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Abstract

Mathematical models often possess symmetries, either because of actual symmetries

of the situation being modelled, or as approximations. It is well-known that these

symmetries often impose restrictions on the solutions to these models. In this paper, we

investigate the role of rotational symmetry in certain integro-difference equations, and

study the existence of rotating wave solutions to these equations. We perform explicit

computations in the case where the integration kernel is a Gaussian distribution, which

often occurs in applications.
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1 Introduction

In the theory of dynamical systems, it is by now well-known that symmetries play an impor-
tant role in shaping the dynamics and bifurcations of the system [15, 16]. In this paper, we
will be interested in investigating the consequences of rotational symmetries in discrete-time
dynamical systems given by iteration of an integro-difference equation of the form

v(x) = N [u](x) =

∫

Ω

κ(x, y)F (x, u(y)) dy (1.1)

where Ω ⊆ R
m, u and v are functions which go from Ω into R

N , F : Ω×R
N −→ R

N is some
(generally nonlinear) function and κ : Ω× Ω −→ R is such that

∫

Ω

κ(x, y) dy = 1, ∀x ∈ Ω. (1.2)

Systems such as (1.2) have been of interest to mathematicians and scientists for many years,
see for example [6, 7, 24, 25, 40, 41]. For example, in many applications, N = 1 and
u represents the distribution in space Ω of a generation of a certain population, and v
represents the subsequent distribution in space of the next generation after the population
has reproduced locally (under a reproduction law modelled through the function F (x, ·)),
and then spread out in space according to the distribution kernel κ [24, 25, 40]. The function
κ(x, y) ≥ 0 might represent the density of the probability that an individual initially at point
y moves to the point x after one generation. Subsequently one is interested in the discrete-
time dynamical system generated through iteration of the mapN in (1.1), i.e. given an initial
distribution u0(x), compute un(x) (for integer n ≥ 1) through the recursion un = N [un−1].
It is then quite natural to want to characterize the limiting behavior of orbits of this integro-
difference system as n → ∞. For further information about integro-difference equations
and their role as mathematical models for a variety of situations in ecology, as well as an
extensive literature review of the field, the reader is invited to consult [26].

The scope of this paper is not to focus on any one particular application, but rather to
perform a mathematical analysis of the role played by any rotational symmetries which may
be present in (1.1). To this end, we will assume that, Ω = R

2, that the image of F is in
R

2, and the kernel κ and the function F are homogeneous in space such that we can write
F (x, u) = f(u) and κ(x, y) = k(|x − y|), where |z| is the Euclidean norm of z ∈ R

2. It
is well-known that the fact that the Euclidean norm is invariant under translations implies
that (1.1) has an important symmetry:

Proposition 1.1 Let u0 be a given function from R
2 into R

2 such that

u1(x) =

∫

R2

k(|x− y|)f(u0(y)) dy

2



exists. Let p ∈ R
2 be given, and define v0(x) = u0(x− p). Then

v1(x) =

∫

R2

k(|x− y|)f(v0(y)) dy

exists and is such that v1(x) = u1(x− p).

This translation symmetry is fundamental to proving the existence of travelling waves, i.e.
orbits {un+1} = {N [un]} of the discrete-time dynamical system (1.1), such that un+1(x) =
un(x − p) for a given fixed p ∈ R

2, as was outlined in the pioneering papers of Weinberger
[39, 40].

Surprisingly, very little attention has been paid to the fact that the Euclidean norm is
also invariant under rigid rotations and that this fact could lead to solutions compatible with
this symmetry. It is this aspect that we wish to explore in this paper.

We define SO(2) to be the group of all rigid rotations on the plane, then SO(2) acts on
R

2 according to the standard action

θ ∈ SO(2) =⇒ θ · z = Rθz,

where Rθ is the rotation matrix

Rθ =

(

cos θ − sin θ
sin θ cos θ

)

.

The natural phase-space for the discrete-time dynamical system (1.1) is a space of functions
from R

2 into R
2, for example Cb(R

2,R2) the space of bounded and continuous functions with
supremum norm. We distinguish two natural actions of SO(2) on such a space [16]:

(θ · u)(z) = G(θ) · u(R−θ · z), θ ∈ SO(2) , u ∈ Cb(R
2,R2), (1.3)

where G(θ) can be either the identity matrix, or the rotation matrix Rθ.
The kernel k(|x − y|) is compatible with either representations of this symmetry (since

both representations rotate the space variable). We will assume that the local reaction
dynamics given by the function F (x, u) = f(u) are compatible with the form G(θ) = Rθ of
this symmetry in the sense that

∀θ ∈ SO(2), f(Rθ · u) = Rθ · f(u), ∀u ∈ R
2, (1.4)

i.e. f is SO(2)-equivariant in the sense of [16]. In this case, it also (trivially) respects the
equivariance symmetry in the case where G(θ) is the identity matrix. This leads to:
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Proposition 1.2 Suppose f satisfies the condition (1.4) and let u0 be a given function from
R

2 into R
2 such that

u1(x) =

∫

R2

k(|x− y|)f(u0(y)) dy

exists. Let θ ∈ SO(2) be given, and define v0(x) = G(θ) · u0(R−θ · x). Then

v1(x) =

∫

R2

k(|x− y|)f(v0(y)) dy

exists and is such that v1(x) = G(θ) · u1(R−θ · x).

Proof This is a simple computation:

v1(x) = G(θ) · u1(R−θ · x) =

∫

R2

k(|R−θ · x− y|)G(θ) · f(u0(y)) dy

=

∫

R2

k(|R−θ · (x− ỹ)|)f(G(θ) · u0(R−θ · ỹ)) dỹ

=

∫

R2

k(|x− y|)f(v0(y)) dy,

where we have used the rotational invariance of the norm and the fact that the determinant
of a rotation matrix is equal to one.

In the language of dynamical systems, we formulate this property as follows. Suppose X
is an appropriate space of functions from R

2 into R
2, for example X = Cb(R

2,R2), so that
for all u ∈ X, the function

v(x) = N [u](x) =

∫

R2

k(|x− y|)f(u(y)) dy (1.5)

exists and is an element of X. We may view N in (1.5) as a map N : X −→ X. Considering
the action (1.3) of SO(2) on X, Proposition 1.2 is equivalent to the equivariance equality

θ ◦ N = N ◦ θ, ∀θ ∈ SO(2). (1.6)

If we then consider the dynamical system on X defined by iterations of the map N in (1.5),
equation (1.6) implies that the group SO(2) maps orbits of this dynamical system into other
orbits of the dynamical system.

The study of group equivariant dynamical systems has enjoyed a rich development over
the past decades, see for example [1, 8, 9, 10, 13, 14, 16, 23]. An interesting class of orbits
which may exist for SO(2)-equivariant dynamical systems are so-called rotating waves. In the

4



context of the discrete dynamical system on X defined above, a rotating wave corresponds
to u∗ ∈ X such that there exists θ∗ ∈ SO(2) with

N [u∗] = θ∗ · u∗,

which using (1.6) leads to

N j[u∗] = (N j−1 ◦N )[u∗] = (N j−1 ◦θ∗)[u∗] = (θ∗ ◦N j−1)[u∗] · · · = (θ∗)
j ·u∗, ∀j = 1, 2, 3, . . . ,

i.e. the time-orbit of u∗ is contained in its SO(2) orbit. Note that because there are two
possible representations in (1.3), there are two distinct types of rotating wave solutions
depending on the form of the matrix G(θ). In the case where G(θ) is the identity matrix,
we will use the terminology untwisted rotating wave, whereas in the case where G(θ) = Rθ

we will use the terminology twisted rotating wave.
The existence of rotating waves for (1.5) (untwisted or twisted) is not necessarily guar-

anteed by the SO(2) symmetry, however we may establish a sufficient condition in the form
of a fixed-point equation:

G(α) · u∗(R−α · x) =
∫

R2

k(|x− y|)f(u∗(y)) dy, for some α ∈ SO(2),

or equivalently

u∗(x) =

∫

R2

k(|Rα · x− y|)f(G(−α) · u∗(y)) dy. (1.7)

The function u∗ is called the wave profile of the rotating wave. It should be noted that
because of the translation symmetry of our integral operator, we are free to set the center
of rotation of the rotating wave at the origin of physical space, as we have done in (1.7).

As mentioned earlier, although there has been considerable attention paid to the existence
of travelling waves for (1.1), there are relatively few studies of its rotating wave solutions.
This is somewhat surprising since the existence and dynamics of rotating waves in partial
differential reaction-diffusion systems (mostly spiral waves) has been studied at great length
over the past decades [2, 3, 4, 5, 14, 32, 33, 34, 42]. Many models of cardiac electrophysiology
are in the form of reaction diffusion PDEs, and rotating spiral solutions represent pathologies
such as arrhythmias [11, 20, 27, 29, 30, 31]. We do however note that for the related problem
of integro-differential equations, there have been some numerical and analytical studies of
spiral waves [19, 37].

