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Stochastic variational principles for dissipative

equations with advected quantities

Xin Chen1, Ana Bela Cruzeiro2, Tudor S. Ratiu1,3

This paper presents symmetry reduction for material stochastic Lagrangian systems
with advected quantities whose configuration space is a Lie group. Such variational
principles yield deterministic as well as stochastic constrained variational principles
for dissipative equations of motion in spatial representation. The general theory is
presented for the finite dimensional situation. In infinite dimensions we obtain partial
differential equations and stochastic partial differential equations. When the Lie group
is, for example, a diffeomorphism group, the general result is not directly applicable
but the setup and method suggest rigorous proofs valid in infinite dimensions which
lead to similar results. We apply this technique to the compressible Navier-Stokes
equation and to magnetohydrodynamics for charged viscous compressible fluids. A
stochastic Kelvin-Noether theorem is presented. We derive, among others, the classical
deterministic dissipative equations from purely variational and stochastic principles,
without any appeal to thermodynamics.

1 Introduction

The goal of this paper is to develop a Lagrangian symmetry reduction process for a large
class of stochastic systems with advected parameters. The general theory, which yields
both deterministic and stochastic constrained variational principles and deterministic,
as well as stochastic reduced equations of motion, is developed for finite dimensional
systems. The resulting abstract equations then serve as a template for the study
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of infinite dimensional stochastic systems, for which the rigorous analysis has to be
carried out separately. The examples of the compressible Navier-Stokes equations and
dissipative compressible magnetohydrodynamics equations, as well as their randomly
perturbed counterparts and are treated in detail. We recover with our method the
classical dissipative fluid and magnetohydrodynamic equations without any appeal to
thermodynamical considerations, except for the form of the internal energy density.

The dynamics of many conservative physical systems can be described geometrically
taking advantage of the intrinsic symmetries in their material description. These sym-
metries induce Noether conserved quantities and allow for the elimination of unknowns,
producing an equivalent system consisting of new equations of motion in spaces with
less variables and a non-autonomous ordinary differential equation, called the recon-
struction equation. This geometric procedure is known as reduction, a method that
is ubiquitous in symplectic, Poisson, and Dirac geometry and has wide applications
in theoretical physics, quantum and continuum mechanics, control theory, and various
branches of engineering. For example, in continuum mechanics, the passage from the
material (Lagrangian) to the spatial (Eulerian) or convective (body) description is a
reduction procedure. Of course, depending on the problem, one of the three represen-
tations may be preferable. However, it is often the case that insight from the other two
representations, although apparently more intricate, leads to a deeper understanding
of the physical phenomenon under consideration and is useful in the description of the
dynamics.

A simple example in which the three descriptions are useful and serve different
purposes is free rigid body dynamics (e.g., [68, Section 15]). If one is interested in
the motion of the attitude matrix, the material picture is appropriate. The classical
free rigid body dynamics result, obtained by applying Hamilton’s standard variational
principle on the tangent bundle of the proper rotation group SO(3), states that the
attitude matrix describes a geodesic of a left invariant Riemannian metric on SO(3),
characterized by the mass distribution of the body. However, as shown already by
Euler, the equations of motion simplify considerably in the convective (or body) picture
because the total energy of the rotating body, which in this case is just kinetic energy,
is invariant under left translations. The convective description takes place on the Lie
algebra so(3) of SO(3) and is given by the classical Euler equations for a free rigid
body, after implementing the Lie algebra isomorphism of R3 with so(3) given by the
cross product operation. Finally, the spatial description comes into play, because the
spatial angular momentum is conserved during the motion and is hence used in the
description of the rigid body motion.

The present paper uses exclusively Lagrangian mechanics, where variational princi-
ples play a fundamental role since they produce the equations of motion. In continuum
mechanics, the variational principle used in the material description is the standard
Hamilton principle producing curves in the configuration space of the problem that
are critical points of the action functional. However, in the spatial and convective
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representations, if the configuration space of the problem is a Lie group, the induced
variational principle requires the use of constrained variations, a fundamental result of
Poincaré [78]; the resulting equations of motion are called today the Euler-Poincaré
equations ([69], [68, Section 13.5], [16]). These equations have been vastly extended to
include the motion of advected quantities ([15, 49, 50]) as well as affine ([40]) and non-
commutative versions thereof that naturally appear in models of complex materials
with internal structure ([41, 43]) and whose geometric description has led to the solu-
tion of a long-standing controversy in the nematodynamics of liquid crystals ([45, 46]).
Euler-Poincaré equations have also very important generalizations to problems whose
configuration space is an arbitrary manifold and the Lagrangian is invariant under a Lie
group action ([17]) as well as its extension to higher order Lagrangians ([36, 32, 33]).
Lagrange-Poincaré equations turn out to model the motion of spin systems ([35]), long
molecules ([24, 34]), free boundary fluids and elastic bodies ([38]), as well as charged
and Yang-Mills fluids ([43]). There are also Lagrange-Poincaré theorems for field theory
([12, 13, 14, 42, 25]) and non-holonomic systems ([18]). Lagrange-Poincaré equations
also have interesting applications to Riemannian cubics and splines ([76]), the repre-
sentation of images ([11]), certain classes of textures in condensed matter ([39]), and
some control ([44]) and optimization ([37]) problems.

Variational principles play an important role in the design of structure preserving
numerical algorithms. One discretizes both spatially and temporally such that the
symmetry structure of the problem is preserved. Integrators based on a discrete version
of Hamilton’s principle are called variational integrators ([71]). The resulting equations
of motion are the discrete Euler-Lagrange equations and the associated algorithm for
classical conservative systems is both symplectic as well as momentum-preserving and
manifests very good long time energy behavior; see [62, 63] for additional information.
There are versions of such variational integrators for certain forced ([54]), controlled
([77]), constrained holonomic ([64, 66]), non-holonomic ([55]), non-smooth ([29, 22]),
multiscale ([65, 81]), and stochastic ([7]) systems. In the presence of symmetry, these
systems can be reduced. However, today a general theory of discrete reduction in all
of these cases is still missing and is currently being developed. If the configuration
space is a Lie group, the first discretization of symmetric Lagrangian systems appears
in [73], motivated by problems in complete integrability; for an in-depth analysis of
such problems see [80].

All the above mentioned systems, both in the smooth and discrete versions, should
have various stochastic analogues, depending on what phenomenon is modeled. The
basic idea is to start with variational principles, motivated by Feynman’s path integral
approach to quantum mechanics and also by stochastic optimal control. The latter
has its origins in the foundational work of Bismut ([5, 6]) in the late seventies and
in recent developments by Lázaro-Camı́ and Ortega ([58, 59, 60, 61]). Non-holonomic
systems have been studied in the same spirit ([47]). All of this work investigated
mainly stochastic perturbations of Hamiltonian systems. A very recent approach on
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the Lagrangian side, in Euler-Poincaré form, has been developed in [21] and [48], where
both the position and the momentum of the system are (independently) randomly
perturbed, as well as the Lagrangian.

The stochastic version of Euler-Poincaré reduction introduced in [2] is closer in spirit
to Feynman’s viewpoint and, particularly, to the approach initiated in the eighties by
Zambrini (c.f. [84] and references therein as well as [83, 74]). It uses as a main tool the
notion of generalized (or mean-value) derivative in order to remove the contribution
of the martingale part of the stochastic Lagrangian paths. This derivative has been
introduced in stochastic dynamics by E. Nelson ([75]). We also refer to [1, 2, 19, 56] and
references therein for various extensions on infinite dimensional spaces and applications
of this derivative in stochastic Euler-Poincaré reduction.

The crucial idea is that the generalized derivative contains a contraction term in-
duced by noise (stochastic force) which gives rise to a second order operator (such as
the Laplacian) in the velocity equation of the stochastic model in continuum mechanics.
Then, the stochastic reduction procedure leads to characterizations of various partial
differential equations whose viscous term only appears in relation with the Laplacian,
such as the incompressible the Navier-Stokes or the viscous Camassa-Holm equations.
This stochastic Euler-Poincaré reduction is formulated on the group of volume preserv-
ing diffeomorphisms and the Lagrangian variables correspond to semimartingales.

The theory of reduction of variational principles of mechanical systems with ad-
vected parameters, leading to Euler-Poincaré equations coupled with advection equa-
tions, and hence associated to semidirect products, has been been developed in [49].
For continuum mechanical models, this method is particularly useful to characterize
several kinds of evolutionary partial differential equations arising in conservative com-
pressible fluids, such as the compressible Euler and ideal MHD equations (see, e.g.,
[49, Section 7]). Therefore, a first natural question arises whether it is possible to find
a stochastic Euler-Poincaré reduction method that would characterize equations with
viscous terms in compressible fluids, such as the compressible Navier-Stokes equation
or the viscous compressible MHD equation. The main difficulty is that the generalized
derivative, alluded to above, is not capable by itself to generate these viscosity terms
since they do not appear only in connection with the generators of the underlying
stochastic Lagrangian paths as in the case of incompressible fluids. The second natural
question, amplifying the first one, is whether one can formulate a stochastic reduc-
tion procedure that would lead to interesting stochastic partial differential equations,
appropriate for applications to continuum mechanics.

It is well known ([49]) that the Euler-Poincaré formulation naturally leads to Kelvin
circulation theorems. The classical Kelvin Circulation Theorem for barotropic ideal
fluids states that the circulation of the velocity around a closed loop moving with the
fluid is constant in time. This statement is intimately connected to Poisson geometric
properties of Euler’s ideal fluid equations (it characterizes the symplectic leaves in the
phase space of Euler’s equations; see [70]) and has important applications, for example,
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in the Lyapunov stability analysis of stationary solutions (see, e.g., [3, 4, 51, 50]). For
more general fluids, this theorem fails; instead of the vanishing of the time derivative
of the circulation around a closed loop moving with the fluid, there is an explicit right
hand side, responsible for generating circulation, involving advected quantities and
the potential energy of the material. These identities are also known under the same
name. For a general abstract formulation and a large class of examples of such Kelvin
Circulation Theorems, see [49], [50]. In addition, these Kelvin Circulation identities are
equivalent to reformulations of the equations of motion that turn out to be convenient
for the qualitative study of the fluid. It is natural hence to seek for a counterpart of
such Kelvin-Noether identities appearing in stochastic Euler-Poincaré reduction.

The main purpose in the paper is to solve the questions mentioned above. We
summarize now the main achievements of the paper.

(1) We introduce a contraction matrix for the stochastic Lagrangian paths, which is
different from the generalized derivative described above. This contraction matrix
gives rise to a contraction force term in the action functional, capable to access
separately, via reduction, each viscosity term, introduced usually by physical
considerations, in the continuum mechanical model. In particular, we deduce
the compressible Navier-Stokes and the viscous compressible MHD equations
(Section 5) only from our stochastic variational principle, without any appeal to
thermodynamics.

(2) We study random action functionals, by introducing an additional stochastic
force. Various stochastic partial differential equations, such as stochastic (both
compressible and incompressible) Navier-Stokes or Euler equations and stochastic
viscous MHD equations, are deduced from our stochastic reduction procedure.

(3) We derive Euler-Poincaré equations for stochastic processes defined on semidirect
product Lie algebras and give the associated deterministic constrained variational
principle when the stochastic force (in the action functional) vanishes. In other
words, we develop the semidirect Euler-Poincaré reduction for a large class of
stochastic systems.

(4) We prove a stochastic version of the Kelvin-Noether Circulation Theorem for our
stochastic reduction procedure. Compared with the result in [49], our (stochastic)
evolution equations also depend on some martingales and some viscosity terms,
in addition to the usual advected quantities (Section 4).

As discussed earlier, the generalized derivative only produces a trace term on the
contraction part of the associated stochastic Lagrangian path. In order to obtain
different viscosity terms in the models of continuum mechanics, we have to investigate
in more detail the effect of the contraction induced by the martingale term. To do this,
we introduce a contraction matrix, which carries much more information, involving
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each entry in the matrix, and not just their sum (as is the case for the generalized
derivative).

Moreover, partially inspired by [21] and [48], we also consider random perturbations
of the action functionals so that the corresponding critical points satisfy a stochastic dif-
ferential equation (a stochastic partial differential equation in the infinite dimensional
case). Therefore, our action functionals have integrands that consist of three parts: the
Lagrangian, a contraction force, and a stochastic force, which model the Lagrangian
structure, the viscosity, and the stochastic (martingale) nature of the action.

Plan of the paper. In Section 2, we recall some basic probability notions necessary
for the rest of the paper and give the crucial definition of the contraction matrix and
martingale part for group valued semimartingales. Section 3 contains the first main
result of the paper, namely the stochastic semidirect product Euler-Poincaré reduction
for finite dimensional Lie groups, both in left and right-invariant versions. We give the
deterministic variational principle and the reduced equations of motion as well as their
random deformations. In Section 4 we derive a stochastic Kelvin-Noether theorem.
Section 5 presents the second main result of the paper, the reduction from the material
to the spatial representation in infinite dimensions, which applies to the compress-
ible Navier-Stokes equation and to the stochastic compressible magnetohydrodynamics
equations. The stochastic reduction process recovers the standard deterministic equa-
tions in Eulerian representation as well as their random deformations.

2 The derivative for semimartingales

In [2], we gave the notion of generalized derivative for semimartingales taking values
on some topological groups. In this section, we decompose a G-valued semimartingale
(when the dimension of G is finite, see, e.g. [26]) into its velocity part, martingale part,
and contraction part (matrix), which is crucial for our stochastic reduction procedure.

2.1 Some probability notions

We review in this subsection some basic notions of stochastic analysis on Euclidean
spaces. We recall the concepts omitting the proofs, which can be found, for example,
in [53].

We denote R+ := [0,∞[. Let (Ω,P,P) be a probability space. Suppose we are given
a family (Pt)t∈R+ of sub-σ-algebras of P which is non-decreasing (namely, Ps ⊂ Pt for
0 ≤ s ≤ t) and right-continuous, i.e., ∩ǫ>0Pt+ǫ = Pt for all t ∈ R+. We then say that
the probability space is endowed with a non-decreasing filtration (Pt)t∈R+ . A stochastic
process X : R+×Ω → R is (Pt)-adapted if X(t, ·) : Ω → R+ is Pt-measurable for every
t ≥ 0. Typically, a filtration describes the past history of a process: one starts with a
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process X and defines Pt to be the sigma-algebra generated by all sets X(s, ·)−1(B),
with 0 ≤ s ≤ t and B a Borel subset in R. Then the process X is automatically
(Pt)-adapted.

A stochastic process M : R+ × Ω → R is a (R-valued) martingale with respect to
(Pt)t≥0 if

(i) E|Mω(t)| < ∞ for all t ≥ 0;
(ii) Mω(t) is (Pt)-adapted;
(iii) Es(Mω(t))) = Mω(s) a.s. for all 0 ≤ s < t.

In the above definition, E denotes the expectation of the random variable with
respect to the probability measure P; Es(Mω(t)) := E[Mω(t)|Ps], for each s ≥ 0, is the
conditional expectation of the random variable Mω(t), t > s, relative to the σ-algebra
(Ps), i.e., Ω ∋ ω 7→ Es[Mω(t)] ∈ R is a Ps-measurable function satisfying

E
[

Es[Mω(t)]χA(ω)
]

= E
[

Mω(t)χA(ω)
]

, ∀A ∈ Ps,

where χA is the characteristic function of the set A. Thus, condition (iii) is equivalent
to E[(Mω(t) −Mω(s))χA(ω)] = 0 for all A ∈ Ps and all t, s ∈ R satisfying t > s ≥ 0.

In this paper we shall only consider processes defined on compact time intervals
[0, T ] which have continuous sample paths (i.e., continuous with respect to the time
variable t for almost all ω ∈ Ω).

If a martingale Mω(·) : R+ → R is continuous for a.s. ω ∈ Ω and E[Mω(t)2] < ∞
for all t ≥ 0, we say that M has a quadratic variation {JMω,MωKt | t ∈ [0, T ]} if
M2

ω(t) − JMω,MωKt is a martingale with respect to (Pt)t≥0, and JMω,MωK· : R+ → R

is a continuous, non-decreasing process with JMω,MωK0 = 0 for a.s. ω ∈ Ω. Such a
process is unique and coincides with the following limit (convergence in probability),

lim
n→∞

∑

ti,ti+1∈σn

(Mω(ti+1) −Mω(ti))
2

where σn is a partition of the interval [0, t] and the mesh converges to zero as n → ∞.
Actually, the definition of the quadratic variation requires only right-continuity of M .

Moreover, for two martingales M and N , under the same assumptions and conven-
tions as given above, one can also define their covariation

JMω, NωKt := lim
n→∞

∑

ti,ti+1∈σn

(Mω(ti+1) −Mω(ti))(Nω(ti+1) −Nω(ti)),

which extends the notion of quadratic variation. Clearly,

2JMω, NωKt = JMω + Nω,Mω + NωKt − JMω,MωKt − JNω, NωKt.

More generally, one can consider local martingales. A stopping time is a random
variable τ : Ω → R+ such that for all t ≥ 0, {ω ∈ Ω | τ(ω) ≤ t} ∈ Pt. Then, a
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stochastic process M is a local martingale if there exists a sequence of stopping times
{τn | n ≥ 1}, such that limn→∞ τn(ω) = ∞ a.s., and Mn

ω (t) := Mω(t∧τn(ω)) is a square
integrable martingale for all n ≥ 1, where t ∧ τn(ω) := min(t, τn(ω)). Thus, for a local
martingale M , we define JMω,MωKt := JMn

ω ,M
n
ω Kt if t ≤ τn(ω).

A real-valued Brownian motion is a martingale W (t) with continuous sample paths,
t ∈ R+, such that W 2(t) − t is a martingale; or, equivalently, such that JWω,WωKt = t
for a.s. ω ∈ Ω.

A stochastic process X : Ω × [0, T ] → R is a (local) semimartingale with respect
to the non-decreasing filtration (Pt)t≥0 if, for every t ≥ 0, it can be decomposed into a
sum

Xω(t) = Xω(0) + Mω(t) + Aω(t),

where M is a local martingale with respect to (Pt)t≥0 such that Mω(0) = 0 and A
is a càdlàg (Pt)t≥0-adapted process of locally bounded variation with Aω(0) = 0 a.s.
(càdlàg = “continue à droite, limite à gauche” means, by definition, that A is right-
continuous with left limits at each t ≥ 0; however, we consider only processes that
are continuous in the time variable t, which is a standing assumption throughout this
paper).

For a (local) semimartingale we define JXω, XωKt := JMω,MωKt.
Martingales and, in particular, Brownian motion, are not (a.s.) differentiable in

time (unless they are constant); therefore, one cannot integrate with respect to mar-
tingales as one does with respect to functions of bounded variation. We recall the defi-
nition of the two most commonly used stochastic integrals, the Itô and the Stratonovich
integrals.

If X and Y are real-valued semimartingales with continuous sample paths such that
for some T > 0,

E

[
∫ T

0

|Xω(t)|2dt +

∫ T

0

|Yω(t)|2dt
]

< ∞,

the Itô stochastic integral in the time interval [0, t], 0 < t ≤ T , with respect to Y is
defined as the limit in probability (if the limit exists) of the sums

∫ t

0

Xω(s)dYω(s) = lim
n→∞

∑

ti,ti+1∈σn

Xω(ti)(Yω(ti+1) − Yω(ti))

where σn is a partition of the interval [0, t] with mesh converging to zero as n → ∞.
The Stratonovich stochastic integral is defined by

∫ t

0

Xω(s)δYω(s) = lim
n→∞

∑

ti,ti+1∈σn

(Xω(ti) + Xω(ti+1))

2
(Yω(ti+1) − Yω(ti))

whenever such limit exists.
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These integrals do not coincide, in general, even though X is a process with con-
tinuous sample paths (due to the lack of differentiability of the paths of Y ). The Itô
and the Stratonovich integrals are related by

(2.1)

∫ t

0

Xω(s)δYω(s) =

∫ t

0

Xω(s)dYω(s) +
1

2

∫ t

0

dJXω, YωKs.

