
ar
X

iv
:2

00
6.

00
40

1v
1 

 [
m

at
h.

A
P]

  3
1 

M
ay

 2
02

0

Optimal decay rates of the compressible Euler equations with

time-dependent damping in Rn: (I) under-damping case

Shanming Jia,c, Ming Meib,c,∗

aSchool of Mathematics, South China University of Technology

Guangzhou, Guangdong, 510641, P. R. China
bDepartment of Mathematics, Champlain College Saint-Lambert

Quebec, J4P 3P2, Canada, and
cDepartment of Mathematics and Statistics, McGill University

Montreal, Quebec, H3A 2K6, Canada

Abstract

This paper is concerned with the multi-dimensional compressible Euler equations with time-

dependent damping of the form− µ

(1+t)λ
ρu in Rn, where n ≥ 2, µ > 0, and λ ∈ [0, 1). When λ > 0 is

bigger, the damping effect time-asymptotically gets weaker, which is called under-damping. We

show the optimal decay estimates of the solutions such that ‖∂αx (ρ−1)‖L2(Rn) ≈ (1+t)−
1+λ

2
( n

2
+|α|), and

‖∂αx u‖L2(Rn) ≈ (1+t)−
1+λ

2
( n

2
+|α|)− 1−λ

2 , and see how the under-damping effect influences the structure of

the Euler system. Different from the traditional view that the stronger damping usually makes the

solutions decaying faster, here surprisingly we recognize that the weaker damping with 0 ≤ λ < 1

enhances the faster decay for the solutions. The adopted approach is the technical Fourier analysis

and the Green function method. The main difficulties caused by the time-dependent damping

lie in twofold: non-commutativity of the Fourier transform of the linearized operator precludes

explicit expression of the fundamental solution; time-dependent evolution implies that the Green

matrix G(t, s) is not translation invariant, i.e., G(t, s) , G(t − s, 0). We formulate the exact decay

behavior of the Green matrices G(t, s) with respect to t and s for both linear wave equations

and linear hyperbolic system, and finally derive the optimal decay rates for the nonlinear Euler

system.
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1 Introduction

1.1 Modeling equations and background

In this series of study, we consider the multi-dimensional compressible Euler equations with time-

dependent damping






























∂tρ + ∇ · (ρu) = 0,

∂t(ρu) + ∇ · (ρu ⊗ u) + ∇p(ρ) = − µ

(1 + t)λ
ρu,

ρ|t=0 = ρ0(x) := 1 + ρ̃0(x), u|t=0 = u0(x),

(1.1)

where x ∈ Rn, n ≥ 2, µ > 0, λ ∈ [−1, 1). Here, the unknown functions ρ(t, x) and u(t, x) represent the

density and velocity of the fluid, and the pressure p(ρ) = 1
γ
ργ with γ > 1. The initial data satisfy

ρ0(x)→ 1, i.e., ρ̃0(x)→ 0, and u0(x)→ 0, as |x| → ∞. (1.2)

The damping effect of − µ

(1+t)λ
ρu is said to be under-damping for λ > 0, which is time-asymptotically

vanishing; and it is said to be over-damping for λ < 0, which is time-asymptotically enhancing to

∞. In this paper, we are mainly interested in the under-damping case with λ ∈ [0, 1), and leave the

over-damping case with λ ∈ [−1, 0) in the second part [17].

The time-dependent damping phenomena were first proposed and studied by Wirth [36, 37, 38]

for the linear damped wave equations, see also the significant extension on the damped Klein-Gordon

equations by Burq-Raugel-Schlag in [1, 2], recently. Since then, the study on this subject becomes

one of hot spots, and intensively carried on, particularly, the research for Euler system involving time-

dependent damping. The under- or over-damping effects with λ > 0 or λ < 0 makes the structure of

the solutions to (1.1) more complicated and various.

When µ = 0, the system (1.1) is reduced to the pure Euler system which usually does not possess

the global-in-time solutions, no matter how smooth the initial data are, and the singularity formed by

shock waves cannot be ignored [3, 6, 8, 18, 30].