The study of the existence of travelling wave solutions of (1.5) typically relies heavily on
properties of the kernel k, but also on the internal dynamics of the discrete-time dynamical
system

u 7−→ f(u). (1.8)
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In particular equilibrium points (and their local asymptotic stability) of this system often
correspond to limiting properties (as x→ ±∞) of the wave profile u∗. Of course it is possible
for systems such as (1.8) to have limiting states more complicated than equilibrium points.
For example there may exist a period-2 cycle (or more generally a period-p cycle) in the
dynamics of (1.8). This question was analyzed in some detail [6, 7] by studying the second-
iterate map N 2 in (1.5) and looking for travelling waves of the resulting operator connecting
two fixed points of the second iterate f 2 in (1.8). See also [12, 17]. Therefore, it is expected
that limiting states of (1.8) will also play a role in describing rotating waves, i.e. solutions
of (1.7).

The equivariance condition (1.4) imposes strong restrictions on the functional form of
the mapping f in (1.8). As is shown in [16], f must have the form

f(u) = f(u1, u2) = A1(u
2
1 + u22)

(

u1
u2

)

+ A2(u
2
1 + u22)

(

−u2
u1

)

(1.9)

where A1 and A2 are real-valued functions. Rather than studying the problem (1.5) in the
full generality (1.9), we will limit ourselves to the following representative normal form of
(1.9) (which, as we will see, already leads to an analysis and computations that are quite
involved but manageable):

(

u1
u2

)

7−→ ((1 + β)− u21 − u22)

(

cos ω − sin ω
sin ω cos ω

)(

u1
u2

)

, (1.10)

where β is a real parameter and ω ∈ (0, π) for which it is possible to completely describe
the dynamics analytically. We note that despite its apparent simplicity, this mapping is
in fact a special case of the generic cubic truncated normal form for the Naimark-Sacker
bifurcation from an equilibrium point with eigenvalues of its linearization crossing the unit
circle (when β = 0) at e±iω (assuming the non-resonance conditions eiℓω ̸= 1 for ℓ = 1, 2, 3, 4)
[21]. Adopting polar coordinates (u1, u2) = (η cosψ , η sinψ), (1.10) reduces to

(

η
ψ

)

7−→
(

η(1 + β − η2)
ψ + ω

)

(1.11)

for which the dynamics of (1.10) become clearer. The origin (u1, u2) = 0 is a fixed point for
all β real, locally stable when β < 0 and locally unstable when β > 0. For β > 0, there is a
locally asymptotically stable closed invariant circle of radius η =

√
β on which the dynamics

of (1.10) reduces to a rigid rotation around the origin through angle ω. See figure 1 for a
summary of this discussion.
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Figure 1: Phase diagrams for the dynamical system (1.10)-(1.11) pre-(left panel) and post-
(right panel) a Neimark-Sacker bifurcation of the equilibrium point at the origin. In the left
panel, the equilibrium is stable, whereas in the right panel, the equilibrium is unstable and
there is a stable closed invariant curve.

Taking into account all these considerations, we will therefore focus our attention in this
paper to the fixed-point problem (1.7) which reduces to

u∗(x) =

∫∫

R2

k (|Rαx− y|)G(−α)Rω(1 + β − |u∗(y)|2)u∗(y) dy1dy2, (1.12)

where x = (x1, x2)
T , y = (y1, y2)

T , u∗ = (u1, u2)
T .

2 Polar coordinates representation and pinwheel solu-

tions

It will be useful to adopt polar coordinates for both variables x = x1 + ix2 = reiφ and
y = y1 + iy2 = ρeis so that if we write u = u1 + iu2, the integral operator N in (1.5) is

v(reiφ) = N [u](reiφ) =

∫ ∞

0

∫ 2π

0

k(|reiφ − ρeis|)f(u(ρeis)) ρ dsdρ . (2.1)

If we write u(reiφ) as a Fourier series

u(reiφ) =
∑

ℓ∈Z

Cℓ(r)e
iℓφ,
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then the operator (2.1) admits as invariant subspaces each of the Fourier modes, as follows:

Proposition 2.1 If u(reiφ) = Cℓ(r)e
iℓφ for some ℓ ∈ Z, then

N [u](reiφ) = Bℓ(r)e
iℓφ,

where

Bℓ(r) =
1

2π

∫ 2π

0

∫ ∞

0

k(|r − ρeis|) eiℓsf(Cℓ(ρ)) ρ dsdρ . (2.2)

Proof Let ℓ′ ∈ Z be given. Then

∫ 2π

0

e−iℓ′φN [u](reiφ) dφ =

∫ 2π

0

∫ ∞

0

∫ 2π

0

k(|reiφ − ρeis|)e−iℓ′φf(Cℓ(ρ)e
iℓs) ρ dsdρdφ

=

∫ 2π

0

∫ ∞

0

∫ 2π

0

k(|r − ρei(s−φ)|)eiℓ(s−φ)ei(ℓ−ℓ′)φf(Cℓ(ρ)) ρ dsdρdφ

=

(∫ 2π

0

ei(ℓ−ℓ′)φdφ

) (∫ 2π

0

∫ ∞

0

k(|r − ρeis̃|) eiℓs̃f(Cℓ(ρ)) ρ ds̃dρ

)

=

{

0 if ℓ′ ̸= ℓ

2πBℓ(r) if ℓ′ = ℓ

where Bℓ(r) is as in (2.2).

We will exploit Proposition 2.1 and search for solutions u∗ of the fixed-point problem
(1.12) of the form

u∗(reiφ) = P (r)eimφ , (2.3)

where m ∈ {1, 2, 3, . . .} is the degree of rotational symmetry. If P (r) ≥ 0 is real-valued,
we call the solution a pinwheel solution (see figure 2). The perhaps better-known class of
rotating wave solution, the spiral wave (see figure 2), which requires a complex-valued P (r),
will not be addressed in this paper.

Remark 2.2 For rotating wave profiles of the form (2.3), the difference between twisted and
untwisted rotating waves is easy to describe. We have

G(α) · u∗(R−α · x) = eiδαP (r)eim(φ−α) = P (r)eimφe−i(m−δ)α, δ ∈ {0, 1},

which implies that for the untwisted action (δ = 0), the wave profile u∗ is rotated through the
origin by an angle mα, whereas for the twisted action the angle is (m− 1)α.

8



Figure 2: Examples of spatial profiles of rotating waves. 3-armed spiral wave (left panel)
and 3-armed pinwheel wave (right panel)

Setting
g(z, β) = z(1 + β − z2) (2.4)

and substituting (2.3) in (1.12) using the polar representation (2.1) we get after some sim-
plification

P (r) =

∫ ∞

0

∫ 2π

0

k(|rei(φ+α) − ρeis|)ei(ω−δα)e−imφeimsg(P (ρ), β)ρ dsdρ . (2.5)

where δ = 0 leads to untwisted rotating waves, and δ = 1 leads to twisted rotating waves.
Using the 2π-periodicity of the integrand and setting s̃ = s − φ − α, (2.1) becomes (upon
dropping the tildes)

P (r) =

∫ ∞

0

∫ 2π

0

k(|r − ρeis|) eimsei(ω+(m−δ)α)g(P (ρ), β)ρ dsdρ , (2.6)

The term k(|r − ρeis|) which appears in (2.6) is equal to

k(|r − ρeis|) = k(
√

r2 + ρ2 − 2rρ cos s).

We note that for any integrable function h, we have
∫ 2π

0

h(cos(s)) sinmsds = 0
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Therefore

Am(r, ρ) ≡
∫ 2π

0

k(|r − ρeis|) eims ds =

∫ 2π

0

k(
√

r2 + ρ2 − 2rρ cos s) cosmsds

= 2

∫ π

0

k(
√

r2 + ρ2 − 2rρ cos s) cosmsds

(2.7)

is a real-valued function, and we note that Am(r, ρ) = Am(ρ, r). Since the left-hand side
of (2.6) is real, we are immediately led to the compatibility condition for the rotational
frequency α of the rotating wave

(m− δ)α + ω = 2ℓπ ℓ ∈ Z, (2.8)

and have reduced (2.1) to the following fixed-point problem for the function P :

P (r) =

∫ ∞

0

ρAm(r, ρ) g(P (ρ), β) dρ , (2.9)

where Am(r, ρ) = Am(ρ, r) is as in (2.7).
Since we have assumed that ω ∈ (0, π), condition (2.8) implies that there are no twisted

solutions to (2.1) of the form (2.3) with m = 1. Untwisted solutions with m = 1 are possible
provided α = 2ℓπ − ω.

To the extent possible we will keep the analysis general, but in one important case of
integration kernel k in (2.9), i.e. the Gaussian kernel

k(t) =
1

2πσ2
e−

t2

2σ2 , σ > 0 , (2.10)

explicit computations are possible and we will elaborate on these computations throughout
the sequel.

The analysis required to prove the existence of solutions to (2.9) will depend on an
appropriate choice of function space, and on properties of the function Am. We will further
explore these issues in the next sections.

3 Hypotheses on the integration kernel

In this section we will discuss some general assumptions on the integration kernel k for the
fixed point problems (2.1) and (2.9), and then in the next section we will analyse the specific
case of the Gaussian kernel (2.10).

