ∇𝑆(𝒓, 𝑡)) + 𝑓𝑆 (𝒓, 𝑡), (2)

inside a closed rectangular basin 𝒓 ∈ Ω = (0, 𝐿𝑥) × (0, 𝐿𝑦) × (0, 𝐿𝑧 ⊂ R3. We define the aspect

ratio 𝐴 = 𝐿𝑧/𝐿𝑥 , and consider the realistic case of 𝐿𝑥 ∼ 𝐿𝑦. For large scale ocean phenomena,

𝐴 ∼ 10−3, similar to a sheet of paper. This emphasizes how close to 2D are large-scale oceanic

flows. Nonetheless, understanding the ocean requires a 3D approach; for our purposes studying
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Figure 1: A cartoon of the kinematic-dynamic model. A general velocity with two components,
𝑎𝐸𝒖𝐸 (𝒓, 𝑡) and 𝑎𝐼 (⟨𝜌⟩)𝒖𝐼 (𝒓), couples the advection-diffusion equations for temperature 𝑇 and
salinity 𝑆 with mixed Robin-Neumann surface boundary conditions that model heating, cooling,
evaporation and precipitation. Together 𝑇 and 𝑆 determine the density 𝜌, illustrated by the color
variations in the figure. In turn, the difference between the density averages on the two
predetermined boxes 𝐷1 and 𝐷2 determine 𝑎𝐼 (⟨𝜌⟩).

density-driven flows, taking into account the vertical direction is imperative. We use the linearized

equation of state for the density,

𝜌(𝑇, 𝑆) = 𝜌0(1 − 𝛼𝑇 + 𝛽𝑆), (3)

where 𝛼 is the thermal expansion coefficient and 𝛽 is the haline contraction coefficient. We note that

we define 𝑇 and 𝑆 as anomalies around 𝜌0; in ambient ocean conditions, the density 𝜌0 ∼ 1026𝑘𝑔/𝑚3

corresponds to a temperature of 15◦𝐶 and a salinity of 35𝑝𝑠𝑢. The respective coefficients are of the

order 𝛼 ∼ 10−4𝐾−1 and 𝛽 ∼ 10−4𝑝𝑠𝑢−1.

Equations (1) and (2) are coupled only via their common advecting velocity field 𝒖(𝒓, 𝑡; 𝜌(𝑇, 𝑆)),

rendering the tracers active as described in the introduction. Instead of coupling the equations to

the incompressible Navier-Stokes (NS) equations, our approach employs a significant simplification:

Assume we know the spatial form of a certain large-scale, basin-wide solution 𝒖, e.g. based on

observations of the actual velocity field in the ocean or by numerical simulations. We assume that

this solution can be written as a sum of several modes, and that only some of its modes’ amplitudes

are determined dynamically by the density distribution. The phenomenological motivation for this

approach is that the velocity field in the ocean is built from several components; some are mainly driven
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by external sources, for example wind stress and tides, and some are dominantly driven by internal

stresses deriving from density inhomogeneities, as discussed above. While the NS are nonlinear, one

hopes that such a division can be justified by separation of temporal or spatial scales.

Our model example will be a general oceanic velocity that is decomposed into two components:

an externally-forced velocity mode that does not depend on density, and an internally-forced velocity

mode that does. We further assume that density inhomogeneities affect the strength, but not the form,

of the internally forced velocity field components. Finally, we consider an internal velocity strength

that depends on spatial averages of the density, denoted in general ⟨𝜌⟩, and not on pointwise density

values. Thus, the internally-forced velocity field has the following structure:
∑
𝑗 𝑎

𝑗

𝐼
(⟨𝜌⟩)𝒖 𝑗

𝐼
(𝒓), where

𝐼 signifies internal. Taking a first-order approximation we consider one such internally forced mode:

𝒖(𝒓, 𝑡; ⟨𝜌⟩) = 𝑎𝐼 (⟨𝜌⟩)𝒖𝐼 (𝒓) + 𝑎𝐸𝒖𝐸 (𝒓, 𝑡), (4)

where 𝐸 signifies external, and 𝑎𝐸 is some constant. 𝑎𝐼 and 𝑎𝐸 have units of velocity, while 𝒖𝐼 and

𝒖𝐸 are dimensionless, and incompressible by construction:

∇ · 𝒖𝐼 = ∇ · 𝒖𝐸 = 0. (5)

Due to the incompressibility, the horizontal velocity components scale as 1/𝐴 larger than the vertical

components. We consider a flow enclosed in the domain: defining 𝜕Ω as the boundary of the domain,

and �̂�(𝑞) as the unit normal vector at 𝑞 ∈ 𝜕Ω pointing outwards of the domain, we demand an

impermeability (no-normal flow) boundary condition

𝒖𝐼 |𝜕Ω · �̂� = 𝒖𝐸 |𝜕Ω · �̂� ≡ 0. (6)

Motivated by both models and observations (Stommel, 1961; Tziperman et al., 1994; Gildor &

Tziperman, 2001; Mullarney et al., 2007; Sijp et al., 2012; Butler et al., 2016; Cheng et al., 2018),

the internal strength parameter 𝑎𝐼 (⟨𝜌⟩) is proportional to the average density difference between two

different regions of the basin, 𝐷1, 𝐷2 ⊂ Ω with 𝐷1 ∪ 𝐷2 = Ω. Thus, the formula for 𝑎𝐼 is

𝑎𝐼 (⟨𝜌⟩) = Γ (⟨𝜌⟩2 − ⟨𝜌⟩1) = Γ𝜌0 (−𝛼(⟨𝑇⟩2 − ⟨𝑇⟩1) + 𝛽(⟨𝑆⟩2 − ⟨𝑆⟩1)) , (7)
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where Γ is a proportionality constant with units of velocity over density, ⟨𝑇⟩𝑖 = 1
|𝐷𝑖 |

∫
𝐷𝑖
𝑇𝑑𝑉 , 𝑖 = 1, 2,

and ⟨𝑆⟩𝑖 = 1
|𝐷𝑖 |

∫
𝐷𝑖
𝑆𝑑𝑉 , 𝑖 = 1, 2. This coupling provides a natural temporal separation between the

two velocity components - the changes in the internal flow amplitude are governed by spatial averages

and thus have less time fluctuations than the external flow. Regarding the external flow, 𝑎𝐸𝒖𝐸 (𝒓, 𝑡) can

be any large-scale incompressible flow that does not depend on the tracers 𝑇 and 𝑆, e.g. a prescribed

wind-driven surface flow, tidally driven flow, or any kinematic flow model.

The source terms 𝑓𝑇 and 𝑓𝑆 may be set to quantify sources of heat and salt in the defined oceanic

basin, such as exchange flow with marginal seas, river runoff, sea-ice formation and melting, or

volcanic activity. Motivated by oceanographic models, we consider a diffusion coefficient matrix

κ that parameterizes background turbulence and small-scale eddy flow processes as an effective

diffusion (eddy diffusivity, see Majda & Kramer (1999)), rendering it orders of magnitude larger than

molecular diffusivity. The diffusion constants are the same for both 𝑇 and 𝑆, but differ between the

horizontal (𝑥, �̂�) directions and the vertical (𝑧) direction, as isopycnal mixing is generally stronger

than diapycnal mixing (Gent & McWilliams, 1990; Gargett, 1984) (isopycnals are approximated as

horizontal):

κ =

©«
^𝐻 0 0

0 ^𝐻 0

0 0 ^𝑉

ª®®®®®¬
, ^𝑉 ≪ ^𝐻 . (8)

The relevant orders of magnitude for the ocean are ^𝐻 ∼ 103𝑚2/𝑠𝑒𝑐, ^𝑉 ∼ 10−4𝑚2/𝑠𝑒𝑐 (Gent &

McWilliams, 1990; Gargett, 1984; Majda & Kramer, 1999).

For a full formulation of the problem at hand, boundary conditions must be specified. In the

oceanic basin, the air-sea interface is its most significant boundary in terms of heat and freshwater

forcing. The surface heat flux is related to the atmosphere-ocean temperature difference (Haney,

1971); a warmer ocean surface will release heat to the atmosphere, cooling the ocean (and making it

denser) while warming the atmosphere. The surface freshwater flux is related to the evaporation and

precipitation rates such that net evaporation will result in higher surface salinity and thus in denser

water. There is no direct feedback from ocean salinity on the atmosphere. Thus, it is common to

use the so-called mixed boundary conditions for the surface (Haney, 1971; Tziperman et al., 1994):

a Robin, also known as a relaxation, boundary condition for the temperature, in which the amount of

heat flux depends on the air-sea temperature difference; and a Neumann boundary condition for the
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salinity. Neglecting (for now) geothermal heating and exchange flow with marginal seas, we consider

a zero flux boundary condition for the sides and bottom of the box. Defining 𝑧 = 𝐿𝑧 as the domain’s

surface boundary (air-sea interface), the appropriate boundary conditions are thus written as

(κ∇𝑇) · �̂� =


𝑔𝑇
𝐴
(𝑇∗(𝑥, 𝑦, 𝑡) − 𝑇) if 𝑧 = 𝐿𝑧

0 else
, (9)

(κ∇𝑆) · �̂� =


𝑔𝑆
𝐴
𝑆∗(𝑥, 𝑦, 𝑡) if 𝑧 = 𝐿𝑧

0 else
. (10)

𝑔𝑇
𝐴
, 𝑔𝑆

𝐴
are the effective rates of convective heat and mass transfer at the boundary, respectively, with

units of velocity. 𝑇∗(𝑥, 𝑦, 𝑡) and 𝑆∗(𝑥, 𝑦, 𝑡) are the temperature and salinity atmospheric sources

(based, e.g. on observations), and are predetermined. Compatibility conditions on the box boundaries

imply that at the box edges the normal derivatives of𝑇∗, 𝑆∗ must vanish (see Appendix C), namely, that

there is no flux to the ”shore”. We note that the salinity forcing function 𝑆∗(𝑥, 𝑦, 𝑡) may be negative

or positive, where a positive (negative) forcing signifies more (less) evaporation than precipitation.

In order for the overall salinity to remain constant, we demand
∫ 𝐿𝑥

0

∫ 𝐿𝑦

0 𝑆∗(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦 = 0 and∫
Ω
𝑓𝑆 (𝒓, 𝑡)𝑑𝑉 = 0.

The kinematic-dynamic model, depicted in Figure 1, is fully described by equations (1) - (10):

a system of modified advection-diffusion equations for temperature 𝑇 and salinity 𝑆 with source

terms, (1) and (2), that are weakly coupled by averages with a partially kinematic and partially

dynamic incompressible velocity field (4). The system is subject to mixed Robin-Neumann boundary

conditions for the temperature and salinity, (9) and (10). The diffusion matrix (8), parameterizing

the eddy diffusivity, is diagonal, and the overall salinity is conserved in the basin throughout the

evolution. The dynamic coefficient of the internal velocity, 𝑎𝐼 (⟨𝜌⟩), provides a natural observable

of the dynamics. It reveals when the density-induced velocity component stabilizes to a steady state

and when, as parameters are changed, the steady state bifurcates (and the solutions become bi-stable,

oscillatory or, possibly, chaotic).
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2.1 Non-dimensionalization and rescaling

System (1) - (10) has multiple natural timescales, associated with the horizontal and vertical eddy

diffusion, the velocity field and the surface sources. Rescaling the problem to contain dimensionless

parameters that demonstrate the ratios between these, we define the basic timescale 𝜏 ≡ 𝐿2
𝑧/^𝑉 ,

describing the time it would take a tracer to cross the domain from surface to bottom via vertical

eddy diffusion only. We note that 𝜏 takes into account both molecular diffusion and eddy mixing on

the small-scale (e.g. due to breaking of internal waves) that is parameterized by the vertical eddy

diffusivity ^𝑉 and is not included in 𝒖, and therefore is an insightful timescale for the advection-

diffusion equation. For typical oceanic values of 𝐿𝑧 ∼ 4× 103𝑚 and ^𝑉 ∼ 10−4𝑚2/𝑠𝑒𝑐, the timescale

is of the order 𝜏 ∼ 5 × 103𝑦𝑟𝑠. We further define the temperature and salinity scales as the maximal

differences in the surface sources,𝑇∗
Δ
= max𝑇∗−min𝑇∗ and 𝑆∗

Δ
= max 𝑆∗−min 𝑆∗, with the additional

conditions 𝑇∗
Δ
≠ 0, 𝑆∗

Δ
≠ 0 to ensure horizontal density diferences.

We perform a non-dimensionalization of the variables 𝑡, 𝑥, 𝑦, 𝑧, 𝑇 , and 𝑆 by 𝜏, 𝐿𝑥 , 𝐿𝑦, 𝐿𝑧,

𝑇∗
Δ

, and 𝑆∗
Δ

, respectively. Notice that the rescaling differs between the spatial dimensions, such

that the rescaled domain is the symmetric cube (0, 1)3. Correspondingly, we rescale the dimensional

functions𝑇∗, 𝑆∗, 𝑓𝑇 , 𝑓𝑆 by𝑇∗
Δ
, 𝑆∗

Δ
, 𝑇∗

Δ
/𝜏, 𝑆∗

Δ
/𝜏. Likewise, the dimensional parameters of κ are replaced

by 𝛿𝑥 ≡ ^𝐻/𝐿2
𝑥

^𝑉/𝐿2
𝑧

in the 𝑥 component, 𝛿𝑦 ≡ ^𝐻/𝐿2
𝑦

^𝑉/𝐿2
𝑧

in the �̂� component, and 1 in the 𝑧 component; we

further define 𝛿 ≡ min{𝛿𝑥 , 𝛿𝑦}. Note that due to stratification strongly limiting cross-isopycnal flow,

and due to the almost-2D nature of oceanic domains, it may occur that 𝛿𝑥 ∼ 𝛿𝑦 ∼ 1. 𝑔𝑇
𝐴

and 𝑔𝑆
𝐴

are replaced by 𝑁𝑢 ≡ 𝑔𝑇
𝐴

^𝑉/𝐿𝑧 , the Nusselt number for heat transfer at the boundary, and 𝑆ℎ ≡ 𝑔𝑆
𝐴

^𝑉/𝐿𝑧 ,

the Sherwood number for mass transfer at the boundary, respectively. The 𝑥, �̂� and 𝑧 components of

the velocity field 𝒖, as defined in equation (4), are rescaled, respectively, by 𝐿𝑥/𝜏, 𝐿𝑦/𝜏, and 𝐿𝑧/𝜏.

Thus, by defining the Péclet number related to the external velocity field as 𝑃𝑒 ≡ 𝑎𝐸
^𝑉/𝐿𝑧 ; the thermal

Rayleigh number as 𝑅𝑎𝑇 ≡ Γ𝜌0𝛼𝑇
∗
Δ

^𝑉/𝐿𝑧 ; the salinity Rayleigh number as 𝑅𝑎𝑆 ≡ Γ𝜌0𝛽𝑆
∗
Δ

^𝑉/𝐿𝑧 ; and the density

stability ratio as 𝑅𝜌 ≡
𝛽𝑆∗

Δ

𝛼𝑇∗
Δ

= 𝑅𝑎𝑇/𝑅𝑎𝑆; the dimensionless, rescaled velocity field is given by

𝒖𝑟𝑠 = 𝑃𝑒𝒖𝐸,𝑟𝑠 + 𝑅𝑎𝑇𝑎𝐼,𝑟𝑠𝒖𝐼,𝑟𝑠,

𝑎𝐼,𝑟𝑠 (⟨𝑇⟩ , ⟨𝑆⟩) =
𝑎𝐼 (⟨𝜌⟩)
Γ𝜌0𝛼𝑇

∗
Δ

= −⟨𝑇⟩2 − ⟨𝑇⟩1
𝑇∗
Δ

+ 𝑅𝜌
⟨𝑆⟩2 − ⟨𝑆⟩1

𝑆∗
Δ

,
(11)

where 𝑟𝑠 signifies rescaled. All rescaled components of the velocites 𝒖𝐸,𝑟𝑠 and 𝒖𝐼,𝑟𝑠 are now of order

11



1, and defined in the symmetric cube (0, 1)3. The difference in timescales between the externally-

driven velocity 𝒖𝐸,𝑟𝑠 and the density-driven velocity 𝒖𝐼,𝑟𝑠 is controlled by 𝑃𝑒 and 𝑅𝑎𝑇 , such that 1 is

the timescale of eddy diffusion from surface to bottom, 1/𝑅𝑎𝑇 is the timescale of a vertical circulation

around the basin, and 1/𝑃𝑒 is the timescale of externally-driven velocity contributions; typically,

1 ≫ 1/𝑅𝑎𝑇 ≫ 1/𝑃𝑒. Summarizing, 𝑅𝑎𝑇 is the tuning parameter of the rescaled problem (through

the free parameter Γ), and the rescaled variable 𝑎𝐼,𝑟𝑠 (⟨𝑇⟩ , ⟨𝑆⟩) is the dynamic observable of interest

that results from the model. Hereafter we consider the nondimensional problem (and drop the 𝑟𝑠

subscript), unless indicated otherwise.

2.2 Simulating the model

Numerical solutions of the model are obtained step-wise: the density difference between the boxes at

a given time-step, derived from the temperature and salinity, is used to calculate the amplitude of the

internal velocity field, and this updated velocity field is used to advance the temperature and salinity to

the next time step according to their respective equations (1) and (2). This 3D, optionally time-varying,

non-linear, coupled PDE system, with multiple time-scales, requires a customized numerical scheme,

which we have implemented in Matlab. The scheme employs a finite volume integration scheme,

which allows for a differential box size and has good conservation properties. The diffusion and

source terms are straightforward to simulate using standard discretization methods. For the advection

term, in order to retain numerical stability on the one hand while reducing numerical diffusion on the

other hand, we use the stable flux-limiter advection scheme, combining the low-order upwind scheme

with the high-order Lax-Wendroff scheme, weighted with a Sweby flux limiter with 𝛽 = 1.5 (Sweby,

1984). The spatial and temporal grid sizes were determined to be below the Courant-Friedrichs-

Lewy (CFL) stability condition (Courant et al., 1967), and fine enough to resolve the small structure

elements of the velocity field. The final grids we used were checked for sensitivity of results to grid

size changes. The simulations shown here are run with a given parameter set until a quasi-stable

equilibrium state/periodic state is reached; results shown are of the equilibria solutions. The datasets

generated and analyzed during the current study are available from the corresponding author on

reasonable request.
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3 The North Atlantic ocean’s large-scale flow

Figure 2: Flow field structure for the North Atlantic. (a) Surface flow 𝒖𝐸 (𝒓, 𝑡), with a penetration
depth of ∼ 600𝑚. 𝑦𝐻 is the inter-gyre demarcation line’s position, and may be time-varying to model
its seasonal north-south oscillations (Frankignoul et al., 2001). (b) Zonally averaged overturning
flow 𝒖𝐼 (𝒓). Downwelling occurs north of 𝑦𝐵 = 55◦N for the North Atlantic. 𝑦𝐵 is also the border
between the south box 𝐷1 and the north box 𝐷2. (c) The composite 3D flow. The difference between
the average densities in 𝐷1 and 𝐷2 determines the strength (and direction) of the overturning flow
illustrated in (b).

The North Atlantic’s large-scale flow is built mainly from two velocity modes with a clear time-

scale separation between them: a wind-driven double-gyre flow with a timescale of ∼ 5 years (Vallis,

2017), and the AMOC, with a timescale of ∼ 1000 years (Ghil, 2017; Johnson et al., 2019). The

AMOC, unique to the Atlantic Ocean under present-day climate (Ferreira et al., 2018), transports

approximately 18 Sv (Sverdrup, equals 106m3/sec) of warm surface waters from the tropics towards

the North Pole, sinks in the northern latitudes and flows southwards in the abyss. The circulation is

driven and maintained by a combination of wind-driven upwelling in the Antarctic region, upwelling

throughout the ocean, and an anomalously high salinity in the northern latitudes causing a sinking of

salty cold surface waters upon winter cooling (Ferreira et al., 2018). The high salinity is commonly

attributed to a combination of factors, including an abundance of salty sources, atmospheric forcing,

and the salt-advection feedback loop: the AMOC sustains itself by advecting high-salinity surface

waters from equatorial latitudes to the north. Evaluating the relative contribution of each of these

factors to the structure, strength and variability of the AMOC is important in order to understand its

(somewhat debated) stability in current, past and projected climates (see Weijer et al. (2019), and
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references therein).

The extent of the effect of the feedback loop is related to the amount of salty waters that actually

reach the northern latitudes. This depends on the time-dependent pathway statistics, affected both by

the overturning circulation itself, and by chaotic advection resulting from the large-scale double-gyre

surface flow of the basin, along with the other large-scale flow components in the basin, since the actual

transport pathways differ from the mean flow (Aref, 1984). Thus, the AMOC should be sensitive to

density variations resulting from inhomogeneous external fluxes of salinity and temperature, that are

transported in an interplay between diffusion, resulting in local mixing, and 3D chaotic advection,

resulting in stirring (Aref, 1984; Brett et al., 2019). The extent of this sensitivity is unknown (Weijer

et al., 2019).

To apply the kinematic-dynamic model to the North Atlantic flow, consider an idealized rectan-

gular basin with a constant depth of 4 × 103𝑚 and straight edges, and a horizontal extent of order

𝐿 ∼ O(106𝑚) that approximates the longitudinal region [0◦𝑊, 60◦𝑊] and the latitudinal region

[0◦𝑁, 70◦𝑁]. See Appendix B for a comprehensive list of the parameters we used for the North

Atlantic simulations. In this work, we neglect the spherical geometry of the North Atlantic (equirect-

angular projection), however it is easy to see that the same framework can be naturally extended to a

spherical basin.

The two major contributions to the large-scale flow in the basin are the horizontal wind-driven sur-

face flow in the horizontal (𝑥, 𝑦) direction, representing the North Atlantic sub-tropical and sub-polar

gyres, described by the external velocity field 𝒖𝐸 (𝒓, 𝑡); and the vertical density-driven overturning

flow in the latitudinal-abyssal (�̂�, 𝑧) direction, described by 𝒖𝐼 (𝒓). The surface double-gyre flow 𝒖𝐸

we use is a solution to the Sverdrup balance with a boundary (Yang & Liu, 1994), see Figure 2(a). It

exhibits a westward-biased asymmetry that models the western boundary flow, and a finite penetration

depth of a few hundred meters, corresponding to the approximate measured depth of the oceanic ther-

mocline. In some of the simulations, we also consider the effect of a seasonal north-south variation

of the demarcation line between the gyres with an amplitude of approximately 1◦ in latitude, with the

north-most position obtained in the fall season (Frankignoul et al., 2001). The overturning flow 𝒖𝐼 is

set as a zonally (𝑥) independent gyre in the �̂�−𝑧 plane, with a northward branch above the thermocline,

a downwelling branch around the northern basin border, a southward branch below the thermocline

and semi-uniformly upwelling south of the downwelling region. To model this flow, we use a similar
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functional form as the surface flow, see Figure 2(b). The composite 3D flow is depicted in Figure 2(c).

The exact functions we use for these flows are presented in Appendix A, and the parameter values

that mimic the North Atlantic flow are presented in Appendix B. By construction, both flow vector

field components 𝒖𝐸 and 𝒖𝐼 are of order 1 and non-dimensional, as described in section 2.1. In the

composite flow, they are multiplied by their (dimensionless) respective strength coefficients 𝑃𝑒 and

𝑅𝑎𝑇𝑎𝐼 (⟨𝑇⟩ , ⟨𝑆⟩). 𝑃𝑒 ∼ 106 corresponds to realistic sub-tropical gyre velocities with a circulation

time of approximately 5 years, and 𝑅𝑎𝑇 ∼ 103 corresponds to realistic AMOC velocities with a

circulation time of approximately 1000 years and an AMOC strength of approximately 18 Sv. The

vertical strength parameter 𝑎𝐼 (⟨𝑇⟩ , ⟨𝑆⟩), of order 1 due to the rescaling, is determined dynamically

by the average density difference between the north part 𝐷2 and the south part 𝐷1 of the basin, as

described in section 2. The north-south box border is chosen according to the overturning gyre’s

center, where the flow switches from upwelling to downwelling, see Figure 2(c).