When µ > 0 and λ = 0, the damping effect usually prevents the singularity formation of shocks

when the initial data are suitably smooth [29], but the damped solutions can still blow up like shocks

when the gradients of the initial data are big [20, 35]. For 1-D case, Hsiao and Liu [13] first ob-

served that the damped Euler system is essentially equivalent to the nonlinear porous media equa-

tions, and showed the convergence as ‖(v − v̄, u − ū)(t)‖L∞ = O(t−1/2, t−1/2), where (v̄, ū)(x/
√

t)

are the self-similar solutions to the corresponding porous media equations, the so-called diffusion

waves. The relaxation-limit convergence in the weak sense was showed by Marcati and Milani in

[22]. After then, the convergence rates to the diffusion waves were improved to O(t−3/4, t−5/4) by
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Nishihara [24] in L2-sense, and to O(t−1, t−3/2) by Nishihara-Wang-Yang [25] in L1-sense, respec-

tively. Furthermore, Mei [23] heuristically looked for the best asymptotic profiles which are a kind

of solutions for nonlinear diffusion equations with certain selected initial data, and obtained much

better convergence rates O(t−3/2 ln t, t−2 ln t). For the multiple dimensional case, Sideris-Thomases-

Wang [29] first showed the global existence of the solutions and the decay rates to the constant states

as ‖∂αx (ρ − 1, u)(t)‖L2(R3) = O(t−
3
4
− |α|

2 , t−
3
4
− |α|+1

2 ) when the initial perturbations are smooth enough in

Sobolev space Hl, which was then improved to O(t−
3
4
− |α|

2
− s

2 , t−
3
4
− |α|+1

2
− s

2 ) by Tan-Wu [34] for the initial

data in the Besov space Hl ∩ Ḃ−s
1,∞ with s ∈ [0, 1], and to ‖∂αx (ρ − 1, u)(t)‖HN−|α| = O(t−

|α|+s
2 , t−

|α|+s
2 ) by

Tan-Wang [33] for the initial data in the Besov space Ḃ−s
2,∞ ∩ HN with s ∈ (0, 3/2]. For the vaccum

case, the existence of the entropy solutions and their convergence to Barenbllat self-similar solutions

were significantly studied by Huang-Pan-Wang [16], Huang-Pan [15], Huang-Marcati-Pan [14], and

Geng-Huang [9], respectively, and the free boundary case with singularity was further studied by

Luo-Zeng [21] recently.

When µ > 0 and λ > 0, compared with the case of λ = 0, the damping effect − µ

(1+t)λ
ρu becomes

weaker, we call it as under-damping. This makes the feature of the compressible Euler system more

complicated and fantastic. For 1-D case, Pan [26, 27] first proved that, when 0 < λ < 1 and the initial

data around the constant states are small enough in Sobolev space H1, then the solutions globally

exist in time; when λ > 1 and the initial data are big, then the gradients of the solutions blow up

at finite time; when λ = 1, the critical case, then the solutions still globally exist for µ > 2, but

blow up for 0 < µ ≤ 2. These results were then improved by Sugiyama [31, 32] in C1 space, and

particularly, by Chen-Li-Li-Mei-Zhang [5] for the global existence even with large initial data. When

the constant states at far fields are different, the convergence of the solutions to the diffusion waves

was investigated by Cui-Yin-Zhang-Zhu [7] and Li-Li-Mei-Zhang [19], independently, where the

convergence rates obtained in [7] are better than in [19]. In the critical case of λ = 1 and µ > 2, by

the variables scaling method for finding the asymptotic profiles, Geng-Lin-Mei [10] recognized that

the roles of hyperbolicity and the damping effect for the Euler system both are equivalently important

and cannot be ignored, and further proved the convergence of the original solutions to the asymptotic

profiles which are artfully determined in the critical case, where the convergence rates are dependent

on the physical quantity µ (> 2). For the multiple dimensional case Rn with n = 2, 3, Hou-Yin [12]

and Hou-Witt-Yin [11] first proved that, when 0 < λ < 1 with µ > 0, or λ = 1 with µ > 3 − n,

once the initial data are smooth, compact supporting, and zero-curl or not, then the solutions for the

time-dependent damped Euler system globally exist; while, when λ > 1 with µ > 0, or λ = 1 but

µ ≤ 3 − n, the solutions will blow up in finite time. The decay rates for high dimensional solutions in

the case 0 < λ < 1 were proved by Pan [28] very recently, but these rates are not sufficient.