10



We first note that the function Am(r, ρ) defined in (2.7) is such that when r = 0 or ρ = 0,
we get

Am(0, t) = Am(t, 0) =

∫ 2π

0

k(|t|) cosmsds = 0, ∀t ≥ 0. (3.1)

We will suppose

Hypothesis 3.1 The function k : [0,∞) → R and the function Am in (2.7) are such that k
is positive and C2 on (0,∞), and

(i)

∫∫

R2

k(
√

x21 + x22) dx1 dx2 = 1.

(ii) The expected value of ρ for the kernel ρAm(r, ρ) satisfies
∫ ∞

0

ρAm(r, ρ)ρ dρ =

∫ ∞

0

ρ2Am(r, ρ) dρ = rK(r), (3.2)

where K is bounded on [0,∞).

(iii) Am satisfies the inequalities Am(r, ρ) > 0 for all r > 0, ρ > 0 and

det











ρAm(r, ρ)
∂(ρAm)

∂ρ
(r, ρ)

∂(ρAm)

∂r
(r, ρ)

∂2(ρAm)

∂r∂ρ
(r, ρ)











> 0, ∀r > 0, ρ > 0 , (3.3)

and as such ρAm(r, ρ) is of total positivity class TP2 (see [18]).

(iv) For any fixed r > 0, the function ρ
∂Am

∂r
(r, ρ) is absolutely integrable on [0,∞). More-

over, lim
r→0+

ρ
∂Am

∂r
≡ G(ρ) is such that G(ρ) ≥ 0 and is integrable. More strongly, we

will suppose that

sup
r∈[0,∞)

∫ ∞

0

ρ

∣

∣

∣

∣

∂Am

∂r
(r, ρ)

∣

∣

∣

∣

dρ <∞ . (3.4)

Consequently, if we define M(r) by

M(r) =

∫ ∞

0

ρAm(r, ρ) dρ , (3.5)

then
∫ ∞

0

ρ
∂Am

∂r
(r, ρ) dρ =

d

dr

(∫ ∞

0

ρAm(r, ρ) dρ

)

=M ′(r) (3.6)

is bounded.
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(v) If M(r) is as in (3.5), then M ′(r) > 0 for all r > 0, and M ′(0) ≥ 0.

The function M(r) defined in (3.5) will serve an important purpose in our analysis. We
note that item (i) in the above hypothesis and the condition Am ≥ 0 (item (iii) above)
guarantee that M(0) = 0, M(r) ≥ 0 for r > 0, and

|M(r)| =
∫ ∞

0

ρAm(r, ρ) dρ ≤
∫ ∞

0

∫ 2π

0

|k(|r − ρeis|)eims|ρ dsdρ ≤ 1 (3.7)

so M is positive, bounded and strictly increasing (item (v) in the above hypothesis) on
[0,∞).

4 Gaussian kernel

In the case where the integration kernel k is as in (2.10), we will show that all elements of
Hypothesis 3.1 are satisfied (clearly item (i) is satisfied, so we will focus on the other items).
We compute that

Am(r, ρ) =
2e−

r2+ρ2

2σ2

2πσ2

∫ π

0

e
rρ cos s

σ2 cosmsds =
1

σ2
e−

r2+ρ2

2σ2 Im

(rρ

σ2

)

, (4.8)

where for ν ≥ 0, Iν(t) is the modified Bessel function of order ν (see [38]), which in terms
of the ordinary Bessel function of order ν, Jν , is given by

Iν(t) = (i)−νJν(it) ≥ 0, ∀x ≥ 0.

For any integer ν ≥ 0, the function Iν(t) is strictly increasing, I0(0) = 1, Iν(0) = 0 for
ν > 0, and we have that for large positive real t and for ν ≥ 0 [38]

Iν(t) ∼
et√
2πt

∞
∑

ℓ=0

(−1)ℓ
Γ(ν + ℓ+ 1

2
)

ℓ!Γ(ν − ℓ+ 1
2
)(2t)ℓ

, (4.9)

so that asymptotically the function Am(r, ρ) behaves like

Am(r, ρ) ∼
1√
rρ

1√
2πσ

e−
(r−ρ)2

2σ2 ,

which resembles a “travelling” Gaussian (in (r, ρ)-space) with decaying amplitude (see left
panel of Figure 3). The function M(r) in (3.5) can also be computed analytically, using
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Figure 3: The function A5(r, ρ) (left panel) and the function M(r) (right panel) with k as
in (2.10) and σ = 3.

formula (3) on page 394 of [38] and relationships between confluent hypergeometric functions
and Bessel functions (e.g pages 100-105 of [38] and Chapter 13 of [28])

M(r) =

∫ ∞

0

ρAm(r, ρ) dρ =

√
2π

4σ
re−

r2

4σ2

(

Im−1
2

(

r2

4σ2

)

+ Im+1
2

(

r2

4σ2

))

. (4.10)

See the right panel in Figure 3, and note in particular that inequality (3.7) is manifested in
that figure. We note that a straightforward computation using recurrence relations involving
modified Bessel functions and their derivatives (for example, see page 79 of [38]):

M ′(r) =

√
2πm

4σ
e−

r2

4σ2

(

Im−1
2

(

r2

4σ2

)

− Im+1
2

(

r2

4σ2

))

> 0, ∀r > 0 (4.11)

where we have used the inequality [36]

Iν(t) < Iν−1(t), ∀ν > 1

2
. (4.12)

Moveover, M ′(0) = 0 unless m = 1 in which case we have M ′(0) =
√
2π
4σ

> 0. So item (v) in
the hypothesis is satisfied.
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We now compute

det











ρAm(r, ρ)
∂(ρAm)

∂ρ
(r, ρ)

∂(ρAm)

∂r
(r, ρ)

∂2(ρAm)

∂r∂ρ
(r, ρ)











=
ρ2

σ6
e−

r2+ρ2

σ2 Q(r, ρ;m, σ)

where
Q(r, ρ;m, σ) = t Im(t)

2 − t Im+1(t)
2 − 2m Im(t)Im+1(t), t =

rρ

σ2
. (4.13)

We thus want to show that

Q(t;m) = t Im(t)
2 − t Im+1(t)

2 − 2m Im(t)Im+1(t) > 0, ∀t > 0. (4.14)

Using the recurrence relation (see page 79 of [38]),

Im+1(t) = Im−1(t)−
2m

t
Im(t)

Q(t;m) in (4.14) can be rewritten as

Q(t;m) = Im−1(t)
2

(

t

( Im(t)

Im−1(t)

)2

+ 2m

( Im(t)

Im−1(t)

)

− t

)

.

For t > 0, the positive root of the quadratic tw2 + 2mw − t is w+ =
−m+

√
m2 + t2

t
. In

[22], it is shown that
Im(t)

Im−1(t)
> w+,

from which it follows thatQ(t;m) > 0 for all t > 0, and thus in (4.13) we have Q(r, ρ;m, σ) >
0 for all r > 0, ρ > 0. So the kernel ρAm(r, ρ) for the fixed point problem (2.9) is of total
positivity class TP2, i.e. item (iii) is satisfied.

Next we check Hypothesis 3.1 (ii). In this case, we compute using formula (3) on page
394 of [38]

∫ ∞

0

Am(r, ρ)ρ
2 dρ =

1

σ2

∫ ∞

0

e−
r2+ρ2

2σ2 Im

(rρ

σ2

)

ρ2 dρ = rK(r),

where

K(r) =

√
2π

4σ
e−

r2

4σ2

(

rIm+2
2

(

r2

4σ2

)

+

[

r +
2σ2(1 +m)

r

]

Im
2

(

r2

4σ2

))

. (4.15)
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Note that for m = 1, this formula can be simplified to

K(r) = 1

using Bessel function identities. For m > 1, the leading term in the Taylor expansion of
Im

2
(r2/4σ2) is ∼ rm, so that for m > 1,

lim
r→0

K(r) = 0.

Also, for r > 0 we have

K ′(r) =

√
2πσ(m2 − 1)

2r2
e−

r2

4σ2 Im
2

(

r2

4σ2

)

> 0.

So K(r) is positive, increasing (strictly increasing for m > 1), and using the asymptotic
formula (4.9) we get

lim
r→∞

K(r) = 1,

i.e. K(r) is bounded, see Figure 4 for an example.

Figure 4: The function K(r) in (4.15) in the case where m = 5 and σ = 3.

For Hypothesis 3.1 (iv), we leave the somewhat lengthy computation to the appendix.
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5 Functional setup

Proving the existence of solutions to the fixed point equation

P (r) =

∫ ∞

0

ρAm(r, ρ) g(P (ρ), β) dρ , (5.1)

where g(P, β) = P (1 + β − P 2), requires an appropriate choice of function space for the
function P : [0,∞) → R.

Throughout, we will assume that β is small enough and in particular is less than 1/2.
We note the following obvious property

Proposition 5.1 If P : [0,∞) → R is continuous and such that

(i) P (t) ≥ 0 for all t ≥ 0 and P (0) = 0,

(ii) P (t) is continuous and increasing on [0,∞),

(iii) sup
t∈[0,∞)

P (t) ≤
√

β

Then the function P̃ (t) defined by P̃ (t) = (g◦P )(t) also satisfies all properties (i)-(iii) above.