If f ∈ C2(R), Itô’s formula states that

(2.2) f(Xω(t)) = f(Xω(0)) +

∫ t

0

f ′(Xω(s))dXω(s) +
1

2

∫ t

0

f ′′(Xω(s))dJXω, XωKs

This formula, for Stratonovich integrals, reads,

f(Xω(t)) = f(Xω(0)) +

∫ t

0

f ′(Xω(s))δXω(s)

One advantage of Stratonovich integrals is that they allow the use of the same rules
as those of the standard deterministic differential calculus. On the other hand an Itô
integral with respect to a martingale M is again a martingale (under the integrability

condition E
[

∫ T

0
|Xω(t)|2dJMω,MωKt

]

< ∞), a very important property. For example,

we have, as an immediate consequence, that Es

[

∫ t

s
Xω(r)dMω(r)

]

= 0 for all 0 ≤ s < t.

This property does not hold for Stratonovich integrals.
In higher dimensions, the difference between the Stratonovich and the Itô integral

in Itô’s formula is given in terms of the Hessian of f (see Subsection 2.2). In fact,
suppose that X is an Rd-valued semimartingale; then Itô’s formula in d-dimensions
(see also (2.2)) states that, for every f ∈ C2(Rd),

f(Xω(t)) = f(Xω(0)) +
d
∑

i=1

∫ t

0

∂if(Xω(s))dX i
ω(s) +

1

2

d
∑

i,j=1

∫ t

0

∂2
i,jf(Xω(s))dJX i

ω, X
j
ωKs

= f(Xω(0)) +
d
∑

i=1

∫ t

0

∂if(Xω(s))δX i
ω(s)(2.3)

For independent Brownian motions W i, i = 1, . . . , k, we have

(2.4) dJW i
ω,W

j
ωKt = δijdt

where δij denotes the Kronecker delta symbol. As the covariation of semimartingales
is determined by their martingale parts, the following identities hold (see, e.g., [53]),

(2.5) dJW i
ω, ιKt = 0 ∀i = 1, . . . , d, dJι, ιKt = 0,

where ι(t) = t is the identity (deterministic) function.
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2.2 The generalized derivative and martingale part for (topo-
logical) group valued semimartingales

Let G denote a topological group, endowed with a Banach manifold structure (possibly
infinite dimensional) whose underlying topology is the given one, such that all left (or
right) translations Lg (resp. Rg) by arbitrary g ∈ G are smooth maps, where Lgh := gh,
Rgh := hg, for all g, h ∈ G. Given a vector v ∈ TeG, we denote by vL (resp. vR) the
left (resp. right) invariant vector field whose value at the neutral element e of G is v,
i.e., vL(g) := TeLgv (resp. vR(g) := TeRgv), where TeLg : TeG → TgG is the tangent
map (derivative) of Lg (and similarly for Rg). The operation [v1, v2] :=

[

vL1 , v
L
2

]

(e),
for any v1, v2 ∈ TeG, defines a (left) Lie bracket on TeG. In this paper, we denote
by g the Lie algebra of G, which is the set of left invariant vector fields on G. When
working with right invariant vector fields, we shall still use, formally, the left Lie bracket
defined above, i.e., we shall never work with right Lie algebras; the bracket defined by
right invariant vector fields is equal to the negative of the left Lie bracket defined
above. Denote, as usual, by adu v := [u, v] the adjoint action of TeG on itself and by
ad∗

u : T ∗
e G → T ∗

eG its dual map (the coadjoint action of TeG on its dual T ∗
eG).

Suppose that ∇ is a left invariant linear connection on G, i.e., ∇vL1
vL2 is a left

invariant vector field, for any v1, v2 ∈ TeG. Then we define ∇v1v2 := ∇vL1
vL2 (e) for all

v1, v2 ∈ TeG. If right translation is smooth, in all the definitions above, we can replace
left translation by right translation in a similar way. We also assume that the left
invariant connection ∇ is torsion free, namely

∇v1v2 −∇v2v1 = [v1, v2] , for all v1, v2 ∈ TeG.

For a fixed g1 ∈ G, let Tg2Lg1 : Tg2G → Tg1g2G be the tangent map (or derivative) of
Lg1 at the point g2 ∈ G.

Let G be endowed with a left invariant linear torsion free connection ∇. The
corresponding Hessian Hessf(g) : TgG × TgG → R of f ∈ C2(G) at g ∈ G is defined
by

(2.6) Hessf(g)
(

v1, v2

)

:= ṽ1ṽ2f(g) −∇ṽ1 ṽ2f(g), v1, v2 ∈ TgG,

where ṽi, i = 1, 2, are arbitrary smooth vector fields on G such that ṽi(g) = vi. Since
the connection is torsion free, Hess f(g) is a symmetric R-bilinear form on each TgG.
In addition, Hessf = ∇2f = ∇df (see, e.g., [26]) is the covariant derivative associated
with ∇ of the one-form df , where d denotes the exterior differential.

Given a probability space (Ω,P,P) endowed with a non-decreasing filtration (Pt)t≥0,
a semimartingale with values in G (with respect to (Pt)t≥0) is a Pt-adapted stochastic
process g : Ω×R+ → G such that, for every function f ∈ C2(G), f ◦g : Ω×R+ → R is
a real-valued semimartingale (on (Ω,P,P)), as introduced in subsection 2.1 (see, e.g.,
[26] for the case of finite dimensional Lie groups).
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A semimartingale with values in G is a ∇-(local) martingale if

t 7−→ f(gω(t)) − f(gω(0)) − 1

2

∫ t

0

Hessf(gω(s))dJgω, gω
y
s
ds

is a real-valued (local) martingale for any f ∈ C2(G), where Jgω, gωKt is the quadratic
variation of gω. If G is a finite dimensional Lie group, then we have the following
expression

dJgω, gωKt := d

[[
∫ ·

0

P−1
s δgω(s),

∫ ·

0

P−1
s δgω(s)

]]

t

,

where Pt : Tgω(0)G → Tgω(t)G is the (stochastic) parallel translation along the (stochas-
tic) curve t 7→ gω(t) associated with the connection ∇; see, e.g., [26] or [53]. Moreover,
for some infinite dimensional groups G (for example the diffeomorphism group on a
torus), the quadratic variation is also well defined; we refer the reader to [2, 19] for
details (see also Section 5 of this paper).

For a G-valued semimartingale gω(·), suppose there exist an integer m > 0 and
Pt-adapted processes v : Ω × R+ → TeG, wi : Ω × R+ → TeG, M i : Ω × R+ → R,
1 ≤ i ≤ m, such that M i is a (R-valued) martingale with continuous sample paths,
and for every f ∈ C2(G),

f(gω(t)) = f(gω(0)) +
m
∑

i=1

∫ t

0

〈

df(gω(s)), TeLgω(s)w
i
ω(s)

〉

dM i
ω(s)

+
1

2

m
∑

i,j=1

∫ t

0

Hessf(gω(s)))
(

TeLgω(s)w
i
ω(s), TeLgω(s)w

j
ω(s)

)

dJM i
ω,M

j
ωKs

+
1

2

m
∑

i,j=1

∫ t

0

〈

df(gω(s)), TeLgω(t)

(

∇
w

i
ω(s)

w
j
ω(s)

)〉

dJM i
ω,M

j
ωKs

+
1

2

m
∑

i=1

∫ t

0

〈

df(gω(s)), dJwi
ω,M

i
ωKs
〉

+

∫ t

0

〈

df(gω(s)), TeLgω(s)vω(s)
〉

ds.

(2.7)

For such a G-valued semimartingale gω, having the form (2.7) above, the following
is true,

(2.8) dgω(t) = TeLgω(t)

(

m
∑

i=1

w
i
ω(t)δM i

ω(t) + vω(t)dt
)

.

Here δ denotes the Stratonovich integral (of the tangent vectors in G).
Note that although for a given left invariant connection ∇, the choice of {(wi

ω,M
i
ω) |

1 ≤ i ≤ m} in (2.8) may not be unique, the decomposition into the martingale

11



part (which is
∑m

i=1w
i
ω(t)dM i

ω(t)), and the drift part without contraction (which is
TeLgω(t)vω(s)dt) in (2.8) is unique. Then we define the velocity derivative of gω(·) by

(2.9)
Dgω(t)

dt
:= TeLgω(t)vω(t),

and the stochastic differential with respect to the martingale part of gω(·) by

(2.10) d∆gω(t) :=

m
∑

i=1

TeLgω(t)

(

w
i
ω(t)dM i

ω(t)
)

,

where dM i
ω(t) denotes the Itô integral with respect to the martingale M i

ω(t). Note that
the two terms above do not depend on the choice of the left invariant connection ∇.

In order to obtain the viscous terms in the associated stochastic Euler-Poincaré
equation, we need to make a more detailed analysis of the contraction part of the semi-
martingale (or stochastic Lagrangian path) gω(·). For a given left invariant connection
∇ on G and some fixed choice {(wi

ω,M
i
ω) | 1 ≤ i ≤ m}, where both w

i
ω and M i

ω

are Pt-adapted processes and M i
ω are real valued martingales with continuous sample

paths, we define the contraction matrix D
∇,(wi

ω,Mi
ω)mi=1gω(t)
dt

as the following Tgω(t)G-valued
m×m matrix:

(

D∇,(wi
ω ,M

i
ω)

m
i=1gω(t)

dt

)

i,j

:= TeLgω(t)

(

∇
w

i
ω(t)

w
j
ω(t)

dJM i
ω,M

j
ωKt

dt

+
dJwi

ω,M
i
ωKt

dt
1{i=j}

)

, 1 ≤ i, j ≤ m.

(2.11)

Therefore, we can split the differential of a G-valued semimartingale into the ve-
locity part, the Hessian (second order ) term, the martingale part, and the contraction
part (more accurately the contraction matrix). Intuitively, the velocity part could be
seen as the direction where the particles flow, the martingale part represents their ran-
dom fluctuations, while the contraction part describes the contraction effect from the
noise.

The term

(

D
∇,(wi

ω,Mi
ω)mi=1gω(t)
dt

)

i,j

corresponds to the contraction between the noises

in vectors w
i
ω and w

j
ω. Thus, the contraction matrix describes explicitly the behavior

of the noises interaction along different vector fields (directions) {wi
ω}mi=1.

Let

Sum

(

D∇,(wi
ω ,M

i
ω)

m
i=1gω(t)

dt

)

:=
m
∑

i,j=1

(

D∇,(wi
ω ,M

i
ω)

m
i=1gω(t)

dt

)

i,j

∈ Tgω(t)G

denote the sum of all entries of the matrix D
∇,(wi

ω,Mi
ω)mi=1gω(t)
dt

; for each fixed t this is a
Tgω(t)G-valued random variable.

12



Then it is easy to verify that for a G-valued semimartingale of the form (2.8) and
any f ∈ C2(G), the process

Nf
t := f(gω(t)) − f(gω(0))) − 1

2

∫ t

0

Hessf(gω(s)))dJgω, gωKs

− 1

2

∫ t

0

〈

df(gω(s)),Sum

(

D∇,(wi
ω ,M

i
ω)

m
i=1gω(s)

ds

)〉

−
∫ t

0

〈

df(gω(s)),
Dgω(s)

ds

〉

ds

is a real-valued local martingale.

We remark that by (2.9)-(2.11), the terms D

dt
, d∆, D

∇,(wi
ω,Mi

ω)mi=1

dt
are well defined for

semimartingales with values in a finite dimensional Lie group as well as in some infinite
dimensional groups (the diffeomorphism group on a torus for example); see, e.g., [2] or
Section 5 below.

In the stochastic Euler-Poincaré reduction introduced in Section 3, the martingale
part and the contraction part generate, respectively, the martingale term and the
viscosity term in associated (stochastic) Euler-Poincaré equation.

Moreover, when G is a finite dimensional compact Lie group, for a G-valued semi-
martingale gω(·) of the form (2.8), we have the following equalities (see, e.g., [26])

D∇gω(t)

dt
:= Pt

(

lim
ǫ→0

Et

[

ηω(t + ǫ) − ηω(t)

ǫ

])

=
1

2
Sum

(

D∇,(wi
ω ,M

i
ω)

m
i=1gω(t)

dt

)

+
Dgω(t)

dt
,

(2.12)

where Pt : TeG → Tgω(t)G is the stochastic parallel translation associated to ∇, Et[·] =
E[·|Pt] denotes the conditional expectation, and

ηω(t) =

∫ t

0

P−1
s δgω(s) ∈ TeG.

Therefore, according to the definition, if a G-valued semimartingale gω(t) satisfies
D∇gω(t)

dt
= 0, then gω(t) is a ∇-martingale.

In fact, D∇

dt
is the generalized derivative in [2], which is a generalization for group-

valued semimartingales of those in [19, 75, 83, 74, 84]; it contains a single term formed
by the sum of all elements in the contraction matrix. The generalized derivative is
sufficient to generate the viscosity terms (second order differential terms) in some
partial differential equations through the stochastic reduction procedure. This is the
case, for example, for the incompressible Navier-Stokes equation; see, e.g., [2, 19, 75,
83, 74, 84]. However, for a large class of equations in fluid mechanics, the viscous
terms do not depend only on such kind of contraction terms; see, e.g., the compressible
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Navier-Stokes equation or the viscous MHD equation in Section 5. This is one of our
motivations to introduce the decomposition of D∇

dt
above.

The generalized derivative coincides with the drift of a diffusion processes. It was
commonly used since the beginning of Stochastic Analysis but was first associated with
a dynamical interpretation, as a mean velocity, in the context of Nelson’s Stochastic
Mechanics [75].

Given a Rm-valued martingale Mω(t) = (M1
ω(t), ...,Mm

ω (t)), t ∈ [0, T ], which has
a continuous sample path, (non-random) vectors Hi ∈ TeG, 1 ≤ i ≤ m, and a Pt-
adapted, TeG-valued semi-martingale uω : Ω × [0, T ] → TeG, consider the following
Stratonovich SDE on G,

(2.13)

{

dgω(t) = TeLgω(t) (
∑m

i=1HiδM
i
ω(t) + uω(t)dt) ,

gω(0) = e.

As explained in [26], given the connection ∇, the difference (contraction term)
between the Itô and Stratonovich integrals has the following form

m
∑

i=1

(

TeLgω(t)HiδM
i
ω(t) − TeLgω(t)HidM

i
ω(t)

)

=
1

2

m
∑

i=1

dJ(TeLgω(t)Hi),M
i
ω(t)Kt

=
1

2

m
∑

i,j=1

TeLgω(t)(∇Hi
Hj)dJM i

ω,M
j
ωKt.

Therefore, equation (2.13) is equivalent to
(2.14)
{

dgω(t) = TeLgω(t)

(

∑m

i=1HidM
i
ω(t) + 1

2

∑m

i,j=1∇Hi
HjdJM i

ω,M
j
ωKt + uω(t)dt

)

,

gω(0) = e.

If G is a finite dimensional Lie group, there exists a unique strong solution for
(2.13) (c.f. [53], [26]) and hence also for (2.14). When G is the diffeomorphism group
on a torus and u is less regular, a weak solution to (2.13) still exists ([2], [19]) under
suitable conditions on Hi.

Applying Itô’s formula to the solution gω(t) of (2.13) (see [26] for the case where
G is finite dimensional and [2, Section 4.2] or Section 5 below, for the case where G is
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the diffeomorphism group on a torus), for every f ∈ C2(G) we have,

f(gω(t)) = f(gω(0)) +

m
∑

i=1

∫ t

0

〈

df(gω(s)), TeLgω(s)Hi

〉

dM i
ω(s)

+
1

2

∫ t

0

Hessf(gω(s))dJgω, gωKs +

∫ t

0

〈

df(gω(s)), TeLgω(s)uω(s)
〉

ds

+
1

2

m
∑

i,j=1

∫ t

0

〈

df(gω(s)), TeLgω(s)∇Hi
Hj

〉

dJM i
ω,M

j
ωKs

Actually, this last equality, valid for each f ∈ C2(G), is a characterization of the
solution of the stochastic differential equation (2.13) (or (2.14)), in a weak sense.

Clearly, by the definition (2.9) and (2.10), we have

Dgω(t)

dt
= TeLgω(t)uω(t),

d∆gω(t) =
m
∑

i=1

(TeLgω(t)Hi)dM
i
ω(t),

(

D∇,(Hi,M
i
ω)

m
i=1gω(t)

dt

)

i,j

= TeLgω(t)(∇Hi
Hj)

dJM i
ω,M

j
ωKt

dt
.

(2.15)

3 Stochastic semidirect product Euler-Poincaré re-

duction

In this section, partially inspired by [2], [21], [48], we extend the deterministic semidi-
rect product Euler-Poincaré reduction, formulated and developed in [49], to the stochas-
tic setting. By such a reduction, we obtain a large class of partial differential equations
and stochastic partial differential equations with various viscosity terms; see Section 5
below.

3.1 Left invariant version

Let U be a vector space and U∗ its dual, also denote by 〈·, ·〉U : U∗×U → R the (weak)
duality pairing. Suppose that G is a group endowed with a manifold structure making
it into a topological group whose left translation is smooth. As discussed in subsection
2.2, the tangent space TeG to G at the identity element e ∈ G is (isomorphic to) a Lie
algebra. Assume that G has a left representation on U ; therefore, there are naturally
induced left representations of the group G and the Lie algebra TeG on U and U∗. All
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actions will be denoted by concatenation. Let 〈·, ·〉TeG
: T ∗

eG×TeG → R be the (weak)
duality pairing between T ∗

eG and TeG. Define the operator ⋄ : U × U∗ :→ T ∗
e G by

(3.1) 〈a ⋄ α, v〉TeG
:= −〈vα, a〉U = 〈α, va〉U , v ∈ TeG, a ∈ U, α ∈ U∗.

In fact, a ⋄ α is the value at (a, α) of the momentum map U × U∗ → T ∗
e G of the

cotangent lifted action induced by the left representation of G on U .