We note that the AMOC does not have a southern border at the equator; although the transport loop

does indeed attain partial closure to the north of the equator by upwelling, most of the southbound

transport branch continues all the way south to Antarctica, where it participates in a complicated

interplay with the Antarctic Circumpolar Current and eventually returns as a northbound branch

(Johnson et al., 2019). We follow previous studies that consider a similar configuration: Stommel

(1961); Tziperman et al. (1994); Cessi (1994), and others. Yet, our model could take this into account

by inserting a source term at the southern border that parameterizes the appropriate inputs and outputs

of temperature and salinity through the equatorial basin wall; alternatively, the velocity field 𝒖𝐼 itself

could have an open southern border. These options are left for exploration in later works.

We used the SODA3.4.2 reanalysis experiment (Carton & Giese, 2008) to tune the surface forcing,

extracting the climatological average from 1980 to 2017 and deriving the zonally averaged data of

the sea-surface temperature (SST) and salinity (SSS). This realistic data was used as a restoring

(Robin) boundary condition for both 𝑇 and 𝑆. After approximately 1000 simulation years, the

system reached a quasi stable time-periodic state. Then, we switched the salinity restoring force

with a corresponding constant flux forcing (Neumann) boundary condition, a common procedure

for tuning realistic systems with mixed Robin-Neumann boundary conditions, e.g. Tziperman et al.

(1994). Tuning the overturning strength parameter Γ, the system settled at a reasonable distribution

of sea-surface temperature (SST), sea-surface salinity (SSS), zonally averaged density (except at

15



34 36
Salinity [psu]

70o N

50o

30o

10o

Eq

La
tit

ud
e

<SSS>lon., t
<SSS>t

W 50o 40o 30o 20o 10o 0o

Longitude

34.5

35

35.5

36

36.5

37
Salinity [psu]

500m

Surface

De
pt

h

< >lon., lat., t

1026 1028
Density [kg/m3]

4000m

3000m

2000m

1000m

< >lon., t

1024

1024.5

1025

1025.5

1026

1026.5

1027

1027.5
Density [kg/m3]

1026.0451
1026.048

1026.0481026.0509
1026.0538

70o N50o30o10o

Latitude

E

Jan. yr 1 Jan. yr 2 Jan. yr 3 Jan. yr 4
Year

17.7

17.8

17.9

18

18.1

18.2

18.3

18.4

AM
OC

, S
v

AMOC strength [Sv]FB <SSS>t from SODA data

W 50o 40o 30o 20o 10o 0o

Longitude

Eq

10o

30o

50o

70o N

La
tit

ud
e

34 36
Salinity [psu]

70o N

50o

30o

10o

Eq

La
tit

ud
e

<SSS>lon., t
<SSS>t

W 50o 40o 30o 20o 10o 0o

Longitude

34.5

35

35.5

36

36.5

37
Salinity [psu]

34 36
Salinity [psu]

70o N

50o

30o

10o

Eq

La
tit

ud
e

<SSS>lon., t
<SSS>t

W 50o 40o 30o 20o 10o 0o

Longitude

34.5

35

35.5

36

36.5

37
Salinity [psu]

0 10 20
Temp. [o C]

70o N

50o

30o

10o

Eq

La
tit

ud
e

<SST>lon., t
<SST>t

W 50o 40o 30o 20o 10o 0o

Longitude
0

5

10

15

20

25

30
Temp. [o C]C

D

A

0 10 20
Temp. [o C]

70o N

50o

30o

10o

Eq

La
tit

ud
e

<SST>lon., t
<SST>t

W 50o 40o 30o 20o 10o 0o

Longitude
0

5

10

15

20

25

30
Temp. [o C]

0 10 20
Temp. [o C]

70o N

50o

30o

10o

Eq

La
titu

de

<SST>lon., t
<SST>t

W 50o 40o 30o 20o 10o 0o

Longitude
0

5

10

15

20

25

30
Temp. [o C]

Figure 3: Simulation results of Atlantic Ocean model, in comparison with realistic reanalysis
experimental data. (A-B) SODA3.4.2 reanalysis experiment data (Carton & Giese, 2008), averaged
over 1980-2017: (A) depicts sea-surface temperature (SST), and (B) depicts sea-surface salinity
(SSS). (C-F) Simulation results: (C) SST [◦𝐶], (D) SSS [𝑝𝑠𝑢], (E) zonally-averaged density
[𝑘𝑔/𝑚3], and (F) simulation result of the AMOC strength [Sverdrup (Sv)], proportional to 𝑎𝐼 (⟨𝜌⟩)
of the model. The black curves on the left of (C) and (D) are longitudinal averages of the colored
data. The black curve on the left of (E) is a zonal average of the colored data. The blue dashed
curves are the corresponding averages from the SODA3.4.2 data.

northern-most latitudes, where there are density inversions), and AMOC overturning strength, see

Figure 3. The tracer fronts observed between the two gyres are due to the velocity field, and are

clearly apparent also in the realistic observations. In section 6 we discuss similarities and differences

between the model results and the realistic data.

4 Relation to simplified box models

Our system, equations (1) - (10), is a natural extension of the 2× 2 box model presented in Tziperman

et al. (1994); Huang et al. (1992), extended to take into account density perturbations resulting from

3D advection, diffusion and forcing. Under the assumptions of inner-box fast mixing, and inter-box

interactions resulting only from advection, and using 𝒖𝐼 from the motivating example (Figure 2B)

as the internal velocity in equation (4), the system reduces to the four-box model. To show this,

we divide the basin into four boxes 𝐵𝑖 𝑗 , 𝑖, 𝑗 = 1, 2 (see Figure 4), and define the instantaneous box

averages 𝑇𝑖 𝑗 (𝑡) ≡ 1
|𝐵𝑖 𝑗 |

∫
𝐵𝑖 𝑗
𝑇 (𝒓, 𝑡)𝑑𝑉 , and a function describing the density perturbations from the box
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Figure 4: 2D autonomous model, 𝑃𝑒 = 0. (A) Bi-stability of steady state solutions as a function of
freshwater flux (FWF, see main text). 𝛿𝑖𝑛 is the ratio between inter-box and inner-box diffusion. A
hysteresis loop exists for 𝛿𝑖𝑛 ≥ 103 (𝑅𝑎𝑇 ≥ 2 × 103). As 𝛿𝑖𝑛 (and 𝑅𝑎𝑇 ) increases, the hysteresis loop
moves toward higher FWF, and the positive overturning strength grows. At 𝛿𝑖𝑛 = 100 (𝑅𝑎𝑇 = 200)
bistability is lost and a single steady state appears for a given forcing value (Theorem 2(iii)). (B, C)
Density for two steady states in the bistable regime, with 𝐹𝑊𝐹 = 0.67 Sv, 𝑅𝑎𝑇 = 2 × 105. (B)
Overturning is 20.3 Sv, (C) overturning is −3.7 Sv.

averages, 𝑇 ′(𝒓, 𝑡), such that 𝑇 (𝒓, 𝑡) = 𝑇𝑖 𝑗 (𝑡) +𝑇 ′(𝒓, 𝑡) for 𝒓 ∈ 𝐵𝑖 𝑗 , and repeat the same for the salinity.

While 𝑇 (𝒓, 𝑡) and 𝑆(𝒓, 𝑡) are smooth, 𝑇 ′(𝒓, 𝑡) and 𝑆′(𝒓, 𝑡) are only piecewise-smooth. The fast mixing

assumption is equivalent to assuming 𝑇 ′(𝒓, 𝑡) and 𝑆′(𝒓, 𝑡) are small at all times; immediate inner-box

mixing corresponds to 𝑇 ′(𝒓, 𝑡) = 𝑆′(𝒓, 𝑡) ≡ 0. Employing these definitions, we integrate equation (1)

over 𝐵𝑖 𝑗 , setting 𝑓𝑇 = 0, and divide by its volume. Using Gauss theorem and the upwind advection

scheme, we obtain the following equations:

¤𝑇11 =
𝑁𝑢

1 − 𝑧𝐵
(𝑇∗
𝑆𝑜𝑢𝑡ℎ − 𝑇11) +

1
𝑦𝐵

(𝑇21 − 𝑇11)𝑉 + ℎ11(𝛿𝑦, 𝑇 ′)

¤𝑇12 =
𝑁𝑢

1 − 𝑧𝐵
(𝑇∗
𝑁𝑜𝑟𝑡ℎ − 𝑇12) +

1
1 − 𝑦𝐵

(𝑇11 − 𝑇12)𝑉 + ℎ12(𝛿𝑦, 𝑇 ′)

¤𝑇21 =
1
𝑦𝐵

(𝑇22 − 𝑇21)𝑉 + ℎ21(𝛿𝑦, 𝑇 ′)

¤𝑇22 =
1

1 − 𝑦𝐵
(𝑇12 − 𝑇22)𝑉 + ℎ22(𝛿𝑦, 𝑇 ′)

(12)

where 𝑇∗
𝑆𝑜𝑢𝑡ℎ

= 1
𝑦𝐵

∫ 1
0 𝑑𝑥

∫ 𝑦𝐵

0 𝑑𝑦 𝑇∗(𝑥, 𝑦), 𝑇∗
𝑁𝑜𝑟𝑡ℎ

= 1
1−𝑦𝐵

∫ 1
0 𝑑𝑥

∫ 1
𝑦𝐵
𝑑𝑦 𝑇∗(𝑥, 𝑦) are the average surface

fluxes in the south and north, correspondingly; and𝑉 = 1
1−𝑧𝐵

∫ 1
0 𝑑𝑥

∫ 1
𝑧𝐵
𝑑𝑧 𝑣 |𝑦=𝑦𝐵 is the average velocity

between the two top boxes. The averaged velocity 𝑉 is determined as explained in section 2, where
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𝐷1 = 𝐵11 ∪ 𝐵21, and 𝐷2 = 𝐵21 ∪ 𝐵22:

𝑉 = 𝑅𝑎𝑇𝑎𝐼 (𝑇𝑖 𝑗 , 𝑆𝑖 𝑗 )𝑉𝐼 ; 𝑉𝐼 =
1

1 − 𝑧𝐵

∫ 1

0
𝑑𝑥

∫ 1

𝑧𝐵

𝑑𝑧 𝒖𝐼 · �̂� |𝑦=𝑦𝐵 ,

𝑎𝐼 (𝑇𝑖 𝑗 , 𝑆𝑖 𝑗 ) = − 1
𝑇∗
Δ

(∑2
𝑗=1 𝐵 𝑗2𝑇𝑗2∑2
𝑗=1 𝐵 𝑗2

−
∑2
𝑗=1 𝐵 𝑗1𝑇𝑗1∑2
𝑗=1 𝐵 𝑗1

)
+
𝑅𝜌

𝑆∗
Δ

(∑2
𝑗=1 𝐵 𝑗2𝑆 𝑗2∑2
𝑗=1 𝐵 𝑗2

−
∑2
𝑗=1 𝐵 𝑗1𝑆 𝑗1∑2
𝑗=1 𝐵 𝑗1

)
,

Note that𝑉𝐼 is a constant determined by the box division and the chosen overturning velocity field form

𝒖𝐼 . In equations (12), we assume 𝑎𝐼 > 0, and use the upwind scheme: since the transport between the

boxes is unidirectional by construction of the boxes, we assume the velocity is in a thermally dominant

mode, i.e. from 𝐵11 to 𝐵12 and so on. Thus, if 𝑎𝐼 < 0 the overturning flow switches direction and, just

like in the 4-box model, the velocity terms switch signs and the advected values change accordingly.

The remaining terms are contained in ℎ𝑖 𝑗 (𝛿𝑦, 𝑇 ′), including the diffusion between the boxes and

the advection of 𝑇 ′, which is the deviation in each box from the mean value inside the box. ℎ𝑖 𝑗 can

be calculated in a straightforward manner. The equations for 𝑆𝑖 𝑗 are similar, except for the surface

boundary conditions which have a constant flux for the salinity. If 𝑇 ′, 𝑆′ and inter-box diffusion are

neglected, ℎ𝑖 𝑗 ≡ 0 and the equation set (12) attains closure; along with the corresponding salinity

equations, these are exactly the 2×2-box equations, with known steady-state solutions (Huang et al.,

1992; Tziperman et al., 1994). Using similar methods, it is easy to see that with this framework we

can reproduce various previously-studied box models with any number of boxes, with a controllable

amount of inter-box diffusion and inner-box inhomogeneities: all that is required is a tailoring of a

suitable internal velocity field 𝒖𝐼 with transport in the desired direction between the various boxes.

To reproduce the 2 × 2 box model limit, we shut off the external velocity field (i.e. 𝑃𝑒 = 0), and

introduce a spatially dependent diffusion matrix with high diffusion inside each box κ 𝑖𝑛, and small

diffusion between the boxes κ𝑜𝑢𝑡 . The results are summarized in Figure 4, and the parameters used are

summarized in Appendix B. As commonly performed with AMOC stability studies, we performed a

simple hosing experiment: allowing the system to equilibrate, we slowly increased and then decreased

the northern freshwater flux, defined as defined as 𝐹𝑊𝐹 [Sv] = 𝐿𝑥𝐿𝑦𝑔𝑆𝐴
⟨𝑆∗⟩𝑦>𝑦𝐵

35.5psu /106. We also define

𝛿𝑖
𝑖𝑛

=
^𝑖
𝑖𝑛
/𝐿2

𝑖

^𝑧𝑜𝑢𝑡/𝐿2
𝑧
, 𝑖 = 𝑥, 𝑦, 𝑧, and the problem is set up such that 𝛿𝑥

𝑖𝑛
= 𝛿

𝑦

𝑖𝑛
= 𝛿𝑧

𝑖𝑛
≡ 𝛿𝑖𝑛. We note that

the thermal Rayleigh number 𝑅𝑎𝑇 scales like 𝛿𝑖𝑛. We performed the same hosing experiment on

varying values of 𝛿𝑖𝑛 (and thus, of 𝑅𝑎𝑇 ). As 𝑅𝑎𝑇 decreases, the hysteresis loop shifts and shrinks

until bi-stability is apparently lost, as expected from Theorem 2(iii) presented in the next section.
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Figure 5: 3D autonomous model. (A) Bi-stability of steady state solutions as a function of freshwater
flux (FWF) with realistic eddy diffusivity. The mixing between the north and south boxes is reduced
by the horizontal gyre flow. In all data points, the diffusion is the same, with 𝛿𝑥 = 𝛿𝑦 = 0.1. For a
narrow range of FWF, bistability is observed. (B, C) Density for two steady states in the bistable
regime, with 𝐹𝑊𝐹 = 1.8 Sv. (B) Overturning is 39.4 Sv, (C) overturning is −3.4 Sv.

As stated previously, even when the diffusion is homogenous in the full domain, there may be cases

where neglecting 𝑇 ′ and 𝑆′ is justified, for example if there are barriers for mixing between the boxes,

induced perhaps by localized coherent structures, that would render the eddy diffusivity between

boxes effectively negligible. To demonstrate this idea, we performed an autonomous 3D experiment

with homogenous eddy diffusivity throughout the basin. We aligned the inter-gyre demarcation line

of the horizontal velocity field with the horizontal barrier between the boxes 𝑦𝐵. Thus, each box

is relatively mixed due to the combination of velocity fields and vertical diffusion, while interbox

mixing is minimized due to the velocity field structure. The results are summarized in Figure 5,

and the parameters used are summarized in Appendix B. As in the 2D experiment, we varied the

𝐹𝑊𝐹 parameter continuously and plotted the resulting steady-state AMOC strength. The resulting

hysteresis loop and steady states bear a qualitative resemblance to those obtained in the 2D experiment

for relatively high values of inter-box diffusion; see Figure 5.

As in previous studies of hysteresis AMOC loops in GCM models (Rahmstorf, 2005), finding

these hysteresis loops requires some tweaking of parameters. Thus, some of the parameters of Figures

4 and 5 differ from those of Figure 3 (see Table 1). In particular, notice that the spatial dependence

of the velocity field changes considerably the bi-stable range. A more comprehensive study of the
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range of realistic geophysical settings in which bi-stability is possible in our model (possibly including

unsteady forcing) and its relation to corresponding parameter ranges in box models and in full GCM

models is left for future research.

5 Well-posedness of the model

It is well known that the linear evolution problem for the inhomogeneous 3D advection-diffusion

equation subject to Neumann or Robin boundary conditions, has a unique solution if the initial values,

boundary values and coefficients satisfy some smoothness properties (see, e.g., Nittka (2014), and

references therein). On the other hand, the 3D Boussinesq system describing ocean flow is still

lacking a proof of existence of global, smooth solutions. Our system (1) - (10), is a non-trivial

extension of the regular advection-diffusion equation due to its non-local coupling. In this section we

present the theorem that guarantees the global, for all times and initial data, existence and uniqueness

of well-behaving solutions. Furthermore, we find several a priori bounds on the temperature and

salinity functions, their derivatives, and the coupling term 𝑎𝐼 itself, that may be useful for numerical

purposes, allowing some distinction between numerical errors and real features. Moreover, in the

case of time independent sources and boundary data, we prove that there is a bound on the thermal

and salinity Rayleigh numbers with respect to a function of the other dimensionless parameters of

the problem, such that if the former is large enough with respect to the latter, for all initial conditions

the corresponding solutions will eventually converge to a single, stable steady-state solution. Finally,

relatively simple generalizations of the system are subject to similar proofs, and are quite wide-spread

in various applications (see discussion in section 6).

In the next part we use the following notation: For an appropriate function 𝑄(𝒓), we denote

• ∥𝑄∥ ≡
(∫

Ω
𝑄(𝒓)2𝑑𝑉

)1/2
, the 𝐿2 norm of 𝑄 on the domain Ω;

• ∥̃𝑄 ∥̃ ≡
(∬

𝑄 (𝑥, 𝑦, 𝑧 = 1)2 𝑑𝑥𝑑𝑦
)1/2

, the 𝐿2 norm of 𝑄 on the surface part of the boundary of

Ω, defined as 𝑧 = 1 in the rescaled problem.

The main claim we prove regards the well-posedness in the sense of Hadamard of system (1)-

(10), in the case of time-independent forcing and external velocity. We note that the proof can be

easily extended to time-dependent forcing and external velocity, as long as the relevant spatial norms

are bounded in time: see Remark 2. The exact mathematical formulation of the problem and the
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theorems, and the definitions of strong and classical 𝐿2 solutions, along with an exact list of the

regularity requirements on the system parameters and functions and the full proof of the theorem

appear in Appendix C; here we present the main ideas.

Theorem 1 Given initial conditions 𝑇0, 𝑆0 that satisfy assumptions (22):

1. The evolution problem described by equations (1) - (10) has a unique, global-in-time strong

solution, denoted (𝑇, 𝑆).

2. This solution depends continuously on initial conditions, boundary conditions and sources in

the sense described by equation (47).

3. For every time T̄ > 0, the rescaled, non-dimensional solution satisfies the following bounds:

sup
𝑡∈[0,T̄ ]

∥𝑇 ∥2 (𝑡) ≤ 𝐶𝑇1 ;
∫ T̄

0

κ1/2
∇𝑇

2
(𝑡)𝑑𝑡 ≤ 𝐶𝑇2 + T̄𝐶𝑇3 ;

sup
𝑡∈[0,T̄ ]

∥𝑆∥2 (𝑡) ≤ 𝐶𝑆1 ;
∫ T̄

0

κ1/2
∇𝑆

2
(𝑡)𝑑𝑡 ≤ 𝐶𝑆2 + T̄𝐶𝑆3 ;

(13)

where
𝐶𝑇1 ≡ ∥𝑇0∥2 + 2𝑁𝑢

min{𝑁𝑢, 1}(1 − 𝑎) ∥̃𝑇
∗ ∥̃2 + 4

min{𝑁𝑢2, 1}𝑎(1 − 𝑎)
∥ 𝑓𝑇 ∥2 ;

𝐶𝑇2 ≡ 1
2
∥𝑇0∥2 ;

𝐶𝑇3 ≡ min{𝑁𝑢, 1}
8

∥𝑇0∥2 + 𝑁𝑢 ∥̃𝑇∗ ∥̃2 + 4
min{𝑁𝑢, 1} ∥ 𝑓𝑇 ∥2 ;

𝐶𝑆1 ≡ ∥𝑆0∥2 + 0.27
𝑏

𝑆ℎ2

min{1, 𝛿2}
∥̃𝑆∗ ∥̃2 + 0.06(

1
2 − 𝑏

) 1
min{1, 𝛿2}

∥ 𝑓𝑆∥2 ;

𝐶𝑆2 ≡ 1.6 min{𝛿, 1} ∥𝑆0∥2 ;

𝐶𝑆3 ≡ 1.6 min{𝛿, 1} ∥𝑆0∥2 + 6 𝑆ℎ2

min{𝛿, 1} ∥̃𝑆
∗ ∥̃2 + 3.9 𝑆ℎ

min{𝛿2, 1}
∥ 𝑓𝑆∥2 ,

(14)

for 𝑎 =

(
1 +

√︂
1 + 2𝑁𝑢 ∥̃𝑇∗ ∥̃2

∥ 𝑓𝑇 ∥2

)−1

and 𝑏 = 1
2

(
1 + 1

𝑆ℎ
√

2+𝜋
∥ 𝑓𝑆 ∥
∥̃𝑆∗ ∥̃

)−1
.

4. If, in addition, the initial conditions satisfy (25), namely, if they satisfy the boundary conditions

and are sufficiently regular, then the problem has a unique, global-in-time classical 𝐿2-solution.

Here we present the proof outline. The proof of existence relies on the concept of itera-

tion. As a first step, given initial conditions (𝑇0(𝒓), 𝑆0(𝒓)), we construct a sequence of solutions
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{(𝑇𝑛 (𝒓, 𝑡), 𝑆𝑛 (𝒓, 𝑡))}∞𝑛=1 to the iteratively-defined, linear set of advection-diffusion equations

𝜕𝑡𝑇𝑛 − ∇ · (κ∇𝑇𝑛) + (𝒖𝑛−1·∇)𝑇𝑛 = 𝑓𝑇 ; 𝜕𝑡𝑆𝑛 − ∇ · (κ∇𝑆𝑛) + (𝒖𝑛−1·∇)𝑆𝑛 = 𝑓𝑆, (15)

where 𝒖𝑛−1 ≡ 𝒖(𝒓; 𝑆𝑛−1, 𝑇𝑛−1) is determined from the previous step, according to equation (4). The

above system is subject to the boundary conditions of the original system, (9) and (10), with 𝑇𝑛 and 𝑆𝑛

in place of𝑇 and 𝑆, respectively. Note that these are linear PDEs subject to mixed Robin and Neumann

boundary conditions, and the existence and uniqueness of a solution (𝑇𝑛, 𝑆𝑛) is guaranteed in Nittka

(2014). This solution is then proven to satisfy certain energy estimates from which we deduce bounds

on the relevant norms of the solutions, that are independent of 𝑛. Using these bounds, we show that

this iterative sequence is a Cauchy sequence in the 𝐿∞( [0, 𝜏]; 𝐿2(Ω)) topology, converging strongly

to functions that solve the PDEs and satisfy the boundary conditions for short times. We can show

that the relevant norms of the solutions remain finite on the maximal interval of existence, and this

guarantees the global existence of solutions. Next, the idea of a maximal interval of existence is

used in order to show that these solutions are in fact global in time. Uniqueness of these solutions is

shown along with smooth dependence on initial and boundary conditions by bounding the difference

between two solutions with a bound that goes to zero when the difference in their initial and boundary

conditions goes to zero.