Proof This is a simple consequence of the fact that g(P, β) is continuous, increasing and
greater than P on [0,

√
β], with g(0, β) = 0 and g(

√
β, β) =

√
β.

Therefore, if X ≡ Cb([0,∞),R) denotes the Banach space of bounded and continuous
functions from [0,∞) into R endowed with supremum norm ∥ ∥∞, we will consider the
following closed subspace of X

X√
β = {P ∈ X : P (0) = 0, P is increasing, ∥P ∥∞ ≤

√

β }. (5.2)

Proposition 5.1 is equivalent to saying that the space X√
β is invariant under the mapping

P 7→ g(P, β).

Theorem 5.2 If P ∈ X√
β and if we define

Z(r) ≡ T [P ](r) =

∫ ∞

0

ρAm(r, ρ) g(P (ρ), β) dρ

then Z ∈ X√
β.
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Proof Given Proposition 5.1, it will suffice to show that if L is the linear operator defined
by

L[v](r) =

∫ ∞

0

ρAm(r, ρ)v(ρ) dρ, (5.3)

and if P ∈ X√
β, then Z̃ = L[P ] belongs to X√

β. From (3.1) we obviously have Z̃(0) = 0.

The fact that ρAm(r, ρ) satisfies Hypothesis 3.1 implies that Z̃(r) ≥ 0 for all r ≥ 0. It also
follows that Z̃ is continuous (in fact, Z̃ is C2 on (0,∞)) and

|Z̃(r)| ≤M(r)∥P ∥∞ ≤
√

β, ∀r ≥ 0,

where M(r) is as in (3.5). Thus ∥ Z̃ ∥∞ ≤ √
β. It thus remains to be shown that Z̃ is

increasing. Since Z̃(0) = 0 and Z̃ is C2 on (0,∞), it will suffice to show that Z̃ ′(r) > 0 for
all r > 0.

We will exploit the fact that Am satisfies Hypothesis 3.1 (iii), which implies that the
kernel ρAm(r, ρ) is of total positivity class TP2. Kernels F(r, ρ) of class TP2 satisfy an
important property (called the variation diminishing property in the literature), which is as
follows: suppose the function ζ(ρ) changes sign once, then the function

ζ̃(r) =

∫ ∞

0

F(r, ρ) ζ(ρ) dρ (5.4)

changes sign at most once. Moreover, if ζ̃(r) changes sign exactly once, then ζ̃(r) and ζ(ρ)
must have the same arrangements of signs as r and ρ respectively traverse R

+ from left to
right [18].

For any a such that a > 0, consider the horizontal line ρ = a. If the function P (ρ) − a
vanishes, then it does so either at one isolated root, or on an interval [ρ1, ρ2] (in the case
where P is constant on the interval). Either way, there is at most one sign change (necessarily
from negative to positive) as ρ traverses R+ from left to right. Since ρAm(r, ρ) is TP2, the
same remark on sign changes holds for the function

Z̃(r)− aM(r) =

∫ ∞

0

ρAm(r, ρ) (P (ρ)− a) dρ

(where M is as in (3.5)). We compute (see Hypothesis 3.1 (iv))

lim
r→0+

Z̃ ′(r) =

∫ ∞

0

ρ

(

lim
r→0+

∂Am

∂r
(r, ρ)

)

P (ρ) dρ ≥ 0, (5.5)

Suppose r0 > 0 is such that Z̃ ′(r0) = 0, and define ã = Z̃(r0)/M(r0) > 0. Then the
function

W(r) = Z̃(r)− ãM(r) =

∫ ∞

0

ρAm(r, ρ) (P (ρ)− ã) dρ

17



has a root at r0, and W ′(r0) = −ãM ′(r0) < 0. Therefore W goes from positive to negative
as r passes through r0, which is a contradiction. We conclude that Z̃ ′ can have no root on
(0,∞). Using (5.5) and the fact that Z̃(0) = 0, Z̃(r) ≥ 0, we conclude that Z̃ ′(r) > 0 for all
r > 0, i.e. Z̃ is (strictly) increasing.

Therefore, we may define the nonlinear operator

T : X√
β −→ X√

β

P 7−→ T [P ](r) =

∫ ∞

0

ρAm(r, ρ) g(P (ρ), β) dρ
(5.6)

and we will be interested in proving the existence of a non-trivial fixed point for T in X√
β.

6 Lower bounds

Of course it is clear that the function P (r) = 0 is a fixed point for the operator T in (5.6).
We are obviously interested in non-trivial fixed points. To this end, we will need to impose
an additional hypothesis on the kernel function ρAm(r, ρ):

Hypothesis 6.1 There exists a β0 > 0 such that for every β ∈ (0, β0), there exists a bounded
positive function ϕ(r; β) from [0,∞) into R such that 0 < ∥ϕ(·; β) ∥∞ <

√
β and such that

T [ϕ(·; β)](r; β) ≥ ϕ(r; β), ∀r ∈ [0,∞), ∀β ∈ (0, β0). (6.7)

We note that in the case of an integration kernel of the form K(r, ρ) = K (|r − ρ|), it is
shown in [17] how to construct a such a lower-bound ϕ(r; β) under some general conditions,
which unfortunately we can not exploit here since the integration kernel ρAm(r, ρ) is not of
the form K (|r − ρ|).

While condition (6.7) may be difficult to verify in practice, the following gives a sufficient
condition which presumably is easier to check.

Proposition 6.2 Consider the linear operator L defined by

L[v](r) =

∫ ∞

0

ρAm(r, ρ)v(ρ) dρ

as in (5.3). Suppose there exists a β1 > 0 and a bounded positive function v : [0,∞) ×
[0, β1) −→ R with 0 < ∥ v(·; β) ∥∞ ≤ √

β and such that

v(r; β)

L[v](r; β)
≤ D(β), ∀r ≥ 0, ∀β ∈ (0, β1),
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where D is a C2 smooth positive function with D(0) = 1 and D′(0) ≤ 0. Then the function
ϕ(r; β) = e−

√
βv(r; β) satisfies the conditions of Hypothesis 6.1.

Proof Since v is positive it follows that ϕ = e−
√
βv is positive and

∥ϕ(·; β) ∥∞ = e−
√
β∥ v(·; β) ∥∞ ≤

√

β e−
√
β <

√

β.

Using the fact that the integration kernel ρAm is positive, we may write

L[ϕ3] =

∫ ∞

0

ρAm(r, ρ)ϕ(ρ; β)
3 dρ ≤ ∥ϕ ∥2∞L[ϕ] ≤ βe−2

√
βL[ϕ].

Now

T [ϕ]− ϕ = (1 + β)L[ϕ]− ϕ− L[ϕ3] = L[ϕ]

(

(1 + β)− ϕ

L[ϕ]
− L[ϕ3]

L[ϕ]

)

= D(β)L[ϕ]

(

(1 + β)

D(β)
− v

D(β)L[v]
− L[ϕ3]

D(β)L[ϕ]

)

.

(6.8)

From the hypotheses on the function D, we claim that there exists a β0 > 0 such that

(1 + β)

D(β)
− βe−2

√
β

D(β)
≥ 1, ∀β ∈ (0, β0).

To verify the claim, we note that

(1 + β)

D(β)
− βe−2

√
β

D(β)
= 1−D′(0)β + 2β

3
2 +O(β2)

which is increasing for small enough β > 0 since D′(0) ≤ 0 (note that the claim holds even

in the case where D′(0) = 0 because 2β
3
2 > 0).

We may then write

(1 + β)

D(β)
− L[ϕ3]

D(β)L[ϕ]
≥ (1 + β)

D(β)
− βe−2

√
β

D(β)
≥ 1 ≥ v

D(β)L[v]
, ∀r ∈ [0,∞), ∀β ∈ (0, β0).

Using (6.8), we conclude T [ϕ]− ϕ ≥ 0, or equivalently that (6.7) is satisfied.

The hypotheses of Proposition 6.2 are easy to verify in the case where k is a Gaussian
as in (2.10) and consequently Am(r, ρ) is as in (4.8). We will use formula (3) on page 394 of
[38], which after simplification leads to the following formula (for given constant λ > 0)

∫ ∞

0

ρAm(r, ρ)ρ
me−λρ2 dρ =

1

(1 + 2λσ2)1+m
rme

− λr2

1+2λσ2 . (6.9)
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Proposition 6.3 For m ≥ 1 integer and β > 0, r ≥ 0, consider

v(r; β) = βm+ 1
2

(

2e

m

)m
2

rme−β2r2 .

Then v satisfies the hypotheses of Proposition 6.2.

Proof The function v(r; β) is clearly positive and bounded. It attains a maximal value

of
√
β at r0 =

1

β

√

m

2
, so we have ∥ v ∥∞ =

√
β. A simple computation using (6.9) yields

v(r; β)

L[v](r; β)
= (1 + 2β2σ2)m+1e

− 2β4σ2 r2

1+2β2σ2 ≤ (1 + 2β2σ2)m+1 ≡ D(β)

where we note that D(0) = 1 and D′(0) = 0.