Let S (G) denote the collection of G-valued semimartingales with smooth coeffi-
cients defined on the time interval [0, T ]. Let Mm := {(ai,j)

m
i,j=1 | ai,j ∈ TeG} be the

vector space of all m ×m, TeG-valued matrices. Define M := ∪∞
m=1Mm. In order to

define the contraction matrix for gω ∈ S (G) having the form (2.8), we need to fix a
pair {(wi

ω,M
i
ω) | 1 ≤ i ≤ m} in the martingale part of (2.8) (the first term of the right

hand side of (2.8), i.e., the Itô integral). The hypotheses on this set of pairs remain
the same: w

i
ω and M i

ω are Pt-adapted processes and M i
ω are real valued martingales

with continuous sample paths, for all i = 1, . . . , m. We denote by (gω,w
i
ω,M

i
ω)mi=1 an

element in S (G) with a fixed choice {(wi
ω,M

i
ω) | 1 ≤ i ≤ m} in (2.8). Let S̃ (G) be

the collection of all these triples.
Given a (left invariant) linear connection ∇ on G, a point α0 ∈ U∗, a random

(Lagrangian) function l : Ω × [0, T ] × TeG × U∗ → R such that lω(t) is Pt-adapted
for each t ∈ [0, T ], a (viscosity force) function p : M × M × TeG → R, a (stochastic
force) function q : [0, T ]×TeG×U∗ → T ∗

eG, vectors Vi ∈ TeG (which are non-random),
1 ≤ i ≤ k, and an Rk-valued martingale Nω(t), we define a stochastic action functional

J∇,α0,l,p,q,(Vi,N
i
ω)

k
i=1 : S̃ (G) × S̃ (G) × S (G) → R by

J∇,α0,l,p,q,(Vi,N
i
ω)

k
i=1

(

(

g1ω,w
1,i
ω ,M1,i

ω

)m1

i=1
,
(

g2ω,w
2,i
ω ,M2,i

ω

)m2

i=1
, g3ω

)

:=

∫ T

0

lω

(

t, Tg1ω(t)Lg1ω(t)
−1

Dg1ω(t)

dt
, αω(t)

)

dt

+

∫ T

0

p

(

Tg1ω(t)
Lg1ω(t)

−1

D∇,(w1,i
ω ,M

i,1
ω )

m1
i=1g1ω(t)

dt
, Tg2ω(t)

Lg2ω(t)
−1

D∇,(w2,i
ω ,M

i,2
ω )

m2
i=1g2ω(t)

dt
,

Tg1ω(t)
Lg1ω(t)

−1

Dg1ω(t)

dt

)

dt

+

∫ T

0

〈

q

(

Tg1ω(t)Lg1ω(t)
−1

Dg1ω(t)

dt
, αω(t)

)

, Tg1ω(t)Lg1ω(t)
−1d∆g1ω(t)

〉

−
k
∑

i=1

∫ T

0

〈

q

(

Tg1ω(t)
Lg1ω(t)

−1

Dg1ω(t)

dt
, αω(t)

)

, VidN
i
ω(t)

〉

,

(3.2)

where
(

g1ω,w
1,i
ω ,M1,i

ω

)m1

i=1
∈ S̃ (G),

(

g2ω,w
2,i
ω ,M2,i

ω

)m2

i=1
∈ S̃ (G), Tg1ω(t)Lg1ω(t)

−1d∆g1ω(t)
corresponds to the Itô integral on the vector space TeG, and

(3.3) αω(t) := g3ω(t)−1α0.
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Remark 3.1. We explain intuitively why we want the action functional J∇,α0,l,p,q,(Vi,N
i
ω)

k
i=1

to have the form (3.2). When the Lagrangian l(v) = 1
2
〈v, v〉Rd, v ∈ Rd, is the kinetic

energy, for a stochastic Lagrangian path dgω(t) = dMω(t) +uω(t)dt = d∆g(t) + Dgω(t)
dt

dt
with Mω(t) being a Rd-valued martingale, we can formally write the kinetic energy as
follows
∫ T

0

l(Tgω(t)Lgω(t)−1dgω(t)) =

∫ T

0

1

2

〈

Tgω(t)Lgω(t)−1

Dgω(t)

dt
, Tgω(t)Lgω(t)−1

Dgω(t)

dt

〉

dt

+

∫ T

0

〈

Tgω(t)Lgω(t)−1

Dgω(t)

dt
, Tgω(t)Lgω(t)−1d∆gω(t)

〉

+
1

2

∫ T

0

〈

Tgω(t)Lgω(t)−1

d∆gω(t)

dt
, Tgω(t)Lgω(t)−1

d∆gω(t)

dt

〉

:= I1 + I2 + I3.

Here I1 represents the kinetic energy of the velocity: it is the action functional in the
deterministic case, based on which a standard Euler-Poincaré equation is obtained via
the reduction procedure. The summand I2 contains a stochastic differential for the
martingale part of dgω(t) and we can interpret it as the Itô integral with respect to
this martingale. Concerning I3, since it is not well-defined (it is almost-everywhere
infinite), we drop this term in the action functional.

Besides the kinetic energy, we could also add some extra terms of the form

k
∑

i=1

∫ T

0

〈

Tgω(t)Lgω(t)−1

Dgω(t)

dt
, VidN

i
ω(t)

〉

which represents the external stochastic fluctuation for the velocity.
Therefore, we define an action functional as follows

J(gω(·)) =

∫ T

0

1

2

〈

Tgω(t)Lgω(t)−1

Dgω(t)

dt
, Tgω(t)Lgω(t)−1

Dgω(t)

dt

〉

dt

+

∫ T

0

〈

Tgω(t)Lgω(t)−1

Dgω(t)

dt
, Tgω(t)Lgω(t)−1d∆gω(t)

〉

−
k
∑

i=1

∫ T

0

〈

Tgω(t)Lgω(t)−1

Dgω(t)

dt
, VidN

i
ω(t)

〉

,

which, when we add the viscous term (defined by a viscosity force q and the contraction
matrix for gω), is a particular case of (3.2) for q(v, a) = v, ∀v ∈ Rd, a ∈ U∗ (we use
here the identification of T ∗

e G with TeG). ♦

From now on, we write J∇,(Vi,N
i
ω)

k
i=1 for J∇,α0,l,p,q,(Vi,N

i
ω)

k
i=1 for simplicity. In order to

characterize the critical points of the action functional and to derive the corresponding
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Euler-Poincaré equation, it is necessary to consider a variation for
(

g1ω,w
1,i
ω ,M1,i

ω

)m1

i=1
∈

S̃ (G) and
(

g2ω,w
2,i
ω ,M2,i

ω

)m2

i=1
∈ S̃ (G).

For every ε ∈ [0, 1) and Pt-adapted process g : Ω × [0, T ] → TeG satisfying gω(0) =
gω(T ) = 0 and gω(·) ∈ C1([0, 1];TeG) a.s., let eω,ε,g (·) ∈ C1([0, T ];G) be the unique
solution of the (random) time-dependent ordinary differential equation on G

(3.4)

{

d
dt
eω,ε,g (t) = εTeLeω,ε,g (t)ġω(t),

eω,ε,g (0) = e,

where ġω(t) denotes the derivative with respect to the time variable t. Note that this
system implies eω,0,g (t) = e a.s. for all t ∈ [0, T ].

From now on, in this section, we assume that G is a finite dimensional Lie group
endowed with a left invariant linear connection ∇ and U is a finite dimensional left
G-representation space.

We first give the following lemma concerning the variations induced by eω,ε,g on a
semimartingale gω ∈ S (G).

Lemma 3.2. Suppose gω ∈ S (G) has the form (2.8) and let

giω,ε,g(t) := giω(t)eω,ε,g (t), t ∈ [0, T ], ε ∈ [0, 1).

Then we have

dgω,ε,g(t) = TeLgω,ε,g (t)

(

m
∑

i=1

Ade−1
ω,ε,g (t)

w
i
ω(t)δM i

ω(t) + Ade−1
ω,ε,g(t)

vω(t)dt + εġω(t)dt
)

.

(3.5)

Proof. By Itô’s formula and recalling that the Leibniz rule holds for Stratonovich in-
tegrals, we have

dgω,ε,g(t) = TeLgω,ε,g (t)

(

m
∑

i=1

Ade−1
ω,ε,g (t)

w
i
ω(t)δM i

ω(t) + Ade−1
ω,ε,g (t)

vω(t)dt

+ Teω,ε,g (t)Le−1
ω,ε,g (t)

ėω,ε,g(t)dt

)

= TeLgω,ε,g (t)

(

m
∑

i=1

Ade−1
ω,ε,g (t)

w
i
ω(t)δM i

ω(t) + Ade−1
ω,ε,g (t)

vω(t)dt + εġω(t)dt

)

,

where the last equality is due to (3.4).
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Based on (3.5), it is natural to consider
(

gω,ε,g ,Ade−1
ω,ε,g (t)

w
i
ω,M

i
ω

)m

i=1
as a deforma-

tion for
(

gω,w
i
ω,M

i
ω

)m

i=1
with gω ∈ S (G) having the expression (2.8). Meanwhile,

using definitions (2.9)–(2.11), it is easy to verify that

Tgω,ε,g (t)Lgω,ε,g (t)−1

Dgω,ε,g (t)

dt
= Ade−1

ω,ε,g(t)
vω(t) + εġω(t)

Tgω,ε,g (t)Lgω,ε,g (t)−1d∆gω,ε,g(t) =

m
∑

i=1

(

Ade−1
ω,ε,g(t)

w
i
ω(t)

)

dM i
ω(t)



Tgω,ε,g (t)Lgω,ε,g (t)−1

D
∇,(Ad

e
−1
ω,ε,g (t)

w
i,M i

ω)
m
i=1

gω,ε,g(t)

dt





i,j

=

(

∇Ad
e
−1
ω,ε,g (t)

w
i
ω(t)

Ade−1
ω,ε,g (t)

w
j
ω(t)

)

dJM i
ω,M

j
ωKt

dt
+

dJAde−1
ω,ε,g

w
i,M i

ωKt
dt

1{i=j}.

(3.6)

Remark 3.3. Although by now we assume that G is a finite dimensional Lie group,
by the arguments in [2, Section 4.2] we know that (3.6) still holds when G is the
diffeomorphism group on torus, see, e.g., (5.17) below. Hence Theorem 3.5 stated
below still holds for the diffeomorphism group on the torus (see Section 5). ♦

Now we define the critical point for action functional based on the variations we

introduced above. We say that
(

(

g1ω,w
1,i
ω ,M1,i

ω

)m1

i=1
,
(

g2ω,w
2,i
ω ,M2,i

ω

)m2

i=1
, g3ω

)

∈ S̃ (G) ×

S̃ (G) × S (G) is a critical point of J∇,(Vi,N
i
ω)

k
i=1 if for every Pt-adapted process gω

satisfying gω(·) ∈ C1([0, T ];TeG) and gω(0) = gω(T ) = 0 a.s., we have
(3.7)
d

dε

∣

∣

∣

∣

ε=0

J∇,(Vi,N
i
ω)

k
i=1

(

(

g1ω,ε,g ,Ade−1
ω,ε,g

w
1,i
ω ,M1,i

ω

)m1

i=1
,
(

g2ω,ε,g ,Ade−1
ω,ε,g

w
2,i
ω ,M2,i

ω

)m2

i=1
, g3ω,ε,g

)

= 0

where

(3.8) giω,ε,g (t) := giω(t)eω,ε,g (t), t ∈ [0, T ], i = 1, 2, 3, ε ∈ [0, 1).

We emphasize the particular form of these deformations in the Lie group: they corre-
spond to developments along (random) directions gω(t).

Remark 3.4. As will be seen in the applications presented in Section 5, the reason
why we choose three different semimartingales in the variational principle (3.7) is that
the viscosity constants in different equations may be different. ♦

Fixing (non-random) {Hj
i }

mj

i=1 ∈ TeG, j = 1, 2, 3, as well as Rmj -valued martingales

M j
ω(t) = (M j,1

ω (t), ...,M
j,mj
ω (t)), j = 1, 2, 3, we consider

(

gjω, H
j
i ,M

j,i
ω

)mj

i=1
∈ S̃ (G),
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j = 1, 2, 3, where gjω are the solutions of the following SDEs on G,

(3.9)

{

dgjω(t) = TeLg
j
ω(t)

(
∑mj

i=1H
j
i δM

j,i
ω (t) + uω(t)dt

)

,

gjω(0) = e,

and where uω is a Pt-adapted, TeG-valued semimartingale. Note that uω(·) is not
given a priori and is the same for j = 1, 2, 3; we shall see below that it is the solution

of a certain (stochastic) equation when
(

(

g1ω, H
1
i ,M

1,i
ω

)m1

i=1
,
(

g2ω, H
2
i ,M

2,i
ω

)m2

i=1
, g3ω

)

is a

critical point for J∇,(H1
i ,M

1,i
ω )

m1
i=1 .

3.2 Stochastic variational principle for stochastic differential

equations

In the theorem below we use the functional derivative notation. Let V be (a possibly
infinite dimensional) vector space and V ∗ a space in weak duality 〈·, ·〉 : V ∗ × V → R

with V ; in finite dimensions, V ∗ is the usual dual vector space, but in infinite dimensions
it rarely is the topological dual. If f : V → R is a smooth function, then the functional
derivative δf

δa
∈ V ∗, if it exists, is defined by limε→0

f(a+εb)−f(a)
ε

=
〈

δf

δa
, b
〉

for all a, b ∈ V .

In this section, we assume that l, p, q in the action functional J∇,(Vi,N
i
ω)

k
i=1 are smooth

with respect to all variables, except, of course, ω ∈ Ω.
Thus, in the theorem below, δl

δu
∈ T ∗

eG, δl
δα

∈ U , δp

δξ1
, δp

δξ2
∈ M ∗, and δp

δu
∈ T ∗

eG are the

partial functional derivatives of l : Ω×[0, T ]×TeG×U∗ → R and p : M×M×TeG → R.
Recall that here Mm := {(ai,j)

m
i,j=1, ai,j ∈ TeG} and M := ∪∞

m=1Mm.

Theorem 3.5. Let l : Ω × [0, T ] × TeG × U∗ → R, p : M × M × TeG → R, q :
[0, T ]×TeG×U∗ → T ∗

eG such that δlω
δu

is non-random and lω(t) is Pt-adapted. Suppose
that the semimartingales gjω(·), j = 1, 2, 3, have the form (3.9).

(i) Then
(

(

g1ω, H
1
i ,M

1,i
ω

)m1

i=1
,
(

g2ω, H
2
i ,M

2,i
ω

)m2

i=1
, g3ω

)

is a critical point of J∇,(H1
i ,M

1,i
ω )

m1
i=1

(given in (3.2)) if and only if the Pt-adapted process uω(t) coupled with the Pt-
adapted process αω(t) (which is defined by (3.3)) satisfies the following (stochas-
tic) semidirect product Euler-Poincaré equation for stochastic particle paths:
(3.10)














































d
(

δlω
δu

(t, uω(t), αω(t)) + δp

δu

(

H̃ω,1(t), H̃ω,2(t), uω(t)
))

=
∑m1

i=1 ad∗
Hi
q(uω(t), αω(t))dM1,i

ω (t) + ad∗
uω(t)

(

δlω
δu

(t, uω(t), αω(t))
)

dt

+
(

δlω
δα

(t, uω(t), αω(t))
)

⋄ αω(t)dt + ad∗
uω(t)

(

δp

δu

(

H̃ω,1(t), H̃ω,2(t), uω(t)
))

dt

+Kω

(

t, H̃ω,1(t), H̃ω,2(t), uω(t)
)

dt,

dαω(t) = −
∑m3

i=1H
3
i αω(t)dM3,i

ω (t)

+1
2

∑m3

i,k=1H
3
k (H3

i αω(t)) dJM3,i
ω ,M3,k

ω Kt − uω(t)αω(t)dt.
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Here the operation ⋄ is given by formula (3.1), H̃ω,j(t) ∈ Mmj
, j = 1, 2, is the

mj ×mj matrix whose entries are given by

(H̃ω,j(t))i,k =
(

∇
H

j
i
Hj

k

)dJM j,i
ω ,M j,k

ω Kt
dt

, 1 ≤ i, k ≤ mj ,(3.11)

the operator Kω : [0, T ] × M × M × TeG → T ∗
eG is defined for every ω ∈ Ω by

〈Kω(t, A1, A2, u), v〉 = −
2
∑

j=1

〈

δp

δξj
(A1, A2, u), Bω,j(t, v))

〉

, ∀ t ∈ [0, T ],

(3.12)

1 where Aj ∈ Mmj
, j = 1, 2, u, v ∈ TeG, and Bω,j(t, v) ∈ Mmj

is the mj × mj

matrix whose entries are
(3.13)
(

Bω,j(t, v)
)

i,k
:=
(

∇
H

j
i
(advH

j
k)+∇advH

j
i
Hj

k

)dJM j,i
ω ,M j,k

ω Kt
dt

, 1 ≤ i, k ≤ mj , t ∈ [0, T ].

(ii) The first equation in (3.10) is equivalent to the stochastic dissipative Euler-
Poincaré variational principle

d

dε

∣

∣

∣

∣

ε=0

(

∫ T

0

lω(t, uω,ε(t), αω,ε(t))dt +

∫ T

0

p(H̃ω,1,ε(t), H̃ω,2,ε(t), uω,ε(t))dt

+

∫ T

0

〈q(t, uω,ε(t), αω,ε(t)), dβω,ε(t)〉 −
m1
∑

i=1

(
∫ T

0

〈q(t, uω,ε(t), αω,ε(t)), H
1
i 〉dM1,i

ω (t)

)

)

= 0

(3.14)

on TeG× U∗, for variations of the form
(3.15)










































































duω,ε(t)

dε

∣

∣

∣

ε=0
= v̇ω(t) + aduω(t)vω(t),

dαω,ε(t)

dε

∣

∣

∣

ε=0
= −vω(t)αω(t),

dH̃ω,j,ε(t)

dε

∣

∣

∣

ε=0
= −Bω,j(t, vω(t)), j = 1, 2,

dβω,ε(t)

dε

∣

∣

∣

ε=0
= −

m1
∑

i=1

∫ t

0

advω(s)H
1
i dM

1,i
ω (s),

uω,0(t) = uω(t), αω,0(t) = αω(t), βω,0(t) =
m1
∑

i=1

∫ t

0

H1
i dM

1,i
ω (s), H̃ω,j,0(t) = H̃ω,j(t),

1we delete the constant 1/2 in definition of Kω
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where vω(t) is an Pt-adapted process such that vω ∈ C1([0, T ];TeG) and vω(0) = 0,
vω(T ) = 0 a.s.. (Note that this variational principle is constrained and stochas-
tic.)

Proof. (i) Step 1. We start by proving that αω(t) = g3ω(t)−1α0 satisfies the second
equation in (3.10).

Since d
(

(

g3(t)
)−1

g3(t)
)

= 0, we have

d
(

g3ω(t)
)−1

= −TeR(g3ω(t))
−1Tg3ω(t)L(g3ω(t))

−1dg3ω(t),

so replacing dg3ω(t) by its expression in (3.9) we obtain,

(3.16)

{

d(g3ω(t))−1 = TeR(g3ω(t))
−1 (
∑m3

i=1−H3
i δM

3,i
ω (t) − uω(t)dt) ,

g3ω(0)−1 = e.

We now derive the stochastic differential equation satisfied by αω(t):

dαω(t) = d
(

g3ω(t)−1α0

)

=
[

−Tg3ω(t)Lg3ω(t)
−1dg3ω(t)

]

g3ω(t)−1α0(3.17)

= −
m3
∑

i=1

H3
i

(

g3ω(t)−1α0

)

δM3,i
ω (t) − uω(t)

(

g3ω(t)−1α0

)

dt

Since we assume U∗ to be a finite dimensional vector space, the difference between
the Stratonovich and Itô integrals (see (2.1)) yields

m3
∑

i=1

(

H3
i

(

g3ω(t)−1α0

))

δM3,i
ω (t)

=

m3
∑

i=1

(

(

H3
i

(

g3ω(t)−1α0

))

dM3,i
ω (t) +

1

2
dJH3

i

(

g3ω(·)−1α0

)

,M3,i
ω Kt

)

.