The main purpose of the present paper is to understand the structure of the solutions for time-

dependent damped Euler system as the damping effect getting weaker for 0 < λ < 1, and to derive

the optimal decay rates of the solutions as ‖∂αx (ρ − 1)‖L2(Rn) ≈ (1 + t)−
1+λ

2
( n

2
+|α|), and ‖∂αx u‖L2(Rn) ≈

(1 + t)−
1+λ

2
( n

2
+|α|)− 1−λ

2 , by means of the technical Fourier analysis and the Green function method. We

see from these optimal rates that the weaker damping with 0 ≤ λ < 1 enhances the faster decay for
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the solutions. This is a bit surprise, and also subverts the traditional view. In fact, as we show later,

by taking Fourier transform to the linearized system to derive the fundamental solutions, we see that,

when the damping is getting less as λ increases, the solutions in the high frequency part still decay

slowly, but the solutions in the low frequency part decay fast.

1.2 Main results

In order to obtain the optimal decay rates of the solutions for Euler system (1.1), we need to build up

the fundamental solutions for the corresponding linearized system.

Let v = 2
γ−1

(
√

p′(ρ) − 1) = 2
γ−1

(ρ
γ−1

2 − 1) and ̟ =
γ−1

2
. Then (v, u) satisfies the following

symmetric system






























∂tv + ∇ · u = −u · ∇v −̟v∇ · u,
∂tu + ∇v +

µ

(1 + t)λ
u = −(u · ∇)u −̟v∇v,

v|t=0 = v0(x), u|t=0 = u0(x),

(1.3)

where v0(x) = 2
γ−1

((1 + ρ̃0(x))
γ−1

2 − 1), which behaves like ρ̃0(x) if the initial perturbation is small.

The optimal decay rate of the linearized system is essential for the study of large time behavior of

the time-dependent damped Euler equations. The linearized system of (1.3) is































∂tv + ∇ · u = 0,

∂tu + ∇v +
µ

(1 + t)λ
u = 0,

v|t=0 = v0(x), u|t=0 = u0(x).

(1.4)

Let u := Λ−1∇ · u and w := Λ−1curl u (with (curl u)k
j

:= ∂x j
uk − ∂xk

u j for u = (u1, . . . , un)), see [34]

for example, where Λ is the pseudo differential operator defined by Λsv := F−1(|ξ|sv̂(ξ)) for s ∈ R
(see the notations introduced below for details). Then the linearized system (1.4) is equivalent to















































∂tv + Λu = 0,

∂tu − Λv +
µ

(1 + t)λ
u = 0,

∂tw +
µ

(1 + t)λ
w = 0,

v|t=0 = v0(x), u|t=0 = u0(x), w|t=0 = w0(x),

(1.5)

where u0(x) = Λ−1∇ · u0(x) and w0(x) = Λ−1curl u0(x). We note that the estimates on (v, u) are

equivalent to the estimates on (v, u,w) according to the relation

u = −Λ−1∇u − Λ−1∇ · w.

From the equation (1.5)3, we can see that the vorticity w(t, x) of the linearized system decays to zero

sub-exponentially as

w(t, x) = w0(x)e−
µ

1−λ (1+t)1−λ
,
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which is faster than any algebraical decays. So we only focus on the first two equations of (1.5).

The Fourier transform B(t, ξ) of the linear operator (1.5) is time-dependent and non-commutative

(although it is diagonalizable), that is, B(t, ξ)B(s, ξ) , B(s, ξ)B(t, ξ) for general s , t with

B(t, ξ) :=

(

0 −|ξ|
|ξ| − µ

(1+t)λ

)

.