We emphasize that the bounds in Theorem 1 are generally true for temperature and salinity

functions that satisfy equations (1) - (10), with any velocity field that is incompressible and non-

penetrating, irrespective of the method through which the velocity field is achieved.

A straightforward conclusion from the proof of Theorem 1 is that the dynamical overturning

strength parameter 𝑎𝐼 is bounded:

Corollary 1 For a given rescaled, non-dimensional solution (𝑇, 𝑆) of problem (1) - (10), the dynamic

weight of the velocity function, 𝑎𝐼 (⟨𝑇⟩ , ⟨𝑆⟩), is bounded at all times:

|𝑎𝐼 (⟨𝑇⟩ , ⟨𝑆⟩) | ≤

√︃
𝐶𝑇1 + 𝑅𝜌

√︃
𝐶𝑆1

min{|𝐷1 |, |𝐷2 |}
, (16)

where the values of 𝐶𝑇1 and 𝐶𝑆1 are given in (27).

Finally, we discuss steady-state solutions of the problem. We show that for any choice of time-
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independent sources and boundary data, parameters and external velocity functions, there exists a

steady state solution to the system. Note that for a general choice of parameters, multiple steady-state

solutions to our nonlinear problem are expected to coexist, as we show numerically in Section 4.

However, as is expected in advection-diffusion-type problems, when the system is not vigorously

forced with respect to its dissipation, the steady-state solution is unique; furthermore, solutions to the

time-dependent problem converge to this unique steady state solution as 𝑡 → ∞. These results are

summarized in the following theorem:

Theorem 2 Suppose that the sources and the boundary data are time-independent. Then:

1. The nonlinear steady-state problem corresponding to (1) - (10) has a weak steady-state solution,

denoted (𝑇, 𝑆).

2. All the rescaled, non-dimensional steady-state solutions satisfy the following bounds:

∥𝑇 ∥2 ≤ 𝐶𝑇4 ,
κ1/2

∇𝑇

2
≤ 𝐶𝑇5 , ∥𝑆∥2 ≤ 𝐶𝑆4 ,

κ1/2
∇𝑆

2
≤ 𝐶𝑆5 ; (17)

where

𝐶𝑇4 =
1

16 min{𝑁𝑢, 1}2 ∥ 𝑓𝑇 ∥2 + 𝑁𝑢

4 min{𝑁𝑢, 1} ∥̃𝑇
∗ ∥̃2, 𝐶𝑇5 =

1
4 min{𝑁𝑢, 1} ∥ 𝑓𝑇 ∥2 + 2𝑁𝑢

3
∥̃𝑇∗ ∥̃2,

𝐶𝑆4 =
1
𝜖1
∥̃𝑆∗ ∥̃2 + 1

𝜖2
∥ 𝑓𝑆∥2 , 𝐶𝑆5 =

1
𝜖1
∥̃𝑆∗ ∥̃2 + 1

𝜖3
∥ 𝑓𝑆∥2 .

(18)

The constants are given by:

𝜖1 = 2 min{𝛿, 1}/𝑆ℎ2, 𝜖2 = 4 min{𝛿, 1} (3𝜋/8 − 1), 𝜖3 = 2 (min{𝛿, 1}(𝜋 − 2) + 1).

3. Let 𝑇0, 𝑆0 be initial conditions that satisfy assumptions (22), and let (𝑇, 𝑆) be a global strong

solution to equations (1) - (10), as established in Theorem 1. If the following condition is

satisfied by the problem parameters:

max{𝑅𝑎𝑇 , 𝑅𝑎𝑆} ≤ min{|𝐷1 |, |𝐷2 |}
min{𝛿, 1} min{4𝜋𝛿, 𝑁𝑢, 1}

8 max
{
𝐶𝑇5 , 𝐶

𝑆
5
} , (19)

where𝐶𝑇5 ,𝐶𝑆5 are given in equation (18), then (𝑇, 𝑆) converges to a unique steady-state solution

as 𝑡 → ∞.
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Theorem 2(iii) proves that the bistability of the system, a robust feature of known models of

density-driven flows with both salinity and temperature forcing, is lost if the minimal diffusion in the

domain is large enough with respect to the advection. This ratio is represented by 𝑅𝑎𝑇/min{𝛿, 1}.

Since the salinity Rayleigh number is 𝑅𝑎𝑆 = 𝑅𝑎𝑇𝑅𝜌, Theorem 2(iii) provides a bound on both the

thermal and the salinity Rayleigh numbers. In the special case of no external sources, 𝑓𝑇 = 𝑓𝑆 = 0,

equation (19) simplifies; for example, we can immediately conclude that the bound on both 𝑅𝑎𝑇 and

𝑅𝑎𝑆 is smaller than both 1/∥̃𝑇∗ ∥̃2 and 1/𝑆ℎ2 ∥̃𝑆∗ ∥̃2.

We note that Theorems 1 and 2 and Corollary 1 provide a priori rigorous bounds that are not

in general tight, since in their formulation, the “worst case scenario” of the most extreme functions

allowed by the problem formulation is considered. This is illustrated by Corollary 1, where the bound

for 𝑎𝐼 (⟨𝑇⟩ , ⟨𝑆⟩) does not depend on gradients or differences of 𝑇∗ and 𝑆∗, although it is obvious that

if these are constant in space, there will be no overturning circulation after sufficient time. Also, one

may calculate the numerical values of the bounds for the parameters used in the simulations. For

example, Corollary 1 promises that the overturning strength of the steady state solution in Figure 5

for freshwater forcing 1.8 Sv is smaller than 900 Sv - this is indeed the case. However, this bound

is not very useful, as the asymptotic overturning strength is found numerically to be smaller than 25

Sv. On the other hand, qualitatively the statements are sound. For example, the transition promised

by Theorem 2(iii) between a unique steady state and non-trivial dynamics is indeed observed in the

simulations: While for a large Rayleigh number, bistable solutions are found, when the minimal

diffusion in the basin is large enough with respect to the advection coefficient as encapsulated by a

small enough Rayleigh number, bistability is lost and all solutions seem to converge to a unique steady

state; see Figures 4 and 5.

Remark 1 Generalizations.

The proof presented here can be generalized to the following cases:

• Any number of boxes 𝑛 ∈ N, and any linear dependence of the coupling on the tracer functions

𝑇 and 𝑆, which can be different in each box. Thus, the internal velocity mode’s coupling strength

parameter 𝑎𝐼 can take the general form:

𝑎𝐼 (⟨𝑇⟩ , ⟨𝑆⟩) =
𝑛∑︁
𝑗=1
𝛼 𝑗

∫
𝐷𝑇

𝑗

𝑇𝑑𝑉/𝑇∗
Δ

𝐷𝑇
𝑗

+ 𝛽 𝑗

∫
𝐷𝑆

𝑗

𝑆𝑑𝑉/𝑆∗
Δ

𝐷𝑆
𝑗

, (20)
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where 𝐷𝑇
𝑗
, 𝐷𝑆

𝑗
⊂ Ω; 𝛼 𝑗 , 𝛽 𝑗 ∈ R, 𝑗 = 1, ..., 𝑛. One could further allow 𝛼 𝑗 , 𝛽 𝑗 to be spatially

dependent, as long as they are bounded. The variable values of 𝛼 𝑗 and 𝛽 𝑗 can be used to better

approximate the nonlinear equation of state (Gill, 2016).

• Any number of density-driven velocity modes 𝑚 ∈ N, resulting in a composite velocity field of

the form

𝒖(𝒓, 𝑡;𝑇, 𝑆) = 𝑃𝑒𝒖𝐸 (𝒓, 𝑡) + 𝑅𝑎𝑇
𝑚∑︁
𝑘=1

𝑎𝑘𝐼 (⟨𝑇⟩ , ⟨𝑆⟩)𝒖
𝑘
𝐼 (𝒓), (21)

where 𝑎𝑘
𝐼
, 𝑘 = 1, ..., 𝑚, are as in equation (20). Such a generalization may be used to examine the

balance between several competing effects, possibly leading to nontrivial temporal competition

between the different modes.

• Different geometries, domain shapes, etc., as long as the velocity modes do not exit the bound-

aries, i.e. their normal component to the boundaries of the domain is 0. Also, the work can be

generalized to spherical geometry by inserting the appropriate curvature parameters.

• Spatially dependent values of κ , provided they are bounded from below by a positive constant.

• A different combination of boundary conditions - Robin-Robin or Neumann-Neumann.

• Non-autonomous systems - we expand on these in the following remarks.

Remark 2 Non-autonomous systems.

In the case of a non-autonomous system, with the time-dependence arising from the external

velocity field 𝒖𝐸 , the source terms 𝑓𝑇 , 𝑓𝑆 and/or the boundary forcing terms 𝑇∗, 𝑆∗, Theorem 1 is

still valid using the same proof. The only modifications would be in the bounds, which would need

to always take into account a global-in-time bound for each time-dependent quantity. Similarly,

Corollary 1 is still valid, with the same modifications to the bounds.

Remark 3 Periodically non-autonomous systems.

In the case of time-dependent sources and boundary data with a period T , it is possible to

follow similar arguments as in Theorem 1 to show that a time-periodic set of solutions exists for any

parameters. The structure of this proof would be to create a time-T Poincaré map of the original

PDEs. Since the equations are parabolic, they have a smoothing effect that would allow one to

show that the map’s embedding is compact by the Rellich lemma. The Schauder-Tychonoff fixed point
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theorem would then guarantee the existence of a fixed point for the time-T map. Since the same steps

can be followed for any starting point, this would prove the existence of a time-T -periodic solution.

Furthermore, if the forcing and boundary data are weak with respect to the diffusion, it should be

possible to show in this case that a time-periodic solution is stable in much the same way as we prove

Theorem 2(iii) in this work.

Indeed, we see numerical evidence of Remark 3. For example, in Figure 3, a time-periodic forcing

with a yearly period in the velocity field and surface forcing results in a stable time-periodic solution,

with the same period.

6 Discussion and conclusions

We have presented a novel phenomenological kinematic-dynamic model of the interaction between

a 3D time-dependent kinematic flow with a density-driven component and the density function in

a closed basin. The model, depicted in Figure 1, is an extended version of the advection-diffusion

equations for temperature and salinity, with the velocity field serving as an integral coupling term.

Additionally, the model allows one to include realistic sources for temperature and salinity. The

coupling renders the equation set non-linear and non-local. We have proven here, using an iteration

scheme and energy estimates, that the model is well-posed in the sense of Hadamard (Theorem

1). We have shown that when the sources and the boundary data are time-independent, for a small

enough Rayleigh number, all solutions will converge to a unique steady state (Theorem 2). Though the

analytical bounds we obtain are not tight, this qualitative behavior does appear in numerical simulations

of the system (Figure 4). Furthermore, the theorems hold for a larger class of velocities, coupling and

boundary conditions, as described in Remark 1. In addition, our model bears resemblance to non-local

continuum models used to model swarm dynamics and cell migration (Mogilner & Edelstein-Keshet,

1999; Li et al., 2019). Assuming the advection field is incompressible, proving well-posedness of

such models should follow the same framework as presented here.

The presented model is an intermediate model between the fully coupled NS equations and the

uncoupled advection-diffusion equation which is used in kinematic models. Thus, it may allow, in the

future, to produce additional simplifications by which Lagrangian trajectories produced by chaotic

advection can serve as the active force that changes the internal velocity field component.
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The model is relevant for any incompressible flow with a density-driven component. Our mo-

tivating example has been the North Atlantic large scale flow, built from rapid externally driven

modes and a slow density-driven overturning mode (Figure 2). Indeed, we have shown that, given

realistic parameters, the model can produce a stable periodic state with an overturning strength, and

temperature and salinity functions, that resemble realistic and more complex simulations of the North

Atlantic ocean in current climate conditions (Figure 3). The major discrepancy between our results

and realistic distributions of temperature and salinity, respectively, is the density inversions we obtain

in the northern latitudes. These density inversions are to be expected, as we do not have a mechanism

that mixes inverted water columns in the model, such as convective adjustment (Gough, 1997). In the

actual North Atlantic ocean, density inversions appear only in the wintertime, as a result of intense

cooling events, upon which convection ensues (Marshall & Schott, 1999). Introducing a mechanism

for resolving the density inversions in our model will solve this discrepancy. There are a few op-

tions for such solutions, including convective-adjustment correction schemes (Gough, 1997), a local

increase of the vertical diffusion coefficient, or a transient, localized kinematic flow that mixes the

column through chaotic advection. We are currently exploring the different options; in later works

we will present a model that includes density-inversion corrections.

Another realistic effect that is left for a future study is the Mediterranean outflow water’s (MOW)

role in the variability of the AMOC. The Mediterranean, through the Strait of Gibraltar (36◦N, 5.7◦W),

inserts approximately 1 Sv of warm, salty and dense water that sinks to a depth of 1000 meters, and

spreads westwards, all the way to the eastern coasts of America. The various paths of these salty dense

waters to the abyss and their dominance in driving the AMOC can be examined by our model. The

effect of a modelled MOW on the asymptotic solutions is interesting in the oceanographic context,

as it is still under debate to what extent the MOW influences the AMOC strength in current climate

conditions (Reid, 1979; McCartney & Mauritzen, 2001; Lozier & Stewart, 2008; Ivanovic et al.,

2014).
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A Velocity field of the North Atlantic ocean - kinematic model

Here we present the rescaled version of the velocity fields 𝒖𝐸,𝑟𝑠 and 𝒖𝐼,𝑟𝑠 that we use in this work

to mimic the North Atlantic ocean’s large-scale flow, where 𝒖𝐸,𝑟𝑠 describes the wind-driven surface

flow, and 𝒖𝐼,𝑟𝑠 describes the density-driven overturning flow. We emphasize that the choice of this

velocity field is for the numerical part and not for the general analysis part: the general analysis holds

for any velocity fields that satisfy the minimal requirements of incompressibility and impermeability.

Thus, the domain we consider is Ω = (0, 1)3 ⊂ R3, and the velocity fields’ components are of the

order 1. In the following, we neglect the 𝑟𝑠 notation for simplicity of notation.

The flow is incompressible, and is derived from a vector streamfunction. To model the wind-

driven surface flow, we build a streamfunction component with a “hill” and “valley” along the

latitudinal component �̂�, and an asymmetric westward-biased “hill” along the longitudinal component

𝑥. The function we use along the �̂� component is a simple combination of sine functions, 𝜓𝐻𝑦 =

sin 𝜋𝑦 sin 𝜋(𝑦 − 𝑦𝐻 (𝑡)), where 𝑦𝐻 (𝑡) is the demarcation line between the gyres. Considering a yearly

periodicity, we set 𝑦𝐻 (𝑡) = �̄�𝐻 + �̃�𝐻 sin 𝜋𝑡𝜏/𝑦𝑒𝑎𝑟, where 𝑡 = 0 corresponds to January, and 𝜏 = 𝐿2
𝑧/^𝑉

is the typical timescale of the rescaling (see subsection 2.1). The time dependency of the demarcation

line causes chaotic mixing between the two gyres, as shown in Yang & Liu (1994); Aharon et al.

(2012).

The function we use along the 𝑥 component is an approximated solution to the Sverdrup equation

with a narrow boundary layer in a wide basin (Yang & Liu, 1994):

𝜓𝐻𝑥 =
𝑙𝑥

𝑚𝑥
(1 − 𝑒−𝑥/𝑙𝑥 ) (𝑥 − 1),

where 𝑚𝑥 is a normalizing factor, 𝑚𝑥 = max𝑥 𝑙𝑥
𝑚𝑥

(1 − 𝑒−𝑥/𝑙𝑥 ) (𝑥 − 1), so that the peak of the “hill”

is at the value 1. 𝑙𝑥 is the westward asymmetry parameter, and determines the width of the western

boundary current and the Gulf Stream. At its limits, 𝑙𝑥 → 0 corresponds to a width of 0 and an infinite

velocity at 𝑥 = 0, while 𝑙𝑥 → ∞ corresponds to a symmetric function around 𝑥 = 0.5.

28



This construction is similar to that used in Yang & Liu (1994), in which they considered a two-

dimensional flow built from two asymmetric gyres of a similar functional form with an oscillating

demarcation line between gyres. For a given time 𝑡, the Eulerian streamlines are closed contours

with a westward bias. The time dependancy of 𝜓𝑦 causes the Lagrangian trajectories to be chaotic,

resulting in transport between the two gyres.

To these wind-driven features we add the influence of the penetration depth, set as the depth of

the thermocline 𝐻𝑇𝐶 . Thus the 𝑧-dependence of the flow is given by an exponential decay of the

horizontal velocity with depth, 𝜓𝐻𝑧 = 1 − (1 + exp−(1 − 𝑧)/𝐻𝑇𝐶)−1. The overall streamfunction

component 𝜓𝐻 is the product of these contributions:

𝜓𝐻 (𝒓, 𝑡) = 𝜓𝐻𝑥 (𝑥)𝜓𝐻𝑦 (𝑦, 𝑡)𝜓𝐻𝑧 (𝑧),

and the horizontal component of the velocity field is derived in the common method:

𝒖𝐸 ≡ (𝑢𝐸 , 𝑣𝐸 , 𝑤𝐸 ) ; 𝑢𝐸 = 𝜕𝑦𝜓𝐻 , 𝑣𝐸 = −𝜕𝑥𝜓𝐻 , 𝑤𝐸 = 0.

In the full, 3D velocity field, 𝒖𝐸 is multiplied by the strength parameter 𝑃𝑒. Present day measurements

evaluate the Gulf Stream width at around 150km, and its maximal velocity at around 2.5m/s. The

average demarcation line position is around 40◦𝑁 , and its oscillation is seasonal with an amplitude

of approximately 2◦ latitude. The thermocline depth is around 500 meters. In order to reproduce

these numbers, the relevant parameters are set to be of the order 𝑃𝑒 ∼ 106,�̄�𝐻 = 0.57, �̃�𝐻 = 0.05,

𝐻𝑇𝐶 = 0.1, 𝑙𝑥 = 0.01.

To model the vertical overturning flow, we build a zonally symmetric streamfunction component

with an asymmetric “hill” along the depth component 𝑧, and an asymmetric “hill” along the latitudinal

component �̂�. This formulation creates an overturning flow with north-bound transport above the

thermocline, a steep downwelling regime along the northern border of the basin, south-bound flow

below the thermocline and semi-uniform upwelling south of the downwelling regime. The asymmetric

functions we use are of the same form as 𝜓𝐻𝑥 :

𝜓𝑉𝑧 =
𝑙𝑧

𝑚𝑧

(
1 − 𝑒

𝑧−1
𝑙𝑧

)
𝑧, 𝜓𝑉𝑦 =

𝑙𝑦

𝑚𝑦

(
1 − 𝑒−

𝑦

𝑙𝑦

)
(1 − 𝑦),
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where 𝑚𝑧, 𝑚𝑦 are rescaling parameters as in 𝜓𝐻 . The overall streamfunction is given by

𝜓𝑉 (𝒓) = 𝜓𝑉𝑧 (𝑧)𝜓𝑉𝑦 (𝑦),

and the velocity is derived in the common form:

𝒖𝐼 ≡ (𝑢𝐼 , 𝑣 𝐼 , 𝑤 𝐼) ; 𝑢𝐼 = 0, 𝑣 𝐼 = 𝜕𝑧𝜓𝑉 , 𝑤 𝐼 = −𝜕𝑦𝜓𝑉 .

For a downwelling regime between 55◦𝑁 and 70◦𝑁 , the �̂�-direction asymmetry parameter is set to

𝑙𝑦 = 0.1. For a northbound transport extending to a depth of 1000 meters, the 𝑧-direction asymmetry

parameter is set to 𝑙𝑧 = 0.1. In this case, the maximal velocity is obtained at the downwelling branch.

The full velocity field is given by a weighted sum of the individual contributions:

𝒖(𝒓, 𝑡) = 𝑃𝑒𝒖𝐸 (𝒓, 𝑡) + 𝑅𝑎𝑇𝑎𝐼 (⟨𝜌⟩)𝒖𝐼 (𝒓).

B Model parameters

In Table 1, we summarize the model parameters used in the numerical experiments shown in figures 3

(realistic experiment), 4 (2D autonomous experiment) and 5 (3D autonomous experiment). To obtain

the bi-stability seen in Figures 4 and 5, the dimensions of the top box 𝑧𝐵 and the effective rates of

convective heat and mass transfer at the boundary, 𝑔𝑇
𝐴

and 𝑔𝑆
𝐴

respectively, had to be tweaked, as is

common in box model experiments. The rest of the changes in parameters between the experiments

are motivated in section 4. Overall, the physical control parameters we changed between the three

experiments are the internal strength parameter 𝑎𝐼’s proportionality constant Γ, the eddy diffusivity

κ , the temperature and salinity surface functions 𝑇∗ and 𝑆∗, the strength of the external velocity field

𝑎𝐸 , the intergyre mean demarcation line �̄�𝐻 and oscillation amplitude �̃�𝐻 , the depth box boundary

𝑧𝐵 and the depth asymmetry parameter 𝑙𝑧. Correspondingly, the rescaling parameters 𝜏 = 𝐿2
𝑧/^𝑉 ,

𝑇∗
Δ
= max𝑇∗ − min𝑇∗, and 𝑆∗

Δ
= max 𝑆∗ − min 𝑆∗ change between the experiments, as do the non-

dimensional parameters 𝛿𝑥 =
^𝐻/𝐿2

𝑥

^𝑉/𝐿2
𝑧
, 𝛿𝑦 =

^𝐻/𝐿2
𝑦

^𝑉/𝐿2
𝑧
, 𝑆ℎ =

𝑔𝑆
𝐴

^𝑉/𝐿𝑧 , 𝑃𝑒 =
𝑎𝐸

^𝑉/𝐿𝑧 , 𝑅𝑎𝑇 =
Γ𝜌0𝛼𝑇

∗
Δ

^𝑉/𝐿𝑧 , and

𝑅𝜌 =
𝛼𝑇∗

Δ

𝛽𝑆∗
Δ

.
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Parameters Parameter description Realistic 2D aut. 3D aut.
[units] Figure 3 Figure 4 Figure 5

Rescaling
𝐿𝑥 [m] Longitudinal length (0 − 60◦𝑊) 4 × 106 m 4 × 106 m 4 × 106 m
𝐿𝑦 [m] Latitudinal length (𝐸𝑞 − 70◦𝑁) 7.7 × 106 m 7.7 × 106 m 7.7 × 106 m
𝐿𝑧 [m] Depth (AMOC depth) 4 × 103 m 4 × 103 m 4 × 103 m
𝜏 [yrs] Vertical eddy diffusivity timescale 2 × 103 yr 103 − 106 yr 100 yr
𝑇∗
Δ

[◦C] Temperature scale (max𝑇∗ − min𝑇∗) 30◦C 18◦C 18◦C
𝑆∗
Δ

[psu] Salinity scale (max 𝑆∗ − min 𝑆∗) 17 psu 0.1 − 5 psu 0.1 − 5 psu

Diffusion
𝛿𝑥 Rescaled longitudinal diffusion 10 102 − 105 0.1
𝛿𝑦 Rescaled latitudinal diffusion 10 102 − 105 0.1

Sources
𝑁𝑢 Nusselt number 140 140 140
𝑆ℎ Sherwood number 20 10 − 104 1
𝑓𝑇 Bulk temperature source 0 0 0
𝑓𝑆 Bulk salinity source 0 0 0

External velocity (wind-driven)
𝑃𝑒 Péclet number 1.6 × 106 0 5 × 104

�̄�𝐻 Intergyre demarcation line (Figure 2) 0.57 - 0.78
�̃�𝐻 Intergyre oscillation amplitude 0.02 - 0
𝑙𝑥 Longitudinal asymmetry parameter 0.01 - 0.01
𝐻𝑇𝐶 [m] Penetration depth 600 m - 600 m

Internal velocity (density-driven)
𝑅𝑎𝑇 Thermal Rayleigh number 1.8 × 103 2 × 102 − 2 × 105 20
𝑅𝜌 Density stability ratio 5.8 1 − 50 1 − 50
𝑦𝐵 Latitudinal box boundary (Figure 2) 0.78 0.78 0.78
𝑧𝐵 Depth box boundary (Figure 2) 0.75 0.85 0.85
𝑙𝑦 Latitudinal asymmetry parameter 0.1 0.1 0.1
𝑙𝑧 Depth asymmetry parameter 0.1 0.04 0.04

Table 1: Parameters used in the simulations presented in this work. Aut. = Autonomous.
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C Proof of global well-posedness of the model and corollaries

C.1 Problem formulation

LetΩ = (0, 1)3 be a box domain describing a (rescaled) oceanic basin, 𝒓 = (𝑥, 𝑦, 𝑧) ∈ Ω a general point

in the domain, 𝑞 ∈ 𝜕Ω a general point on the boundary of the domain, and define �̂�(𝑞) as the unit vector

pointing outwards from the boundary of the domain. We further define 𝜎1 ≡ (𝑥, 𝑦, 𝑧 = 1) ⊂ 𝜕Ω as the

upper surface of the ocean, and 𝜎0 ≡ (𝑥, 𝑦, 𝑧 = 0) ⊂ 𝜕Ω as the ocean bottom. We divide the domain

into two subdomains 𝐷1, 𝐷2 ⊂ Ω, 𝐷1 ∪ 𝐷2 = Ω, and define for any function 𝜙 ∈ 𝐿2(Ω) the averages

⟨𝜙⟩𝑖 = 1
𝐷𝑖

∫
𝐷𝑖
𝜙𝑑𝑉 , for 𝑖 = 1, 2. As a shorthand, we define the vector ⟨𝜙⟩ ≡ (⟨𝜙⟩1 , ⟨𝜙⟩2) ∈ R2.