By the same procedure as in (3.17), the (local) martingale part of H3
i (g3ω(·)−1α0) is

equal to −
∑m3

k=1

∫ ·
0
H3

kH
3
i (g3ω(t)−1α0)dM

3,k
ω (t). Therefore, by (2.4) and (2.5) we derive

m3
∑

i=1

dJH3
i

(

g3ω(·)−1α0

)

,M3,i
ω Kt = −

m3
∑

i,k=1

H3
k(H3

i (g3ω(t)−1α0))dJM3,i
ω ,M3,k

ω Kt.

Using (3.17) we have,

dαω(t) = −
m3
∑

i=1

H3
i αω(t)dM3,i

ω (t)(3.18)

+
1

2

m3
∑

i,k=1

H3
k

(

H3
i αω(t)

)

dJM3,i
ω ,M3,k

ω Kt − uω(t)αω(t)dt,
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which is the second equation in (3.10).
Step 2. Now we prove the first equation in (3.10). Recall from (3.4) that, for every

Pt-adapted process gω satisfying gω(·) ∈ C1([0, 1];TeG) and gω(0) = gω(T ) = 0 a.s.,
eω,ε,g (·) ∈ C1([0, T ];G) a.s. uniquely solves the following (random) ordinary differential
equation on G

d

dt
eω,ε,g (t) = εTeLeω,ε,g (t)ġω(t), eω,ε,g (0) = e.

By [2, Lemma 3.1], we have

(3.19)
d

dε

∣

∣

∣

∣

ε=0

eω,ε,g (t) = gω(t),
d

dε

∣

∣

∣

∣

ε=0

eω,ε,g (t)
−1 = −gω(t), a.s..

Since this computation is important in the proof, for the sake of completeness, we recall
it below. Denoting by D

Dt
and D

Dǫ
the covariant derivatives, induced by ∇ on G, along

curves parametrized by t and ε, respectively. Since the torsion vanishes, Gauss Lemma
yields

D

Dt

d

dε
eω,ε,g(t) =

D

Dε

d

dt
eω,ε,g (t) =

D

Dε

(

εTeLeω,ε,g (t)ġω(t)
)

(3.20)

= TeLeω,ε,g (t)ġω(t) + ε
D

Dε

(

TeLeω,ε,g (t)ġω(t)
)

Taking ε = 0 and since eω,0,g (t) = e for all t, we obtain D
Dt

d
dε

∣

∣

ε=0
eω,ε,g (t) = ġω(t). More-

over t 7→ d
dε

∣

∣

ε=0
eω,ε,gω(t) is a curve in the vector space TeG and hence d

dt
d
dε

∣

∣

ε=0
eω,ε,g (t) =

D
Dt

d
dε

∣

∣

ε=0
eω,ε,g (t) = ġω(t). The first equality in (3.19) is then a consequence of gω(0) = 0

and d
dε

∣

∣

ε=0
eω,ε,g(0) = 0. Finally, since

d

dε
eω,ε,g(t)

−1 = −TeRe−1
ω,ε,g(t)

Teω,ε,g (t)Le−1
ω,ε,g (t)

d

dε
eω,ε,g (t),

the second equality in (3.19) follows from the first.
Note that due to (3.19) we have d

dε

∣

∣

ε=0
Ade−1

ω,ε,g (t)
v = −adgω(t)v, v ∈ TeG. Combining

this with (3.6) we have

d

dε

∣

∣

∣

∣

ε=0

(

Tg1ω,ε,g(t)Lg1ω,ε,g (t)
−1

Dg1ω,ε,g(t)

dt

)

(3.21)

= ġω(t) + aduω(t)gω(t)

d

dε

∣

∣

∣

∣

ε=0

(

Tg1ω,ε,g (t)Lg1ω,ε,g (t)
−1d∆g1ω,ε,g(t)

)

= −
m1
∑

i=1

adgω(t)H
1
i dM

1,i
ω (t)

(3.22)
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d

dε

∣

∣

∣

∣

ε=0



T
g
j
ω,ε,g(t)

L
g
j
ω,ε,g (t)−1

D∇,(Hj,ε
ω,i,M

j,i
ω )

mj
i=1gjω,ε,g(t)

dt





k,m

= −
(

∇adgω(t)H
j
m
Hj

k + ∇
H

j
m

(adgω(t)H
j
k)
)dJM j,k

ω ,M j,m
ω Kt

dt
= −Bω,j(t, gω(t)), j = 1, 2,

(3.23)

where gjω,ε,g(t) = gjω(t)eω,ε,g (t), H
j,ε
ω,i(t) := Ade−1

ω,ε,g (t)
Hj

i , Bω,j(t, ·) is defined by (3.13) and

we have applied the property JHj,ε
ω,i,M

j,i
ω K ≡ 0 since Hj,ε

ω,i(·) is a process with bounded
variation.

Since gjω,ε,g(t) := gjω(t)eω,ε,g(t) and eω,0,g (t) = e for all t ∈ [0, T ], we conclude

gjω,0,g (t) = gjω(t), for all t ∈ [0, T ], j = 1, 2, 3. Therefore,

d

dε

∣

∣

∣

∣

ε=0

g3ω,ε,g (t)
−1α0 = −g3ω(t)−1

(

d

dε

∣

∣

∣

∣

ε=0

g3ω,ε,g(t)

)

g3ω(t)−1α0

= −
(

d

dε

∣

∣

∣

∣

ε=0

eω,ε,g (t)

)

g3ω(t)−1α0
(3.19)
= −gω(t)g3ω(t)−1α0

= −gω(t)αω(t).

(3.24)

Based on (3.2), (3.21)–(3.24) and noting that d∆g1ω,ε,g(t)
∣

∣

∣

ε=0
=
∑m1

i=1H
1
i dM

1,i
ω (t),
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we have

d

dε

∣

∣

∣

∣

ε=0

J∇,(H1
i ,M

1,i
ω )

m1
i=1

((

g1ω,ε,g , H
1,ε
ω,i ,M

1,i
ω

)m1

i=1
,
(

g2ω,ε,g , H
2,ε
ω,i,M

2,i
ω

)m2

i=1
, g3ω,ε,g

)

=

∫ T

0

〈

δlω
δu

(t, uω(t), αω(t)) ,
d

dε

∣

∣

∣

∣

ε=0

(

Tg1ω,ε,g (t)
Lg1ω,ε,g (t)

−1

Dg1ω,ε,g (t)

dt

)〉

dt

+

∫ T

0

〈

δp

δu

(

H̃ω,1(t), H̃ω,2(t), uω(t)
)

,
d

dε

∣

∣

∣

ε=0

(

Tg1ω,ε,g(t)
Lg1ω,ε,g (t)

−1

Dg1ω,ε,g (t)

dt

)〉

dt

+

2
∑

j=1

〈

δp

δξj

(

H̃ω,1(t), H̃ω,2(t), uω(t)
)

,
d

dε

∣

∣

∣

∣

ε=0

(

T
g
j
ω,ε,g(t)

L
g
j
ω,ε,g (t)−1

D∇,(Hj,ε
ω,i,M

j,i
ω )

mj
i=1

dt

)〉

+

∫ T

0

〈

d

dε

∣

∣

∣

∣

ε=0

(

g3ω,ε,g(t)
−1α0

)

,
δlω
δα

(t, uω(t), αω(t))

〉

dt

+

∫ T

0

〈

q (t, uω(t), αω(t)) ,
d

dε

∣

∣

∣

∣

ε=0

(

Tg1ω,ε,g(t)Lg1ω,ε,g(t)
−1d∆g1ω,ε,g(t)

)

〉

=

∫ T

0

〈

δlω
δu

(t, uω(t), αω(t)) , ġω(t) + aduω(t)gω(t)

〉

dt

−
∫ T

0

〈

gω(t)αω(t),
δlω
δα

(t, uω(t), αω(t))

〉

dt

+

∫ T

0

〈

δp

δu

(

H̃ω,1(t), H̃ω,2(t), uω(t)
)

, ġω(t) + aduω(t)gω(t)

〉

dt

−
2
∑

j=1

〈

δp

δξj

(

H̃ω,1(t), H̃ω,2(t), uω(t)
)

, Bω,j(t, gω(t))

〉

dt

−
m1
∑

i=1

∫ T

0

〈

q (t, uω(t), αω(t)) , adgω(t)HidM
1,i
ω (t)

〉

=

∫ T

0

〈

− d

(

δlω
δu

(t, uω(t), αω(t)) +
δp

δu

(

H̃ω,1(t), H̃ω,2(t), uω(t)
)

)

+ ad∗
uω(t)

(

δlω
δu

(t, uω(t), αω(t))

)

dt + ad∗
uω(t)

(

δp

δu

(

H̃ω,1(t), H̃ω,2(t), uω(t)
)

)

dt

+

(

δlω
δα

(t, uω(t), αω(t))

)

⋄ αω(t)dt + Kω

(

t, H̃ω,1(t), H̃ω,2(t), uω(t)
)

dt

+

m1
∑

i=1

ad∗
Hi

(q (t, uω(t), αω(t))) dM1,i
ω (t), gω(t)

〉

,

(3.25)
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where the first equality follows from the property Tg1ω(t)Lg1ω(t)
−1d∆g1ω(t) =

∑m1

i=1H
1
i dM

1,i
ω (t)

(which implies that the term depending on derivatives of q vanishes), the last equality
is obtained by applying the following equation

0 =
δlω
δu

(T, uω(T ), αω(T )) gω(T ) − δlω
δu

(0, uω(0), αω(0)) gω(0)

=

∫ T

0

〈

d

(

δlω
δu

(t, uω(t), αω(t))

)

, gω(t)

〉

+

∫ T

0

〈

δlω
δu

(t, uω(t), αω(t)) , ġω(t)

〉

(note that gω(·) has bounded variation and δlω
δu

(t, uω(t), αω(t)) is a semimartingale be-
cause δlω

δu
is differentiable with respect to variable t and is Pt-adapted, so dJ δlω

δu
, gωKt =

0), and by applying the definitions of ad∗, ⋄ (see (3.1)), and K (see (3.12)).

Since gω(·) is a Pt-adapted arbitrary process,
(

(

g1ω, H
1
i ,M

1,i
ω

)m1

i=1
,
(

g2ω, H
2
i ,M

2,i
ω

)m2

i=1
, g3ω

)

is a critical point of J∇,(H1
i ,M

1,i
ω )

m1
i=1 if and only if uω satisfies the first equation in (3.10).

This proves statement (i).

(ii) The expressions of the variations (3.15) have been already found in the previous
computations. Applying the same methods in the variational procedure (3.25) we
obtain (3.14).

Remark 3.6. As we shall see in Section 5, the conclusion of Theorem 3.5 still holds
when G is the diffeomorphism group of a torus and the action of G on U∗ is the pull
back map.

If G is a finite dimensional Lie group and U a finite dimensional vector space,
then (3.10) is a actually an SDE. However, when G is the diffeomorphism group, as
illustrated in Section 5, (3.10) is a system of SPDEs. ♦

Remark 3.7. The variation (3.15) is a stochastic version of Lin’s constrained varia-
tional principle (see, e.g., [49, Theorem 1.2]). In fact, if we take p = q = 0 and Hj

i = 0,
(3.15) is the deterministic constrained variational principle in [49, Theorem 1.2]. ♦

Remark 3.8. For simplicity, in Theorem 3.5 we assume that the contraction force p
and stochastic force q are independent of the advection space U∗. In fact, following
the same procedure in the proof of Theorem 3.5, we could also characterize the critical
points of an action functional even if p and q depend on U∗. ♦

3.3 Stochastic variational principle for ordinary differential
equations

If we take q = 0, and take the expectation in (3.3), through the stochastic reduction
procedure in Theorem 3.5, we obtain a system of ODEs for the drift of the underlying
stochastic paths (not the SDE in (3.10)).
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Let l, p be the same terms in Theorem 3.5 such that l : [0, T ] × TeG× U∗ → R is

non-random. We define J̃∇ : S̃ (G) × S̃ (G) × S (G) → R by

J̃∇
(

(

g1ω,w
1,i
ω ,M1,i

ω

)m1

i=1
,
(

g2ω,w
2,i
ω ,M2,i

ω

)m2

i=1
, g3ω

)

:=

∫ T

0

l

(

t, Tg1ω(t)Lg1ω(t)
−1

Dg1ω(t)

dt
, α̃(t)

)

dt +

∫ T

0

p

(

Tg1ω(t)Lg1ω(t)
−1

D∇,(w1,i
ω ,M

i,1
ω )

m1
i=1g1ω(t)

dt
,

Tg2ω(t)Lg2ω(t)
−1

D∇,(w2,i
ω ,M

i,2
ω )

m2
i=1g2ω(t)

dt
, Tg1ω(t)Lg1ω(t)

−1

Dg1ω(t)

dt

)

dt,

where gjω, j = 1, 2, 3 are G-valued semimartingales with form (2.8), and α̃(t) :=
E
[

αω(t)
]

= E
[

g̃ω
3(t)−1α0

]

∈ U∗ is non-random. The action functional J̃∇ can be
viewed as a deterministic counterpart of (3.2), where q = 0, αω(t) is replaced by α̃(t),
and there is no external stochastic force term (stochastic integral term).

Suppose also that deformations are of the form (3.7) with gω non-random (we write g

for gω in this section); then we can also define the critical point of J̃∇ in the same way of
that in (3.7). To further simplify notation, we drop the index ω on some of the variables
in the statement of the theorem below; for example, we write u and JM j,i,M j,kKt for
uω and JM j,i

ω ,M j,k
ω Kt, respectively, when such functions are deterministic.

Theorem 3.9. (Stochastic reduction with deterministic drift and deformations) Let
the semimartingales gjω(·), j = 1, 2, 3, have the form (3.9) with u ∈ C1([0, T ];TeG) and
JM j,i,M j,kKt, 1 ≤ j ≤ 3, 1 ≤ i, k ≤ mj being non-random.

(i) Then
(

(

g1ω, H
1
i ,M

1,i
ω

)m1

i=1
,
(

g2ω, H
2
i ,M

2,i
ω

)m2

i=1
, g3ω

)

is a critical point of J̃∇ if and

only if u(t) coupled with α̃(t) satisfies the following (ordinary differential) equation

(3.26)



























d
(

δl
δu

(t, u(t), α̃(t)) + δp

δu

(

H̃1(t), H̃2(t), u(t)
))

= ad∗
u(t)

(

δl
δu

(t, u(t), α̃(t))
)

dt + ad∗
u(t)

(

δp

δu

(

H̃1(t), H̃2(t), u(t)
))

dt

+
(

δl
δα

(t, u(t), α̃(t))
)

⋄ α̃(t)dt + K
(

t, H̃1(t), H̃2(t), u(t)
)

dt,

dα̃(t) = 1
2

∑m3

i,k=1H
3
k (H3

i α̃(t)) dJM3,i,M3,kKt − u(t)α̃(t)dt,

where H̃1(t) ∈ Mm1, H̃2(t) ∈ Mm2, ⋄, K are the same terms as in Theorem 3.5 (except
that we omit the subscript ω in order to emphasize that these terms are non-random
here).

(ii) The first equation in (3.26) is equivalent to the following stochastic variational
principle

d

dε

∣

∣

∣

∣

ε=0

(

∫ T

0

l(t, uε(t), α̃ε(t))dt +

∫ T

0

p(H̃1,ε(t), H̃2,ε(t), uε(t))dt

)

= 0(3.27)
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on TeG× U∗ for variations of the form






































duε(t)

dε

∣

∣

∣

ε=0
= v̇(t) + adu(t)v(t),

dα̃ε(t)

dε

∣

∣

∣

ε=0
= −v(t)α̃(t),

dH̃j,ε(t)

dε

∣

∣

∣

ε=0
= −Bj(t, v(t)), j = 1, 2,

u0(t) = u(t), α̃0(t) = α̃(t), H̃j,0(t) = H̃j(t).

where v ∈ C1([0, T ];TeG) with v(0) = 0, v(T ) = 0 is non-random and Bj(t, v) is defined
by (3.13). Note that this variational principle is constrained and deterministic.

Proof. (i) Since H3
i , u are non-random and the action of TeG on U∗ is linear, we have

E
[

H3
j

(

H3
i αω(t)

)]

= H3
j

(

H3
i (E[αω(t)])

)

= H3
j

(

H3
i (α̃(t))

)

,

E [u(t)αω(t)] = u(t)E [αω(t)] = u(t)α̃(t)

Then taking the expectation on both side of (3.18), we arrive to the second equation
of (3.26).

Note that eω,ε,g is non-random since gω is non-random; from (3.24) we obtain

d

dε

∣

∣

∣

∣

ε=0

E
[

g3ω,ε,g(t)
−1α0

]

= E

[

d

dε

∣

∣

∣

∣

ε=0

g3ω,ε,g(t)
−1α0

]

= −E
[

g(t)g3ω(t)−1α0

]

= −g(t)E
[

g3ω(t)−1α0

]

= −g(t)α̃(t).

Based on this and following the same procedure of (3.25) (note that here q = 0), we
have the first equation of (3.26).

(ii) By the same steps of (3.15) we derive (3.27).

Remark 3.10. As we will see in Section 5, for the case that G is a diffeomorphism
group, the system of (3.26) is a PDE with viscosity term. ♦

3.4 Right invariant version

Due to relative sign changes in the equations of motion and the dissipative constrained
variational principle, with a view to applications for the spatial representation in con-
tinuum mechanics, we give below the right invariant version of Theorem 3.5.

Suppose that G acts on the right on a vector space U (we will write the action of
g ∈ G on u ∈ U by ug and similarly for the induced infinitesimal g-representation).

Thus, let gω be a G-valued semimartingale of the form

(3.28) dgω(t) = TeRgω(t)

(

m
∑

i=1

w
i
ω(t)δM i

ω(t) + vω(t)dt
)

,
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where TeRgω(t) denotes the differential of the right translation Rgω(t) at the point e.
For a fixed right invariant connection ∇ on G and (wi,M i

ω)mi=1, where w
i
ω and M i

ω

are Pt-adapted processes and M i
ω are real valued martingales with continuous sample

paths for all i = 1, . . . , m, we define
(

D∇,(wi
ω ,M

i
ω)

m
i=1gω(t)

dt

)

i,j

:=TeRgω(t)

(

∇
w

i
ω(t)

w
j
ω(t)

dJM i
ω,M

j
ωKt

dt

+
dJwi

ω,M
i
ωKt

dt
1{i=j}

)

, 1 ≤ i, j ≤ m.

The terms Dgω(t)
dt

and d∆gω(t) are defined similarly as in the left invariant case (see the
defining formulas (2.15)).

With l : Ω× [0, T ]×TeG×U∗ → R, p : M ×M ×TeG → R, q : [0, T ]×TeG×U∗ →
T ∗
eG, Vi ∈ TeG,N i

ω, 1 ≤ i ≤ k, satisfying the same conditions as those in subsections
3.1 and 3.2 (for the left invariant case), the action functional J∇,(Vi,N

i
ω)

k
i=1 is defined for

the right invariant case by

J∇,(Vi,N
i
ω)

k
i=1

(

(

g1ω,w
1,i
ω ,M1,i

ω

)m1

i=1
,
(

g2ω,w
2,i
ω ,M2,i

ω

)m2

i=1
, g3ω

)

:=

∫ T

0

lω

(

t, Tg1ω(t)
Rg1ω(t)

−1

Dg1ω(t)

dt
, αω(t)

)

dt

+

∫ T

0

p

(

Tg1ω(t)Rg1ω(t)
−1

D∇,(w1,i
ω ,M

i,1
ω )

m1
i=1g1ω(t)

dt
, Tg2ω(t)Rg2ω(t)

−1

D∇,(w2,i
ω ,M

i,2
ω )

m2
i=1g2ω(t)

dt
,

Tg1ω(t)Rg1ω(t)
−1

Dg1ω(t)

dt

)

dt

+

∫ T

0

〈

q

(

t, Tg1ω(t)Rg1ω(t)
−1

Dg1ω(t)

dt
, αω(t)

)

, Tg1ω(t)Rg1ω(t)
−1d∆g1ω(t)

〉

−
k
∑

i=1

∫ T

0

〈

q

(

t, Tg1ω(t)Rg1ω(t)
−1

Dg1ω(t)

dt
, αω(t)

)

, VidN
i
ω(t)

〉

(3.29)

and

(3.30) αω(t) := α0g
3
ω(t)−1.