Remark 6.4 From Propositions 6.2 and 6.3, it follows that in the case where k is a Gaussian
as in (2.10) and consequently Am(r, ρ) is as in (4.8), Hypothesis 6.1 is satisfied, using the
lower bound

ϕ(r; β) = e−
√
β

(

βm+ 1
2

(

2e

m

)m
2

rme−β2r2

)

,

whose maximum value is
√
βe−

√
β.

7 Main result

We are now ready to state and prove the main result of the paper concerning the existence
of rotating pinwheel solutions to (1.12) via the existence of non-trivial fixed points for the
operator T in (5.6).

For small β > 0, recall the definition of the metric space X√
β in (5.2), and note that from

Theorem 5.2 we have T (X√
β) ⊂ X√

β. Let ϕ(r; β) be the lower bound such as in Hypothesis
6.1. Consider the Banach space

Z 1
r+1

=

{

p ∈ C([0,∞),R) : sup
r∈[0,∞)

∣

∣

∣

∣

p(r)

r + 1

∣

∣

∣

∣

<∞
}

with norm ∥p∥ 1
r+1

= sup
r∈[0,∞)

∣

∣

∣

∣

p(r)

r + 1

∣

∣

∣

∣

. The set

X√
β,ϕ =

{

p ∈ Z 1
r+1

∩X√
β : ϕ(r; β) ≤ p(r) ≤

√

β, ∀r ∈ [0,∞)
}

(7.10)

is a non-empty, closed and convex subset of Z 1
r+1

, invariant under the nonlinear operator T .
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Proposition 7.1 The operator T is continuous on X√
β,ϕ ⊂ Z 1

r+1
.

Proof Note that
∫ ∞

0

ρAm(r, ρ)

(

ρ+ 1

r + 1

)

dρ =
M(r)

r + 1
+
rK(r)

r + 1
≤ Φ ≡ 1 +K0, ∀r ∈ [0,∞), (7.11)

where the function M is as in (3.5), the function K is as in Hypothesis 3.1 (ii) and K0 is
an upper bound for K(r). From this and the Lipschitz continuity (with Lipschitz constant
L > 0) of the function u 7−→ g(u; β) = (1 + β)u− u3 on (u, β) ∈ [0,

√
β]× [0, 1/2], we have

that for all p1, p2 ∈ X√
β,ϕ,

∣

∣

∣

∣

T [p1](r)− T [p2](r)

r + 1

∣

∣

∣

∣

≤ 1

r + 1

∫ ∞

0

ρAm(r, ρ)
∣

∣(1 + β)(p1(ρ)− p2(ρ))− (p1(ρ)
3 − p2(ρ)

3)
∣

∣ dρ

≤ L
∫ ∞

0

ρAm(r, ρ)

(

ρ+ 1

r + 1

) ∣

∣

∣

∣

p1(ρ)− p2(ρ)

ρ+ 1

∣

∣

∣

∣

dρ

≤ LΦ∥p1 − p2∥ 1
r+1

∀r ∈ [0,∞),

and so T : X√
β,ϕ −→ X√

β,ϕ is continuous.

Proposition 7.2 The set U = T (X√
β,ϕ) is precompact in Z 1

r+1
.

Proof It is clear that for any p ∈ U we have p = T (Yp) for some Yp ∈ X√
β,ϕ, and for any

r ≥ 0 we have
|p(r)| ≤

√

β.

Considering Hypothesis 3.1 (vi), let M > 0 be such that

sup
r∈[0,∞)

∫ ∞

0

ρ

∣

∣

∣

∣

∂Am

∂r
(r, ρ)

∣

∣

∣

∣

dρ ≤ M.

Then for all p ∈ U we may write (since p is C1)

|p′(r)| =
∣

∣

∣

∣

∫ ∞

0

ρ
∂Am

∂r
(r, ρ)g(Yp(ρ), β) dρ

∣

∣

∣

∣

≤ ∥g(Yp, β)∥∞
∫ ∞

0

ρ

∣

∣

∣

∣

∂Am

∂r
(r, ρ)

∣

∣

∣

∣

dρ ≤ M
√

β.

Therefore the number M√
β is a uniform global Lipschitz constant for all elements of U ,

and we conclude that U is equicontinuous.
Let {pn}n∈N be an arbitrary sequence of elements of U . Then there is a subsequence

{pnℓ
} which converges uniformly on compact subsets of [0,∞) to a continuous function

p : [0,∞) −→ R. Since each pn is such that
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(i) pn(0) = 0

(ii) pn is increasing

(iii) ϕ(r; β) ≤ pn(r) ≤
√
β

then the limit function p enjoys the same properties because these are preserved by pointwise
convergence, i.e. p belongs to X√

β,ϕ .
Since ∥ϕ(·; β)∥∞ <

√
β, we have

lim
r→∞

∣

∣

∣

∣

√
β − ϕ(r, β)

r + 1

∣

∣

∣

∣

= 0.

Thus, for any ε > 0, there exists R > 0 such that

0 ≤
∣

∣

∣

∣

pnℓ
(r)− p(r)

r + 1

∣

∣

∣

∣

≤
√
β − ϕ(r; β)

r + 1
< ε/2, ∀r > R, ∀ℓ ∈ N.

Since {pnℓ
− p} converges uniformly to 0 on [0, R], then the same holds for

{

pnℓ
−p

r+1

}

, so there

exists N ∈ N such that
∣

∣

∣

∣

pnℓ
(r)− p(r)

r + 1

∣

∣

∣

∣

< ε/2, ∀r ∈ [0, R], ∀ℓ > N.

It follows that

∥pnℓ
− p∥ 1

r+1
= sup

r∈[0,∞)

∣

∣

∣

∣

pnℓ
(r)− p(r)

r + 1

∣

∣

∣

∣

≤ ε/2 < ε, ∀ℓ > N,

i.e. lim
ℓ→∞

pnℓ
= p in Z 1

r+1
. We thus conclude that U = T (X√

β,ϕ) is pre-compact in Z 1
r+1

.

We can now give the main result of this paper in the form of a theorem and a corollary.

Theorem 7.3 Consider the two component integro-difference equation on the x = (x1, x2)
plane (written in complex notation u = uR + iuI),

un+1(x) = N [un](x) =

∫∫

R2

k(|x− y|)eiωun(y)(1 + β − |un(y)|2) dy1dy2, n = 0, 1, 2, . . . ,

(7.12)
where β > 0 is a small-enough parameter, ω ∈ (0, π). Let m > 0 be an integer and suppose
that the kernel k satisfies the conditions of Hypotheses 3.1 and 6.1 for that value of m.
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There exists a function U∗(x) = U∗(reiφ) = P ∗(r)eimφ which is a rotating-wave solution to
the system (7.12) in the sense that

eiδαU∗(e−iαx) =

∫∫

R2

k(|x− y|)eiωU∗(y)(1 + β − |U∗(y)|2) dy1dy2, δ ∈ {0, 1},

where α satisfies the compatibility condition (2.8). The rotating wave is untwisted if δ = 0,
and twisted if δ = 1 (in which case m ̸= 1). Furthermore, the radial-shape function P ∗ is C2

smooth and such that

(i) P ∗(0) = 0

(ii) P ∗ is increasing

(iii) lim
r→∞

P ∗(r) ∈ [τ(β),
√

β] where 0 < τ(β) = ∥ϕ(·; β)∥∞ <
√

β, where ϕ(r; β) is as in Hy-

pothesis 6.1.

Proof This is a simple application of Schauder’s fixed point theorem, which given Propo-
sition 7.2 guarantees the existence of a P ∗

β ∈ X√
β,ϕ which satisfies all the properties (i)-(iii)

in the statement of the theorem (because these properties are satisfied by all elements of
X√

β,ϕ) and such that P ∗
β = T [P ∗

β ], i.e.

P ∗
β (r) =

∫ ∞

0

ρAm(r, ρ)[(1 + β)P ∗
β (ρ)− P ∗

β (ρ)
3] dρ.

Corollary 7.4 Consider the two component integro-difference equation on the x = (x1, x2)
plane (written in complex notation u = uR + iuI),

un+1(x) = N [un](x) =

∫∫

R2

k(|x− y|)eiωun(y)(1 + β − |un(y)|2) dy1dy2, n = 0, 1, 2, . . . ,

(7.13)
where β > 0 is a small-enough parameter, ω ∈ (0, π) and k is the Gaussian

k(t) =
1

2πσ2
e−

t2

2σ2 , σ > 0.

For any integer m > 0, let α satisfy the compatibility condition (2.8). There exists a function
U∗(x) = U∗(reiφ) = P ∗(r)eimφ which is a rotating-wave solution (untwisted if δ = 0 and
twisted if δ = 1, m ̸= 1) to the system (7.13) in the sense that

eiδαU∗(e−iαx) =

∫∫

R2

k(|x− y|)eiωU∗(y)(1 + β − |U∗(y)|2) dy1dy2.