Therefore, the fundamental solution of the first two equations of (1.5) cannot be represented as matrix

exponential e
∫ t

0
B(s,ξ)ds.

In order to formulate the optimal decay rates of the linearized system (1.5), we consider the

following two kinds of linear wave equations with time-dependent damping



















∂2
t v − ∆v +

µ

(1 + t)λ
∂tv = 0, x ∈ Rn,

v|t=0 = v1(x), ∂tv|t=0 = v2(x),
(1.6)

and


















∂2
t u − ∆u + ∂t

( µ

(1 + t)λ
u
)

= 0, x ∈ Rn,

u|t=0 = u1(x), ∂tu|t=0 = u2(x),
(1.7)

which are satisfied by the solutions v(t, x) and u(t, x) of (1.5), respectively. The above two Cauchy

problems (1.6) and (1.7) may seem similar at first glance, but as we prove below, their optimal decay

rates are totally different. It should also be noted that the optimal decay rates derived from (1.7) are

not the optimal decay rates of the solution u in the linearized system (1.5). The reason is that the

optimal decay rates of (1.7) are formulated with respect to arbitrary initial data u1(x) and u2(x), while

the solution u in (1.5) corresponds to (1.7) with initial data u1(x) = u0(x) and u2(x) = Λv0(x)−µu0(x).

We will show that there exist some cancellations between the evolution of initial data in this situation.

Notations. We denote Dt = −i∂t and the n-dimensional Fourier transform F (v) of a function

v(x) is denoted by v̂(ξ) for simplicity. We use Hs
= Hs(Rn), s ∈ R, to denote Sobolev spaces and

Lp
= Lp(Rn), 1 ≤ p ≤ ∞, to denote the Lp spaces. The spatial derivatives ∂αx stands for ∂

α1
x1
· · · ∂αn

xn

with nonnegative multi-index α = (α1, . . . , αn), where the order of α is denoted by |α| = ∑ j=n

j=1
α j,

and ∂
|α|
x stands for all the spatial partial derivatives of order |α|. The pseudo differential operator Λ

is defined by Λsv := F−1(|ξ|sv̂(ξ)) for s ∈ R. We use Ḣs
= Ḣs(Rn), s ∈ R, to denote homogeneous

Sobolev spaces with the norm ‖ · ‖Ḣs defined by ‖v‖Ḣs := ‖Λsv‖L2 . The norm ‖v‖l
X

stands for the ‖ · ‖X
norm of the low frequency part vl := F−1(χ(ξ)v̂(ξ)) of v, while ‖v‖h

X
stands for the ‖ · ‖X norm of the

high frequency part vh := F−1((1 − χ(ξ))v̂(ξ)) of v, where 0 ≤ χ(ξ) ≤ 1 is a smooth cut-off function

supported in B2R(0) and χ(ξ) ≡ 1 on BR(0) for a given R > 0.

Throughout this paper, we also denote b(t) =
µ

(1+t)λ
with µ > 0 and λ ∈ [0, 1) and we let C (or

C j with j = 1, 2, . . . ) denote some positive universal constants (may depend on the dimension n, the

constants λ, µ, γ, and the index α). We use f . g or g & f if f ≤ Cg and denote f ≈ g if f . g and

g & f . For simplicity, we use ‖( f , g)‖X to denote ‖ f ‖X + ‖g‖X and
∫

f :=
∫

Rn f (x)dx. The norm ‖ · ‖L2

will be simplified as ‖ · ‖ if without confusion. For a matrix the norm ‖ · ‖max is the maximum absolute
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value of all its elements. We define the characteristic functions

χ[s≤ t
2

] = χ[s≤ t
2

](s) :=















1, s ≤ t
2
,

0, others,
χ[s≥ t

2
] = χ[s≥ t

2
](s) :=















1, s ≥ t
2
,

0, others.

For simplicity, we denote time decay functions

Γ(t, s) :=
(

1 + (1 + t)1+λ − (1 + s)1+λ
)− 1

2
, Θ(t, s) := min{Γ(t, s), (1 + t)−λ}. (1.8)

There holds

Γ(t, s) · χ[s≤ t
2

](s) ≈ (1 + t)−
1+λ

2 ≈ Θ(t, s) · χ[s≤ t
2

](s), Θ(t, s) . Γ(t, s).

Here we always assume λ ∈ [0, 1) and show that under-damping gives rise to faster decay es-

timates. Our main results are stated as follows. We present the L2 and Lq decay estimates of the

nonlinear system (1.3).