As for the left invariant case, for every (random) Pt-adapted process gω(·) such that
gω ∈ C1([0, T ];TeG), gω(0) = gω(T ) = 0 a.s., and ε ∈ [0, 1), let eω,ε,g(·) be the unique
solution of the (random) time-dependent ordinary differential equation on G

(3.31)

{

d
dt
eω,ε,g (t) = εTeReω,ε,g (t)ġω(t),

eω,ε,g (0) = e.
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Define

(3.32) gjω,ε,g (t) := eω,ε,g (t)g
j
ω(t), j = 1, 2, 3.

With such deformations of gjω(·), we can consider (right invariant) critical points of
J∇,(Vi,N

i
ω)

k
i=1 as in (3.7).

In the procedure leading to Theorem 3.5 and its proof, we can interchange all left
actions and left translation operators by their right counterparts to obtain Theorem
3.11 and 3.12 below, so we omit the proof here.

Theorem 3.11. Assume that G is a finite dimensional Lie group endowed with a right
invariant linear connection ∇, Hj

i ∈ TeG, 1 ≤ i ≤ mj, and M j
ω = {Mω(t)j,i}mj

i=1, j =
1, 2, 3 is an Rmj -valued martingale. Suppose that the semimartingales gjω(·) ∈ S (G),
j = 1, 2, 3, have the following form,

(3.33)

{

dgjω(t) = TeRg
j
ω(t)

(

∑mj

i=1H
j
i δM

j,i
ω (t) + uω(t)dt

)

,

gjω(0) = e,

where uω is a Pt-adapted, TeG-valued semimartingale.

(i) If δlω
δu

is non-random and lω(t) is Pt-adapted, then
(

(

g1ω, H
1
i ,M

1,i
ω

)m1

i=1
,
(

g2ω, H
2
i ,M

2,i
ω

)m2

i=1
, g3ω

)

is a critical point of J∇,(H1
i ,M

1,i
ω )

m1
i=1 defined by (3.29) if and only if the Pt-adapted, TeG-

valued semimartingale uω(·) coupled with Pt-adapted, U
∗-valued semimartingale αω(·)

satisfies the following equation
(3.34)






































d
(

δlω
δu

(t, uω(t), αω(t)) + δp

δu

(

H̃ω,1(t), H̃ω,2(t), uω(t)
))

= −
∑m1

i=1 ad∗
Hi
q(t, uω(t), αω(t))dM1,i

ω (t) − ad∗
uω(t)

(

δlω
δu

(t, uω(t), αω(t))
)

dt

−ad∗
uω(t)

(

δp

δu

(

H̃ω,1(t), H̃ω,2(t), uω(t)
))

dt +
(

δlω
δα

(t, uω(t), αω(t))
)

⋄ αω(t)dt

−Kω

(

t, H̃ω,1(t), H̃ω,2(t), uω(t)
)

dt,

dαω(t) = −
∑m3

i=1 αω(t)H3
i dM

3,i
ω (t) + 1

2

∑m3

i,k=1 (αω(t)H3
i )H3

kdJM3,i
ω ,M3,k

ω Kt − αω(t)uω(t)dt,

where H̃ω,1(t), H̃ω,2(t), and Kω are defined by (3.11), and (3.12) respectively.

(ii) The first equation in (3.34) is equivalent to the stochastic dissipative Euler-Poincaré
variational principle

d

dε

∣

∣

∣

∣

ε=0

(

∫ T

0

lω(t, uω,ε(t), αω,ε(t))dt +

∫ T

0

p(H̃ω,1,ε(t), H̃ω,2,ε(t), uω,ε(t))dt

+

∫ T

0

〈q(t, uω,ε(t), αω,ε(t)), dβω,ε(t)〉 −
m1
∑

i=1

(
∫ T

0

〈q(t, uω,ε(t), αω,ε(t)), H
1
i 〉dM1,i

ω (t)

)

)

= 0

(3.35)
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on TeG× U∗, for variations of the form
(3.36)










































































duω,ε(t)

dε

∣

∣

∣

ε=0
= v̇ω(t) − aduω(t)vω(t),

dαω,ε(t)

dε

∣

∣

∣

ε=0
= −αω(t)vω(t),

dH̃ω,j,ε(t)

dε

∣

∣

∣

ε=0
= Bω,j(t, vω(t)), j = 1, 2,

dβω,ε(t)

dε

∣

∣

∣

ε=0
= −

m1
∑

i=1

∫ t

0

advω(s)H
1
i dM

1,i
ω (s),

uω,0(t) = uω(t), αω,0(t) = αω(t), βω,0(t) =

m1
∑

i=1

∫ t

0

H1
i dM

1,i
ω (s), H̃ω,j,0(t) = H̃ω,j(t),

where vω(t) is an Pt-adapted process such that v ∈ C1([0, T ];TeG) and v(0) = 0,
v(T ) = 0 a.s..

The right invariant version for the deterministic action functional in Theorem 3.9
is the following:

J̃∇
(

(

g1ω,w
1,i
ω ,M1,i

ω

)m1

i=1
,
(

g2ω,w
2,i
ω ,M2,i

ω

)m2

i=1
, g3ω

)

:=

∫ T

0

l

(

t, Tg1ω(t)Rg1ω(t)
−1

Dg1ω(t)

dt
, α̃(t)

)

dt +

∫ T

0

p

(

Tg1ω(t)Rg1ω(t)
−1

D∇,(w1,i
ω ,M

i,1
ω )

m1
i=1g1ω(t)

dt
,

Tg2ω(t)Rg2ω(t)
−1

D∇,(w2,i
ω ,M

i,2
ω )

m2
i=1g2ω(t)

dt
, Tg1ω(t)Rg1ω(t)

−1

Dg1ω(t)

dt

)

dt.

Here l is non-random and α̃(t) := E
[

αω(t)
]

∈ U∗ and αω(t) := α0g
3
ω(t)−1.

Theorem 3.12. Suppose that the semimartingales gjω(·), j = 1, 2, 3, have the form
(3.33) with u ∈ C1([0, T ];TeG) and JM j,i,M j,kKt, 1 ≤ j ≤ 3, 1 ≤ i, k ≤ mj being non-
random (we write u, JM j,i,M j,kKt for uω and JM j,i

ω ,M j,k
ω Kt in this theorem). Consider

deformations of the form (3.32) with g non-random (we write g for gω in this theorem
because it is non-random).

(i) Then
(

(

g1ω, H
1
i ,M

1,i
ω

)m1

i=1
,
(

g2ω, H
2
i ,M

2,i
ω

)m2

i=1
, g3ω

)

is a critical point of J̃∇ if and

only if u(t) coupled with α̃(t) satisfies the following (ordinary differential) equation

(3.37)



























d
(

δl
δu

(t, u(t), α̃(t)) + δp

δu

(

H̃1(t), H̃2(t), u(t)
))

= −ad∗
u(t)

(

δl
δu

(t, u(t), α̃(t))
)

dt− ad∗
u(t)

(

δp

δu

(

H̃1(t), H̃2(t), u(t)
))

dt

+
(

δl
δα

(t, u(t), α̃(t))
)

⋄ α̃(t)dt−K
(

t, H̃1(t), H̃2(t), u(t)
)

dt,

dα̃(t) = 1
2

∑m3

i,k=1 (α̃(t)H3
i )H3

kdJM3,i
ω ,M3,k

ω Kt − α̃(t)u(t)dt,
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where H̃1(t), H̃2(t), ⋄, K are the same terms as in Theorem 3.9.
(ii) The first equation in (3.37) is equivalent to the following stochastic variational

principle

d

dε

∣

∣

∣

∣

ε=0

(

∫ T

0

l(t, uε(t), α̃ε(t))dt +

∫ T

0

p(H̃1,ε(t), H̃2,ε(t), uε(t))dt

)

= 0(3.38)

on TeG× U∗ for variations of the form







































duε(t)

dε

∣

∣

∣

ε=0
= v̇(t) − adu(t)v(t),

dα̃ε(t)

dε

∣

∣

∣

ε=0
= −v(t)α̃(t),

dH̃j,ε(t)

dε

∣

∣

∣

ε=0
= Bj(t, v(t)), j = 1, 2,

u0(t) = u(t), α̃0(t) = α̃(t), H̃j,0(t) = H̃j(t),

where v ∈ C1([0, T ];TeG) with v(0) = 0, v(T ) = 0 is non-random.

4 Stochastic Kelvin-Noether theorem

In this section we study a (stochastic) version of the Kelvin-Noether Theorem which
holds for solutions of stochastic Euler-Poincaré equations with advection terms (see
(3.10)).

Let G, U∗, l, q be as in Section 3. Suppose C is a manifold and G acts on the left
on C . Let K : C × U∗ → T ∗∗

e G be an equivariant map, i.e.,

(4.1)
〈

K
(

g−1c, g−1α
)

, µ
〉

=
〈

K (c, α) ,Ad∗
g−1µ

〉

, c ∈ C , α ∈ U∗, g ∈ G, µ ∈ T ∗
e G,

where 〈 , 〉 denotes the weak pairing between T ∗∗
e G and T ∗

eG.
As explained before, we identify the Lie algebra g with the tangent space TeG at

the unit element. As usual (see, e.g., [49, Section 4]), we define the Kelvin-Noether
quantity I : C × TeG× U∗ → R by

(4.2) I (c, u, α) :=

〈

K (c, α) ,
δl

δu
(u, α)

〉

, c ∈ C , u ∈ TeG, α ∈ U∗.

Now we are ready to state the Kelvin-Noether Theorem for the solutions of (3.10).

Theorem 4.1. Suppose uω(t) satisfies the first equation in (3.10) with δp

δu

(

H̃ω,1(t),

H̃ω,2(t), uω(t)
)

≡ 0, αω(t) = g3ω(t)−1α0 and δl
δu

non-random. Let the semimartingales
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gjω(·) ∈ S (G), j = 1, 2, 3, be defined by (3.9) using this uω(t). For a fixed c0 ∈ C , set
cω(t) := g3ω(t)−1c0, Iω(t) := I (cω(t), uω(t), αω(t)). We have

dIω(t) =

〈

K (cω(t), αω(t)) ,

(

m1
∑

i=1

ad∗
H1

i
qω(t)dM1,i

ω (t) −
m3
∑

i=1

ad∗
H3

i

δlω
δu

(t)dM3,i
ω (t)

)

+

(

δlω
δα

(t) ⋄ αω(t) + Kω

(

t, H̃ω,1(t), H̃ω,2(t), uω(t)
)

+
1

2

m3
∑

i,k=1

ad∗
H3

i
ad∗

H3
k

(

δlω
δu

(t)

)

dJM3,i
ω ,M3,k

ω Kt
dt

−
m1
∑

i=1

m3
∑

k=1

ad∗
H3

k
ad∗

H1
i
qω(t)

dJM1,i
ω ,M3,k

ω Kt
dt

)

dt

〉]

,

(4.3)

where δlω
δu

(t) := δl
δu

(t, uω(t), αω(t)), δlω
δα

(t) := δlω
δα

(t, uω(t), αω(t)), qω(t) := q (t, uω(t), αω(t)),

and H̃ω,1(t), H̃ω,2(t) ∈ M , Kω : [0, T ] × M × M × TeG → T ∗
eG are defined by (3.11)

and (3.12), respectively.
In particular, if δlω

δu
(t) = qω(t), m1 = m3 = m, and H1

i = H3
i = Hi, M1,i

ω (t) =
M3,i

ω (t), 1 ≤ i ≤ m, we have

dIω(t) =

〈

K (cω(t), αω(t)) ,
δlω
δα

(t) ⋄ αω(t)dt + Kω

(

t, H̃ω,1(t), H̃ω,2(t), uω(t)
)

dt

− 1

2

m
∑

i,k=1

ad∗
Hi

ad∗
Hk

qω(t)dJM3,i
ω ,M3,k

ω Kt
〉

.

(4.4)

Proof. Due to (4.1) we have

Iω(t) =

〈

K
(

g3ω(t)−1c0, g
3
ω(t)−1α0

)

,
δl

δu
(t, uω(t), αω(t))

〉

=

〈

K (c0, α0) ,Ad∗
g3ω(t)

−1

δl

δu
(t, uω(t), αω(t))

〉

.

(4.5)

By Itô’s formula, for any T ∗
eG-valued semimartingale βω(·), we have

dAd∗
g3ω(t)

−1βω(t)

= Ad∗
g3ω(t)

−1

(

− ad∗
g3ω(t)

−1δg3ω(t)
βω(t) + δβω(t)

)

= Ad∗
g3ω(t)

−1

(

−
m3
∑

i=1

ad∗
H3

i
βω(t)dM3,i

ω (t) − ad∗
uω(t)βω(t)dt

+ dβω(t) +
1

2

m3
∑

i,k=1

ad∗
H3

i
ad∗

H3
k
βω(t)dJM3,i

ω ,M3,k
ω Kt −

m3
∑

i=1

ad∗
H3

i
dJM3,i

ω , βωKt
)

.

(4.6)
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Combining (4.6) with (3.9) and (3.10) yields

d

(

Ad∗
g3ω(t)

−1

δlω
δu

(t)

)

= Ad∗
g3ω(t)

−1

(

−
m3
∑

i=1

ad∗
H3

i

δlω
δu

(t)dM3,i
ω (t) − ad∗

uω(t)

δlω
δu

(t)dt +

m1
∑

i=1

ad∗
H1

i
qω(t)dM1,i

ω (t)

+ ad∗
uω(t)

δlω
δu

(t)dt +
δlω
δα

(t) ⋄ αω(t)dt + Kω

(

t, H̃ω,1(t), H̃ω,2(t), uω(t)
)

dt

+
1

2

m3
∑

i,k=1

ad∗
H3

i
ad∗

H3
k

(

δlω
δu

(t)

)

dJM3,i
ω ,M3,k

ω Kt −
m1
∑

i=1

m3
∑

k=1

ad∗
H3

k
ad∗

H1
i
qω(t)dJM1,i

ω ,M3,k
ω Kt

)

.

Here we also apply the assumption δp

δu

(

H̃ω,1(t), H̃ω,2(t), uω(t)
)

≡ 0. Putting this into

(4.5) and applying (4.2), we arrive at

dIω(t) =

〈

K (c0, α0) , d

(

Ad∗
g3ω(t)

−1

δlω
δu

(t)

)〉

=

〈

K (c0, α0) ,Ad∗
g3ω(t)

−1

(

m1
∑

i=1

ad∗
H1

i
qω(t)dM1,i

ω (t) −
m3
∑

i=1

ad∗
H3

i

δlω
δu

(t)dM3,i
ω (t)

+
δlω
δa

(t) ⋄ αω(t)dt + Kω

(

t, H̃ω,1(t), H̃ω,2(t), uω(t)
)

dt

+
1

2

m3
∑

i,k=1

ad∗
H3

i
ad∗

H3
k

(

δlω
δu

(t)

)

dJM3,i
ω ,M3,k

ω Kt −
m1
∑

i=1

m3
∑

k=1

ad∗
H3

k
ad∗

H1
i
qω(t)dJM1,i

ω ,M3,k
ω Kt

)〉

=

〈

K (cω(t), αω(t)) ,

(

m1
∑

i=1

ad∗
H1

i
qω(t)dM1,i

ω (t) −
m3
∑

i=1

ad∗
H3

i

δlω
δu

(t)dM3,i
ω (t)

)

+
δlω
δa

(t) ⋄ αω(t)dt + Kω

(

t, H̃ω,1(t), H̃ω,2(t), uω(t)
)

dt

+
1

2

m3
∑

i,k=1

ad∗
H3

i
ad∗

H3
k

(

δlω
δu

(t)

)

dJM3,i
ω ,M3,k

ω Kt −
m1
∑

i=1

m3
∑

k=1

ad∗
H3

k
ad∗

H1
i
qω(t)dJM1,i

ω ,M3,k
ω Kt

〉

,

which proves (4.3).
If δlω

δu
(t) = qω(t), m1 = m3 = m, and H1

i = H3
i = Hi, M

1,i
ω (t) = M3,i

ω (t), 1 ≤ i ≤ m,
then ad∗

Hi

δlω
δu

(t) = ad∗
Hi
qω(t) which, combined with (4.3), yields (4.4).

Remark 4.2. If Hj
i = 0, 1 ≤ i ≤ mj, j = 1, 2, 3, then (4.3) becomes

dIω(t) =

〈

K (cω(t), αω(t)) ,
δlω
δa

(t) ⋄ αω(t)dt

〉

,
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thus recovering [49, Theorem 4.1] for the deterministic Euler-Poincaré equation with
advection term. ♦

Remark 4.3. As we will see in Section 5, the term Kω

(

t, H̃ω,1(t), H̃ω,2(t), uω(t)
)

usu-

ally corresponds to some viscosity terms of the system. ♦

5 Application to PDEs and SPDEs in fluid mechan-

ics

We begin by recalling, from [23] and [67], the necessary standard facts about the group
of diffeomorphisms on a smooth compact boundaryless n-dimensional manifold M .
Then, when we present the compressible Navier-Stokes and MHD equations in the
periodic case, we shall take M = T3, the usual three dimensional flat torus.

Let M be a smooth compact boundaryless n-dimensional manifold. Define

Gs :=
{

g : M → M is a bijection | g, g−1 ∈ Hs(M,M)
}

,

where Hs(M,M) denotes the manifold of Sobolev maps of class s > 1 + n
2

from M
to itself. The condition s > n

2
suffices to ensure the manifold structure of Hs(M,M);

only for such regularity class does the notion of an Hs-map from M to itself make
intrinsic sense. If s > 1 + n

2
(the additional regularity is needed in order to ensure that

all elements of Gs are C1 and hence the inverse function theorem is applicable), then
Gs is an open subset in Hs(M,M), so it is a C∞ Hilbert manifold. Moreover, it is a
group under composition of diffeomorphisms maps, right translation by any element
is smooth, left translation and inversion are only continuous, and Gs is a topological
group (relative to the underlying manifold topology) (see [23], [67]); thus, Gs is not a Lie
group. Since Gs is an open subset of Hs(M,M), the tangent space TeG

s to the identity
e : M → M coincides with the Hilbert space Xs(M) of Hs vector fields on M . Denote
by X(M) the Lie algebra of C∞ vector fields on M . The failure of Gs to be a Lie group
is mirrored by the fact that Xs(M) is not a Lie algebra: the usual Jacobi-Lie bracket of
vector fields, i.e., [X, Y ][f ] = X [Y [f ]]−Y [X [f ]] for any X, Y ∈ X(M) and f ∈ C∞(M),
where X [f ] := df(X) is the differential of f in the direction X , loses a derivative for
finite differentiability class of vector fields and thus [·, ·] : Xs(M)×Xs(M) → Xs−1(M)
is not an operation on Xs(M). In general, the tangent space TηG

s at an arbitrary
η ∈ Gs is TηG

s =
{

U : M → TM of class Hs | U(m) ∈ Tη(m)M
}

. If s > 1 + n
2

and
X ∈ Xs(M), then its global (since M is compact) flow R ∋ t 7→ Ft ∈ Gs exists and is
a C1-curve in Gs (see, e.g., [67, Theorem 2.4.2]). The candidate of what should have
been the Lie group exponential map is exp : TeG

s = Xs(M) ∋ X 7→ F1 ∈ Gs, where
Ft is the flow of X ; however, exp does not cover a neighborhood of the identity and it
is not C1. Therefore, all classical proofs in the theory of finite dimensional Lie groups
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based on the exponential map, break down for Gs. From now on, we shall always
assume s > 1 + n

2
.