Let κ , Γ, 𝛼, 𝛽, 𝑎𝐸 , 𝒖𝐸 , 𝒖𝐼 , 𝑓𝑇 , 𝑓𝑆, 𝑔𝑇𝐴, 𝑔𝑆
𝐴
, 𝑇∗, 𝑆∗, 𝑇0, and 𝑆0 be given, and satisfy the following

assumptions: 

(𝑎1) κ =

©«
^𝑥 0 0

0 ^𝑦 0

0 0 ^𝑧

ª®®®®®®®¬
; ^𝑥 , ^𝑦, ^𝑧 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠,

(𝑎2) Γ, 𝛼, 𝛽, 𝑎𝐸 , 𝑔
𝑇
𝐴
, 𝑔𝑆

𝐴
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠,

(𝑎3) 𝒖𝐸 , 𝒖𝐼 ∈ (𝐿∞(𝒓))3,

(𝑎4) ∇ · 𝒖𝐸 (𝒓) = ∇ · 𝒖𝐼 (𝒓) = 0,

(𝑎5) 𝒖𝐸 · �̂�(𝑞) = 𝒖𝐼 · �̂�(𝑞) = 0,

(𝑎6) 𝑓𝑇 , 𝑓𝑆 ∈ 𝐿2(Ω);
∫
Ω
𝑓𝑆𝑑𝑉 = 0,

(𝑎7) 𝑇∗, 𝑆∗ ∈ 𝐻1(𝜎1);
∫
𝜎1
𝑆∗𝑑𝑥𝑑𝑦 = 0,

(𝑎8) 𝜕𝑥𝑇
∗(𝑥, 𝑦) |𝑥=0,1 = 𝜕𝑦𝑇

∗(𝑥, 𝑦) |𝑦=0,1 = 0,

(𝑎9) 𝜕𝑥𝑆
∗(𝑥, 𝑦) |𝑥=0,1 = 𝜕𝑦𝑆

∗(𝑥, 𝑦) |𝑦=0,1 = 0,

(𝑎10) 𝑇0, 𝑆0 ∈ 𝐿2(Ω).

(𝑎11)
∫
Ω
𝑆0𝑑𝑉 = 0.

(22)
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Then we consider the following nonlinear evolution problem for a temperature 𝑇 and a salinity 𝑆:



(𝑃1) 𝜕𝑡𝑇 (𝑡, 𝒓) − ∇ · (κ∇𝑇 (𝑡, 𝒓)) + (𝒖(𝒓; ⟨𝑇⟩ , ⟨𝑆⟩) · ∇)𝑇 (𝑡, 𝒓) = 𝑓𝑇 (𝒓), 𝑡 > 0 , 𝒓 ∈ Ω

(𝑃2) 𝜕𝑡𝑆(𝑡, 𝒓) − ∇ · (κ∇𝑆(𝑡, 𝒓)) + (𝒖(𝒓; ⟨𝑇⟩ , ⟨𝑆⟩)·∇)𝑆(𝑡, 𝒓) = 𝑓𝑆 (𝒓), 𝑡 > 0 , 𝒓 ∈ Ω

(𝑃3) 𝑎𝐼 (⟨𝑇⟩ , ⟨𝑆⟩) = Γ (−𝛼(⟨𝑇⟩2 (𝑡) − ⟨𝑇⟩1 (𝑡)) + 𝛽(⟨𝑆⟩2 (𝑡) − ⟨𝑆⟩1 (𝑡))) , 𝑡 > 0

(𝑃4) 𝒖(𝒓; ⟨𝑇⟩ , ⟨𝑆⟩) = 𝑎𝐸𝒖𝐸 (𝒓) + 𝑎𝐼 (⟨𝑇⟩ , ⟨𝑆⟩)𝒖𝐼 (𝒓), 𝑡 > 0 , 𝒓 ∈ Ω

(𝑃5) (κ∇𝑇 (𝑡, 𝑞)) · �̂�(𝑞) =


𝑔𝑇
𝐴
(𝑇∗(𝑥, 𝑦) − 𝑇 (𝑡, 𝑞)) if 𝑞 ∈ 𝜎1

0 else
, 𝑡 > 0 , 𝑞 ∈ 𝜕Ω

(𝑃6) (κ∇𝑆(𝑡, 𝑞)) · �̂�(𝑞) =


𝑔𝑆
𝐴
𝑆∗(𝑥, 𝑦) if 𝑞 ∈ 𝜎1

0 else
, 𝑡 > 0 , 𝑞 ∈ 𝜕Ω

(𝑃7) 𝑇 (𝑡 = 0, 𝒓) = 𝑇0(𝒓), 𝒓 ∈ Ω

(𝑃8) 𝑆(𝑡 = 0, 𝒓) = 𝑆0(𝒓). 𝒓 ∈ Ω

(23)

Note that assumptions (𝑎8) and (𝑎9) are compatibility conditions for the boundary. The coupled

system (𝑃1) − (𝑃8) equipped with assumptions (22) is denoted by
(
𝑃𝑇0,𝑆0,𝑇∗,𝑆∗, 𝑓𝑇 , 𝑓𝑆

)
. Let _ =

1
4 min{𝑔𝑇

𝐴
, ^𝑧} and ^𝑚𝑖𝑛 = min{^𝑥 , ^𝑦, ^𝑧}; _ and ^𝑚𝑖𝑛 are strictly positive from assumption (a2).

Throughout the text, κ , Γ, 𝛼, 𝛽, 𝑎𝐸 , 𝒖𝐸 , 𝒖𝐼 𝑔𝑇𝐴, 𝑔𝑆
𝐴
, _ and ^𝑚𝑖𝑛 are called the problem parameters; 𝑓𝑇 ,

𝑓𝑆 are called the source functions; 𝑇∗, 𝑆∗ are called the boundary functions, and 𝑇0, 𝑆0 are the initial

conditions.

Remark C. 1 Integrating equation (𝑃2) over the domain, using the relevant boundary conditions,

one can show that
∫
Ω
𝑆(𝑡, 𝒓)𝑑𝑉 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

Hence, by virtue of (a11) without loss of generality and for simplicity we consider solutions with∫
Ω
𝑆(𝑡, 𝒓)𝑑𝑉 = 0. Suppose𝑊 ⊂ 𝐿1(Ω), then we denote by ¤𝑊 = { 𝑓 ∈ 𝑊 :

∫
Ω
𝑓 𝑑𝑉 = 0}.

Here we follow closely the presentation in Nittka (2014), and correspondingly we define three

notions of solutions to
(
𝑃𝑇0,𝑆0,𝑇∗,𝑆∗, 𝑓𝑇 , 𝑓𝑆

)
. For T > 0, we denote the Banach spaces: 𝑊𝑇 =
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𝐶 ( [0,T]; 𝐿2(Ω)) ∩ 𝐿2(0,T ;𝐻1(Ω)),𝑊𝑆 = 𝐶 ( [0,T]; ¤𝐿2(Ω)) ∩ 𝐿2(0,T ; ¤𝐻1(Ω)).

Definition C. 1 Let T > 0. (𝑇, 𝑆) ∈ 𝑊𝑇 ×𝑊𝑆 is a weak solution on [0,T] of
(
𝑃𝑇0,𝑆0,𝑇∗,𝑆∗, 𝑓𝑇 , 𝑓𝑆

)
if, for

all test functions 𝜓 ∈ 𝐻1( [0,T];𝐻1(Ω)) with 𝜓(T ) = 0, the following holds:

−
∫ T

0

∫
Ω

𝑇 (𝑡)𝜕𝑡𝜓(𝑡)𝑑𝑉𝑑𝑡 +
∫ T

0

(∫
Ω

(κ∇𝑇 (𝑡) − 𝒖𝑇 (𝑡)) · ∇𝜓(𝑡)𝑑𝑉 +
∫
𝜎1

𝑔𝑇𝐴𝑇 (𝑡)𝜓(𝑡)𝑑𝑥𝑑𝑦
)
𝑑𝑡

=

∫
Ω

𝑇0𝜓(0)𝑑𝑉 +
∫ T

0

∫
Ω

𝑓𝑇𝜓(𝑡)𝑑𝑉𝑑𝑡 +
∫ T

0

∫
𝜎1

𝑔𝑇𝐴𝑇
∗(𝑥, 𝑦)𝜓(𝑡)𝑑𝑥𝑑𝑦𝑑𝑡;

−
∫ T

0

∫
Ω

𝑆(𝑡)𝜕𝑡𝜓(𝑡)𝑑𝑉𝑑𝑡 +
∫ T

0

∫
Ω

(κ∇𝑆(𝑡) − 𝒖𝑆(𝑡)) · ∇𝜓(𝑡)𝑑𝑉𝑑𝑡

=

∫
Ω

𝑆0𝜓(0)𝑑𝑉 +
∫ T

0

∫
Ω

𝑓𝑆𝜓(𝑡)𝑑𝑉𝑑𝑡 +
∫ T

0

∫
𝜎1

𝑔𝑆𝐴𝑆
∗(𝑥, 𝑦)𝜓(𝑡)𝑑𝑥𝑑𝑦𝑑𝑡,

(24)

where 𝒖 = 𝒖(𝒓; ⟨𝑇⟩ , ⟨𝑆⟩) is given by equation (𝑃4) in (23).

Remark C. 2 If a weak solution exists, then from (24) one can prove that (𝑇 (𝑡 = 0), 𝑆(𝑡 = 0)) =

(𝑇0, 𝑆0).

Definition C. 2 Let T > 0. (𝑇, 𝑆) is a strong solution on [0,T] of
(
𝑃𝑇0,𝑆0,𝑇∗,𝑆∗, 𝑓𝑇 , 𝑓𝑆

)
if it is a weak

solution, and (𝑇, 𝑆) ∈ 𝐻1( [0,T]; 𝐿2(Ω)) × 𝐻1( [0,T]; ¤𝐿2(Ω)).

Definition C. 3 Let T > 0. (𝑇, 𝑆) is a classical 𝐿2-solution on [0,T] of
(
𝑃𝑇0,𝑆0,𝑇∗,𝑆∗, 𝑓𝑇 , 𝑓𝑆

)
if:

1. (𝑇, 𝑆) ∈ (𝐶1( [0,T]; 𝐿2(Ω))∩𝐶 ( [0,T];𝐻1(Ω))) × (𝐶1( [0,T]; ¤𝐿2(Ω))∩𝐶 ( [0,T]; ¤𝐻1(Ω)))

2. ∇ · (κ∇𝑇),∇ · (κ∇𝑆) ∈ 𝐶 ( [0,T]; 𝐿2(Ω))

3. (κ∇𝑇) · �̂�|𝜕Ω, (κ∇𝑆) · �̂�|𝜕Ω ∈ 𝐶 ( [0,T]; 𝐿2(𝜕Ω))

4. (𝑇 (𝑡 = 0), 𝑆(𝑡 = 0)) = (𝑇0, 𝑆0)

5. (𝑇, 𝑆) satisfies equations (𝑃1), (𝑃2) in the sense of 𝐶 ( [0,T]; 𝐿2(Ω)) and equations (𝑃5),

(𝑃6) in the sense of 𝐶 ( [0,T]; 𝐿2(𝜕Ω)).

As we shall see in Theorem C.1, for classical 𝐿2-solutions the initial conditions will need to satisfy,
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in addition to the relevant assumptions in (22), the following compatibility assumptions:



(𝑏1) 𝑇0, 𝑆0 ∈ 𝐻4(Ω)

(𝑏2) (κ∇𝑇0(𝑞)) · �̂�(𝑞) =


𝑔𝑇
𝐴
(𝑇∗(𝑥, 𝑦) − 𝑇0(𝑞)) if 𝑞 ∈ 𝜎1

0 else

(𝑏3) (κ∇𝑆0(𝑞)) · �̂�(𝑞) =


𝑔𝑆
𝐴
𝑆∗(𝑥, 𝑦) if 𝑞 ∈ 𝜎1

0 else

. (25)

We further define the notion of temporally global solutions as follows:

Definition C. 4 (𝑇, 𝑆) is a global weak/strong/classical solution of
(
𝑃𝑇0,𝑆0,𝑇∗,𝑆∗, 𝑓𝑇 , 𝑓𝑆

)
if, for any

T > 0, it is a weak/strong/classical solution on [0,T], respectively.

Theorem C. 1 Let κ , Γ, 𝛼, 𝛽, 𝑎𝐸 , 𝒖𝐸 , 𝒖𝐼 , 𝑓𝑇 , 𝑓𝑆, 𝑔𝑇𝐴, 𝑔𝑆
𝐴
, 𝑇∗, 𝑆∗, 𝑇0, and 𝑆0 be given as in (22). Then:

1. The nonlinear problem
(
𝑃𝑇0,𝑆0,𝑇∗,𝑆∗, 𝑓𝑇 , 𝑓𝑆

)
has a unique, global strong solution (𝑇, 𝑆).

2. This solution depends continuously on initial conditions, boundary conditions and sources in

the sense described by equation (47), below.

3. For every T̄ > 0, the solution satisfies the following bounds:

sup
𝑡∈[0,T̄ ]

∥𝑇 ∥2 (𝑡) ≤ 𝐶𝑇1 ;
∫ T̄

0

κ1/2
∇𝑇

2
(𝑡)𝑑𝑡 ≤ 𝐶𝑇2 + T̄𝐶𝑇3 ;

sup
𝑡∈[0,T̄ ]

∥𝑆∥2 (𝑡) ≤ 𝐶𝑆1 ;
∫ T̄

0

κ1/2
∇𝑆

2
(𝑡)𝑑𝑡 ≤ 𝐶𝑆2 + T̄𝐶𝑆3 ;

(26)

where

𝐶𝑇1 ≡ ∥𝑇0∥2 +
𝑔𝑇
𝐴

2_(1 − 𝑎) ∥̃𝑇
∗ ∥̃2 + 1

4_2𝑎(1 − 𝑎)
∥ 𝑓𝑇 ∥2 ;

𝐶𝑇2 ≡ 1
2
∥𝑇0∥2 ; 𝐶𝑇3 ≡ _

2
∥𝑇0∥2 + 𝑔𝑇𝐴 ∥̃𝑇

∗ ∥̃2 + 1
_
∥ 𝑓𝑇 ∥2 ;

𝐶𝑆1 ≡ ∥𝑆0∥2 + 1
2𝜋^2

𝑚𝑖𝑛

(
1 + 2

𝜋

𝑏

(
𝑔𝑆𝐴

)2
∥̃𝑆∗ ∥̃2 + 1

𝜋( 1
2 − 𝑏)

∥ 𝑓𝑆∥2

)
;

𝐶𝑆2 ≡ 𝜋^𝑚𝑖𝑛

2
∥𝑆0∥2 ; 𝐶𝑆3 ≡ 𝜋^𝑚𝑖𝑛

2
∥𝑆0∥2 + 6

𝑔𝑆
𝐴

^𝑚𝑖𝑛

(
𝑔𝑆𝐴 ∥̃𝑆

∗ ∥̃2 + 2
𝜋^𝑚𝑖𝑛

∥ 𝑓𝑆∥2
)
,

(27)
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for 𝑎 =

(
1 +

√︂
1 + 2𝑔𝑇

𝐴

∥̃𝑇∗ ∥̃2

∥ 𝑓𝑇 ∥2

)−1

and 𝑏 = 1
2

(
1 + 1

𝑔𝑆
𝐴

√
2+𝜋

∥ 𝑓𝑆 ∥
∥̃𝑆∗ ∥̃

)−1
.

4. If, in addition, the initial conditions satisfy (25) then
(
𝑃𝑇0,𝑆0,𝑇∗,𝑆∗, 𝑓𝑇 , 𝑓𝑆

)
has a unique, global

classical 𝐿2-solution.

C.2 Proof of Theorem C.1

C.2.1 Construction of an iterative sequence of approximate solutions

The proof will consist of several major steps, which we will describe in the next subsections.

Let us start by constructing an iterative scheme, that will result in a sequence of solutions to an

iteratively defined linear problem that approximates the nonlinear problem
(
𝑃𝑇0,𝑆0,𝑇∗,𝑆∗, 𝑓𝑇 , 𝑓𝑆

)
. To this

end, let T > 0, and let 𝑇𝑚, 𝑆𝑚 ∈ 𝐶 ( [0,T]; 𝐿2(Ω)) be given. Then we present the following linear

problem, defined for 𝑡 ∈ (0,T]:



(𝑃1𝑙) 𝜕𝑡𝑇 (𝑡, 𝒓) − ∇ · (κ∇𝑇 (𝑡, 𝒓)) + (𝒖𝑚 (𝒓, ⟨𝑇𝑚⟩ , ⟨𝑆𝑚⟩)·∇)𝑇 (𝑡, 𝒓) = 𝑓𝑇 (𝒓), 𝑡 > 0 , 𝒓 ∈ Ω

(𝑃2𝑙) 𝜕𝑡𝑆(𝑡, 𝒓) − ∇ · (κ∇𝑆(𝑡, 𝒓)) + (𝒖𝑚 (𝒓; ⟨𝑇𝑚⟩ , ⟨𝑆𝑚⟩)·∇)𝑆(𝑡, 𝒓) = 𝑓𝑆 (𝒓), 𝑡 > 0 , 𝒓 ∈ Ω

(𝑃3𝑙) 𝑎𝐼 (⟨𝑇𝑚⟩ , ⟨𝑆𝑚⟩) = Γ (−𝛼(⟨𝑇𝑚⟩2 − ⟨𝑇𝑚⟩1) + 𝛽(⟨𝑆𝑚⟩2 − ⟨𝑆𝑚⟩1)) , 𝑡 > 0

(𝑃4𝑙) 𝒖𝑚 (𝒓; ⟨𝑇𝑚⟩ , ⟨𝑆𝑚⟩) = 𝑎𝐸𝒖𝐸 (𝒓) + 𝑎𝐼 (⟨𝑇𝑚⟩ , ⟨𝑆𝑚⟩)𝒖𝐼 (𝒓), 𝑡 > 0 , 𝒓 ∈ Ω

(𝑃5𝑙) (κ∇𝑇 (𝑡, 𝑞)) · �̂�(𝑞) =


𝑔𝑇
𝐴
(𝑇∗(𝑥, 𝑦) − 𝑇 (𝑡, 𝑞)) if 𝑞 ∈ 𝜎1

0 else
, 𝑡 > 0 , 𝑞 ∈ 𝜕Ω

(𝑃6𝑙) (κ∇𝑆(𝑡, 𝑞)) · �̂�(𝑞) =


𝑔𝑆
𝐴
𝑆∗(𝑥, 𝑦) if 𝑞 ∈ 𝜎1

0 else
, 𝑡 > 0 , 𝑞 ∈ 𝜕Ω

(𝑃7𝑙) 𝑇 (𝑡 = 0, 𝒓) = 𝑇0(𝒓), 𝒓 ∈ Ω

(𝑃8𝑙) 𝑆(𝑡 = 0, 𝒓) = 𝑆0(𝒓). 𝒓 ∈ Ω

(28)

We call equations (𝑃1𝑙)-(𝑃8𝑙) equipped with assumptions (22) as
(
𝑃𝑙𝑖𝑛𝑒𝑎𝑟
𝑇0,𝑆0,𝑇𝑚,𝑆𝑚

)
. Note that in
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this notation we explicitly specify only the initial conditions 𝑇0, 𝑆0 and the functions 𝑇𝑚, 𝑆𝑚 ∈

𝐶 ( [0,T]; 𝐿2(Ω)); the problem parameters, boundary functions, and source functions are the same

as are given above in the theorem formulation. We remark that this problem is almost identical to

the nonlinear problem, except that the velocity field is predetermined by the given functions 𝑇𝑚, 𝑆𝑚.

Hence, this problem is indeed linear. In fact, one can decouple
(
𝑃𝑙𝑖𝑛𝑒𝑎𝑟
𝑇0,𝑆0,𝑇𝑚,𝑆𝑚

)
into two separate linear

problems: equations (𝑃1𝑙), (𝑃3𝑙), (𝑃5𝑙) for 𝑇 (𝑡, 𝒓), and equations (𝑃2𝑙), (𝑃4𝑙), (𝑃6𝑙) for 𝑆(𝑡, 𝒓).

Following exactly as before, we define three notions of solutions to
(
𝑃𝑙𝑖𝑛𝑒𝑎𝑟
𝑇0,𝑆0,𝑇𝑚,𝑆𝑚

)
:

Definition C. 5 Let T > 0 and 𝑇𝑚, 𝑆𝑚 ∈ 𝐶 ( [0,T]; 𝐿2(Ω)) be given. (𝑇, 𝑆) ∈ 𝑊𝑇 × 𝑊𝑆 is

called a weak solution on [0,T] of the linear problem
(
𝑃𝑙𝑖𝑛𝑒𝑎𝑟
𝑇0,𝑆0,𝑇𝑚,𝑆𝑚

)
if, for all test functions

𝜓 ∈ 𝐻1( [0,T];𝐻1(Ω)) with 𝜓(T ) = 0, the following holds:

−
∫ T

0

∫
Ω

𝑇 (𝑡)𝜕𝑡𝜓(𝑡)𝑑𝑉𝑑𝑡 +
∫ T

0

(∫
Ω

(κ∇𝑇 (𝑡) − 𝒖𝑚 𝑇 (𝑡)) · ∇𝜓(𝑡)𝑑𝑉 +
∫
𝜎1

𝑔𝑇𝐴𝑇 (𝑡)𝜓(𝑡)𝑑𝑥𝑑𝑦
)
𝑑𝑡

=

∫
Ω

𝑇0𝜓(0)𝑑𝑉 +
∫ T

0

∫
Ω

𝑓𝑇𝜓(𝑡)𝑑𝑉𝑑𝑡 +
∫ T

0

∫
𝜎1

𝑔𝑇𝐴𝑇
∗(𝑥, 𝑦)𝜓(𝑡)𝑑𝑥𝑑𝑦𝑑𝑡;

(29)

−
∫ T

0

∫
Ω

𝑆(𝑡)𝜕𝑡𝜓(𝑡)𝑑𝑉𝑑𝑡 +
∫ T

0

∫
Ω

(κ∇𝑆(𝑡) − 𝒖𝑚 𝑆(𝑡)) · ∇𝜓(𝑡)𝑑𝑉𝑑𝑡

=

∫
Ω

𝑆0𝜓(0)𝑑𝑉 +
∫ T

0

∫
Ω

𝑓𝑆𝜓(𝑡)𝑑𝑉𝑑𝑡 +
∫ T

0

∫
𝜎1

𝑔𝑆𝐴𝑆
∗(𝑥, 𝑦)𝜓(𝑡)𝑑𝑥𝑑𝑦𝑑𝑡.