Furthermore, the radial-shape function P ∗ is C2 smooth and such that
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(i) P ∗(0) = 0

(ii) P ∗ is increasing

(iii) lim
r→∞

P ∗(r) ∈ [
√

βe−
√
β,
√

β]

In particular, the amplitude of the shape function P ∗(r) satisfies ∥P∥∞ ∼ √
β as β → 0.

Proof This is a consequence of Section 4, Appendix A, Proposition 6.3 and the subsequent
Remark 6.4.

8 Radial stability in the Gaussian case, and a unique-

ness result

In the case of the Gaussian kernel, we will prove a partial stability result for the rotating wave
solution found in Corollary 7.4. That is, we will provide sufficient conditions to guarantee
that the fixed point P ∗ of the operator

T [P ](r) =

∫ ∞

0

ρ

σ2
e−

r2+ρ2

2σ2 Im

(rρ

σ2

)

((1 + β)P (ρ)− P (ρ)3) dρ (8.1)

is locally asymptotically stable in Cb([0,∞),R). At this point, we do not have any results
concerning stability with respect to angular perturbations.

The important technical tools used in our analysis are the ordering (4.12) of the Bessel
functions and the fact that the lower bound ϕ(r; β) found in Remark 6.4 is independent of
the parameter σ in the Gaussian distribution.

We note that the linearization of the operator T in (8.1) at the fixed point P = P ∗ is
given by

L [v](r) =

∫ ∞

0

ρ

σ2
e−

r2+ρ2

2σ2 Im

(rρ

σ2

)

(1 + β − 3P ∗(ρ)2)v(ρ) dρ.

Since ∥P ∗∥∞ ≤ √
β, for small β > 0 the term 1+ β− 3P ∗(ρ)2 is positive, so the norm of the

operator L on the space X = Cb([0,∞),R) satisfies

∥L ∥∞ ≤ sup
r∈[0,∞)

(∫ ∞

0

ρ

σ2
e−

r2+ρ2

2σ2 Im

(rρ

σ2

)

(1 + β − 3P ∗(ρ)2) dρ

)

. (8.2)

The main result is the following:
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Theorem 8.1 Let β > 0 be fixed and small enough. Then for sufficiently large σ > 0, we
have ∥L ∥∞ < 1 in (8.2).

Proof We first will prove the following lemmas which provide a uniform bound for the

term
ρ

σ
e−

r2+ρ2

2σ2 Im

(rρ

σ2

)

which appears in the integral in (8.2)

Lemma 8.2 For all t ≥ 0 and all m ≥ 1, we have

te−
t2

2 Im

(

t2

2

)

≤ 1√
π
.

Proof of Lemma 8.2: Because of the ordering (4.12), we need only prove the result for

m = 1. Therefore, let ξ(t) = te−
t2

2 I1

(

t2

2

)

. Clearly ξ(0) = 0, ξ is positive and the asymptotic

formula (4.9) leads to

lim
t→∞

ξ(t) =
1√
π
.

The result will follow if we can prove that ξ is increasing. We compute

ξ′(t) = e−
t2

2 I1

(

t2

2

)



t2
I0

(

t2

2

)

I1

(

t2

2

) − (t2 + 1)





which is positive because of formula (10) from [35] (see also (A.5) in the Appendix) which
allows us to write

t2

2

I0

(

t2

2

)

I1

(

t2

2

) >
t2

2
+

1

2
.

Lemma 8.3 For all r ≥ 0, ρ ≥ 0, m ≥ 1 and σ > 0, we have

ρ

σ
e−

r2+ρ2

2σ2 Im

(rρ

σ2

)

≤ 1√
π
.

Proof of Lemma 8.3: Again, we only need to prove the result for m = 1. Set r̃ = r/σ and
ρ̃ = ρ/σ, then upon dropping the tildes the result follows if we can show that

ρe−
r2+ρ2

2 I1(rρ) ≤
1√
π
, ∀r, ρ ≥ 0.
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Write r = t cos η, ρ = t sin η where t ≥ 0 and η ∈ [0, π/2]. Then using the fact that I1 is an
increasing function, we have

ρe−
r2+ρ2

2 I1(rρ) = t sin η e−
t2

2 I1

(

sin 2η
t2

2

)

≤ t e−
t2

2 I1

(

t2

2

)

and we invoke Lemma 8.2 for the conclusion of the proof of this lemma.

Let ϕ(r; β) be as in Remark 6.4. This function attains a maximum value of e−
√
β
√
β at

r =

√
2m

2β
. Since P ∗(r) ≥ ϕ(r; β) and P ∗ is increasing, then we conclude that

P ∗(r) ≥ S (r) ≡



















ϕ(r; β) if r ≤
√
2m

2β

e−
√
β
√
β if r >

√
2m

2β

(8.3)

Therefore
∫ ∞

0

ρ

σ2
e−

r2+ρ2

2σ2 Im

(rρ

σ2

)

(1 + β − 3P ∗(ρ)2) dρ ≤
∫ ∞

0

ρ

σ2
e−

r2+ρ2

2σ2 Im

(rρ

σ2

)

(1 + β − 3S (ρ)2) dρ

=

∫

√
2m
2β

0

1

σ

[

ρ

σ
e−

r2+ρ2

2σ2 Im

(rρ

σ2

)

]

(1 + β − 3ϕ(ρ; β)2) dρ

+

∫ ∞

√
2m
2β

ρ

σ2
e−

r2+ρ2

2σ2 Im

(rρ

σ2

)

(1 + β − 3βe−2
√
β) dρ

≤ 1

σ

1√
π

G (m, β) +

∫ ∞

0

ρ

σ2
e−

r2+ρ2

2σ2 Im

(rρ

σ2

)

(1 + β − 3βe−2
√
β) dρ

=
1

σ

1√
π

G (m, β) +M(r)(1 + β − 3βe−2
√
β) ≤ 1

σ

1√
π

G (m, β) + (1 + β − 3βe−2
√
β),

where M(r) is as in (3.5) and (4.10) (we recall that M(r) ≤ 1 for all r ≥ 0), and

G (m, β) ≡
∫

√
2m
2β

0

(3βe−2
√
β − 3ϕ(ρ; β)2) dρ

is finite (and computable in closed form expression). Thus, if

σ >
G (m, β)√

πβ(3e−2
√
β − 1)

(8.4)
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we conclude from (8.2) that
∥L ∥∞ < 1.

Remark 8.4 We make the following observations about the proof of the previous theorem:

(i) We can compute a closed form expression for G (m, β) in terms of the Γ function

Γ(z) =

∫ ∞

0

e−t tz−1 dt

and the incomplete Γ function:

Γ(a, z) =

∫ ∞

z

e−t ta−1 dt .

We have

G (m, β) =

3
√
2 e−2

√
β

4(2m+ 1)

(

4m3/2 + 2m−memΓ

(

3

2
+m,m

)

−m−mem Γ

(

m+
1

2

)

(2m+ 1)

)

.

(8.5)
We have illustrated in figure 5 the curves (as a function of β) given by the right-hand
side of inequality (8.4) for m = 1 and m = 4.

(ii) As is clear from the proof of the previous theorem, condition (8.4) is sufficient, but not
necessary for stability of the fixed point. We have performed numerical simulations to
better characterize the stability of the fixed point P ∗. The results will be presented in
the next section. See figure 11 and the description in the caption.

(iii) Indeed the inequality (8.3) is far from optimal, but is valid for all elements p of the
space X√

β in (5.2) which are such that p ≥ ϕ. In fact, we can use this observation to
improve on Corollary 7.4.

Proposition 8.5 Suppose σ > 0 and β > 0 are such that

sup
r∈[0,∞)

(∫ ∞

0

ρ

σ2
e−

r2+ρ2

2σ2 Im

(rρ

σ2

)

(1 + β − 3S (ρ)2) dρ

)

= γ < 1,

where S is as in (8.3). Define the set

Y√β,ϕ ≡
{

p ∈ X√
β | p(r) ≥ ϕ(r; β), ∀r ∈ [0,∞)

}

Then the operator T in (8.1) has a unique fixed point in Y√β,ϕ.
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Figure 5: The stability bounds given by the right-hand side (8.4) for m = 1 (bottom curve)
and m = 4 (top curve)

Proof The space Y√β,ϕ is closed in Cb([0,∞),R) and T maps Y√β,ϕ into itself. Let
p1, p2 ∈ Y√β,ϕ be given, then

|T [p1](r)− T [p2](r)| ≤

||p1 − p2||∞
∫ ∞

0

ρ

σ2
e−

r2+ρ2

2σ2 Im

(rρ

σ2

)

(1 + β − p1(ρ)
2 − p1(ρ)p2(ρ)− p2(ρ)

2) dρ ≤

||p1 − p2||∞
∫ ∞

0

ρ

σ2
e−

r2+ρ2

2σ2 Im

(rρ

σ2

)

(1 + β − 3S (ρ)2) dρ ≤ γ||p1 − p2||∞.

So T is a contraction on Y√β,ϕ and we get the conclusion from the Banach Fixed Point
Theorem.