Since right translation is smooth, each X ∈ X(M) induces a C∞ right invariant
vector field XR ∈ X(Gs) on Gs, defined by XR(η) := X ◦ η. With this notation, we
have the identity

[

XR, Y R
]

(e) = [X, Y ], for any X, Y ∈ X(M). This is the analogue
of saying that X(M) is the “right Lie algebra” of Gs.

Assume, in addition, that M is connected, oriented, and Riemannian; denote by
〈·, ·〉 the Riemannian metric. Let µg be the Riemannian volume form on M , whose
expression in local coordinates (x1, . . . , xn) is µg =

√

det(gij)dx
1 ∧ · · · ∧ dxn, where

gij := 〈∂/∂xi, ∂/∂xj〉 for all i, j = 1, . . . n. Let K : T (TM) → TM be the connector of
the Levi-Civita connection (with Christoffel symbols Γi

jk) defined by the Riemannian
metric on M ; in local coordinates, this intrinsic object, which is a vector bundle map
K : T (TM) → TM covering the canonical vector bundle projection τM : TM → M ,
has the expression K(xi, ui, vi, wi) =

(

xi, wi + Γi
jku

jvk
)

. The connector K satisfies
hence the identity τM ◦K = τM ◦τTM and has the property that the vector bundles τTM :
T (TM) → TM and kerK ⊕ ker TτM → TM are isomorphic. These two properties
characterize the connector. Conversely, the connector K determines ∇ by the formula:
∇XY := K ◦ TY ◦X for any X, Y ∈ X(M).

The Riemannian structure on M induces the weak L2, or hydrodynamic, metric
〈〈·, ·〉〉η on Gs given by

〈〈Uη, Vη〉〉η :=

∫

M

〈Uη(m), Vη(m)〉
η(m) dµg(m),

for any η ∈ Gs, Uη, Vη ∈ TηG
s. This means that the association η 7→ 〈〈·, ·〉〉η from Gs

to the vector bundle of symmetric covariant two-tensors on Gs is smooth but that for
every η ∈ Gs, the map TηG

s ∋ Uη 7→ 〈〈Uη, ·〉〉 ∈ T ∗
ηG

s, where T ∗
ηG

s denotes the linear
continuous functionals on TGs, is only injective and not, in general, surjective. This
weak metric is not right invariant (because of the Jacobian appearing in the change of
variables formula in the integral).

The usual proof for finite dimensional Lie groups showing the existence of a unique
Levi-Civita connection associated to a Riemannian metric breaks down, because 〈〈·, ·〉〉
is weak; the proof would only show uniqueness. However, K0 : T (TGs) → TGs

given by K0(ZUη
) := K ◦ ZUη

, where ZUη
∈ TUη

(TGs), is a connector for the vector
bundle τGs : TGs → Gs (since τGs ◦ K0 = τGs ◦ τTGs and the vector bundles τTGs :
T (TGs) → TGs and kerK0⊕ker TτGs → TGs are isomorphic). Here, ZUη

∈ TUη
(TGs)

means that ZUη
: M → T (TM) satisfies τTM

(

ZUη
(m)

)

∈ Tη(m)M . The covariant
derivative ∇0 on Gs is defined by ∇0

XY := K0 ◦TY ◦X , for any X ,Y ∈ X(Gs). This is
the Levi-Civita connection associated to the weak metric 〈〈·, ·〉〉 since it is torsion free
(∇0

XY −∇0
YX = [X ,Y ], for all X ,Y ∈ Xs(Gs), where [X ,Y ] is the Jacobi-Lie bracket

of vector fields on Gs) and 〈〈·, ·〉〉-compatible (Z[〈〈X ,Y〉〉] = 〈〈∇ZX ,Y〉〉 + 〈〈X ,∇ZY〉〉,
for all X ,Y ,Z ∈ Xs(Gs)); see [23, Theorem 9.1]. Uniqueness of such a connection
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follows from the weak non-degeneracy of the metric 〈〈·, ·〉〉. There is an explicit formula
for right-invariant covariant derivatives on diffeomorphism groups (see, e.g., [31, page
6]). For ∇0 this formula is

(5.1)
(

∇0
XY
)

(η) :=
∂

∂t

(

Y(ηt) ◦ η−1
t

)

◦ η + (∇XηY η) ◦ η,

where ∇ denotes the Levi-Civita connection on M , X ,Y ∈ X(Gs), Xη := X ◦η−1, Y η :=
Y ◦η−1 ∈ Xs(M), and t 7→ ηt is a C1 curve in Gs such that η0 = η and d

dt

∣

∣

t=0
ηt = X (η);

this formula is identical to [72, (3.1)]. Note that each term on the right hand side of
this formula is only of class Hs−1 and, nevertheless, their sum is of class Hs because of
the abstract definition of the covariant derivative on Gs. A similar phenomenon occurs
with the geodesic spray TGs → T (TGs) of the weak Riemannian metric; its existence
and smoothness for boundaryless M was proved in [23], i.e., the geodesic spray is in
X(TGs). If M has a boundary, this statement is false.

The discussion above shows that one cannot apply the theorems of Section 3 to the
infinite dimensional group Gs directly. For infinite dimensional problems, they serve
only as a guideline and direct proofs are needed, which is what we do below. However,
for each important formula, we shall point out the analogue in the finite dimensional
abstract setting of Section 3 which inspired the result, that still holds for the model
presented here.

5.1 Stochastic semidirect product Euler-Poincaré reduction
for Gs.

We formulate now the theory presented in Section 3 for the infinite dimensional group
Gs. From now on we consider the case M = T3. We focus on the following type of
SDEs on Gs,

{

dgω(t, θ) =
∑m

i=1Hi(gω(t, θ))δM i
ω(t) + uω(t, gω(t, θ))dt

gω(0, θ) = θ, θ ∈ T3,

where Hj ∈ Xs(T3) is non-random, {M i
ω(t)}mi=1 is a Rm-valued martingale with contin-

uous sample paths on a probability space (Ω,P,P) with respect to the filtration Pt,
u : Ω× [0, T ] → Xs(T3) is such that uω(t, x) is a (Pt-adapted) semimartingale for every
x ∈ T3.

In particular, here we take the constant vector fields H1 = H1,ν =
√

2ν(1, 0, 0),
H2 = H2,ν =

√
2ν(0, 1, 0), H3 = H3,ν =

√
2ν(0, 0, 1) on T3, where ν ≥ 0 is a (viscosity)

constant. This is understood in the trivialization TT3 = T3×R3, so H1, H2, H3 : T3 →
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R3 are constant maps. Let gν,Mω (t, θ) be the solution to the following SDE,

(5.2)











dgν,Mω (t, θ) =
∑3

i=1Hi,νdM
i
ω(t) + uω(t, gν,Mω (t, θ))dt

=
√

2νdMω(t) + uω(t, gν,Mω (t, θ))dt

gν,Mω (0, θ) = θ,

where Mω =
(

M1
ω,M

2
ω,M

3
ω

)

is an R3-valued martingale with continuous sample paths.
By the standard theory of stochastic flows (see, e.g., [57] and standard embedding

theorems), if uω is regular enough (with respect to the space variable), i.e., uω ∈
C([0, T ];Xs′(T3)) for some s′ > s large enough, then gν,Mω (t, ·) ∈ Gs for every t ∈ [0, T ].
From now on, for simplicity, we always assume uω to be regular enough.

As in [49, Section 6], let U∗ be some linear space which can be a space of functions,
densities, or differential forms on T3. The action of Gs on U∗ is the pull back map and
the action of the “Lie algebra” TeG

s on U∗ is the Lie derivative.
If we take α0 = A0(θ) ·dθ :=

∑3
i=1A0,i(θ)dθi to be a C2 one-form on T3, we derive

the following result (see also an equivalent expression in [27], equations (32)-(34) for
the deterministic case). Formula (5.4) below is the analogue of the second equation in
(3.34), derived here by hand for the infinite dimensional group Gs.

Proposition 5.1. Let gνω(t) be given by (5.2) with Mω = Wω, where Wω is a stan-
dard R3-valued Brownian motion (i.e., Wω = (W 1

ω ,W
2
ω ,W

3
ω) with W i

ω, 1 ≤ i ≤ 3,
independent R-valued Brownian motions). Define

αω(t, θ) :=
(

α0g
ν
ω(t, ·)−1

)

(θ) =
((

gνω(t, ·)−1
)∗

α0

)

(θ) := Aω(t, θ) ·dθ :=
3
∑

i=1

Aω,i(t, θ)dθi,

where (gνω(t, ·)−1)
∗
denotes the pull back map by gνω(t, ·)−1, and

α̃(t, θ) := E[αω(t, θ)] := Ã(t, θ) · dθ :=
3
∑

i=1

Ãi(t, θ)dθi.

Then Aω satisfies the following SPDE,

dAω,i(t, θ) = −
3
∑

j=1

√
2ν∂jAω,i(t, θ, ω)dW j

ω(t)

−
3
∑

j=1

(

uω,j(t, θ)∂jAω,i(t, θ) + Aω,j(t, θ)∂iuω,j(t, θ)
)

dt

+ ν∆Aω,i(t, θ)dt, i = 1, 2, 3,

(5.3)

where we use the notation uω(t) := (uω,1(t), uω,2(t), uω,3(t)) and ∂j and ∆ stand for
the partial derivative and the Laplacian with respect to the space variable θ of Aω(t, θ),
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respectively. Equation (5.3) can also be expressed as

dAω(t, θ) = −
√

2ν∇Aω(t, θ) · dWω(t)

− (uω(t, θ) × curlAω(t, θ) −∇(uω(t, θ) · Aω(t, θ))) dt + ν∆Aω(t)dt
(5.4)

(the term dAω(t, θ) above denotes the Itô differential of Aω(t, θ) with respect to the time
variable).

Moreover, if uω is non-random (in this case we write u for uω), we have

(5.5)

{

∂tÃ(t, θ) =
(

u(t, θ) × curlÃ(t, θ) −∇(u(t, θ) · Ã(t, θ))
)

+ ν∆Ã(t, θ),

Ã(0, θ) = A0(θ).

Proof. We use the methods in [20, Lemma 4.1] and [20, Proposition 4.2]. It is not hard
to see that, for the C2 (note that we assume u to be regular) spatial process Aω,i(t, θ),
there exist adapted spatial processes hω,ij(t, θ) and zω,i(t, θ), 1 6 i, j 6 3, such that,

(5.6) dAω,i(t, θ) =
3
∑

j=1

hω,ij(t, θ)dW j
ω(t) + zω,i(t, θ)dt, i = 1, 2, 3.

We compute below the expressions of hω,ij(t, θ) and zω,i(t, θ).
Notice that by the definition of αω(t, θ), (gνω(t, θ))∗ αω(t, θ) = α(0, θ) is a constant

with respect to the time variable, and

(gνω(t, θ))∗ αω(t, θ) =

3
∑

j=1

(

3
∑

i=1

Aω,i(t, g
ν
ω(t, θ), ω)Vω,ij(t, θ)

)

dθj ,

where the process Vω,ij(t, θ) := ∂jg
ν
ω,i(t, θ) (here we use the notation gνω(t) =

(

gνω,1(t),

gνω,2(t), g
ν
ω,3(t)

)

). We get for each 1 ≤ j ≤ 3,

(5.7) d
(

3
∑

i=1

Aω,i(t, g
ν
ω(t, θ))Vω,ij(t, θ)

)

= 0.

By (5.6) and the generalized Itô formula for spatial processes (see [57, Theorem 3.3.1.]),
we have

dAω,i(t, g
ν
ω(t, θ)) =

3
∑

j=1

(

hω,ij(t, g
ν
ω(t, θ)) +

√
2ν∂jAω,i(t, g

ν
ω(t, θ))

)

dW j
ω(t)

+

(

zω,i(t, g
ν
ω(t, θ)) + ν∆Aω,i(t, g

ν
ω(t, θ))

+
3
∑

j=1

(

uω,j (t, gνω(t, θ)) ∂jAω,i(t, g
ν
ω(t, θ)) +

√
2ν∂jhω,ij (t, gνω(t, θ))

)

)

dt.

(5.8)
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By the theory of the stochastic flows in [57, Theorem 3.3.3.], from (5.2) we obtain

(5.9) dVω,ij(t, θ) =
3
∑

k=1

∂kuω,i(t, g
ν
ω(t, θ))Vω,kj(t, θ)dt.

In particular, the martingale part of the above equality vanishes due to the fact that
the diffusion coefficients in (5.2) are constant.

According to (5.8) and (5.9), for each 1 ≤ j ≤ 3, the Itô differential with respect
to the time variable is as follows

d

(

3
∑

i=1

Aω,i(t, g
ν
ω(t, θ))Vω,ij(t, θ)

)

=

3
∑

i,k=1

(

hω,ik(t, gνω(t, θ)) +
√

2ν∂kAω,i(t, g
ν
ω(t, θ))

)

Vω,ij(t, θ)dW k
ω (t)

+
3
∑

i=1

(

3
∑

k=1

(

uω,k(t, g
ν
ω(t, θ))∂kAω,i(t, g

ν
ω(t, θ)) +

√
2ν∂khω,ik(t, gνω(t, θ))

)

+ zω,i(t, g
ν
ω(t, θ)) + ν∆Aω,i(t, g

ν
ω(t, θ))

)

Vω,ij(t, θ)dt

+
3
∑

i,k=1

Aω,k(t, gνω(t, θ))∂iuω,k(t, g
ν
ω(t, θ))Vω,ij(t, θ)dt

Hence from (5.7), we derive for each 1 ≤ j,m ≤ 3,

(5.10)

3
∑

i=1

(

hω,im(t, gνω(t, θ)) +
√

2ν∂mAω,i(t, g
ν
ω(t, θ))

)

Vω,ij(t, θ) = 0

and

3
∑

i=1

(

zω,i(t, g
ν
ω(t, θ)) + ν∆Aω,i(t, g

ν
ω(t, θ))

+

3
∑

k=1

(

uω,k(t, g
ν
ω(t, θ))∂kAω,i(t, g

ν
ω(t, θ)) +

√
2ν∂khω,ik(t, g

ν
ω(t, θ))

+ Aω,k(t, gνω(t, θ))∂iuω,k(t, g
ν
ω(t, θ))

)

)

Vω,ij(t, θ) = 0.

(5.11)

As {Vij(t, θ, ω)}16i,j63 is a non-degenerate matrix-valued process (see, e.g., [57]), from
(5.10) we deduce that, for each 1 ≤ i, j ≤ 3,

hω,ij(t, g
ν
ω(t, θ)) = −

√
2ν∂jAω,i(t, g

ν
ω(t, θ)).
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Since gνω(t, θ) is invertible in θ we can derive the expression for hω,ij not only as a
function of gνω(t, θ) but also as a function (at the origin) of (t, θ). Indeed, noticing that,
ω-almost surely, θ 7→ gνω(t, θ) is a diffeomorphism for each fixed t, we get

(5.12) hω,ij(t, θ) = −
√

2ν∂jAω,i(t, θ), ∀θ ∈ T3,

which is the expression for hω,ij(t, θ).
Since {Vω,ij(t, θ)}16i,j63 is non-degenerate, by (5.11), for each 1 ≤ i ≤ 3,

zω,i(t, g
ν
ω(t, θ)) = − ν∆Aω,i(t, g

ν
ω(t, θ)) −

3
∑

k=1

(

uω,k(t, g
ν
ω(t, θ))∂kAω,i(t, g

ν
ω(t, θ)))

−
√

2ν∂khω,ik(t, g
ν
ω(t, θ)) + Aω,k(t, gνω(t, θ))∂iuω,k(t, g

ν
ω(t, θ))

)

.

We use (5.12) in the above equation and the fact that θ 7→ gω(t, θ) is a diffeomorphism
for each fixed t, ω-almost surely and we obtain the expression for zω,i(t, θ), namely,

zω,i(t, θ) =ν∆Aω,i(t, θ)

−
3
∑

k=1

(uω,k(t, θ)∂kAω,i(t, θ) + Aω,k(t, θ)∂iuω,k(t, θ)) , ∀θ ∈ T3.
(5.13)

Combining (5.6), (5.12), and (5.13) proves (5.3). We can check that (5.3) is equivalent
to (5.4) by direct computation.

If uω(t, ·) = u(t, ·) is non-random, then it is easy to verify that

E [u(t, θ) × curlAω(t, θ)] = u(t, θ) × E [curlAω(t, θ)]

= u(t, θ) × curlE [Aω(t, θ)] = u(t, θ) × curlÃω(t, θ).

E [∇ (uω(t, θ) ·Aω(t, θ))] = ∇ (u(t, θ) · E [Aω(t, θ)])

= ∇
(

u(t, θ) · Ã(t, θ)
)

.

So taking the expectation of the two sides of equation (5.4), (5.5) follows.

Remark 5.2. In Proposition 5.1, U∗ is taken to be a space of differential forms on T3.
Note that the action of Gs on U∗ is the pull back map and the action of the “Lie algebra”
TeG

s on U∗ is the Lie derivative. Then, for H1,ν =
√

2ν(1, 0, 0), H2,ν =
√

2ν(0, 1, 0),
H3,ν =

√
2ν(0, 0, 1), and αω(t, θ) = Aω(t, θ) · dθ, we have

3
∑

i=1

αω(t)Hi,νdW
i
ω(t) =

√
2ν (∇Aω(t, θ) · dWω(t)) · dθ,

3
∑

i=1

αω(t)Hi,νHi,ν = ν∆Aω(t, θ) · dθ,

αω(t)uω(t) =
(

uω(t, θ) × curlAω(t, θ) −∇(uω(t, θ) ·Aω(t, θ))
)

· dθ,
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which implies that (5.4) is just the second equation of (3.34).
In the same way, we can verify that the second equation of (3.37) is (5.5). ♦

Remark 5.3. By the same procedure as in the proof of Proposition 5.1, if α0 is replaced
by another term, such as a function or a density, we can still prove the corresponding
evolution equation for αω(t) := α0g

ν
ω(t, ·)−1 = (gνω(t, ·)−1)

∗
α0.

For example, if α0 = β0 : T3 → R is a C2 function, then αω(t, θ) satisfies the
following stochastic transport equation,

{

dαω(t, θ) = −
√

2ν∇αω(t, θ) · dWω(t) − uω(t, θ) · ∇αω(t, θ)dt + ν∆αω(t, θ)dt,

αω(0, θ) = β0(x).

This equation has been studied in [30] which illustrates that the added stochastic force
(noise) can turn an ill-posed ODE into a well-posed one.