(30)

Definition C. 6 Let T > 0, 𝑇𝑚, 𝑆𝑚 ∈ 𝐶 ( [0,T]; 𝐿2(Ω)) be given. (𝑇, 𝑆) is a strong solution on

[0,T] of the linear problem
(
𝑃𝑙𝑖𝑛𝑒𝑎𝑟
𝑇0,𝑆0,𝑇𝑚,𝑆𝑚

)
if it is a weak solution on [0,T], and

𝑇, 𝑆 ∈ 𝐻1( [0,T]; 𝐿2(Ω)).

Definition C. 7 Let T > 0, 𝑇𝑚, 𝑆𝑚 ∈ 𝐶 ( [0,T]; 𝐿2(Ω)) be given. (𝑇, 𝑆) is a classical 𝐿2-solution on

[0,T] of the linear problem
(
𝑃𝑙𝑖𝑛𝑒𝑎𝑟
𝑇0,𝑆0,𝑇𝑚,𝑆𝑚

)
if:

1. (𝑇, 𝑆) ∈ 𝐶1( [0,T]; 𝐿2(Ω)) ∩ 𝐶 ( [0,T];𝐻1(Ω)) × 𝐶1( [0,T]; ¤𝐿2(Ω)) ∩ 𝐶 ( [0,T]; ¤𝐻1(Ω))

2. {∇ · (κ∇𝑇),∇ · (κ∇𝑆)} ∈ (𝐶 ((0,T]; 𝐿2(Ω)))2

3. {(κ∇𝑇) · �̂�|𝜕Ω, (κ∇𝑆) · �̂�|𝜕Ω} ∈ (𝐶 ( [0,T]; 𝐿2(𝜕Ω)))2

4. (𝑇 (𝑡 = 0), 𝑆(𝑡 = 0)) = (𝑇0, 𝑆0)
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5. 𝑇, 𝑆 satisfy equations (𝑃1𝑙 , 𝑃2𝑙 , 𝑃5𝑙 , 𝑃6𝑙) as functions in𝐶 ( [0,T]; 𝐿2(Ω)),𝐶 ( [0,T]; 𝐿2(𝜕Ω)).

In particular, thanks to (iii) above, (𝜕𝑡𝑇, 𝜕𝑡𝑆) ∈
(
𝐶 ((0,T]; 𝐿2(Ω))

)2

In particular, a classical 𝐿2-solution is a strong solution.

Proposition C. 1 Let T > 0, 𝑇𝑚, 𝑆𝑚 ∈ 𝐶 ( [0,T]; 𝐿2(Ω)) be given. Then:

1.
(
𝑃𝑙𝑖𝑛𝑒𝑎𝑟
𝑇0,𝑆0,𝑇𝑚,𝑆𝑚

)
has a unique strong solution on [0,T].

2. If, in addition, the initial conditions 𝑇0, 𝑆0 satisfy assumptions (25), then
(
𝑃𝑙𝑖𝑛𝑒𝑎𝑟
𝑇0,𝑆0,𝑇𝑚,𝑆𝑚

)
has a

unique classical 𝐿2-solution on [0,T].

Proof:

1. Existence and uniqueness of weak solutions of the linear problem are guaranteed directly by

Theorem 2.11 in Nittka (2014). Moreover, existence and uniqueness of strong solutions are

given by Remark 2.15 in Nittka (2014). We note that in order to use Remark 2.15 in Nittka (2014)

to prove the existence of a strong solution, one may construct a function𝐺 ∈ 𝐻1( [0,T];𝐻2(Ω))

whose restriction to the boundary satisfies the boundary conditions. In our problem setting,

due to the compatibility conditions (𝑎8), (𝑎9) in (22) this task can be easily achieved by setting

𝐺 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑇∗(𝑥, 𝑦, 𝑡) for 𝑇 , and 𝐺 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑔𝑆
𝐴
𝑆∗(𝑥, 𝑦, 𝑡)𝑧2/2 for 𝑆, where 𝑇∗ and 𝑆∗ are

lifted from the boundary to the full domain and are constant with respect to the 𝑧 variable. Due

to the trace theorem, 𝐺 has the required regularity, i.e. 𝐺 ∈ 𝐻1( [0,T];𝐻2(Ω)).

2. Since the boundary condition functions 𝑇∗, 𝑆∗, and the source functions 𝑓𝑇 , 𝑓𝑆, are time-

independent, this follows directly from Proposition 2.7(b) in Nittka (2014).

■

Equipped with the above, we can now construct a sequence of strong solutions to an iteratively

defined linear problem.

1. We initialize the sequence with (𝑇0, 𝑆0). Note that these are constant functions in time, and

therefore by Proposition C.1 the problem
(
𝑃𝑙𝑖𝑛𝑒𝑎𝑟
𝑇0,𝑆0,𝑇0,𝑆0

)
has a unique strong solution, that we

denote (𝑇1, 𝑆1). Then 𝑇1, 𝑆1 ∈ 𝐶 ( [0,T]; 𝐿2(Ω)) from the definition of a strong solution to the

linear problem, and thus, by Proposition C.1 ,
(
𝑃𝑙𝑖𝑛𝑒𝑎𝑟
𝑇0,𝑆0,𝑇1,𝑆1

)
has a strong solution, that we denote

(𝑇2, 𝑆2).
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2. Let 𝑛 > 1, and assume (𝑇𝑛, 𝑆𝑛) is a strong solution of
(
𝑃𝑙𝑖𝑛𝑒𝑎𝑟
𝑇0,𝑆0,𝑇𝑛−1,𝑆𝑛−1

)
for given 𝑇𝑛−1, 𝑆𝑛−1 ∈

𝐶 ( [0,T]; 𝐿2(Ω)). Then 𝑇𝑛, 𝑆𝑛 ∈ 𝐶 ( [0,T]; 𝐿2(Ω)) from the definition of a strong solution to

the linear problem, and thus, by Proposition C.1,
(
𝑃𝑙𝑖𝑛𝑒𝑎𝑟
𝑇0,𝑆0,𝑇𝑛,𝑆𝑛

)
has a strong solution, that we

denote (𝑇𝑛+1, 𝑆𝑛+1).

By repeating Step (ii) iteratively we construct a sequence {(𝑇𝑛, 𝑆𝑛)}∞𝑛=1 of strong solutions to the

corresponding sequence of linear problems
{(
𝑃𝑙𝑖𝑛𝑒𝑎𝑟
𝑇0,𝑆0,𝑇𝑛−1,𝑆𝑛−1

)}∞
𝑛=1

for 𝑛 ≥ 1. Under the additional

assumptions (25), by the same induction steps, the sequence {(𝑇𝑛, 𝑆𝑛)}∞𝑛=1 is a sequence of classical

𝐿2-solutions to
{(
𝑃𝑙𝑖𝑛𝑒𝑎𝑟
𝑇0,𝑆0,𝑇𝑛−1,𝑆𝑛−1

)}∞
𝑛=1

.

C.2.2 Global uniform bounds on the sequence of approximate solutions

Now that we have established a sequence of approximate solutions {(𝑇𝑛, 𝑆𝑛)}∞𝑛=1, we will use energy

estimates to establish some uniform in 𝑛 estimates for {(𝑇𝑛, 𝑆𝑛)}∞𝑛=1. To this end, let T > 0, and

𝑛 ≥ 1. In the next lemma, we extend the space of test functions for weak solutions of
(
𝑃𝑙𝑖𝑛𝑒𝑎𝑟
𝑇0,𝑆0,𝑇𝑛−1,𝑆𝑛−1

)
.

Lemma C. 1 Let (𝑇𝑛, 𝑆𝑛) be a weak solution of
(
𝑃𝑙𝑖𝑛𝑒𝑎𝑟
𝑇0,𝑆0,𝑇𝑛−1,𝑆𝑛−1

)
. Then for every 𝜙 ∈ 𝐻1( [0,T]; 𝐿2(Ω))∩

𝐿2(0,T ;𝐻1(Ω)) with 𝜙(T ) = 0, (𝑇𝑛, 𝑆𝑛) satisfies equations (29), (30) with 𝜙 in place of a test function

𝜓 ∈ 𝐻1( [0,T];𝐻1(Ω)).

Proof: Since𝐻1(Ω) is dense in 𝐿2(Ω), there exists a sequence {𝜙𝑚}∞
𝑚=1, 𝜙𝑚 ∈ 𝐻1( [0,T];𝐻1(Ω))

with 𝜙𝑚 (T ) = 0, converging to 𝜙 in 𝐻1( [0,T]; 𝐿2(Ω)) ∩ 𝐿2(0,T ;𝐻1(Ω)). Thus, it is easy to see

that equation (29) with 𝜓 = 𝜙𝑚 converges, term by term, to the same equation with 𝜙 in place of 𝜓 as

𝑚 → ∞. ■

In the next lemma, we further extend the space of test functions for weak solutions of
(
𝑃𝑙𝑖𝑛𝑒𝑎𝑟
𝑇0,𝑆0,𝑇𝑛−1,𝑆𝑛−1

)
,

namely by no longer requesting the condition 𝜓(T ) = 0.

Lemma C. 2 Let (𝑇𝑛, 𝑆𝑛) be a weak solution of
(
𝑃𝑙𝑖𝑛𝑒𝑎𝑟
𝑇0,𝑆0,𝑇𝑛−1,𝑆𝑛−1

)
. Then for every𝜓 ∈ 𝐻1( [0,T]; 𝐿2(Ω))∩

𝐿2(0,T ;𝐻1(Ω)), the following holds:∫
Ω

𝑇𝑛 (T )𝜓(T )𝑑𝑉 −
∫ T

0

∫
Ω

𝑇𝑛 (𝑡)𝜕𝑡𝜓(𝑡)𝑑𝑉𝑑𝑡 +
∫ T

0

(∫
Ω

(κ∇𝑇𝑛 (𝑡) − 𝒖𝑛−1𝑇𝑛 (𝑡)) · ∇𝜓(𝑡)𝑑𝑉+∫
𝜎1

𝑔𝑇𝐴𝑇𝑛 (𝑡)𝜓(𝑡)𝑑𝑥𝑑𝑦
)
𝑑𝑡 =

∫
Ω

𝑇0𝜓(0)𝑑𝑉 +
∫ T

0

(∫
Ω

𝑓𝑇𝜓(𝑡)𝑑𝑉 +
∫
𝜎1

𝑔𝑇𝐴𝑇
∗(𝑥, 𝑦)𝜓(𝑡)𝑑𝑥𝑑𝑦

)
𝑑𝑡.

(31)
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∫
Ω

𝑆𝑛 (T )𝜓(T )𝑑𝑉 −
∫ T

0

∫
Ω

𝑆𝑛 (𝑡)𝜕𝑡𝜓(𝑡)𝑑𝑉𝑑𝑡 +
∫ T

0

∫
Ω

(κ∇𝑆𝑛 (𝑡) − 𝒖𝑛−1𝑆𝑛 (𝑡)) · ∇𝜓(𝑡)𝑑𝑉𝑑𝑡

=

∫
Ω

𝑆0𝜓(0)𝑑𝑉 +
∫ T

0

(∫
Ω

𝑓𝑆𝜓(𝑡)𝑑𝑉 +
∫
𝜎1

𝑔𝑆𝐴𝑆
∗(𝑥, 𝑦)𝜓(𝑡)𝑑𝑥𝑑𝑦

)
𝑑𝑡.

(32)

Proof: Set T̃ = T + 1. Let (𝑇𝑛, 𝑆𝑛) be a strong solution of
(
𝑃𝑙𝑖𝑛𝑒𝑎𝑟
𝑇0,𝑆0,𝑇𝑛−1,𝑆𝑛−1

)
on [0, T̃ ]. Define

𝜙(𝑡) =


𝜓(𝑡) 𝑡 ∈ [0,T]

𝜓(T )𝜑(𝑡) 𝑡 ∈ (T , T̃ ]
, where 𝜑(T ) = 1, and 𝜑 is a smooth function decreasing to 0 over

the interval [T , T̃ ]. Then 𝜙 satisfies the conditions for a test function in the weak solution according

to Lemma C.1, i.e. (𝑇𝑛, 𝑆𝑛) satisfy equations (29), (30) with 𝜙 instead of 𝜓. Also, (𝑇𝑛, 𝑆𝑛) agrees

with (𝑇𝑛, 𝑆𝑛) on [0,T] from uniqueness of the strong solution.

Set T as the new initial time, and let { ˜̃𝑇𝑛, ˜̃𝑆𝑛} be the solution of
(
𝑃𝑙𝑖𝑛𝑒𝑎𝑟
𝑇𝑛 (T ),𝑆𝑛 (T ),𝑇𝑛−1,𝑆𝑛−1

)
. If the

sources and boundary functions are not autonomous, shift their time parameter corresppondingly.

Then ( ˜̃𝑇𝑛, ˜̃𝑆𝑛) agrees with (𝑇𝑛, 𝑆𝑛) on [T , T̃ ] from uniqueness of the strong solution, and therefore

the following is satisfied:

−
∫ T̃

T

∫
Ω

𝑇𝑛 (𝑡)𝜕𝑡𝜙(𝑡)𝑑𝑉𝑑𝑡 +
∫ T̃

T

(∫
Ω

(κ∇𝑇𝑛 (𝑡) − 𝒖𝑛−1𝑇𝑛 (𝑡)) · ∇𝜙(𝑡)𝑑𝑉 +
∫
𝜎1

𝑔𝑇𝐴𝑇𝑛 (𝑡)𝜙(𝑡)𝑑𝑥𝑑𝑦
)
𝑑𝑡

=

∫
Ω

𝑇 (T )𝜙(T )𝑑𝑉 +
∫ T̃

T

(∫
Ω

𝑓𝑇𝜙(𝑡)𝑑𝑉 +
∫
𝜎1

𝑔𝑇𝐴𝑇
∗(𝑡, 𝑥, 𝑦)𝜙(𝑡)𝑑𝑥𝑑𝑦

)
𝑑𝑡.

(33)

On the other hand, 𝑇𝑛 satisfies

−
∫ T̃

0

∫
Ω

𝑇𝑛 (𝑡)𝜕𝑡𝜙(𝑡)𝑑𝑉𝑑𝑡 +
∫ T̃

0

(∫
Ω

(κ∇𝑇𝑛 (𝑡) − 𝒖𝑛−1𝑇𝑛 (𝑡)) · ∇𝜙(𝑡)𝑑𝑉 +
∫
𝜎1

𝑔𝑇𝐴𝑇𝑛 (𝑡)𝜙(𝑡)𝑑𝑥𝑑𝑦
)
𝑑𝑡

=

∫
Ω

𝑇0𝜙(0)𝑑𝑉 +
∫ T̃

0

(∫
Ω

𝑓𝑇𝜙(𝑡)𝑑𝑉 +
∫
𝜎1

𝑔𝑇𝐴𝑇
∗(𝑡, 𝑥, 𝑦)𝜙(𝑡)𝑑𝑥𝑑𝑦

)
𝑑𝑡.

(34)

Subtracting (33) from (34), and separating the time integral to two parts,
∫ T̃

0 =
∫ T

0 +
∫ T̃
T , we are left

with:∫
Ω

𝑇𝑛 (T )𝜙(T )𝑑𝑉 −
∫ T

0

∫
Ω

𝑇𝑛 (𝑡)𝜕𝑡𝜙(𝑡)𝑑𝑉𝑑𝑡 +
∫ T

0

(∫
Ω

(κ∇𝑇𝑛 (𝑡) − 𝒖𝑛−1𝑇𝑛 (𝑡)) · ∇𝜙(𝑡)𝑑𝑉

+
∫
𝜎1

𝑔𝑇𝐴𝑇𝑛 (𝑡)𝜙(𝑡)𝑑𝑥𝑑𝑦
)
𝑑𝑡 =

∫
Ω

𝑇0𝜙(0)𝑑𝑉 +
∫ T

0

(∫
Ω

𝑓𝑇𝜙(𝑡)𝑑𝑉 +
∫
𝜎1

𝑔𝑇𝐴𝑇
∗(𝑡, 𝑥, 𝑦)𝜙(𝑡)𝑑𝑥𝑑𝑦

)
𝑑𝑡.
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Now, since 𝑇𝑛 (𝑡) = 𝑇𝑛 (𝑡) on [0,T] and 𝜙(𝑡) = 𝜓(𝑡) on [0,T], this equals∫
Ω

𝑇𝑛 (T )𝜓(T )𝑑𝑉 −
∫ T

0

∫
Ω

𝑇𝑛 (𝑡)𝜕𝑡𝜓(𝑡)𝑑𝑉𝑑𝑡 +
∫ T

0

(∫
Ω

(κ∇𝑇𝑛 (𝑡) − 𝒖𝑛−1𝑇𝑛 (𝑡)) · ∇𝜓(𝑡)𝑑𝑉

+
∫
𝜎1

𝑔𝑇𝐴𝑇𝑛 (𝑡)𝜓(𝑡)𝑑𝑥𝑑𝑦
)
𝑑𝑡 =

∫
Ω

𝑇0𝜓(0)𝑑𝑉 +
∫ T

0

(∫
Ω

𝑓𝑇𝜓(𝑡)𝑑𝑉 +
∫
𝜎1

𝑔𝑇𝐴𝑇
∗(𝑡, 𝑥, 𝑦)𝜓(𝑡)𝑑𝑥𝑑𝑦

)
𝑑𝑡.

The same steps may be followed for 𝑆𝑛. ■

Remark C. 3 Following similar arguments as in Lemma C.1 and Lemma C.2 above, one can show

that a weak solution (𝑇, 𝑆) of the nonlinear problem
(
𝑃𝑇0,𝑆0,𝑇∗,𝑆∗, 𝑓𝑇 , 𝑓𝑆

)
satisfies equations analogous to

equations (31) and (32), with𝑇 in place of𝑇𝑛, 𝑆 in place of 𝑆𝑛, and, in place of 𝒖𝑛−1, 𝒖 = 𝒖(𝒓; ⟨𝑇⟩ , ⟨𝑆⟩)

as in equation (𝑃4) in (23) .

Next we present a few additional lemmas that will be useful for proving our global bounds.

Lemma C. 3 (Poincaré inequality) For a function 𝑇 ∈ 𝐻1(Ω), the following inequality holds:

𝑔𝑇
𝐴

2
∥̃𝑇 ∥̃2 +

κ1/2
∇𝑇

2
≥ _ ∥𝑇 ∥2 .

Lemma C. 4 Let 𝑆 ∈ 𝐻1(Ω). For any 𝜖 > 0,

∥̃𝑆 ∥̃2 ≤
(
1 + 1

𝜖

)
∥𝑆∥2 + 𝜖

^𝑚𝑖𝑛

κ1/2
∇𝑆

2
.

Remark C. 4 Lemma C.4 is a version of the trace theorem customized for this problem.

Lemma C. 5 Let 𝑆 ∈ 𝐻1(Ω). Then

∥𝑆 − ⟨𝑆⟩Ω∥2 ≤ 1
𝜋^𝑚𝑖𝑛

κ1/2
∇𝑆

2
where ⟨𝑆⟩Ω ≡ 1

|Ω|

∫
𝑆𝑑𝑉.

Proofs of these useful Lemmas C.3-5 are left to the last section C.4. Now, we can prove several

global bounds on the strong solutions (𝑇𝑛, 𝑆𝑛) of
(
𝑃𝑙𝑖𝑛𝑒𝑎𝑟
𝑇0,𝑆0,𝑇𝑛−1,𝑆𝑛−1

)
, that we have established in section

C.2.1.

Proposition C. 2 Suppose (𝑇𝑛, 𝑆𝑛) is a strong solution on [0,T] of
(
𝑃𝑙𝑖𝑛𝑒𝑎𝑟
𝑇0,𝑆0,𝑇𝑛−1,𝑆𝑛−1

)
, as established

in section C.2.1. Then 𝑇𝑛, 𝑆𝑛 satisfy the following bounds, that are independent of 𝑛:
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1. sup𝑡∈[0,T] ∥𝑇𝑛∥2 (𝑡) ≤ 𝐶𝑇1 ;

2.
∫ T

0

κ1/2∇𝑇𝑛
2 (𝑡)𝑑𝑡 ≤ 𝐶𝑇2 + T𝐶𝑇3 ;

3. sup𝑡∈[0,T] ∥𝑆𝑛∥2 (𝑡) ≤ 𝐶𝑆1 ;

4.
∫ T

0

κ1/2∇𝑆𝑛
2 (𝑡)𝑑𝑡 ≤ 𝐶𝑆2 + T𝐶𝑆3 ;

where 𝐶 𝑗

𝑖
for 𝑖 ∈ {1, 2, 3}, 𝑗 ∈ {𝑇, 𝑆} are given explicitly in equation (27).

Proof:

(i) Uniform in 𝑛, 𝐿∞( [0,T]; 𝐿2(Ω)) bounds on 𝑇𝑛:

According to Lemma C.2, 𝑇𝑛 can be used as a test function in equation (31) in place of 𝜓, and

thus satisfies:∫
Ω

(𝑇𝑛 (T ))2𝑑𝑉 −
∫ T

0

∫
Ω

𝑇𝑛 (𝑡)𝜕𝑡𝑇𝑛 (𝑡)𝑑𝑉𝑑𝑡 +
∫ T

0

(∫
Ω

(κ∇𝑇𝑛 (𝑡) + 𝒖𝑛−1𝑇𝑛 (𝑡)) · ∇𝑇𝑛 (𝑡)𝑑𝑉+∫
𝜎1

𝑔𝑇𝐴 (𝑇𝑛 (𝑡))
2𝑑𝑥𝑑𝑦

)
𝑑𝑡 =

∫
Ω

𝑇2
0 𝑑𝑉 +

∫ T

0

(∫
Ω

𝑓𝑇𝑇𝑛 (𝑡)𝑑𝑉 +
∫
𝜎1

𝑔𝑇𝐴𝑇
∗(𝑡, 𝑥, 𝑦)𝑇𝑛 (𝑡)𝑑𝑥𝑑𝑦

)
𝑑𝑡.

Therefore, since 𝑇𝑛 ∈ 𝐿2(0,T ;𝐻1(Ω)) ∩𝐶 ( [0,T]; 𝐿2(Ω)), one can employ assumptions (𝑎4), (𝑎5)

along with a generalized version of the divergence theorem (Constantin & Foias, 1988) to obtain:

∫ T

0

(
1
2
𝑑

𝑑𝑡
∥𝑇𝑛∥2 + 𝑔𝑇𝐴 ∥̃𝑇𝑛 ∥̃

2 +
κ1/2

∇𝑇𝑛

2
)
𝑑𝑡 =

∫ T

0

(
𝑔𝑇𝐴

∫
𝜎1

𝑇𝑛𝑇
∗(𝑥, 𝑦)𝑑𝜎 +

∫
Ω

𝑇𝑛 𝑓𝑇

)
𝑑𝑡.