9 Simulations

We present the results of iterations of the nonlinear operator T defined by (8.1). The
numerical method we have used is explained below and was implemented in the symbolic
programming language Maple.
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We have used a spatial discretization of the ρ and the r axes with 10000 intervals of length
1/400, which gives values of r and ρ between 0 and 25. For fixed values of the parameters
m and σ, we compute once a 10000× 10000 matrix M such that

M [i, j] =
ρ[j]

σ2
e−

r[i]2+ρ[j]2

2σ2 Im

(

r[i]ρ[j]

σ2

)

.

The initial condition P0(r) is written as a 10000 dimensional vector and the vector v0 =
(1 + β)P0 − P 3

0 is computed. Then for every i value between 1 and 10000, the value P1(r[i])
is computed by using a trapezoidal rule to sum the points

{M [i, j]v0[j], j = 1, 2, . . . , 10000}.
with spatial distancing 1/400. Since the true integral is an integral from 0 to∞, obviously our
implementation will give problematic results near the endpoints at ρ = 25 and at r = 25. For
this reason, for purposes of viewing Pj[r], we use only the first 8000 datapoints, corresponding
to r values between 0 and 20. The iteration process is halted (i.e. considered to have
converged) when the maximum value of |Pn+1(r)−Pn(r)|/

√
β for r between 0 and 20 is less

than 5× 10−5. We report here the results of two such simulations: one for parameter values
β = 0.2, σ = 0.5, m = 4, and another for parameter values β = 0.08, σ = 0.3 and m = 1.
See figures 6 and 7 for a summary of the results.

For both simulations we have reported on here, we have numerically computed the func-
tion

L63(r) =

∫ ∞

0

ρ

σ2
e−

r2+ρ2

2σ2 Im

(rρ

σ2

)

(1 + β − 3P63(ρ)
2) dρ (9.1)

i.e. we have used P63 as an approximation of the fixed point P ∗, and the results are reported
in figure 10. As we can see, the maximum value of L63(r) is bounded away from one
which would indicate that the linearization L of the operator T at the fixed point P ∗ is
a contraction for the chosen parameter values. Note that the value of σ for each of these
simulations is considerably less than the lower bound given in (8.4) (taking into account
formula (8.5)): in the first case the right hand side of inequality (8.4) yields a value of
∼ 15.4 whereas for the second case the value is ∼ 5.9.

In figure 11, we have numerically computed the fixed point P ∗ up to an accuracy of
5× 10−5 (by the iteration procedure described above) for values of β between 0 and 0.1, and
then computed the maximum value of the linearized operator

Λ(r) =

∫ ∞

0

ρ

σ2
e−

r2+ρ2

2σ2 Im

(rρ

σ2

)

(1 + β − 3P ∗(ρ)2) dρ , (9.2)

which suggests (as expected) that the bifurcating solution is stable for all β > 0 small enough.
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Figure 6: For the dynamical system Pj+1(r) = T [Pj](r) where T is as in (8.1), we show
here the iterations P7n for n ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. The parameter values are β = 0.2,
σ = 0.5 and m = 4. The initial condition is P0(r) = ϕ(r; β) as in Remark 6.4 and is in blue.
The iterate P63 is in solid red and the dashed horizontal redline is at height

√
β =

√
0.2.

The residual ratio maxr∈[0,20] |P64(r)−P63(r)|/
√
β is less than 5× 10−5. The ordering of the

curves is such that P7(n+1)(r) ≥ P7n(r).
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Figure 7: For the dynamical system Pj+1(r) = T [Pj](r) where T is as in (8.1), we show
here the iterations P7n for n ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. The parameter values are β = 0.08,

σ = 0.3 and m = 1. The initial condition is P0(r) =
√
β r
3

for r ∈ [0, 3] and =
√
β for r ≥ 3,

and is in blue. The iterate P63 is in solid red and the dashed horizontal redline is at height√
β =

√
0.08. The residual ratio maxr∈[0,20] |P64(r)− P63(r)|/

√
β is less than 5× 10−5. The

ordering of the curves is such that the “steep intial part” of the curve y = P7(n+1)(r) is to
the left of that of y = P7n(r).
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Figure 8: The real and imaginary parts (left panel and right panel respectively) of the
function u(reiφ) = P (r)e4iφ, where P (r) is the function P63(r) from figure 6.

Figure 9: The real and imaginary parts (left panel and right panel respectively) of the
function u(reiφ) = P (r)eiφ, where P (r) is the function P63(r) from figure 7.
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Figure 10: The function L63(r) in (9.1) for P63(r) as in figure 6 (left panel) and P63(r) as in
figure 7 (right panel).

Figure 11: Graph of the maximum of the function Λ(r) in (9.2) for values of β = 0.01 to 0.1
in increments of 0.01. The parameter values of the distribution are m = 1 and σ = 0.5.
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10 Concluding remarks

We have established the existence of rotating waves in a class of SO(2)-equivariant discrete
time dynamical system defined by an integro-difference equation, with special attention
focussed on the important case of a Gaussian kernel. In physical space, the solutions have
the form of a pinwheel (see for example the right panel of figure 2 and figures 8-9). In this
case, the analysis essentially reduced to proving the existence of a pair (P (r), α) which solves
the system (2.8)-(2.9):

∫ ∞

0

ρAm(r, ρ)g(P (ρ), β) dρ = P (r)

(m− δ)α + ω = 0 (mod 2π), δ ∈ {0, 1}.
(10.1)

In contrast, spiral wave solutions to (2.1), for example of the ansatz form u∗(reiφ) =
P (r)ei(r+mφ), would need to satisfy for (P (r), α) the system

∫ ∞

0

ρAm(r, ρ) cos(ρ− r + ω + (m− δ)α)g(P (ρ), β) dρ = P (r)

∫ ∞

0

ρAm(r, ρ) sin(ρ− r + ω + (m− δ)α)g(P (ρ), β) dρ = 0,

which has similarities with (10.1), but is sufficiently different (for example, the kernels os-
cillate and change sign) that our techniques here don’t immediately apply. This is currently
being investigated.

We wish to make a few comments on our choice (1.10) for the local dynamics in the
integro-difference equation, which has the expression (1.11) in polar coordinates. As previ-
ously noted, the dynamics of this map are a combination of expansion (or contraction) in the
η-direction, coupled with a uniform (in η) rotation of angle ω around the origin. However, we
note that the general form of the cubic truncation would be (after rescaling and in complex
notation)

u 7−→ eiω(1 + β − (1 + id2)|u|2)u , (10.2)

where the coefficient d2 is not zero in general and the real part of the cubic coefficient has
been rescaled to 1. In polar coordinates, mapping (10.2) becomes [21]

(

η
ψ

)

7−→
(

η(1 + β − η2) +O(η4)
ψ + ω − d2η

2 +O(η3)

)

and should be compared to (1.11). In particular, although the dynamics consist of rigid
rotations around the origin, the angle of rotation is now dependent on η, and following the
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approach in this paper, the relevant equations to solve (instead of (10.1)) would be
∫ ∞

0

ρAm(r, ρ)(C1(1 + β)P (ρ) + (−C1 + d2S1)P (ρ)
3) dρ = P (r)

∫ ∞

0

ρAm(r, ρ)(S1(1 + β)P (ρ) + (−S1 − d2C1)P (ρ)
3), dρ = 0,

(10.3)

where C1 = cos(ω+(m−δ)α) and S1 = sin(ω+(m−δ)α), which reduce to (10.1) when d2 = 0.
Although clearly more complicated structurally than (10.1), we believe that our results in this
paper will be critical to a full analysis of (10.3). Another important remark is that we have
chosen the local dynamics to possess the necessary symmetry with respect to the twisted
action (1.4), which consequently imposed the algebraic restrictions (1.9). It is clear from
our analysis that these algebraic restrictions were fully exploited and immensely simplified
the subsequent analysis. Such simplified computations would not have been possible for a
general form of f (i.e. different than (1.9)). The functional form (1.9) is not required for
equivariance in the case of the untwisted action. Therefore, we believe that a full analysis of
the untwisted case would be considerably more difficult, although we are confident that our
analysis here would prove beneficial.

Another possible generalization to our analysis would be to allow the kernel κ(x, y) in
(1.1) to be a 2× 2 matrix of functions

κ(x, y) =

(

k1(|x− y|) −k2(|x− y|)
k2(|x− y|) k1(|x− y|)

)

,

which would also lead to the SO(2) symmetry (1.6). While of great potential interest, this
falls outside the scope of this paper and will be the subject of future investigation.

The techniques used in this paper would also prove the existence of rotating pinwheel
solutions to integro-differential equations of the form

∂u

∂t
(x, t) = −(1 + iω)u(x, t) +

∫∫

R2

k(|x− y|)(1 + β − |u(y, t)|2)u(y, t) dy1dy2. (10.4)

Indeed, using polar coordinates, a simple computation shows that (10.4) has rotating wave
solutions of the form u(reiφ, t) = P (r)eim(φ+αt) if (P (r), α) satisfy (10.1) with mα + ω = 0.