If α0 = D0(θ)d3θ is a density (volume form), write αω(t, θ) = Dω(t, θ)d3θ. Then
Dω(t, θ) satisfies the following equation
(5.14)

{

dDω(t, θ) = −
√

2ν∇Dω(t, θ) · dWω(t) − div(Dωuω)(t, θ)dt + ν∆Dω(t, θ)dt,

Dω(0, θ) = D0(θ).

Assume that uω(·) = u(·) is non-random and α0 = D0(θ)d3θ is a probability mea-
sure, let α̃(t) := E [αω(t)] := D̃(t, θ)d3θ. Then D̃(t, θ) satisfies the following forward
Kolmogorov equation (or Fokker-Planck equation),

(5.15)

{

dD̃(t, θ) = −div(D̃u)(t, θ)dt + ν∆D̃(t, θ)dt,

D̃(0, θ) = D0(θ).

Moreover, let ĝνω(t, θ) be the process satisfying

dĝνω(t, θ) =
√

2νdWω(t) + u(t, ĝνω(t, θ))dt

whose initial distribution is D0(θ)d3θ. Then for every t ∈ [0, T ], the distribution of
ĝνω(t, θ) is of the form D̃(t, θ)d3θ, where D̃(t, θ) satisfies (5.15). ♦

Remark 5.4. By carefully tracking the proof of Proposition 5.1, if we take Mω in (5.2)
to be a general R3-valued martingale, equation (5.4) becomes

dAω(t, θ) = −
√

2ν∇Aω(t, θ) · dMω(t) − uω(t, θ) × curlAω(t, θ)dt

+ ∇(uω(t, θ) · Aω(t, θ))dt + ν
3
∑

i,j=1

∂i∂jAω(t)dJM i
ω,M

j
ωKt. ♦
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For each Pt-adapted process v such that vω(·, ·) ∈ C1([0, 1];Xs(T3)) (for s large
enough) with vω(0, θ) = vω(T, θ) = 0 a.s., the deformation (3.31) (for right invari-
ant systems) in the formulation here is determined by the following stochastic flows
eω,ε,v(t, ·) ∈ Gs (see e.g., [2], [19] for the deterministic counterpart)

(5.16)

{

deω,ε,v(t,θ)
dt

= εv̇ω(t, eω,ε,v(t, θ))

eω,ε,v(0, θ) = θ

Setting gν,Mω,ε,v(t, θ) := eω,ε,v(t, g
ν,M
ω (t, θ)), where gν,Mω is the solution to (5.2), and using

such deformations, we can also define the critical point for an action functional in the
same way as in (3.7), Section 3.

By the analysis in [2, Section 4.2] (especially (4.5)-(4.6) in [2]) for the (infinite
dimensional group) Gs, we have

dgν,Mω,ε,v(t) = TeRg
ν,M
ω,ε,v(t)

(

3
∑

i=1

Hω,i,ν,ε(t)δM
i
ω(t) + Adeω,ε,v(t)uω(t)dt + εv̇ω(t)dt

)

,

where Hω,i,ν,ε(t) = Adeω,ε,v(t)Hi,ν . Based on the above equation for gν,Mω,ε,v and according

to the definition of D

dt
and D

∇0,(H
ν
i,ν,ε,M

i
ω)3i=1

dt
(especially using the right-invariant version

of (2.15) and (3.6)), it is easy to verify that

T
g
ν,M
ω (t,θ)Rg

ν,M
ω (t,θ)−1

Dgν,Mω (t, θ)

dt
= uω(t, θ),

d

dε

∣

∣

∣

∣

∣

ε=0

(

T
g
ν,M
ω,ε,v(t,θ)

R
g
ν,M
ω,ε,v(t,θ)−1

Dgν,Mω,ε,v(t, θ)

dt

)

=
(

advω(t)uω(t)
)

(θ) = −[vω(t, ·), uω(t, ·)](θ),

(5.17)

T
g
ν,M
ω (t,θ)Rg

ν,M
ω (t,θ)−1

(

d∆gν,Mω (t, θ)
)

=
√

2νdMω(t),

d

dε

∣

∣

∣

∣

∣

ε=0

(

T
g
ν,M
ω,ε,v(t,θ)

R
g
ν,M
ω,ε,v(t,θ)−1d

∆gν,Mω,ε,v(t, θ)
)

=

3
∑

i=1

(

advω(t)Hi,ν

)

(θ)dM i
ω(t) =

3
∑

i=1

√
2ν∂ivω(t, θ)dM i

ω(t),

(5.18)
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T
g
ν,M
ω (t,θ)Rg

ν,M
ω (t,θ)−1

(

D∇0,(Hi,ν ,M
i
ω)

3
i=1

dt

)

i,j

= ∇0
Hi,ν

Hj,ν

dJM i
ω,M

j
ωKt

dt
= 0,

d

dε

∣

∣

∣

∣

∣

ε=0

T
g
ν,M
ω,ε,v(t,θ)

R
g
ν,M
ω,ε,v(t,θ)−1

(

D∇0,(Hν
i,ν,ε,M

i
ω)

3
i=1

dt

)

i,j

=
(

∇0
advω(t)Hi,ν

Hj,ν + ∇0
Hi,ν

(advω(t)Hj,ν)
)dJM i

ω,M
j
ωKt

dt

= 2ν∂i∂jvω(t, θ)
dJM i

ω,M
j
ωKt

dt
,

(5.19)

where ∇0 denotes the connection on X(Gs) defined by (5.1) (in particular, we apply
the property that ∇0

XY (θ) =
∑3

i,j=1Xi(θ)∂iYj(θ)∂j for every X =
∑3

i=1Xi(θ)∂i, Y =
∑3

i=1 Yi(θ)∂i ∈ X(T3) because the Christoffel symbols are zero, T3 being the flat torus).
Based on these formulas, the procedure on the variational principle in the proof of

Theorem 3.11 and 3.12 also holds for the infinite dimensional group Gs needed here.
Hence the first equation of (3.34) (also the first equation of (3.37)) remains true for
Gs.

Combining all the conclusions above, we deduce that Theorem 3.11 and 3.12 still
hold for the infinite dimensional group Gs.

5.2 Compressible Navier-Stokes equation

Suppose ∇0 is the connection on X(Gs) defined by (5.1). Let U∗ denote the vector space
of all probability densities on T3 and define α0 := D0(θ)d3θ ∈ U∗. Let Mm(Gs) be the
collection of all m×m Xs(T3)-valued matrices and define M (Gs) := ∪∞

m=1Mm(Gs).
As in [49], we take the dual space (Xs(T3))∗ of Xs(T3) to be the vector space Ω1(T3)

of all differential one-forms on T3 (here we fix the volume measure to be the Lebesgue
measure on T3).

We define the Lagrangian l : Ω × [0, T ] × Xs(T3) × U∗ → R by

lω (t, u, α) :=

∫

T3

(

D(θ)

2
|u(θ)|2 −D(θ)eω(t, D(θ))

)

d3θ,

∀ u ∈ Xs(T3), ∀α = D(θ)d3θ ∈ U∗,

where eω(t, D) is the fluid’s specific internal energy, and the Pt-adapted pressure pω(t)
is given by deω(t) = −pω(t)d

(

1
D

)

(d denotes the space differential). See [49, Section 7]
for more details on such Lagrangians. Here we use a random version, since the pressure
may depend on the randomness of the system.

Then δl
δu

(t, u, α) = uD ∈ Ω1(T
3) is non-random, independent of t, and

〈

δl

δu
(t, u, α) , v

〉

=

∫

T3

〈u(θ), v(θ)〉D(θ)d3θ, ∀u, v ∈ Xs(T3), α = D(θ)d3θ ∈ U∗.
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Define the contraction force p̃ : M (Gs) × M (Gs) × Xs(T3) → R by

p̃(A,B, u) :=
1

2

∫

T3

u(θ) ·Tr(A)(θ)d3θ +
1

2

m
∑

i,j=1

∫

T3

Pi(u(θ))Pj

(

(B)i,j(θ)
)

d3θ,

∀A ∈ Mn(Gs), B ∈ Mm(Gs), ∀u ∈ Xs(T3),

(5.20)

where Tr : M (Gs) → Xs(T3) is the trace operator and Pi : R3 → R is the projection
operator defined by

Pi(x1, x2, x3) :=

{

xi, if 1 ≤ i ≤ 3,

0, if i > 3.

We take the stochastic force q : [0, T ]×Xs(T3)×U∗ → (Xs(T3))∗ to be q(t, u, α) := 〈u, ·〉.
With ∇0, l, p̃, q, α0 given above, we define an action functional Jν := J∇0,(Hi,ν ,W

i
ω)

3
i=1

according to (3.29) as follows

Jν
((

g1ω,w
1
i ,M

1,i
ω

)m1

i=1
,
(

g2ω,w
1
i ,M

2,i
ω

)m1

i=1
, g3ω
)

:=

∫ T

0

∫

T3

(

1

2
|wω(t, θ)|2Dω(t, θ) −Dω(t, θ)e (Dω(t, θ))

)

d3θdt

+

∫ T

0

p̃

(

D∇0,(w1
i ,M

1,i
ω )

m1
i=1g1ω(t)

dt
,
D∇0,(w2

i ,M
2,i
ω )

m2
i=1g2ω(t)

dt
, wω(t)

)

dt

+

∫ T

0

∫

T3

〈wω(t, θ), dΞω(t, θ)〉 d3θ

−
3
∑

i=1

√
2ν

∫ T

0

∫

T3

wω,i(t, θ)d3θdW i
ω(t),

(5.21)

where wω(t, ·) := Tg1ω(t)
Rg1ω(t)

−1

(

Dg1ω(t)
dt

)

=
(

wω,1(t, ·), wω,2(t, ·), wω,3(t, ·)
)

, dΞω(t, ·) :=

Tg1ω(t)Rg1ω(t)
−1

(

d∆g1ω(t)
)

, Dω(t, θ)d3θ = (g3ω(t, ·)−1)
∗
α0, and Wω is a standard R3-valued

Brownian motion.
Let gνω be the solution of (5.2) with ν > 0 and Mω = Wω the same R3-valued

Brownian motion as in the definition of Jν above. In particular, g0ω is a solution of
(5.2) with the same uω and ν = 0, which in fact is an ODE for each fixed ω ∈ Ω.

Suppose also that g̃νω is a solution of the following SDE,

(5.22)

{

dg̃νω(t, θ) =
∑3

i=1Hi,νdW̃ω(t) + uω(t, g̃νω(t, θ))dt

g̃νω(0, θ) = θ,

where W̃ω is an standard R-valued Brownian motion, Hi,ν , 1 ≤ i ≤ 3, and uω are the
same as in (5.2). From now on, we use the notation (W̃ 1

ω , W̃
2
ω , W̃

3
ω) = (W̃ω, W̃ω, W̃ω) to

45



denote an R3-valued Brownian motion with three equal components W̃ 1
ω = W̃ 2

ω = W̃ 3
ω ,

the same R-valued Brownian motion.
We can therefore characterize the critical points of Jν as follows.

Theorem 5.5. (SPDE case)

(

(gνω, Hi,ν,W
i
ω)

3

i=1 ,
(

g̃µω, Hi,µ, W̃
i
ω

)3

i=1
, g0ω

)

is a critical

point of Jν if and only if (uω, Dω) satisfies the following stochastic compressible Navier-
Stokes equation,

(5.23)















duω(t) = −uω(t) · ∇uω(t)dt− 1
Dω(t)

(√
2ν∇uω(t) · dWω(t) − ν∆uω(t)dt

−µ∇divuω(t) + ∇pω(t)dt
)

,

dDω(t) = −div (uω(t)Dω(t)) dt,

where Dω(t, θ)d3θ := (g0ω(t, ·)−1)
∗

(D0(θ)d3θ).

Theorem 5.6. (PDE case) Let

J
((

g1ω,w
1
i ,M

1,i
ω

)m1

i=1
,
(

g2ω,w
1
i ,M

2,i
ω

)m1

i=1
, g3ω
)

:=

∫ T

0

∫

T3

(

1

2
|wω(t, θ)|2 D̃(t, θ) − D̃(t, θ)e

(

t, D̃(t, θ)
)

)

d3θdt

+

∫ T

0

p̃

(

D∇0,(w1
i ,M

1,i
ω )

m1
i=1g1ω(t)

dt
,
D∇0,(w2

i ,M
2,i
ω )

m2
i=1g2ω(t)

dt
, wω(t)

)

dt,

where e(t, D) is non-random and satisfies de(t) = −p(t)d
(

1
D

)

(with non- random pres-
sure term p(t)) and

wω(t, ·) := Tg1ω(t)Rg1ω(t)
−1

(

Dg1ω(t)

dt

)

, D̃(t, ·)d3θ = E
[(

g3ω(t, ·)−1
)∗

α0

]

.

Suppose that uω = u in (5.2) and (5.22) is non-random and the deformations (5.16)

are defined with v non-random. Then

(

(gνω, Hi,ν,W
i
ω)

3

i=1 ,
(

g̃µω, Hi,µ, W̃
i
ω

)3

i=1
, g0ω

)

is a

critical point of J if and only if (the non-random variables)
(

u, D̃
)

satisfy the following

(deterministic) classical Navier-Stokes equations for compressible fluid flow

(5.24)







du(t) = − (u(t) · ∇u(t)) dt + 1
D̃(t)

(

ν∆u(t)dt + µ∇divu(t) −∇p(t)dt
)

,

dD̃(t) = −div
(

u(t)D̃(t)
)

dt.

Proof. (Theorem 5.5.)
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By (5.14), we know that Dω(t, θ) satisfies the second equation of (5.23). As ex-
plained above, since Theorem 3.11 still holds for Gs, it suffices to show that the first
equation of (5.23) is just the first one in (3.34) for our model.

Relations (5.17)-(5.19), combined with the definition (5.22) of g̃νω, yield the identities

Tg̃νω(t,θ)Rg̃νω(t,θ)
−1

(

D∇0,(Hi,ν ,W̃
i
ω)

3
i=1 g̃νω(t)

dt

)

i,j

= ∇0
Hi,ν

Hj,ν

dJW̃ i
ω, W̃

j
ωKt

dt
= 0,

d

dε

∣

∣

∣

∣

∣

ε=0

Tg̃νω,ε,v(t,θ)Rg̃νω,ε,v(t,θ)
−1

(

D∇0,(Hi,ν,ε,W̃
i
ω)

3
i=1 g̃ω

ν(t)

dt

)

i,j

=
(

∇0
advω(t)Hi,ν

Hj,ν + ∇0
Hi,ν

(advω(t)Hj,ν)
)dJW̃ i

ω, W̃
j
ωKt

dt
= 2ν∂i∂jvω(t, θ).

(5.25)

For every u, ũ ∈ Xs(T3), α = D(θ)d3θ ∈ U∗, we easily get the following formulas:

δl

δu
(t, u, α) = uD,

ad∗
u (uD) = (divu)uD + u · ∇(Du) +

D

2
∇(|u|2),

3
∑

i=1

ad∗
Hi
qdW i

ω(t) =
√

2ν∇u · dWω(t),

(

δlω
δα

(t, u, α)

)

⋄ α =
D

2
∇(|u|2) −∇pω(t).

(5.26)

The last equality is obtained by repeating the argument in [49, Section 7] (especially
(7.4), (7.18), and (7.19)), even though pω(t) is random.

On the other hand, for every A, Ã ∈ Mn(Gs) and B, B̃ ∈ Mm(Gs), we have,

〈

δp̃

δξ1
(A,B, u) , Ã

〉

=
1

2

∫

T3

u(θ) ·Tr(Ã(θ))d3θ,

〈

δp̃

δξ2
(A,B, u) , B̃

〉

=
1

2

m
∑

i,j=1

∫

T3

Pi(u(θ))Pj((B̃)i,j(θ))d3θ,

〈

δp̃

δu
(A,B, u) , ũ

〉

=
1

2

∫

T3

ũ(θ) ·Tr(A(θ))d3θ +
1

2

m
∑

i,j=1

∫

T3

Pi(ũ(θ))Pj((B)i,j(θ))d3θ.

(5.27)

Hence, using M1
ω = Wω, and (5.17), (5.25), (5.27), we get the formula for the operator

K defined by (3.12):

〈Kω (t, A,B, u) , ũ〉 = −
3
∑

i=1

∫

T3

u(θ) ·
(

∇0
[ũ,Hi,ν ]

Hi,ν + ∇0
Hi,ν

[ũ, Hi,ν]
)

(θ)d3θ
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−
3
∑

i,j=1

∫

T3

ui(θ)Pj

(

∇0
[ũ,Hi,µ]

Hj,µ + ∇0
Hi,µ

[ũ, Hj,µ]
)

(θ)d3θ

= −ν

∫

T3

u(θ) · ∆ũ(θ)d3θ − µ

∫

T3

ũ(θ) · ∇divu(θ)d3θ

that is,

Kω (t, A,B, u) = −ν∆u − µ∇divu, A,B ∈ M3(G
s), u ∈ Xs(T3), t ∈ [0, T ],

δp̃

δu
(0, 0, u) = 0.

(5.28)

Thus, combining the equalities above, the first equation in (3.34) becomes

d (uω(t)Dω(t)) = −
√

2ν∇uω(t) · dWω(t) − (divuω(t)) uω(t)Dω(t)dt

− uω(t) · ∇ (uω(t)Dω(t)) dt + ν∆uω(t)dt + µ∇(divuω)(t)dt−∇pω(t)dt.
(5.29)

Using the second equation of (5.23), we get

uω(t)dDω(t) = − (divuω(t))uω(t)Dω(t)dt− (uω(t) · ∇Dω(t)) uω(t)dt(5.30)

and together with (5.29), we obtain the first equation of (5.23).

Proof. (Theorem 5.6.) This follows carrying out the same computations as in the
previous proof and the one in Theorem 3.12.

Remark 5.7. We emphasize that the usual Navier-Stokes equations for compressible
fluids (5.24) were deduced from our stochastic variational principle, without any appeal
to thermodynamic considerations in order to get the dissipative terms; these terms
appear entirely due to the type of stochastic processes we consider.

Remark 5.8. For the incompressible case, i.e., Dω(t, θ) ≡ 1, equation (5.23) becomes

duω(t) = −
√

2ν∇uω · dWω(t) − uω · ∇uωdt + ν∆uωdt−∇pω(t)dt,

which is a stochastic incompressible Navier-Stokes equation. ♦

Remark 5.9. Taking the viscous force p̃ = 0 in the definition of Jν (formula (5.21))
and following the same steps as in Theorem 5.5, it is easy to verify that the associated
critical point (uω(t), Dω(t)) of Jν satisfies the following stochastic compressible Euler
equation,

{

duω(t) = −uω(t) · ∇uω(t)dt− 1
Dω(t)

(√
2ν∇uω(t) · dWω(t) + ∇pω(t)dt

)

,

dDω(t) = −div (uω(t)Dω(t)) dt. ♦
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For existence of solutions of stochastic compressible Navier-Stokes equations we
refer to [8], [82].

Remark 5.10. We illustrate here how the contraction force p̃, defined by (5.20), gives
rise to the term modeling viscosity in the compressible Navier-Stokes equation (and
MHD equation later). Other choices for the contraction force p̃ yield different dissipa-
tive equations.