Thus, the integrands of time are equal almost everywhere. The next steps will be performed inside

the integrands, and eventually will be integrated over time again. We use the Cauchy-Schwarz and

Young inequalities to obtain:

1
2
𝑑

𝑑𝑡
∥𝑇𝑛∥2 + 𝑔𝑇𝐴 ∥̃𝑇𝑛 ∥̃

2 +
κ1/2

∇𝑇𝑛

2
≤ 𝑔𝑇𝐴 ∥̃𝑇𝑛 ∥̃ ∥̃𝑇

∗ ∥̃ + ∥2𝜖𝑇𝑛∥
 1

2𝜖
𝑓𝑇


≤
𝑔𝑇
𝐴

2
∥̃𝑇𝑛 ∥̃2 +

𝑔𝑇
𝐴

2
∥̃𝑇∗ ∥̃2 + 𝜖 ∥𝑇𝑛∥2 + 1

4𝜖
∥ 𝑓𝑇 ∥2

and after reordering:

1
2
𝑑

𝑑𝑡
∥𝑇𝑛∥2 +

𝑔𝑇
𝐴

2
∥̃𝑇𝑛 ∥̃2 +

κ1/2
∇𝑇𝑛

2
≤ 𝜖 ∥𝑇𝑛∥2 +

𝑔𝑇
𝐴

2
∥̃𝑇∗ ∥̃2 + 1

4𝜖
∥ 𝑓𝑇 ∥2 (35)
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for any 𝜖 > 0. Recall that all of the parameters are rescaled to render the entire problem, and each of

its constituents, dimensionless, therefore 𝜖 is also dimensionless.

Apply Lemma C.3 to the left-hand side, to deduce:

𝑑

𝑑𝑡
∥𝑇𝑛∥2 + 2(_ − 𝜖) ∥𝑇𝑛∥2 ≤ 𝑔𝑇𝐴 ∥̃𝑇

∗ ∥̃2 + 1
2𝜖

∥ 𝑓𝑇 ∥2 ≡ Z . (36)

By choosing 0 < 𝜖 < _, and defining [ ≡ 2(_ − 𝜖) > 0, we obtain a bound on the growth of 𝑇𝑛,
𝑑
𝑑𝑡
∥𝑇𝑛∥2 + [ ∥𝑇𝑛∥2 ≤ Z , and using Gronwall’s inequality,

∥𝑇𝑛∥2 ≤ 𝑒−[𝑡 ∥𝑇0∥2 + Z
[
(1 − 𝑒−[𝑡).

This means that ∥𝑇𝑛∥ is bounded, and the bound is independent of 𝑛, and for all 𝑡 ∈ [0,T]:

∥𝑇𝑛∥2 (𝑡) ≤ 𝐶𝑇1 ≡ ∥𝑇0∥2 +
𝑔𝑇
𝐴

2_(1 − 𝑎) ∥̃𝑇
∗ ∥̃2 + 1

4_2𝑎(1 − 𝑎)
∥ 𝑓𝑇 ∥2 (37)

where 𝑎 ∈ (0, 1), Observe that 𝐶𝑇1 obtains its minimal value for 𝑎 = 1

1+
√︂

1+2𝑔𝑇
𝐴

∥̃𝑇∗ ∥̃2

∥ 𝑓𝑇 ∥2

.

(ii) Uniform in 𝑛, 𝐿2(0,T ;𝐻1(Ω)) bounds on 𝑇𝑛:

Combining equations (35) and (37) yields:

1
2
𝑑

𝑑𝑡
∥𝑇𝑛∥2 +

κ1/2
∇𝑇𝑛

2
≤ 𝑎2_𝐶

𝑇
1 +

𝑔𝑇
𝐴

2
∥̃𝑇∗ ∥̃2 + 1

4𝑎2_
∥ 𝑓𝑇 ∥2

for any 𝑎2 ∈ (0, 1). Integrate over [0,T], and set 𝑎2 = 𝑎 :

1
2
∥𝑇 ∥2 (T ) +

∫ T

0
𝑑𝑡

κ1/2
∇𝑇

2
≤ 1

2
∥𝑇0∥2 + T

(
𝑎_ ∥𝑇0∥2 +

𝑔𝑇
𝐴

2(1 − 𝑎) ∥̃𝑇
∗ ∥̃2 + 1

4(1 − 𝑎)𝑎_ ∥ 𝑓𝑇 ∥2

)
.

This is true for any value of 𝑎 ∈ (0, 1), and the value of 𝑎 can be tweaked to obtain an optimal bound.

However, we do not care about the exact value of this bound, so to simplify notation, in this subsection

we set 𝑎 = 1/2 to obtain:

1
2
∥𝑇 ∥2 (T ) +

∫ T

0
𝑑𝑡

κ1/2
∇𝑇

2
≤ 𝐶𝑇2 + T𝐶𝑇3
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where

𝐶𝑇2 ≡ 1
2
∥𝑇0∥2 ; 𝐶𝑇3 ≡ _

2
∥𝑇0∥2 + 𝑔𝑇𝐴 ∥̃𝑇

∗ ∥̃2 + 1
_
∥ 𝑓𝑇 ∥2 .

(iii) Uniform in 𝑛, 𝐿∞( [0,T]; 𝐿2(Ω)) bounds on 𝑆𝑛:

Taking the same approach for 𝑆𝑛 here as we did for 𝑇𝑛, we note that the only difference between

the two functions is in the boundary conditions, therefore we can immediately write:

1
2
𝑑

𝑑𝑡
∥𝑆𝑛∥2 − 𝑔𝑆𝐴

∫
𝜎1

𝑆𝑛 (𝑥, 𝑦, 𝑧 = 1, 𝑡)𝑆∗(𝑥, 𝑦)𝑑𝜎 +
κ1/2

∇𝑆𝑛

2
=

∫
Ω

𝑆𝑛 𝑓𝑆𝑑𝑉

for almost all times [0,T]. Rearranging the terms and using Cauchy-Schwarz and Young inequalities

on the boundary and source terms, we obtain:

1
2
𝑑

𝑑𝑡
∥𝑆𝑛∥2 +

κ1/2
∇𝑆𝑛

2
≤
𝑔𝑆
𝐴

2𝜖1
∥̃𝑆∗ ∥̃2 + 1

2𝜖2
∥ 𝑓𝑆∥2 +

𝑔𝑆
𝐴

2
𝜖1 ∥̃𝑆𝑛 ∥̃2 + 𝜖2

2
∥𝑆𝑛∥2 ,

for any 𝜖1, 𝜖2 > 0. Using Lemma C.4, we are left with:

1
2
𝑑

𝑑𝑡
∥𝑆𝑛∥2 +

(
1 −

𝑔𝑆
𝐴

2^𝑚𝑖𝑛
𝜖1

) κ1/2
∇𝑆𝑛

2
≤
𝑔𝑆
𝐴

2𝜖1
∥̃𝑆∗ ∥̃2 + 1

2𝜖2
∥ 𝑓𝑆∥2 +

( 𝜖2
2
+ 𝑔𝑆𝐴𝜖1

)
∥𝑆𝑛∥2 , (38)

where 𝜖1 <
2^𝑚𝑖𝑛

𝑔𝑆
𝐴

. Since we set ⟨𝑆𝑛⟩Ω = 0, Lemma C.5 gives us

𝑑

𝑑𝑡
∥𝑆𝑛∥2 + a ∥𝑆𝑛∥2 ≤

𝑔𝑆
𝐴

𝜖1
∥̃𝑆∗ ∥̃2 + 1

𝜖2
∥ 𝑓𝑆∥2 ,

where a ≡ 2𝜋^𝑚𝑖𝑛 − (𝜋 + 2)𝑔𝑆
𝐴
𝜖1 − 𝜖2. Choosing 𝜖2 small enough such that a > 0, we can use the

Gronwall inequality to establish a bound on ∥𝑆𝑛∥ (𝑡) for all 𝑡 ∈ [0,T]:

∥𝑆𝑛∥2 (𝑡) ≤ ∥𝑆0∥2 +
𝑔𝑆
𝐴

𝜖1a
∥̃𝑆∗ ∥̃2 + 1

𝜖2a
∥ 𝑓𝑆∥2 . (39)

Taking 𝜖1 = 2 ^𝑚𝑖𝑛

𝑔𝑆
𝐴

𝑏
1+2/𝜋 , 𝜖2 = 2^𝑚𝑖𝑛𝜋𝑑 for 𝑏, 𝑑 > 0 satisfying 𝑏 + 𝑑 < 1, the requirements

on 𝜖1, 𝜖2 are guaranteed. One can check that the optimal values for 𝑏 and 𝑑 are given by 𝑏 =
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(
2 + 2

𝑔𝑆
𝐴

√
2+𝜋

∥ 𝑓𝑆 ∥
∥̃𝑆∗ ∥̃

)−1
, 𝑑 = 1

2 − 𝑏, and the bound simplifies to:

∥𝑆𝑛∥2 (𝑡) ≤ 𝐶𝑆1 ≡ ∥𝑆0∥2 + 1
2𝜋^2

𝑚𝑖𝑛

(
1 + 2

𝜋

𝑏
(𝑔𝑆𝐴)

2 ∥̃𝑆∗ ∥̃2 + 1
𝜋( 1

2 − 𝑏)
∥ 𝑓𝑆∥2

)
.

(iv) Uniform in 𝑛, 𝐿2(0,T ; ¤𝐻1(Ω)) bounds on 𝑆𝑛:

Using the bound on ∥𝑆𝑛∥2 obtained above with equation (38), we deduce:

1
2
𝑑

𝑑𝑡
∥𝑆𝑛∥2 + (1 −

𝑔𝑆
𝐴

2^𝑚𝑖𝑛
𝜖1)

κ1/2
∇𝑆𝑛

2
≤

𝑔𝑆
𝐴

2𝜖1
∥̃𝑆∗ ∥̃2 + 1

2𝜖2
∥ 𝑓𝑆∥2 + ( 𝜖2

2
+ 𝑔𝑆𝐴𝜖1) ∥𝑆𝑛∥2

for any 𝜖1, 𝜖2. Integrate over the time interval [0,T], and use equation (39) to deduce∫ T

0
𝑑𝑡

κ1/2
∇𝑆

2
≤ ^𝑚𝑖𝑛

2^𝑚𝑖𝑛 − 𝑔𝑆𝐴𝜖1
∥𝑆0∥2 +

+ T
(2𝑔𝑆

𝐴
𝜖1 + 𝜖2)^𝑚𝑖𝑛

2^𝑚𝑖𝑛 − 𝑔𝑆𝐴𝜖1
∥𝑆0∥2 + ^𝑚𝑖𝑛

𝜖1(2^𝑚𝑖𝑛 − 𝑔𝑆𝐴𝜖1(1 + 2/𝜋) − 𝜖2/𝜋)
( 1
𝜖2

∥ 𝑓𝑆∥2 + 𝑔𝑆𝐴 ∥̃𝑆
∗ ∥̃2).

One can enlarge the bounds and choose values for 𝜖1 and 𝜖2 small enough to obtain

∫ T

0

κ1/2
∇𝑆

2
𝑑𝑡 ≤ 𝐶𝑆2 + T𝐶𝑆3 ,

where

𝐶𝑆2 ≡ 𝜋^𝑚𝑖𝑛

2
∥𝑆0∥2 ; 𝐶𝑆3 ≡ 𝜋^𝑚𝑖𝑛

2
∥𝑆0∥2 + 6

𝑔𝑆
𝐴

^𝑚𝑖𝑛

(
𝑔𝑆𝐴 ∥̃𝑆

∗ ∥̃2 + 2
𝜋^𝑚𝑖𝑛

∥ 𝑓𝑆∥2
)
.

■

C.2.3 Convergence of the iterative approximate sequences

In this section we prove that the sequence {(𝑇𝑛, 𝑆𝑛)}∞𝑛=1 of strong solutions to the corresponding

iteratively defined problems
{(
𝑃𝑙𝑖𝑛𝑒𝑎𝑟
𝑇0,𝑆0,𝑇𝑛−1,𝑆𝑛−1

)}∞
𝑛=1

established in section C.2.1 converges to limit

functions, that we denote (𝑇∞, 𝑆∞). Eventually, we will prove that these limit functions are solutions

to the nonlinear problem
(
𝑃𝑇0,𝑆0,𝑇∗,𝑆∗, 𝑓𝑇 , 𝑓𝑆

)
.

Proposition C. 3 Let T > 0 be given, and let {(𝑇𝑛, 𝑆𝑛)}∞𝑛=1 be strong solutions on [0,T] of the

iteratively defined sequence of problems
{(
𝑃𝑙𝑖𝑛𝑒𝑎𝑟
𝑇0,𝑆0,𝑇𝑛−1,𝑆𝑛−1

)}∞
𝑛=1

, as established in section C.2.1. There
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exists 𝜏 ∈ (0,T] such that {𝑇𝑛}∞𝑛=1, {𝑆𝑛}∞𝑛=1 converge to limit functions, respectively 𝑇∞ and 𝑆∞,

strongly in 𝐿∞( [0, 𝜏]; 𝐿2(Ω)).

Proof: It is enough to show that there exists 𝜏 ∈ (0,T] for which {(𝑇𝑛, 𝑆𝑛)}∞𝑛=1 is a Cauchy sequence

in the Banach space (𝐿∞( [0, 𝜏]; 𝐿2(Ω)))2, hence it has a limit (𝑇∞, 𝑆∞) ∈ (𝐿∞( [0, 𝜏]; 𝐿2(Ω)))2.

Define 𝛿𝑇𝑛 ≡ 𝑇𝑛 − 𝑇𝑛−1, 𝛿𝑆𝑛 ≡ 𝑆𝑛 − 𝑆𝑛−1, [𝑛 (𝑡) ≡ ∥𝛿𝑇𝑛∥2 (𝑡) + ∥𝛿𝑆𝑛∥2 (𝑡), 𝑛 ∈ N. Let 𝑚 ∈ N.

Then 𝛿𝑇𝑚+1 can be used as a test function for weak solutions in equation (31) according to Lemma

C.2. Thus, we subtract equation (31) for 𝑇𝑚+1 in place of 𝑇𝑛 and 𝛿𝑇𝑚+1 in place of 𝜓, from equation

(31) for 𝑇𝑚 in place of 𝑇𝑛 and 𝛿𝑇𝑚+1 in place of 𝜓, deducing:

∫ T

0
𝑑𝑡

(
1
2
𝑑

𝑑𝑡
∥𝛿𝑇𝑚+1∥2 +

κ1/2
∇𝛿𝑇𝑚+1

 + 𝑔𝑇𝐴 ∥̃𝛿𝑇𝑚+1 ∥̃ +
∫
Ω

𝛿𝑇𝑚+1𝛿𝒖𝑚 · (∇𝑇𝑚)
)
= 0,

where we define 𝛿𝒖𝑚 ≡ 𝒖𝑚−𝒖𝑚−1, add and subtract𝑇𝑚𝒖𝑚 · (∇𝑇𝑚), and use the generalized divergence

theorem (Constantin & Foias, 1988) and assumptions (𝑎4), (𝑎5) in (22). Therefore,

1
2
𝑑

𝑑𝑡
∥𝛿𝑇𝑚+1∥2 (𝑠) ≤ 1

2
𝑑

𝑑𝑡
∥𝛿𝑇𝑚+1∥2 (𝑠) +

κ1/2
∇𝛿𝑇𝑚+1

2
(𝑠) + 𝑔𝑇𝐴 ∥̃𝛿𝑇𝑚+1 ∥̃2(𝑠)

≤
∫
Ω

|𝛿𝑇𝑚+1 | |𝛿𝒖𝑚 | |∇𝑇𝑚 | (𝑡)𝑑𝑉,
(40)

where as before, we find bounds for a general time 𝑠 ∈ [0,T], and will eventually integrate over time.

We note that 𝛿𝒖𝑚 = (𝑎𝑚
𝐼
− 𝑎𝑚−1

𝐼
)𝒖𝐼 . Since 𝒖𝐼 is a known, bounded function by construction, we can

bound it with its 𝐿∞ norm 𝑢max
𝐼

= max𝒓∈Ω |𝒖𝐼 (𝒓) | < ∞. Thus,

∥𝛿𝒖𝑚 ∥𝐿∞ (Ω) ≤ 𝑢max
𝐼 Γ

(
1

|𝐷1 |

∫
𝐷1

(𝛼 |𝛿𝑇𝑚 | + 𝛽 |𝛿𝑆𝑚 |)𝑑𝑉 + 1
|𝐷2 |

∫
𝐷2

(𝛼 |𝛿𝑇𝑚 | + 𝛽 |𝛿𝑆𝑚 |)𝑑𝑉
)

≤ 𝑐
∫
Ω

( |𝛿𝑇𝑚 | + |𝛿𝑆𝑚 |),
(41)

where 𝑐 = 𝑢max
𝐼

Γ
max{𝛼,𝛽}

min{|𝐷1 |,|𝐷2 |} . By (40), (41), and Cauchy-Schwarz, we obtain

𝑑

𝑑𝑡
∥𝛿𝑇𝑚+1∥2 = 2 ∥𝛿𝑇𝑚+1∥

𝑑

𝑑𝑡
∥𝛿𝑇𝑚+1∥ ≤ 2𝑐 ∥𝛿𝑇𝑚+1∥ ∥∇𝑇𝑚 ∥

(∫
Ω

( |𝛿𝑇𝑚 | + |𝛿𝑆𝑚 |)𝑑𝑉
)
,

therefore
𝑑

𝑑𝑡
∥𝛿𝑇𝑚+1∥ ≤ 𝑐 ∥∇𝑇𝑚 ∥

(∫
Ω

( |𝛿𝑇𝑚 | + |𝛿𝑆𝑚 |)𝑑𝑉
)
.
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Integrate over the time interval [0, 𝑡] for 𝑡 ∈ [0,T] to obtain:

∥𝛿𝑇𝑚+1∥ (𝑡) ≤ 𝑐 sup
0≤𝑠≤𝑡

{∫
Ω

( |𝛿𝑇𝑚 | (𝑠) + |𝛿𝑆𝑚 | (𝑠)) 𝑑𝑉
} ∫ 𝑡

0
∥∇𝑇𝑚 ∥ 𝑑𝑡,

while observing that ∥𝛿𝑇𝑚+1∥ (0) = 0. By the Cauchy-Schwarz inequality,

∥𝛿𝑇𝑚+1∥ (𝑡) ≤ 𝑐 sup
0≤𝑠≤𝑡

{∫
Ω

( |𝛿𝑇𝑚 | + |𝛿𝑆𝑚 |) 𝑑𝑉
} (∫ 𝑡

0
∥∇𝑇𝑚 ∥2 𝑑𝑡

)1/2
𝑡1/2.

By virtue of bound (𝑖𝑖) in Proposition C.2,

∥𝛿𝑇𝑚+1∥ (𝑡) ≤ 𝑏𝑇 sup
0≤𝑠≤𝑡

{∫
Ω

( |𝛿𝑇𝑚 | + |𝛿𝑆𝑚 |) 𝑑𝑉
}
(1 + 𝑡)1/2𝑡1/2

where 𝑏𝑇 =
𝑐max{𝐶𝑇

2 ,𝐶
𝑇
3 }

1/2

min{^𝑥 ,^𝑦 ,^𝑧} . Observe that

(∫
Ω

( |𝛿𝑇𝑚 | + |𝛿𝑆𝑚 |)𝑑𝑉
)2

≤ 2
(∫

Ω

|𝛿𝑇𝑚 |𝑑𝑉
)2

+ 2
(∫

Ω

|𝛿𝑆𝑚 |𝑑𝑉
)2

≤ 2|Ω|[𝑚,

therefore

∥𝛿𝑇𝑚+1∥2 (𝑡) ≤ 2|Ω|𝑏2
𝑇 sup

0≤𝑠≤𝑡
{[𝑚 (𝑠)}(1 + 𝑡)𝑡. (42)

Similar calculations may be performed for 𝛿𝑆𝑚+1, yielding

∥𝛿𝑆𝑚+1∥2 (𝑡) ≤ 2|Ω|𝑏2
𝑆 sup

0≤𝑠≤𝑡
{[𝑚 (𝑠)}(1 + 𝑡)𝑡, (43)

where 𝑏𝑆 =
𝑐max{𝐶𝑆

2 ,𝐶
𝑆
3 }

1/2

2 min{^𝑥 ,^𝑦 ,^𝑧} . Combining (42) and (43) yields, for any 𝑡 ∈ [0,T] and 𝜏 ∈ [𝑡,T],

[𝑚+1(𝑡) ≤ 2|Ω| max{𝑏2
𝑇 , 𝑏

2
𝑆}(1 + 𝑡)𝑡 sup

0≤𝑠≤𝑡
{[𝑚 (𝑠)}

≤ 2|Ω| max{𝑏2
𝑇 , 𝑏

2
𝑆}(1 + 𝜏)𝜏 sup

0≤𝑠≤𝜏
{[𝑚 (𝑠)}.

(44)

Hence, (44) implies

sup
0≤𝑠≤𝜏

{[𝑚+1(𝑠)} ≤ \ sup
0≤𝑠≤𝜏

{[𝑚 (𝑠)}

where

\ = 𝑏(1 + 𝜏)𝜏, 𝑤𝑖𝑡ℎ 𝑏 = 2|Ω| max{𝑏2
𝑇 , 𝑏

2
𝑆}.
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Let 𝜏 be chosen small enough such that \ = 1/2. This yields

sup
0≤𝑠≤𝜏

{[𝑚+1} ≤ 2−𝑚 sup
0≤𝑠≤𝜏

{[1},

which implies that the sequence {(𝑇𝑛, 𝑆𝑛)}∞𝑛=1 is a Cauchy sequence in (𝐿∞( [0, 𝜏]; 𝐿2(Ω)))2. ■

C.2.4 (𝑇∞, 𝑆∞) is a global solution to the nonlinear model
(
𝑃𝑇0,𝑆0,𝑇∗,𝑆∗, 𝑓𝑇 , 𝑓𝑆

)
Proposition C. 4 Let (𝑇∞, 𝑆∞) and 𝜏 > 0 be as in Proposition C.3. Then (𝑇∞, 𝑆∞) is a strong

solution to
(
𝑃𝑇0,𝑆0,𝑇∗,𝑆∗, 𝑓𝑇 , 𝑓𝑆

)
on [0, 𝜏]. Furthermore, 𝑇∞ and 𝑆∞ satisfy bounds (𝑖), (𝑖𝑖) and (𝑖𝑖𝑖), (𝑖𝑣),

respectively, of Proposition C.2, where 𝑛 is replaced by ∞ and T is replaced by 𝜏.

Proof: In this proof, we focus on the time interval [0, 𝜏]. By Proposition C.1, {𝑇𝑛}∞𝑛=1, {𝑆𝑛}
∞
𝑛=1 ⊂

𝐶 ( [0, 𝜏]; 𝐿2(Ω)). Moreover, by the proof of Proposition C.3 the sequences are Cauchy in 𝐿∞( [0, 𝜏]; 𝐿2(Ω)).

Therefore, since the convergence is uniform in time we conclude that 𝑇∞, 𝑆∞ ∈ 𝐶 ( [0, 𝜏]; 𝐿2(Ω)).

By Proposition C.2, the sequence {𝑇𝑛}∞𝑛=1 is bounded in the Hilbert space 𝐿2(0, 𝜏;𝐻1(Ω)); hence

it has a subsequence {𝑇𝑛𝑘 }∞𝑘=1 that converges weakly to 𝑇 in 𝐿2(0, 𝜏;𝐻1(Ω)) and in 𝐿2(0, 𝜏; 𝐿2(Ω))

(Yosida, 1971). On the other hand, from Proposition C.3, 𝑇∞ is a strong limit of {𝑇𝑛𝑘 }∞𝑘=1 in

𝐿∞( [0, 𝜏]; 𝐿2(Ω)). Since the 𝐿∞ norm is stronger than the 𝐿2 norm on a bounded interval, and

from uniqueness of the weak limit, it follows that 𝑇 = 𝑇∞, therefore 𝑇∞ ∈ 𝐿2(0, 𝜏;𝐻1(Ω)) ∩

𝐶 ( [0, 𝜏]; 𝐿2(Ω)). The same argument holds for 𝑆∞. Therefore the limit functions 𝑇∞, 𝑆∞ satisfy the

regularity conditions of weak solutions.