Whereas we have determined the existence of rotating wave solutions in invariant spaces
(corresponding to Fourier modes), and characterized their stability within these invariant
spaces (in the case of a Gaussian kernel), we have not investigated stability properties with
respect to perturbations which are not in the form of a pure Fourier mode, nor have we
investigated existence of rotating wave solutions outside of these invariant subspaces. While
these are important questions, they fall outside the scope of this paper.
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Finally, we note that while we have used the origin of the physical two-dimensional space
as the center of rotation for the rotating waves, the translation equivariance of our system
implies that any point can be made to correspond to the center of rotation, therefore there
exist rotating wave solutions rotating about any point in physical space. Initial conditions
would determine which is observed.
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A Proof that Hypothesis 3.1 (iv) is satisfied by the

Gaussian distribution

We start with the computation

ρ
∂Am

∂r
(r, ρ) =

ρ

rσ4
e−

r2+ρ2

2σ2

(

rρ Im−1

(rρ

σ2

)

− (r2 +mσ2) Im

(rρ

σ2

))

(A.1)

which we rewrite using the identity

Im+1(t) = Im−1(t)−
2m

t
Im(t)

as

ρ
∂Am

∂r
(r, ρ) = g1(r, ρ) + g2(r, ρ) + g3(r, ρ) (A.2)

where

g1(r, ρ) = −rρ
σ4
e−

r2+ρ2

2σ2 Im

(rρ

σ2

)

g2(r, ρ) =
ρ2

σ4
e−

r2+ρ2

2σ2 Im+1

(rρ

σ2

)

g3(r, ρ) =
mρ

rσ2
e−

r2+ρ2

2σ2 Im

(rρ

σ2

)

.
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Since Im(t) ∼ tm for small t, we have that (uniformly in ρ ≥ 0) the dominant term in (A.2)
for small r > 0 is the term g3 which is of order rm−1. Since g3 is positive, we have

Lemma A.1 There exists an R > 0 such that ρ
∂Am

∂r
(r, ρ) ≥ 0 for all r ∈ [0, R] and for all

ρ ≥ 0.

Consequently, if we write

G (r) ≡
∫ ∞

0

ρ

∣

∣

∣

∣

∂Am

∂r
(r, ρ)

∣

∣

∣

∣

dρ,

then for all r ∈ [0, R] we have

G (r) =

∫ ∞

0

ρ
∂Am

∂r
(r, ρ) dρ =M ′(r) ≤ K1(m,R) <∞

whereM(r) is as in (4.10) andM ′(r) in (4.11) is bounded by some positive numberK1(m,R).
For r > R, we write

ρ

∣

∣

∣

∣

∂Am

∂r
(r, ρ)

∣

∣

∣

∣

= |g1(r, ρ) + g2(r, ρ) + g3(r, ρ)| ≤ |g1(r, ρ) + g2(r, ρ)|+ |g3(r, ρ)|

= |g1(r, ρ) + g2(r, ρ)|+ g3(r, ρ).

We easily compute

∫ ∞

0

g3(r, ρ) dρ =

√
2πm

4σ
e−

r2

4σ2

(

Im−1
2

(

r2

4σ2

)

+ Im+1
2

(

r2

4σ2

))

which is bounded above for r ≥ 0 by some positive constantK2(m) because of the asymptotic
formula (4.9). Therefore, it remains to show that

∫ ∞

0

|g1(r, ρ) + g2(r, ρ)| dρ =
∫ ∞

0

∣

∣

∣

∣

ρ2

σ4
e−

r2+ρ2

2σ2 Im+1

(rρ

σ2

)

− rρ

σ4
e−

r2+ρ2

2σ2 Im

(rρ

σ2

)

∣

∣

∣

∣

dρ

is bounded on r ∈ [R,∞). The asymptotic formula (4.9) will be very useful here. In fact,
we have

Lemma A.2 Let m ≥ 1 be an integer. Then for all t > 0 we have

Im(t) ≤
et√
2πt

. (A.3)

37



Proof The function F (t) ≡ et√
2πt Im(t)

is positive for t > 0, has a vertical asymptote

at t = 0, and lim
t→∞

F (t) = 1 (from (4.9)). We compute the derivative, which after some

simplification gives

F
′(t) =

√
2et

2t3/2
√
π Im(t)

((

t+m− 1

2

)

− t
Im−1(t)

Im(t)

)

(A.4)

and claim that F ′(t) < 0 for all t > 0, from which it follows that F (t) ≥ 1 for all t > 0
from the above asymptotic behaviour of F as t → 0+ and as t → ∞. To prove the claim,
we use formula (10) from [35] :

t
Iν(t)

Iν+1(t)
>

2ν + 1

2
+

√

(2ν + 1)2 + 4(t2 + ν + 1
2
)

2

which for ν = m− 1 reduces to

t
Im−1(t)

Im(t)
> m− 1

2
+

1

2

√

4t2 + 4

(

m− 1

2

)

+ (2m− 1)2 > m− 1

2
+

1

2
·2t = m+ t− 1

2
. (A.5)

So from (A.4) we conclude that F ′(t) < 0 and the lemma is proved.

Now, we write for r ∈ [R,∞)

|g1(r, ρ) + g2(r, ρ)| =
ρe−

r2+ρ2

2σ2

σ4

∣

∣

∣ρIm+1

(rρ

σ2

)

− rIm

(rρ

σ2

)∣

∣

∣

≤ ρe−
r2+ρ2

2σ2

σ4

(

|ρ− r| Im+1

(rρ

σ2

)

+ r
∣

∣

∣
Im+1

(rρ

σ2

)

− Im

(rρ

σ2

)∣

∣

∣

)

=
ρe−

r2+ρ2

2σ2

σ4

(

|ρ− r| Im+1

(rρ

σ2

)

+ r
(

Im

(rρ

σ2

)

− Im+1

(rρ

σ2

)))

,

where we have used (4.12).
We note that

0 ≤ A(r) ≡
∫ ∞

0

ρ r e−
r2+ρ2

2σ2

σ4

(

Im

(rρ

σ2

)

− Im+1

(rρ

σ2

))

dρ =

√
2π r2 e−

r2

4σ2

4σ3
E(r)

where

E(r) = Im−1
2

(

r2

4σ2

)

+ Im+1
2

(

r2

4σ2

)

− Im
2

(

r2

4σ2

)

− Im+2
2

(

r2

4σ2

)

.
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We conclude that A(r) is bounded on [R,∞) since A(0) = 0 and (using (4.9))

lim
r→∞

A(r) = 0.

So our final step is to prove the boundedness on [R,∞) of the term

B(r) ≡
∫ ∞

0

ρ e−
r2+ρ2

2σ2

σ4
|ρ− r| Im+1

(rρ

σ2

)

dρ. (A.6)

It follows from Lemma A.2 that

ρ e−
r2+ρ2

2σ2

σ4
|ρ− r| Im+1

(rρ

σ2

)

≤ ρ√
2π σ3

|ρ− r|√
rρ

e−
(r−ρ)2

2σ2 ≤ 1√
2π σ3

√

|ρ− r|+ r√
r

|ρ− r| e−
(r−ρ)2

2σ2

≤ 1√
2πRσ3

|ρ− r|3/2 e−
(r−ρ)2

2σ2 +
1√
2π σ3

|ρ− r| e−
(r−ρ)2

2σ2 ,

and so from (A.6) we have

B(r) ≤
∫ ∞

0

1√
2πRσ3

|ρ− r|3/2 e−
(r−ρ)2

2σ2 dρ+

∫ ∞

0

1√
2π σ3

|ρ− r| e−
(r−ρ)2

2σ2 dρ. (A.7)

So our final step will be to show the boundedness (in r ∈ [R,∞)) of both integrals in (A.7).
We note that for every t ≥ 0, we can show using simple calculus arguments that 2 et

2/2 ≥
23/4 t3/2 from which it follows (using t→ t√

2σ
) that

t3/2

σ3
e−

t2

2σ2 ≤ 2

σ3/2
e−

t2

4σ2 ,

so for the first term in (A.7) we may write

∫ ∞

0

1√
2πRσ3

|ρ− r|3/2 e−
(r−ρ)2

2σ2 dρ ≤ 2√
2πRσ

3
2

∫ ∞

0

e−
(r−ρ)2

4σ2 dρ

≤ 2√
2πRσ

3
2

∫ ∞

−∞
e−

(r−ρ)2

4σ2 dρ =
2
√
2√

Rσ
.

A similar argument is used to show the boundedness of the second integral in (A.7) using
the relation (for t ≥ 0)

√
2 t ≤ 2 et

2/2 =⇒ t e−
t2

2σ2

σ
≤ 2 e−

t2

4σ2
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which leads to
∫ ∞

0

1√
2π σ3

|ρ− r| e−
(r−ρ)2

2σ2 dρ ≤ 2√
2π σ2

∫ ∞

0

e−
(r−ρ)2

4σ2 dρ ≤ 2√
2π σ2

∫ ∞

−∞
e−

(r−ρ)2

4σ2 dρ =
2
√
2

σ

Thus we conclude that the function B(r) in (A.6) is bounded on r ∈ [R,∞), and thus
Hypothesis 3.1 (iv) is satisfied by the Gaussian.
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