For example, let p̃ : M (Gs) × Xs(T3) × U∗ → R be defined by

(5.31) p̃
(

A, u,D(θ)d3θ
)

=
1

2

∫

T3

Tr(A)(θ) · u(θ)D(θ)d3θ,

where A ∈ M (Gs), u ∈ Xs(T3), D(θ)d3θ ∈ U∗. Define the action functionalJν in the
same way as in Theorem 5.5 with p̃ replaced by the expression in (5.31).

As explained in Remark 3.8, although p̃ depends on U∗, we can repeat the procedure

in Theorem 5.5 to show that

(

(gνω, Hi,ν,W
i
ω)

3

i=1 ,
(

g̃µω, Hi,µ, W̃
i
ω

)3

i=1
, gνω

)

is a critical

point of J̃ν if and only if (uω(t), Dω(t)) satisfies the following system of equations:











duω(t) = −uω(t) · ∇uω(t)dt + 2ν〈∇uω(t),∇ logDω(t)〉dt + ν∆uω(t)dt

−
√
2ν∇uω(t)
Dω(t)

· dWω(t) − ∇pω(t)
Dω(t)

dt,

dDω(t) = −
√

2ν∇Dω(t) · dWω(t) − div (uω(t)Dω(t)) dt + ν∆Dω(t)dt.

The term 〈∇uω(t),∇ logDω(t)〉 in the equation above is crucial for energy dissipation.
This term also appears in Brenner’s model; see, e.g., [9, 10, 28]. ♦

5.3 Compressible MHD equation

Let α0 := (b0(·),B0(θ) · dS, D0(θ)d3θ), where b0 is a C2 function on T3, B0(θ) · dS is
an exact two-form on T3, i.e., there is some one-form A0(θ) · dθ such that

(5.32) B0(θ) · dS = d
(

A0(θ) · dθ
)

=
∑

1≤j<k≤3,i 6=j,i 6=k

(

curlA0(θ)
)

i
dθj ∧ dθk,

and D0(θ)d3θ is a density on T3. We let U∗ denote the vector space of all such triples
(b(·),B(θ) · dS, D(θ)d3θ).

As in [49, equation (7.16)], let l : Ω × [0, T ] × Xs(T3) × U∗ → R be defined by

lω(t, u, b,B, D) =

∫

T3

(

D(θ)

2
|u(θ)|2 −D(θ)eω(t, D(θ), b(θ)) − 1

2
|B(θ)|2

)

d3θ,

where u ∈ Xs(T3) is the Eulerian (spatial) velocity of the fluid, b ∈ C2(T3) is the
entropy function, B(θ) · dS is an exact differential two-form as in (5.32) representing
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the magnetic field in the fluid, D(θ)d3θ is a density on T3 representing the mass density
of the fluid, and the function eω(t, D, b) is the fluid’s specific internal energy. The
pressure pω(t) is Pt-measurable for all t and the temperature Tω(t) of the fluid (also
Pt-measurable for all t) are given in terms of a thermodynamic equation of state for
the specific internal energy e, namely deω(t) = −pω(t)d

(

1
D

)

+ Tω(t)db. As explained

in [49, Section 7] it is assumed that c2ω := ∂pω
∂D

> 0, where cω is the adiabatic sound
speed.

As in subsection 5.2, we work with a contraction force p̃ : M (Gs) × M (Gs) ×
Xs(T3) → R, defined by (5.20), and a stochastic force q : Xs(T3) × U∗ → (Xs(T3))∗,
defined by

q(u, α) := 〈u, ·〉, ∀u ∈ Xs(T3).

With ∇0, l, p̃, q, α0, (Hi,ν ,W
i
ω)3i=1 as in subsection 5.2, we define the action func-

tional Jν
1 := J∇0,(Hi,ν ,W

i
ω)

3
i=1 according to (3.29), which in this particular case becomes

Jν
1

((

g1ω,w
1
i ,M

1,i
ω

)m1

i=1
,
(

g2ω,w
1
i ,M

2,i
ω

)m1

i=1
, g3ω, g

4
ω, g

5
ω

)

:=

∫ T

0

lω (t, wω(t, ·),Bω(t, ·), bω(t, ·), Dω(t, ·)) dt

+

∫ T

0

p̃

(

D∇0,(w1
i ,M

1,i
ω )

m1
i=1g1ω(t)

dt
,
D∇0,(w2

i ,M
2,i
ω )

m2
i=1g2ω(t)

dt
, wω(t)

)

dt

+

∫ T

0

∫

T3

〈wω(t, θ), dΞω(t, θ)〉 d3θ

−
3
∑

i=1

√
2ν

∫ T

0

∫

T3

wω,i(t, θ)d3θdW i
ω(t),

(5.33)

where

wω(t, ·) := Tg1ω(t)Rg1ω(t)
−1

(

Dg1ω(t)

dt

)

=
(

wω,1(t, ·), wω,2(t, ·), wω,3(t, ·)
)

dΞω(t, ·) := Tg1ω(t)
Rg1ω(t)

−1

(

d∆g1ω(t)
)

Dω(t, ·)d3θ :=
(

g3ω(t, ·)−1
)∗ (

D0(θ)d3θ
)

Bω(t, θ) · dS :=
(

g4ω(t, ·)−1
)∗

(B0(θ) · dS)

bω(t, θ) :=
(

g5ω(t, ·)−1
)∗

b0,

and Wω(t) is a standard R3-valued Brownian motion.
Let gνω be the solution of (5.2) with ν > 0 and Mω = Wω the same R3-valued

Brownian motion as in the definition of Jν
1 above. Although in the definition of Jν

1,
five semimartingales are needed, we can define its critical points in the same way as in
(3.7) along deformations (5.16). Moreover, the critical points of Jν

1 are characterized
as follows.
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Theorem 5.11. (SPDE case)

(

(gνω, Hi,ν,W
i
ω)

3

i=1 ,
(

g̃µω, Hi,µ, W̃
i
ω

)3

i=1
, g0ω, g

ν1
ω , gν2ω

)

is a

critical point of Jν
1 if and only if the following stochastic compressible MHD equations

hold for (uω(t), bω(t),Bω(t), Dω(t)),
(5.34)


































duω(t) = −uω(t) · ∇uω(t)dt− 1
Dω(t)

(√
2ν∇uω(t) · dWω(t) − ν∆uω(t)dt− µ∇divuω(t)dt

−Bω(t) × curlBω(t)dt + ∇pω(t)dt
)

,

dDω(t) = −div(uω(t)Dω(t))dt,

dBω(t) = −
√

2ν1∇Bω(t) · dWω(t) + curl(uω(t) ×Bω(t))dt + ν1∆Bω(t)dt,

dbω(t) = −
√

2ν2∇bω(t) · dWω(t) − uω(t) · ∇bω(t)dt + ν2∆bω(t)dt,

where gνω and g̃µω are the solution of the SDE (5.2) and (5.22) respectively, Dω(t, θ)d3θ =
(g0ω(t, ·)−1)

∗
(D0(θ)d3θ), Bω(t, θ)·dS := (gν1ω (t, ·)−1)

∗
(B0(θ) · dS), bω(t, θ) := (gν2ω (t, ·)−1)

∗
b0.

Theorem 5.12. (PDE case) Set

J1

((

g1ω,w
1
i ,M

1,i
ω

)m1

i=1
,
(

g2ω,w
1
i ,M

2,i
ω

)m1

i=1
, g3ω, g

4
ω, g

5
ω

)

:=

∫ T

0

l
(

t, wω(t, ·), B̃ω(t, ·), b̃ω(t, ·), D̃ω(t, ·)
)

dt

+

∫ T

0

p̃

(

D∇0,(w1
i ,M

1,i
ω )

m1
i=1g1ω(t)

dt
,
D∇0,(w2

i ,M
2,i
ω )

m2
i=1g2ω(t)

dt
, wω(t)

)

dt,

where l is non-random (hence the pressure p(t) and temperature T (t) are non-random),

wω(t, ·) := Tg1ω(t)Rg1ω(t)
−1

(

Dg1ω(t)
dt

)

, B̃(t, θ)·dS := E
[

(gν1ω (t, ·)−1)
∗

(B0(θ) · dS)
]

, b̃(t, θ) :=

E
[

(gν2ω (t, ·)−1)
∗
b0
]

, D̃(t, ·)d3θ = E
[

(g0ω(t, ·)−1)
∗

(D0(θ)d3θ)
]

.
Suppose uω = u is non-random in (5.2), (5.22), and that in the deformation v

in (5.16) is also non-random. Then

(

(gνω, Hi,ν ,W
i
ω)

3

i=1 ,
(

g̃µω, Hi,µ, W̃
i
ω

)3

i=1
, g0ω, g

ν1
ω , gν2ω

)

is a critical point of J1 if and only if
(

u, B̃, D̃, b̃
)

satisfies the following compressible

MHD equations
(5.35)






















du(t) = −u(t) · ∇u(t)dt + 1
D̃(t)

(

ν∆u(t) + µ∇divu(t) − B̃(t) × curlB̃(t)dt−∇p(t)
)

dt,

dD̃(t) = −div(u(t)D̃(t))dt,

dB̃(t) = curl(u(t) × B̃(t))dt + ν1∆B̃(t)dt,

db̃(t) = −u(t) · ∇b̃(t)dt + ν2∆b̃(t)dt.

Proof. (Theorem 5.11.)
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Equation (5.14) implies that Dω(t, θ) satisfies the second equation of (5.34). Since
B0(θ) · dS = d

(

A0(θ) · dθ
)

for some one-form A0(θ) · dθ, it follows that

Bω(t, θ) · dS =
(

gν1ω (t, .)−1
)∗(

B0(θ) · bdS
)

=
(

gν1ω (t, .)−1
)∗
d
(

A0(θ) · dθ
)

= d
((

gν1ω (t, .)−1
)∗(

A0(θ) · dθ
))

(θ)

= d
(

Aω(t, θ) · dθ
)

,

where
Aω(t, θ) · dθ :=

(

gν1(t, .)−1
)∗(

A0(θ) · dθ
)

, curlAω(t) := Bω(t).

By Proposition 5.1, equation (5.4) holds for Aω(t) with viscosity constant ν = ν3,
and hence Bω(t) = curlAω(t) satisfies the third equation of (5.34). We also have
∇ ·Bω(t) = ∇ · (curlAω(t)) = 0.

In the same way, we verify that the fourth equation in (5.34) holds for bω(t).

According to Theorem 3.11, (5.19), (5.28) (which implies that δp̃

δu

(

H̃ω,1, H̃ω,2, uω(t)
)

≡

0 here), we conclude that

(

(gνω, Hi,ν,W
i
ω)

3

i=1 ,
(

g̃µω, Hi,µ, W̃
i
ω

)3

i=1
, g0ω, g

ν1
ω , gν2ω

)

is a criti-

cal point of J1 if and only if the following equation holds

d

(

δlω
δu

)

(t) = −
3
∑

i=1

ad∗
Hi,ν

q(t, uω, bω,Bω, Dω)dW i
ω(t) − ad∗

uω(t)

δlω
δu

dt +
δlω
δb

⋄ bωdt

+
δlω
δB

⋄Bωdt +
δlω
δD

⋄Dωdt−Kω

(

t, H̃ω,1(t), H̃ω,2(t), uω(t)
)

dt,

(5.36)

where Kω, H̃ω,1(t), H̃ω,2(t) are the same terms as in (3.34).
From the computation in [49, Section 7], particularly (7.4), (7.18), and (7.19), we

get,

δlω
δb

⋄ b +
δlω
δB

⋄B +
δlω
δD

⋄D =
D

2
∇
(

|u|2
)

+ B× curlB−∇pω.

Combining all of the above with (5.17)-(5.19), (5.26)-(5.28), into (5.36) yields,

d (uω(t)Dω(t)) = −
√

2ν∇uω(t) · dWω(t) − (divuω(t)) uω(t)Dω(t)dt

− uω(t) · ∇ (uω(t)Dω(t)) dt + Bω(t) × curlBω(t)dt

+ ν∆uω(t)dt + µ∇divuω(t)dt−∇pω(t)dt.

(5.37)

Putting the second equation of (5.34) into (5.37), we derive the first equation in (5.34).

52



Proof. (Theorem 5.12.)
The proof of (5.35) follows by repeating the same computations as above and the

ones in the proof of Theorem 3.12.

Remark 5.13. The reason for choosing processes gνi with different constants νi is that
the viscosity constants in equation (5.34) are different.

♦

Remark 5.14. In particular, if we take D(t) = 1, b(t) = 1 for every t ∈ [0, T ] in (5.35),
we obtain the following incompressible viscous MHD equations (see, e.g., [79]),











∂tu + u · ∇u + ∇p + B× curlB = ν∆u

∂tB = curl(u×B) + ν1∆B

divu = 0. ♦

5.4 Stochastic Kelvin-Noether Theorem in Continuum Me-
chanics

We now apply the results on Section 4 in continuum mechanics. Following the formula-
tion in [49, Section 6], we take here G = Gs (so TeG = Xs(T3)), U a linear space whose
formal dual U∗ represents the advection terms (such as mass density, entropy, the mag-
netic field viewed as a differential two-form, etc), C = {γ ∈ C([0, 1];Gs) | γ(0) = γ(1)}
the set of all continuous Gs-valued loops.

As explained in [49, Section 6], the dual
(

Xs(T3)
)∗

= Ωs(T3) ⊗ Den(T3), where
Ωs(T3) denotes the space of Hs-differential one-forms on T3, and Den(T3) is the set of
all densities on T3. Given a mass density ρ = ρ(θ)d3θ, we define the circulation map
K : C × U∗ →

(

Xs(T3)
)∗∗

by

〈K (γ, a), α〉 =

∮

γ(·)

α

ρ
, γ ∈ C , a ∈ U∗, α ∈

(

Xs(T3)
)∗
.

Since α ∈
(

Xs(T3)
)∗

= Ωs(T3)⊗Den(T3), ρ ∈ Den(T3), and α
ρ
∈ Ωs(T3), the circulation

integral above is well-defined.
Let Lu denote the Lie derivative in the direction u ∈ Xs(T3). As shown in [49,

Page 37, formula (6.2)], we have

ad∗
uV = LuV, u ∈ Xs(T3), V ∈

(

Xs(T3)
)∗
.

Suppose that gνω(·) is the solution of (5.2) with Mω = Wω being a standard R3-
valued Brownian motion and g̃νω(·) is the solution to (5.22). As illustrated above,
Theorem 3.11 still holds for the infinite dimensional group Gs.

So, for a given Lagrangian functional l : Ω × [0, T ] × Xs(T3) × U∗ → R such
that δlω

δu
is non-random, and supposing that p̃ : M × M × Xs(T3) → R, q : [0, T ] ×
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Xs(T3)×U∗ → R are the same terms as in Section 5.2, we define the action functional
J∇0,(Hi,ν ,W

i
ω)

3
i=1 by (5.21). Hence by Theorem 3.11 and the computations in Section 5.1

above, we conclude that

(

(gνω, Hi,ν,W
i
ω)

3

i=1 ,
(

g̃µω, Hi,µ, W̃
i
ω

)3

i=1
, gν1ω

)

is a critical point of

J∇0,(Hi,ν ,W
i
ω)

3
i=1 if and only if (uω(t), αω(t)) satisfy the following equations (note that in

the present situation, (5.19) and (5.27) imply H̃1(t) = H̃2(t) ≡ 0 and δp̃

δu
(0, 0, uω(t)) ≡

0),

d
δlω
δu

(t) = −
√

2ν

3
∑

i=1

∂iuω(t)dW i
ω(t) − ad∗

uω(t)

(

δlω
δu

(t)

)

dt +
δlω
δα

(t) ⋄ αω(t)dt

+ ν∆uω(t) + µ∇divuω(t)dt,

dαω(t) = −
3
∑

i=1

LHi,ν1
αω(t)dW i

ω(t) − Luω(t)αω(t)dt +
1

2

3
∑

i=1

LHi,ν1
LHi,ν1

αω(t)dt,

(5.38)

where uω(·) denotes the drift in (5.2), δlω
δu

(t) := δlω
δu

(

t, uω(t), αω(t)
)

, qω(t) := q
(

t, uω(t), αω(t)
)

,
and δlω

δα
(t) := δlω

δα

(

t, uω(t), αω(t)
)

. Here, we have also applied the property that q(t, u, α) =
〈u, ·〉.

Given γ0 ∈ C , the Kelvin-Noether quantity I : C ×Xs(T3)×U∗ → R is defined by

(5.39) Iω(t) :=

∮

γω(t)(·)

1

ρω(t)

δlω
δu

(t),

where γω(t)(·) := γ0
(

gνω(t, ·)
)

, (uω(t), αω(t)) is a solution of equation (5.38), and ρω(t) =
ρ
(

(gνω)−1(t, θ)
)

d3θ.
The stochastic Kelvin-Noether Theorem on Gs takes the following form.

Proposition 5.15. Let Iω(t) be defined by (5.39) and suppose that (uω(t), αω(t)) sat-
isfies (5.38) with ν = ν1 and δl

δu
= q = 〈u, ·〉. Then we have

(5.40) dIω(t) =

∮

γω(t)(·)

1

ρω(t)

(

δlω
δα

(t) ⋄ αω(t) + µ∇divuω(t)

)

dt.

Proof. By definition of γω(t)(·) and the change of variables formula, we obtain

Iω(t) =

∮

γω(t)(·)

1

ρω(t)

δlω
δu

(t) =

∮

γ0(·)

1

ρ
(gνω(t))∗

[

δlω
δu

(t)

]

(5.41)

By carefully tracking the proof of Proposition 5.1, we know that the following right
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invariant version of (4.6) still holds

d(gνω(t))∗
[

δlω
δu

(t)

]

= (gνω(t))∗

[

3
∑

i=1

ad∗
Hi,ν

δlω
δu

(t)dW i
ω(t) + ad∗

uω(t)

δlω
δu

(t) + d
δlω
δu

(t)

+
1

2

3
∑

i=1

(

ad∗
Hi,ν

ad∗
Hi,ν

δlω
δu

(t) + 2ad∗
Hi,ν

dJW i
ω,

δlω
δu

(t)Kt
)

]

.

Then, replacing here d δlω
δu

(t) by its expression given in (5.38) and using the identity
〈uω(t), ·〉 = qω(t) = δlω

δu
(t), we get

d(gνω(t))∗
[

δlω
δu

(t)

]

= (gνω(t))∗

[

δlω
δα

(t) ⋄ αω(t) + ν∆uω(t) + µ∇divuω(t) − 1

2

3
∑

i=1

ad∗
Hi,ν

ad∗
Hi,ν

qω(t)

]

dt

= (gνω(t))∗
[

δlω
δα

(t) ⋄ αω(t) + µ∇divuω(t)

]

dt.

Combining this with (5.41) yields

dIω(t) =

∮

γ0(·)

1

ρ
d

(

(gνω(t))∗
[

δlω
δu

(t)

])

=

∮

γ0(·)

1

ρ
(gνω(t))∗

[

δlω
δα

(t) ⋄ αω(t) + µ∇divuω(t)

]

dt

=

∮

γω(t)(·)

1

ρω(t)

(

δlω
δα

(t) ⋄ αω(t) + µ∇divuω(t)

)

dt,

which finishes the proof of (5.40).

Remark 5.16. It is worthwhile to note that the second summand in the integrand of
(5.40) is the bulk viscosity term appearing in the classical Navier-Stokes equations for
compressible fluid flow, except that here, the velocity is random.
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[77] S. Ober-Blöbaum, O. Junge, and J. E. Marsden, Discrete mechanics and optimal
control: an analysis, Control Optim. Calc. Var., 17(2), 322–352 (2011).
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