Given a test function 𝜓 ∈ 𝐻1( [0, 𝜏];𝐻1(Ω)), we want to show that 𝑇∞, 𝑆∞ satisfy equation (24).

For all 𝑛 ∈ N, 𝑇𝑛, 𝑆𝑛 satisfy equations (29), (30) respectively, with 𝑇𝑛 replacing 𝑇 , 𝑆𝑛 replacing 𝑆,

and 𝒖𝑛−1 in place of 𝒖𝑚. Due to the strong convergence of {𝑇𝑛}∞𝑛=1, {𝑆𝑛}
∞
𝑛=1 in 𝐶 ( [0, 𝜏]; 𝐿2(Ω)),

the first term in each of the equations (29), (30) converges to, respectively,
∫ 𝜏

0

∫
Ω
𝑇∞(𝑡)𝜕𝑡𝜓(𝑡)𝑑𝑡𝑑𝑉,∫ 𝜏

0

∫
Ω
𝑆∞(𝑡)𝜕𝑡𝜓(𝑡)𝑑𝑡𝑑𝑉 .

Let us move into the subsequence {𝑇𝑛𝑘 }∞𝑘=1. Then

∫ 𝜏

0

∫
Ω

(
κ (∇𝑇𝑛𝑘 − ∇𝑇∞) · (∇𝜓)

)
𝑑𝑉𝑑𝑡 →

𝑘→∞
0

due to the weak convergence in 𝐿2(0, 𝜏;𝐻1(Ω)). The equivalent argument shows that the same thing
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is true for 𝑆∞ as well. Regarding the velocity term, observe that

|𝒖𝑛𝑘−1 | ≤ U ≡ |𝑎𝐸 |𝑢max
𝐸 + 𝑢max

𝐼

Γ|Ω|1/2

min{|𝐷1 |, |𝐷2 |}
(𝛼(𝐶𝑇1 )

1/2 + 𝛽(𝐶𝑆1 )
1/2),

where 𝑢max
𝐸

= sup𝒓∈Ω |𝒖𝐸 |. Therefore, by the strong convergence of 𝑇𝑛 to 𝑇∞ in 𝐶 ( [0, 𝜏]; 𝐿2(Ω))

and the Cauchy-Schwarz inequality,����∫ 𝜏

0

∫
Ω

𝒖𝑛𝑘−1(𝑇𝑛𝑘 − 𝑇∞) · ∇𝜓𝑑𝑉𝑑𝑡
���� ≤ U

∫ 𝜏

0

∫
Ω

|𝑇𝑛𝑘 − 𝑇∞ | |∇𝜓 |𝑑𝑉𝑑𝑡 →
𝑘→∞

0.

From equation (41),����∫ 𝜏

0

∫
Ω

𝑇∞(𝒖𝑛𝑘−1 − 𝒖∞) · (∇𝜓)𝑑𝑉𝑑𝑡
����

≤ 𝑐
∫ 𝜏

0

(
∥𝑇∞∥ ∥∇𝜓∥

∫
Ω

(
|𝑇𝑛𝑘−1 − 𝑇∞ | + |𝑆𝑛𝑘−1 − 𝑆∞ |

)
𝑑𝑉

)
𝑑𝑡

≤ 2𝑐𝑑 |Ω|1/2

(∫ 𝜏

0
∥∇𝜓∥

(∫
Ω

(
|𝑇𝑛𝑘−1 − 𝑇∞ |2 + |𝑆𝑛𝑘−1 − 𝑆∞ |2

)
𝑑𝑉

)1/2
𝑑𝑡

)
≤ 2𝑐𝑑𝑔 |Ω|1/2

(∫ 𝜏

0

∫
Ω

(
|𝑇𝑛𝑘−1 − 𝑇∞ |2 + |𝑆𝑛𝑘−1 − 𝑆∞ |2

)
𝑑𝑉𝑑𝑡

)1/2
→
𝑘→∞

0,

where 𝑐, 𝑑, 𝑔 are some positive constants, and we used Cauchy-Schwarz and the regularity of 𝑇∞ and

𝜓. The same calculation holds for 𝑆∞.

The last term we need to take care of is the boundary term,
∫ 𝜏

0

∫
𝜎1
𝑔𝑇
𝐴
𝑇𝑛 (𝑡)𝜓(𝑡)𝑑𝑥𝑑𝑦𝑑𝑡 in equa-

tion (29), relevant only to the temperature equation. We define an auxilliary function 𝛽𝑇 (𝑞) =
𝑔𝑇
𝐴

if 𝑞 ∈ 𝜎1

0 if 𝑞 ∈ 𝜕Ω \ 𝜎1

. Thus,

∫ 𝜏

0

∫
𝜕Ω

𝛽𝑇 (𝑇𝑛𝑘 − 𝑇∞)𝜓𝑑𝜎𝑑𝑡 →
𝑘→∞

0,

since 𝑇𝑛𝑘 converges weakly in 𝐿2( [0, 𝜏];𝐻1(Ω)) to 𝑇∞. Therefore, (𝑇∞, 𝑆∞) is a weak solution of(
𝑃𝑇0,𝑆0,𝑇∗,𝑆∗, 𝑓𝑇 , 𝑓𝑆

)
on [0, 𝜏].

Next, we prove that the weak solution (𝑇∞, 𝑆∞) established above is indeed a strong solution of(
𝑃𝑇0,𝑆0,𝑇∗,𝑆∗, 𝑓𝑇 , 𝑓𝑆

)
on [0, 𝜏]. Let us define 𝒖∞ ≡ 𝒖∞(𝒓; ⟨𝑇∞⟩ , ⟨𝑆∞⟩) following the notation of (𝑃4𝑙)

in (28). Then 𝒖∞ ∈ 𝐿∞((0, 𝜏); 𝐿∞(Ω))3 is given, and can be used to define the linear problem
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(
𝑃𝑙𝑖𝑛𝑒𝑎𝑟
𝑇0,𝑆0,𝑇∞,𝑆∞

)
on [0, 𝜏]. Due to Remark 2.15 in Nittka (2014), this problem has a strong solution

(𝑇, 𝑆). Observe that (𝑇∞, 𝑆∞) is also a weak solution of the linear problem
(
𝑃𝑙𝑖𝑛𝑒𝑎𝑟
𝑇0,𝑆0,𝑇∞,𝑆∞

)
on [0, 𝜏],

since it solves the nonlinear problem. Since a strong solution to the linear problem is also a weak

solution, and weak solutions of the linear problem are unique, the strong solution (𝑇, 𝑆) must equal

(𝑇∞, 𝑆∞) on the time interval [0, 𝜏].

Regarding the bounds of Proposition C.2, since𝑇∞, 𝑆∞ are strong limits of𝑇𝑛𝑘 , 𝑆𝑛𝑘 in𝐶 ( [0, 𝜏]; 𝐿2(Ω))

and weak limits in 𝐿2(0, 𝜏;𝐻1(Ω)), respectively, then 𝑇∞, 𝑆∞ enjoy the same bounds as the sequence

itself, as established in Proposition C.2. ■

Next, we prove that the solution (𝑇∞, 𝑆∞) as established in Proposition C.4 is unique, and that it

has a continuous dependence on the data of the system, namely the initial and boundary conditions.

Proposition C. 5 There exists 𝜏 > 0 such that
(
𝑃𝑇0,𝑆0,𝑇∗,𝑆∗, 𝑓𝑇 , 𝑓𝑆

)
has a unique strong solution on

[0, 𝜏], with a continuous dependence on the problem’s data - the initial conditions, the boundary

conditions, and the sources.

Proof: Let (𝑇nl
1 , 𝑆nl

1 ) and (𝑇nl
2 , 𝑆nl

2 ) be strong solutions of the nonlinear problems
(
𝑃𝑇0,𝑖 ,𝑆0,𝑖 ,𝑇

∗
𝑖
,𝑆∗

𝑖
, 𝑓𝑇,𝑖 , 𝑓𝑆,𝑖

)
on [0, 𝜏𝑖], 𝜏𝑖 > 0, for 𝑖 = 1 and 𝑖 = 2, respectively, as established in Proposition C.4. Define

𝜏 ≡ min{𝜏1, 𝜏2}, 𝛿𝑇 ≡ 𝑇nl
2 −𝑇nl

1 , 𝛿𝑆 ≡ 𝑆nl
2 − 𝑆nl

1 . Then 𝛿𝑇 , 𝛿𝑆 can be used as test functions for weak

solutions on [0, 𝜏] according to Lemma C.2.

Let us start with considering equation (24) for the temperature, with 𝑇nl
𝑖

, 𝑆nl
𝑖

in place of 𝑇 , 𝑆 for

𝑖 = 1, 2 and 𝛿𝑇 as a test function in place of 𝜓. The difference between the equations satisfies∫ 𝜏

0

(
1
2
𝑑

𝑑𝑡
∥𝛿𝑇 ∥2 +

κ1/2
∇𝛿𝑇

2
−

∫
Ω

(𝒖2𝑇
nl
2 − 𝒖1𝑇

nl
1 ) · (∇𝛿𝑇)𝑑𝑉 + 𝑔𝑇𝐴 ∥̃𝛿𝑇 ∥̃

2
)
𝑑𝑡 =∫ 𝜏

0

(∫
Ω

𝛿 𝑓𝑇𝛿𝑇𝑑𝑉 +
∫
𝜎1

𝑔𝑇𝐴𝛿𝑇
∗𝛿𝑇𝑑𝑥𝑑𝑦

)
𝑑𝑡

where 𝒖𝑖 = 𝒖
(
𝒓;

〈
𝑇nl
𝑖

〉
,

〈
𝑆nl
𝑖

〉)
for 𝑖 = 1, 2, 𝛿 𝑓𝑇 = 𝑓𝑇,2 − 𝑓𝑇,1 and 𝛿𝑇∗ = 𝑇∗

2 − 𝑇∗
1 . Inside the time

integrand we add and subtract
∫
Ω
(𝒖2𝑇

nl
1 · (∇𝛿𝑇)). We also use (a4), (a5) in (22) to simplify the

velocity terms and deduce

1
2
𝑑

𝑑𝑡
∥𝛿𝑇 ∥2 +

κ1/2
∇𝛿𝑇

2
+ 𝑔𝑇𝐴 ∥̃𝛿𝑇 ∥̃

2 ≤
∫
Ω

(
|𝛿𝑇 | |𝛿𝒖 | |∇𝑇nl

1 | + |𝛿 𝑓𝑇 | |𝛿𝑇 |
)
𝑑𝑉 + 𝑔𝑇𝐴

∫
𝜎1

|𝛿𝑇∗ | |𝛿𝑇 |𝑑𝜎
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where 𝛿𝒖 ≡ 𝒖2 − 𝒖1. Employing Cauchy-Schwarz and using Lemma C.3, we deduce:

1
2
𝑑

𝑑𝑡
∥𝛿𝑇 ∥2 ≤

∫
Ω

|𝛿𝑇 | |𝛿𝒖 | |∇𝑇nl
1 |𝑑𝑉 + 1

2_
∥𝛿 𝑓𝑇 ∥2 +

𝑔𝑇
𝐴

2
∥̃𝛿𝑇∗ ∥̃2.

Use the bound on 𝛿𝒖 from (41), and employ Cauchy-Schwarz again, to obtain:

𝑑

𝑑𝑡
∥𝛿𝑇 ∥2 ≤ ℎ(∥𝛿𝑇 ∥ + ∥𝛿𝑆∥) ∥𝛿𝑇 ∥

∇𝑇nl
1

 + 1
_
∥𝛿 𝑓𝑇 ∥2 + 𝑔𝑇𝐴 ∥̃𝛿𝑇

∗ ∥̃2, (45)

where ℎ = 2𝑢max
𝐼

Γ
max{𝛼,𝛽}

min{|𝐷1 |,|𝐷2 |} |Ω|1/2. Applying similar arguments on 𝑆 and using Lemmas C.4 and

C.5 , there is some constant 𝜖 > 0 small enough for which we have

𝑑

𝑑𝑡
∥𝛿𝑆∥2 ≤ ℎ(∥𝛿𝑇 ∥ + ∥𝛿𝑆∥) ∥𝛿𝑆∥

∇𝑆nl
1

 + 1
2𝜖

∥𝛿 𝑓𝑆∥2 +
𝑔𝑆
𝐴

2𝜖
∥̃𝛿𝑆∗ ∥̃2. (46)

Defining [ ≡ ∥𝛿𝑇 ∥2 + ∥𝛿𝑆∥2, from (45) and (46) we deduce

𝑑

𝑑𝑡
[ − Z (𝑡)[ ≤ `

where Z (𝑡) = ℎ

(∇𝑇nl
1

 + ∇𝑆nl
1

) , and ` = 1
_
∥𝛿 𝑓𝑇 ∥2 + 𝑔𝑇

𝐴
∥̃𝛿𝑇∗ ∥̃2 + 1

2𝜖 ∥𝛿 𝑓𝑆∥
2 + 𝑔𝑆

𝐴

2𝜖 ∥̃𝛿𝑆
∗ ∥̃2. Then,

by Gronwall’s inequality, for 𝑡 ∈ [0, 𝜏],

[(𝑡) ≤ ([(0) + `𝑡) exp
(∫ 𝑡

0
Z (𝑡′)𝑑𝑡′

)
≤ ([(0) + `𝑡) exp

((
�̃�𝑡 + �̃�𝑡2

)1/2
)
,

where we employ the bounds (ii) and (iv) from Proposition C.2, and �̃� and �̃� are positive constants

that depend on the readily established estimates on solutions, equations (27). Hence,

sup
𝑡∈[0,𝜏]

[ ≤ ([(0) + `𝜏) exp
((
�̃�𝜏 + �̃�𝜏2

)1/2
)
, (47)

implying uniqueness and continuous dependence on data on the time interval [0, 𝜏]. ■

Proposition C. 6 Let (𝑇, 𝑆) be a strong solution of
(
𝑃𝑇0,𝑆0,𝑇∗,𝑆∗, 𝑓𝑇 , 𝑓𝑆

)
on [0,T] for T > 0. Then,

bounds (26) are satisfied on the time interval [0,T].

Proof: By Remark C.3, a strong solution can be used as a test function in the analogous equations to

(31) and (32), as described in the remark. Then, following similar arguments as in Proposition C.2,
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one can conclude the proof of our proposition. ■

Next, we establish global existence and uniqueness.

Proposition C. 7 Let T̄ ∈ (0,∞) be given and let (22) hold. Then:

1. Problem
(
𝑃𝑇0,𝑆0,𝑇∗,𝑆∗, 𝑓𝑇 , 𝑓𝑆

)
has a unique strong solution (𝑇, 𝑆) on [0, T̄ ], which depends con-

tinuously on the initial conditions, boundary functions and sources in the sense described in

equation (47), and satisfies the bounds from equations (26) and (27).

2. If the initial conditions additionally satisfy assumptions (25) then (𝑇, 𝑆) is also a classical

𝐿2-solution of
(
𝑃𝑇0,𝑆0,𝑇∗,𝑆∗, 𝑓𝑇 , 𝑓𝑆

)
on [0, T̄ ].

Proof:

1. Let 𝜏 > 0 such that (𝑇, 𝑆) is a unique strong solution of
(
𝑃𝑇0,𝑆0,𝑇∗,𝑆∗, 𝑓𝑇 , 𝑓𝑆

)
on [0, 𝜏], according

to Propositions C.4 and C.5. Let T ≥ 𝜏 be the maximal interval of existence of the strong

solution, T = sup {𝑠 ∈ [𝜏,∞] : ∀𝑡 < 𝑠, (𝑇, 𝑆) is a unique strong solution on [0, 𝑡]}.

If T = ∞, the solution is global in time and we are done.

Assume by contradiction thatT < ∞. Then necessarily lim sup𝑡→T − ∥𝑇 ∥ (𝑡) = ∞or lim sup𝑡→T − ∥𝑆∥ (𝑡) =

∞. Else, using Proposition C.3, the solution can be extended beyond the maximal interval of

existence T , which is a contradiction. However, by Proposition C.6 lim sup𝑡→T − ∥𝑇 ∥ (𝑡) < ∞

and lim sup𝑡→T − ∥𝑆∥ (𝑡) < ∞, which contradicts the fact that T < ∞. Hence, T must be

infinite.

Uniqueness and continuous dependence on initial conditions are established in the same manner

as in Proposition C.5.

2. Since (𝑇, 𝑆) is a strong solution of
(
𝑃𝑇0,𝑆0,𝑇∗,𝑆∗, 𝑓𝑇 , 𝑓𝑆

)
on [0, T̄ ], we can define 𝒖 ≡ 𝒖(𝒓; ⟨𝑇⟩ , ⟨𝑆⟩)

from (𝑃4𝑙). Then 𝒖 ∈ 𝐿∞(0, T̄ ; 𝐿∞(Ω))3, and can be considered as a given function and used

to define the linear problem
(
𝑃𝑙𝑖𝑛𝑒𝑎𝑟
𝑇0,𝑆0,𝑇,𝑆

)
. Due to Proposition 2.7 in Nittka (2014), under the

additional assumptions (25) this problem has a classical 𝐿2-solution (𝑇c, 𝑆c) on [0, T̄ ]. Since

a classical solution is also a strong solution, and strong solutions of the linear problem are

unique, then (𝑇c, 𝑆c) = (𝑇, 𝑆) on [0, T̄ ].

■
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To summarize, we have proved the main theorem, that the nonlinear problem
(
𝑃𝑇0,𝑆0,𝑇∗,𝑆∗, 𝑓𝑇 , 𝑓𝑆

)
is

well-posed in the sense of Hadamard: the model has

1. a unique, global, strong solution,

2. with a smooth dependence on the problem’s data: initial conditions, boundary conditions and

sources.

3. This solution satisfies the bounds described in equation (26).

4. With the additional regularity conditions on the initial conditions of (25), the solution is also a

classical 𝐿2-solution.

■

Corollary C. 1 Let κ , Γ, 𝛼, 𝛽, 𝑎𝐸 , 𝒖𝐸 , 𝒖𝐼 , 𝑓𝑇 , 𝑓𝑆, 𝑔𝑇𝐴, 𝑔𝑆
𝐴
, 𝑇∗, 𝑆∗, 𝑇0, and 𝑆0 be as in (22), and let

(𝑇, 𝑆) be the global strong solution of
(
𝑃𝑇0,𝑆0,𝑇∗,𝑆∗, 𝑓𝑇 , 𝑓𝑆

)
, as established in Theorem C.1. The dynamic

weight of the velocity function, 𝑎𝐼 (⟨𝑇⟩ , ⟨𝑆⟩), as defined in equation (P3) in (23), is bounded at all

times:

|𝑎𝐼 (⟨𝑇⟩ , ⟨𝑆⟩) | ≤
Γ|Ω|1/2

min{|𝐷1 |, |𝐷2 |}

(
𝛼(𝐶𝑇1 )

1/2 + 𝛽(𝐶𝑆1 )
1/2

)
,

where the values of 𝐶𝑇1 and 𝐶𝑆1 are given in equation (27).

Proof: Using the Cauchy-Schwarz and the Young inequalities, and the bounds (26) from Theorem

C.1, we obtain a bound on 𝑎𝐼 :

|𝑎𝐼 (⟨𝑇⟩ , ⟨𝑆⟩) | ≤ Γ

(
1

|𝐷1 |

∫
𝐷1

| − 𝛼𝑇 + 𝛽𝑆 |𝑑𝑉 + 1
|𝐷2 |

∫
𝐷2

| − 𝛼𝑇 + 𝛽𝑆 |𝑑𝑉
)

≤ Γ|Ω|1/2

min{|𝐷1 |, |𝐷2 |}
(𝛼 ∥𝑇 ∥ + 𝛽 ∥𝑆∥) ≤ Γ|Ω|1/2

min{|𝐷1 |, |𝐷2 |}

(
𝛼(𝐶𝑇1 )

1/2 + 𝛽(𝐶𝑆1 )
1/2

)
.

■
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C.3 The steady-state problem

This section investigates steady-state solutions to the nonlinear problem defined above. Consider the

nonlinear time-independent problem

(
𝑃ss)



(𝑃1ss) − ∇ · (κ∇𝑇 (𝒓)) + (𝒖(𝒓; ⟨𝑇⟩ , ⟨𝑆⟩)·∇)𝑇 (𝒓) = 𝑓𝑇 (𝒓), 𝒓 ∈ Ω

(𝑃2ss) − ∇ · (κ∇𝑆(𝒓)) + (𝒖(𝒓; ⟨𝑇⟩ , ⟨𝑆⟩)·∇)𝑆(𝒓) = 𝑓𝑆 (𝒓), 𝒓 ∈ Ω

(𝑃3ss) 𝑎𝐼 (⟨𝑇⟩ , ⟨𝑆⟩) = Γ (−𝛼(⟨𝑇⟩2 − ⟨𝑇⟩1) + 𝛽(⟨𝑆⟩2 − ⟨𝑆⟩1)) ,

(𝑃4ss) 𝒖(𝒓; ⟨𝑇⟩ , ⟨𝑆⟩) = 𝑎𝐸𝒖𝐸 (𝒓) + 𝑎𝐼 (⟨𝑇⟩ , ⟨𝑆⟩)𝒖𝐼 (𝒓), 𝒓 ∈ Ω

(𝑃5ss) (κ∇𝑇 (𝑞)) · �̂�(𝑞) =


𝑔𝑇
𝐴
(𝑇∗(𝑥, 𝑦) − 𝑇 (𝑞)) if 𝑞 ∈ 𝜎1

0 else
, 𝑞 ∈ 𝜕Ω

(𝑃6ss) (κ∇𝑆(𝑞)) · �̂�(𝑞) =


𝑔𝑆
𝐴
𝑆∗(𝑥, 𝑦) if 𝑞 ∈ 𝜎1

0 else
, 𝑞 ∈ 𝜕Ω.

(48)

where the parameters satisfy (22). Since if 𝑆 is a solution then so is 𝑆 + 𝑎 for any constant 𝑎, then we

restrict ourselves to the class where the average of 𝑆 over Ω is zero as we did for the time-dependent

problem. We thus define a weak solution to 𝑃ss in the same spirit as of weak solutions of the nonlinear

time-dependent problem:

Definition C. 8 (𝑇, 𝑆) ∈ 𝐻1(Ω) × ¤𝐻1(Ω) is called a weak solution to
(
𝑃ss) if, for all test functions

𝜑 ∈ 𝐻1(Ω), 𝜓 ∈ ¤𝐻1(Ω), the following holds:∫
Ω

((κ∇𝑇) · (∇𝜑) + ((𝒖 · ∇)𝑇)𝜑) 𝑑𝑉 +
∫
𝜎1

𝑔𝑇𝐴𝑇𝜑𝑑𝑥𝑑𝑦 =

∫
Ω

𝑓𝑇𝜑𝑑𝑉 +
∫
𝜎1

𝑔𝑇𝐴𝑇
∗(𝑥, 𝑦)𝜑𝑑𝑥𝑑𝑦;

∫
Ω

((κ∇𝑆) · (∇𝜓) + ((𝒖 · ∇)𝑆)𝜓) 𝑑𝑉 =

∫
Ω

𝑓𝑆𝜓𝑑𝑉 +
∫
𝜎1

𝑔𝑆𝐴𝑆
∗(𝑥, 𝑦)𝜓𝑑𝑥𝑑𝑦,

(49)

where 𝒖 = 𝒖(𝒓; ⟨𝑇⟩ , ⟨𝑆⟩) is defined according to equation (𝑃4) in (23).

Remark C. 5 A weak solution (𝑇, 𝑆) to the steady state problem
(
𝑃ss) is a strong solution of the

nonlinear time-dependent problem
(
𝑃𝑇,𝑆,𝑇∗,𝑆∗, 𝑓𝑇 , 𝑓𝑆

)
that is independent of time.
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To conclude this appendix, in Theorem C.2 we show that for any set of parameters, boundary

functions and source functions satisfying (22), the nonlinear steady-state problem
(
𝑃ss) has a weak

solution with bounded norms. Note that we do not show uniqueness for the general problem; indeed

for a given set of parameters, uniqueness of a weak solution to the nonlinear steady state problem
(
𝑃ss)

is not guaranteed nor expected in general. However, we show that given some restriction on the size

of the parameters under which the system is not vigorously forced with respect to its dissipation, the

steady-state solution is unique; furthermore, all solutions to the time-dependent problem converge to

this unique steady state solution as 𝑡 → ∞, as could be expected from a dissipative dynamical system

induced by advection-diffusion-type problems. In fact, one should be able to show that the infinite-

dimensional dynamical system induced by the evolution of the nonlinear problem
(
𝑃𝑇0,𝑆0,𝑇∗,𝑆∗, 𝑓𝑇 , 𝑓𝑆

)
possess a finite-dimensional global attractor, a subject which is outside the scope of this article

(Temam, 2012).

Theorem C. 2 Let κ , Γ, 𝛼, 𝛽, 𝑎𝐸 , 𝒖𝐸 , 𝒖𝐼 , 𝑓𝑇 , 𝑓𝑆, 𝑔𝑇𝐴, 𝑔𝑆
𝐴
, 𝑇∗, and 𝑆∗ be as in (22). Then:

1. The nonlinear steady-state problem
(
𝑃ss) has a weak solution.

2. A solution (𝑇, 𝑆) to
(
𝑃ss) satisfies the following bounds:

∥𝑇 ∥2 ≤ 𝐶𝑇4 ,
κ1/2

∇𝑇

2
≤ 𝐶𝑇5 , ∥𝑆∥2 ≤ 𝐶𝑆4 ,

κ1/2
∇𝑆

2
≤ 𝐶𝑆5 ; (50)

where

𝐶𝑇4 =
1
_2 ∥ 𝑓𝑇 ∥2 +

𝑔𝑇
𝐴

_
∥̃𝑇∗ ∥̃2, 𝐶𝑇5 =

1
_
∥ 𝑓𝑇 ∥2 +

2𝑔𝑇
𝐴

3
∥̃𝑇∗ ∥̃2,

𝐶𝑆4 =
1
𝜖1
∥̃𝑆∗ ∥̃2 + 1

𝜖2
∥ 𝑓𝑆∥2 , 𝐶𝑆5 =

1
𝜖1
∥̃𝑆∗ ∥̃2 + 1

𝜖3
∥ 𝑓𝑆∥2 .

(51)

The constants are given by 𝜖1 = 2^𝑚𝑖𝑛/
(
𝑔𝑆
𝐴

)2
, 𝜖2 = 4^𝑚𝑖𝑛 (3𝜋/8 − 1), 𝜖3 = 2 (^𝑚𝑖𝑛 (𝜋 − 2) + 1).

3. Let𝑇0, 𝑆0 be as (22), and let (𝑇, 𝑆) be a global strong solution to
(
𝑃𝑇0,𝑆0,𝑇∗,𝑆∗, 𝑓𝑇 , 𝑓𝑆

)
, as established

in Theorem C.1. If the following condition is satisfied by the problem parameters:

𝑢max
𝐼 Γ <

min{|𝐷1 |, |𝐷2 |}
max{𝛼, 𝛽}|Ω|1/2

min{^𝑥 , ^𝑦, ^𝑧} min{2𝜋^𝑥 , 2𝜋^𝑦,
𝑔𝑇
𝐴

2 ,
^𝑧
2 }

4 max{𝐶𝑇5 , 𝐶
𝑆
5 }

; 𝑢max
𝐼 = max

𝒓
|𝒖𝐼 (𝒓) |,

where𝐶𝑇5 ,𝐶𝑆5 are given in equation (51), then (𝑇, 𝑆) converges to a unique steady-state solution

as 𝑡 → ∞.
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Proof:

(ii) We start by proving the second point, establishing the a priori bounds (50). To this end,

assume (𝑇, 𝑆) is a weak solution to
(
𝑃ss) . Since (𝑇, 𝑆) ∈ 𝐻1(Ω) × ¤𝐻1(Ω), then each can be used as

a test function in equation (49). Thus, by using the divergence theorem, Cauchy-Schwarz, Young’s

inequality and Lemma C.3 one can immediately conclude the equations for 𝑇 in (50) and (51).

Similarly, using Lemmas C.4 and C.5 instead of Lemma C.3, one obtains the equations for 𝑆 in (50)

and (51).

(i) Next, we prove that the nonlinear steady-state problem
(
𝑃ss) has a weak solution.

Step 1. Induced linear problem.

Let 𝑇, 𝑆 ∈ 𝐿2(Ω) be given. We introduce the following linear stationary problem induced by(
𝑃ss):

(
𝑃

ss,lin
𝑇,𝑆

)



(𝑃1ss,lin) − ∇ · (κ∇𝑇 (𝒓)) + (�̄�(𝒓;
〈
𝑇
〉
,
〈
𝑆
〉
)·∇)𝑇 (𝒓) = 𝑓𝑇 (𝒓), 𝒓 ∈ Ω

(𝑃2ss,lin) − ∇ · (κ∇𝑆(𝒓)) + (�̄�(𝒓;
〈
𝑇
〉
,
〈
𝑆
〉
)·∇)𝑆(𝒓) = 𝑓𝑆 (𝒓), 𝒓 ∈ Ω

(𝑃3ss,lin) 𝑎𝐼 (
〈
𝑇
〉
,
〈
𝑆
〉
) = Γ

(
−𝛼(

〈
𝑇
〉

2 −
〈
𝑇
〉

1) + 𝛽(
〈
𝑆
〉

2 −
〈
𝑆
〉

1)
)
,

(𝑃4ss,lin) �̄�(𝒓;
〈
𝑇
〉
,
〈
𝑆
〉
) = 𝑎𝐸𝒖𝐸 (𝒓) + 𝑎𝐼 (

〈
𝑇
〉
,
〈
𝑆
〉
)𝒖𝐼 (𝒓), 𝒓 ∈ Ω

(𝑃5ss,lin) (κ∇𝑇 (𝑞)) · �̂�(𝑞) =


𝑔𝑇
𝐴
(𝑇∗(𝑥, 𝑦) − 𝑇 (𝑞)) if 𝑞 ∈ 𝜎1

0 else
, 𝑞 ∈ 𝜕Ω

(𝑃6ss,lin) (κ∇𝑆(𝑞)) · �̂�(𝑞) =


𝑔𝑆
𝐴
𝑆∗(𝑥, 𝑦) if 𝑞 ∈ 𝜎1

0 else
, 𝑞 ∈ 𝜕Ω.

(52)

We define the bilinear forms:

𝐵𝑇 : 𝐻1(Ω) × 𝐻1(Ω) → R, 𝐵𝑇 (𝑇, 𝜑) =
∫
Ω

((κ∇𝑇) · (∇𝜑) + ((�̄� · ∇)𝑇)𝜑) 𝑑𝑉 +
∫
𝜎1

𝑔𝑇𝐴𝑇𝜑𝑑𝑥𝑑𝑦,

𝐵𝑆 : ¤𝐻1(Ω) × ¤𝐻1(Ω) → R, 𝐵𝑆 (𝑇, 𝜑) =
∫
Ω

((κ∇𝑆) · (∇𝜑) + ((�̄� · ∇)𝑆)𝜑) 𝑑𝑉,

56



and the linear functionals:

𝑙𝑇 : 𝐻1(Ω) → R, 𝑙𝑇 (𝜑) =
∫
Ω

𝑓𝑇𝜑𝑑𝑉 +
∫
𝜎1

𝑔𝑇𝐴𝑇
∗𝜑𝑑𝑥𝑑𝑦,

𝑙𝑆 : ¤𝐻1(Ω) → R, 𝑙𝑆 (𝜑) =
∫
Ω

𝑓𝑆𝜑𝑑𝑉 +
∫
𝜎1

𝑔𝑆𝐴𝑆
∗𝜑𝑑𝑥𝑑𝑦.

We define a weak solution to
(
𝑃

ss,lin
𝑇,𝑆

)
to be (𝑇, 𝑆) ∈ 𝐻1(Ω) × ¤𝐻1(Ω) such that

𝐵𝑇 (𝑇, 𝜑) = 𝑙𝑇 (𝜑), 𝐵𝑆 (𝑆, 𝜓) = 𝑙𝑆 (𝜓) (53)

for every test function 𝜑 ∈ 𝐻1(Ω), 𝜓 ∈ ¤𝐻1(Ω).

Next, we show that the linear problem has a unique weak solution, employing the Lax-Milgram

theorem, see, e.g., Evans (2010), chapter 6.2. To this end, we need to check that the conditions of the

Lax-Milgram theorem are valid, namely the boundedness of the bilinear forms 𝐵𝑇 and 𝐵𝑆 and their

coercivity, as well as the boundedness of the linear functionals 𝑙𝑇 and 𝑙𝑆.

Using the Cauchy-Schwarz inequality and the trace theorem, we have

|𝐵𝑇 (𝜌, 𝜑) | =
����∫

Ω

(κ∇𝜌 − �̄�𝜌) · (∇𝜑)𝑑𝑉 +
∫
𝜎1

𝑔𝑇𝐴𝜌𝜑𝑑𝑥𝑑𝑦

����
≤

((∫
Ω

|κ∇𝜌 |2
)1/2

+
∫
Ω

(
|�̄�𝜌 |2

)1/2
) (∫

Ω

|∇𝜑 |2
)1/2

+ 𝑔𝑇𝐴
(∫
𝜎1

𝜌2
)1/2 (∫

𝜎1

𝜑2
)1/2

≤ 𝑀𝑇 ∥𝜌∥𝐻1 (Ω) ∥𝜑∥𝐿2 (Ω) + 𝑔𝑇𝐴 ∥𝜌∥𝐿2 (𝜕Ω) ∥𝜑∥𝐿2 (𝜕Ω) ≤ 𝛼𝑇 ∥𝜌∥𝐻1 (Ω) ∥𝜑∥𝐻1 (Ω) ,

where 𝑀𝑇 > 0 exists because κ is constant and �̄� is bounded by construction (equation (22)), and

𝛼𝑇 > 0. Using similar arguments,

|𝐵𝑆 (𝜌, 𝜑) | =
����∫

Ω

(κ∇𝜌 − �̄�𝜌) · (∇𝜑)𝑑𝑉
���� ≤ ((∫

Ω

|κ∇𝜌 |2
)1/2

+
∫
Ω

(
|�̄�𝜌 |2

)1/2
) (∫

Ω

|∇𝜑 |2
)1/2

≤ 𝑀𝑆 ∥𝜌∥𝐻1 (Ω) ∥𝜑∥𝐿2 (Ω) ≤ 𝛼𝑆 ∥𝜌∥𝐻1 (Ω) ∥𝜑∥𝐻1 (Ω) .

Next, to show coercivity, we use the divergence theorem and Lemma C.3 to deduce

𝐵𝑇 (𝜑, 𝜑) =
κ1/2

∇𝜑

2

𝐿2 (Ω)
+ 𝑔𝑇𝐴 ∥̃𝜑 ∥̃

2 ≥ 𝛽𝑇 ∥𝜑∥2
𝐻1 (Ω)
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where 𝛽𝑇 =
min{_,^𝑚𝑖𝑛}

2 . Moreover, using Lemma C.5, we conclude

𝐵𝑆 (𝜑, 𝜑) =
κ1/2

∇𝜑

2

𝐿2 (Ω)
≥ 𝛽𝑆 ∥𝜑∥2

𝐻1 (Ω) (54)

where 𝛽𝑆 =
min{1,^𝑚𝑖𝑛}
1+1/(𝜋^𝑚𝑖𝑛) . Finally, to show boundedness of 𝑙𝑇 and 𝑙𝑆, one uses Cauchy-Schwarz and

Lemmas C.3 and C.5 as above.

Step 2. Existence of a steady state solution as a fixed point of a continuous operator.

We denote the function𝑄 : 𝐿2 × ¤𝐿2 → 𝐿2 × ¤𝐿2 as follows: 𝑄((𝑇, 𝑆)) = (𝑇, 𝑆) where (𝑇, 𝑆) is the

solution of
(
𝑃

ss,lin
𝑇,𝑆

)
. Notice that a fixed point of the mapping 𝑄 is exactly a steady-state solution of

the nonlinear stationary problem
(
𝑃ss) . Next, we show that the mapping 𝑄 indeed has a fixed point,

employing the Schauder-Tychonof fixed point theorem (see Zeidler (1986), Corollary 2.13). Thus, in

order to conclude the proof we have left only to check that the conditions of the Schauder-Tychonof

fixed point theorem are valid, namely that 𝑄 is a continuous operator from a compact, convex subset

of 𝐿2 to itself.

Indeed, let (𝑇, 𝑆), (𝑇, 𝑆) satisfy𝑄((𝑇, 𝑆)) = (𝑇, 𝑆). Then (𝑇, 𝑆) satisfy the bounds from equation

(50). Therefore, (𝑇, 𝑆) is inside the closed ball in 𝐻1(Ω) × ¤𝐻1(Ω) defined by these bounds, and this

closed ball is compact in 𝐿2(Ω) × ¤𝐿2(Ω) by the Rellich-Kondrachov Lemma (Edmunds & Evans,

1987).

To prove continuity of𝑄 in the sense of 𝐿2, let𝑇𝑖, 𝑆𝑖, 𝑇𝑖, 𝑆𝑖 satisfy𝑄((𝑇𝑖, 𝑆𝑖)) = (𝑇𝑖, 𝑆𝑖) for 𝑖 = 1, 2.

Then 𝑇𝑖, 𝑆𝑖 satisfy 𝐵𝑇 (𝑇𝑖, 𝜑) = 𝑙𝑇 (𝜑), 𝐵𝑆 (𝑆𝑖, 𝜓) = 𝑙𝑆 (𝜓), respectively. Using assumptions (a4), (a5)

in (22), and subtracting equation (53) for𝑇1 from equation (53) for𝑇2, both with the same test function

𝜑 = 𝑇2 − 𝑇1 ≡ 𝛿𝑇 , we deduce

κ1/2
∇𝛿𝑇


𝐿2 (Ω)

+
∫
Ω

((𝛿�̄� · ∇)𝑇1)𝛿𝑇𝑑𝑉 + 𝑔𝑇𝐴 ∥̃𝛿𝑇 ∥̃
2 = 0

where �̄�𝑖 = �̄�(𝒓;
〈
𝑇𝑖

〉
,
〈
𝑆𝑖

〉
) is given by equation (𝑃4ss,lin) in for 𝑖 = 1, 2 in (52), 𝛿�̄� = �̄�2 − �̄�2.

Therefore, using Lemma C.3 and equation (41), and defining 𝛿𝑇 ≡ 𝑇2 − 𝑇1, 𝛿𝑆 ≡ 𝑆2 − 𝑆1, we obtain

_ ∥𝛿𝑇 ∥2
𝐿2 (Ω) ≤ 𝑏

∫
Ω

( |𝛿𝑇 | + |𝛿𝑆 |)𝑑𝑉
∫
Ω

|∇𝑇1 | |𝛿𝑇 |𝑑𝑉

where 𝑏 > 0 is some constant. Using Cauchy-Schwarz, equation (50) and Young’s inequality, we

58



deduce

∥𝛿𝑇 ∥2
𝐿2 (Ω) ≤ �̃�

(𝛿𝑇
𝐿2 (Ω) +

𝛿𝑆
𝐿2 (Ω)

)2
(55)

where �̃� > 0 is some constant. We repeat similar steps for 𝑆, using Lemma C.5 and defining

𝛿𝑆 ≡ 𝑆2 − 𝑆1, to obtain

∥𝛿𝑆∥2
𝐿2 (Ω) ≤ 𝑐

(𝛿𝑇
𝐿2 (Ω) +

𝛿𝑆
𝐿2 (Ω)

)2
(56)

where 𝑐 > 0 is some constant. Equations (55) and (56) prove continuity of 𝑄 in the sense of 𝐿2(Ω)

since small
𝛿𝑇

𝐿2 (Ω) ,
𝛿𝑆

𝐿2 (Ω) imply small ∥𝛿𝑇 ∥𝐿2 (Ω) , ∥𝛿𝑆∥𝐿2 (Ω) .

(iii) To conclude the proof, we derive a condition on the parameters under which solutions to the

time-dependent problem converge to a unique steady state solution. Let 𝑇0, 𝑆0 be as (22), and let

(𝑇, 𝑆) be a global strong solution to
(
𝑃𝑇0,𝑆0,𝑇∗,𝑆∗, 𝑓𝑇 , 𝑓𝑆

)
, as established in Theorem C.1. Further, let

(𝑇, 𝑆) be a steady state solution to
(
𝑃𝑇,𝑆,𝑇∗,𝑆∗, 𝑓𝑇 , 𝑓𝑆

)
as established above. By Remark C.3, using the

analogous equation to (31) for 𝑇 and 𝑇 both with 𝛿𝑇 ≡ 𝑇 − 𝑇 as a test function, we deduce

1
2
𝑑

𝑑𝑡
∥𝛿𝑇 ∥2 + 𝑔𝑇𝐴 ∥̃𝛿𝑇 ∥̃

2 +
κ1/2

∇𝛿𝑇

2
≤

∫
Ω

|𝛿𝑇 | |𝛿𝑢 | |∇𝑇 |.

By Lemma C.3, equation (41) and the Cauchy-Schwarz inequality, we obtain

1
2
𝑑

𝑑𝑡
∥𝛿𝑇 ∥2 + _ ∥𝛿𝑇 ∥2 ≤ 𝑏

𝐶𝑇5
^𝑚𝑖𝑛

(∥𝛿𝑇 ∥ + ∥𝛿𝑆∥) ∥𝛿𝑇 ∥

where 𝛿𝑆 ≡ 𝑆 − 𝑆 and 𝑏 ≡ 𝑢max
𝐼

Γ
max{𝛼,𝛽}

min{|𝐷1 |,|𝐷2 |} |Ω|1/2. Following similar arguments for 𝑆,

1
2
𝑑

𝑑𝑡
∥𝛿𝑆∥2 + 𝜋^𝑚𝑖𝑛 ∥𝛿𝑆∥2 ≤ 𝑏

𝐶𝑆5
^𝑚𝑖𝑛

(∥𝛿𝑇 ∥ + ∥𝛿𝑆∥) ∥𝛿𝑆∥ .

Hence, by defining _̃ = min{2𝜋^𝑚𝑖𝑛,
𝑔𝑇
𝐴

2 ,
^𝑧
2 }, 𝑐 = 4 𝑏

^𝑚𝑖𝑛
max{𝐶𝑇5 , 𝐶

𝑆
5 }, and [(𝑡) = ∥𝛿𝑇 ∥2 (𝑡) +

∥𝛿𝑆∥2 (𝑡), we obtain
𝑑

𝑑𝑡
[ + _̃[ ≤ 𝑐

2
(∥𝛿𝑇 ∥ + ∥𝛿𝑆∥)2 ≤ 𝑐[.

This allows employing Gronwall’s inequality to obtain the following bound:

[(𝑡) ≤ [(0)𝑒−(_̃−𝑐)𝑡 .
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Thus, if _̃ > 𝑐, i.e.

𝑢max
𝐼 Γ <

min{|𝐷1 |, |𝐷2 |}
max{𝛼, 𝛽}|Ω|1/2

^𝑚𝑖𝑛 min{4𝜋^𝑚𝑖𝑛, 𝑔𝑇𝐴, ^𝑧}
4 max{𝐶𝑇5 , 𝐶

𝑆
5 }

,

then (𝑇, 𝑆) converges to the steady-state solution (𝑇, 𝑆) at a rate of at least 1/(_̃ − 𝑐), independent of

the initial conditions 𝑇0, 𝑆0. Thus, in this case, the steady-state solution is unique. ■

C.4 Proof of useful Lemmas

C.4.1 Proof of Lemma C.3 (Poincaré inequality)

Using the Cauchy-Schwarz inequality and Young’s inequality,

𝑇2(𝑥, 𝑦, 𝑧) = 𝑇2(𝑥, 𝑦, 1) +
∫ 𝑧

1
𝜕𝑧𝑇

2(𝑥, 𝑦, 𝑧′)𝑑𝑧′ = 𝑇2(𝑥, 𝑦, 1) + 2
∫ 𝑧

1
𝑇𝜕𝑧𝑇 (𝑥, 𝑦, 𝑧′)𝑑𝑧′

≤ 𝑇2(𝑥, 𝑦, 1) + 2
∫ 𝑧

1
|𝑇 |

����𝜕𝑇𝜕𝑧 ���� 𝑑𝑧′ ≤ 𝑇2(𝑥, 𝑦, 1) +
(∫ 𝑧

1
|𝑇 |2𝑑𝑧′

)1/2
(∫ 𝑧

1
4
����𝜕𝑇𝜕𝑧 ����2 𝑑𝑧′

)1/2

≤ 𝑇2(𝑥, 𝑦, 1) + 1
2

∫ 0

1
|𝑇 |2𝑑𝑧 + 2

∫ 0

1

����𝜕𝑇𝜕𝑧 ����2 𝑑𝑧′.
By integrating over the domain Ω, we obtain ∥𝑇 ∥2 ≤ 2∥̃𝑇 ∥̃2 + 4 ∥𝜕𝑧𝑇 ∥2, therefore

_ ∥𝑇 ∥2 ≤ 2_ ∥̃𝑇 ∥̃2 + 4_ ∥𝜕𝑧𝑇 ∥2 ≤
𝑔𝑇
𝐴

2
∥̃𝑇 ∥̃2 + ^𝑧 ∥𝜕𝑧𝑇 ∥2 ≤

𝑔𝑇
𝐴

2
∥̃𝑇 ∥̃2 +

κ1/2
∇𝑇

 .
■

C.4.2 Proof of Lemma C.4

Using the Cauchy-Schwarz inequality and Young’s inequality,

𝑆2(𝑥, 𝑦, 1) = 𝑆2(𝑥, 𝑦, 𝑧) − 2
∫ 𝑧

1
𝑆𝜕𝑧𝑆(𝑥, 𝑦, 𝑧′)𝑑𝑧′ ≤ 𝑆2(𝑥, 𝑦, 𝑧) + 2

∫ 𝑧

1
|𝑆 | |𝜕𝑧𝑆 | 𝑑𝑧′

≤ 𝑆2(𝑥, 𝑦, 𝑧) + 1
𝜖

∫ 0

1
|𝑆 |2𝑑𝑧′ + 𝜖

∫ 0

1
|𝜕𝑧𝑆 |2𝑑𝑧′.

Integrating over the domain Ω, we deduce

∥̃𝑆 ∥̃2 ≤
(
1 + 1

𝜖

)
∥𝑆∥2 + 𝜖

^𝑚𝑖𝑛

κ1/2
∇𝑆

2
.

■
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C.4.3 Proof of Lemma C.5

Note that the inequality ∥𝑆 − ⟨𝑆⟩Ω∥2 ≤ 𝑐 ∥∇𝑆∥2 is the Poincaré-Wirtinger inequality for 𝑝 = 2, where

𝑐 is a constant determined only by the domain and 𝑝. In fact, since Ω is a smooth bounded cube

with side lengths 1, we can calculate the constant: it equals 1/_1, where _1 is the smallest eigenvalue

of minus the Laplacian, solving −∇2𝑆 = _1𝑆, and equals 𝜋/max{𝐿𝑥 , 𝐿𝑦, 𝐿𝑧}. In this simple case,

_1 = 𝜋, therefore 𝑐 = 1/𝜋, and

∥𝑆 − ⟨𝑆⟩Ω∥2 ≤ 1
𝜋^𝑚𝑖𝑛

κ1/2
∇𝑆

2
. (57)

■
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