Theorem 1.1 (Optimal L2 decay rates of nonlinear Euler system) For n ≥ 2 and λ ∈ [0, 1),

there exists a constant ε0 > 0, such that the solution (v, u) of the nonlinear system (1.3) corresponding

to initial data (v0, u0) with small energy ‖(v0, u0)‖
L1∩H

[ n
2

]+3 ≤ ε0 exists globally and satisfies







































‖∂αx v‖ . (1 + t)−
1+λ

4
n− 1+λ

2
|α|, 0 ≤ |α| ≤ [n

2
] + 1,

‖∂αx u‖ . (1 + t)−
1+λ

4
n− 1+λ

2
(|α|+1)+λ, 0 ≤ |α| ≤ [n

2
],

‖∂αx u‖ . (1 + t)−
1+λ

4
n− 1+λ

2
|α|+λ, |α| = [n

2
] + 1,

‖(v, u)‖
H

[ n
2

]+3 . 1.

(1.9)

The first two decay estimates in (1.9) (i.e., the decay estimates on ‖∂αx v‖ with 0 ≤ |α| ≤ [n
2
] + 1 and

‖∂αx u‖ with 0 ≤ |α| ≤ [n
2
]) are optimal and consistent with the linearized system.

Theorem 1.2 (Optimal Lq decay estimates of nonlinear Euler system) For n ≥ 2, λ ∈ [0, 1),

q ∈ [2,∞] and k ≥ 3+ [γ2,q] with γ2,q := n(1/2−1/q), let (v, u) be the solution to the nonlinear system

(1.3), corresponding to the initial data (v0, u0) with small energy such that ‖(v0, u0)‖
L1∩H

[ n
2

]+k ≤ ε0,

where ε0 > 0, is a small constant only depending on n, q, k and the constants γ, µ, λ in the system.

Then (v, u) ∈ L∞(0,+∞; H[ n
2 ]+k) and satisfies















‖∂αx v‖Lq . (1 + t)−
1+λ

2
γ1,q− 1+λ

2
|α|, 0 ≤ |α| ≤ 1,

‖u‖Lq . (1 + t)−
1+λ

2
γ1,q− 1−λ

2 ,
(1.10)

where γ1,q = n(1 − 1/q). All the decay estimates in (1.10) are optimal.

For the time-dependent damped Euler equation (1.1), we have the following decay estimates.
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Corollary 1.1 For n ≥ 2 and λ ∈ [0, 1), there exists a constant ε0 > 0, such that the solution

(ρ, u) of the Euler equation (1.1), corresponding to the initial data (ρ0, u0) with small energy ‖(ρ0 −
1, u0)‖

L1∩H
[ n

2
]+3 ≤ ε0, exists globally and satisfies







































‖∂αx (ρ − 1)‖ . (1 + t)−
1+λ

4
n− 1+λ

2
|α|, 0 ≤ |α| ≤ [n

2
] + 1,

‖∂αx u‖ . (1 + t)−
1+λ

4
n− 1+λ

2
(|α|+1)+λ, 0 ≤ |α| ≤ [n

2
],

‖∂αx u‖ . (1 + t)−
1+λ

4
n− 1+λ

2
|α|+λ, |α| = [n

2
] + 1,

‖(ρ − 1, u)‖
H

[ n
2

]+3 . 1.

(1.11)

The first two decay estimates in (1.11) (i.e., the decay estimates on ‖∂αx (ρ − 1)‖ with 0 ≤ |α| ≤ [n
2
] + 1

and ‖∂αx u‖ with 0 ≤ |α| ≤ [n
2
]) are optimal.

For n ≥ 2, λ ∈ [0, 1), q ∈ [2,∞] and k ≥ 3 + [γ2,q] with γ2,q := n(1/2 − 1/q), let (ρ, u) be

the solution to the Euler equation (1.1) corresponding to initial data (ρ0, u0) with small energy such

that ‖(ρ0 − 1, u0)‖
L1∩H

[ n
2

]+k ≤ ε0, where ε0 > 0 is a small constant only depending on n, q, k and the

constants γ, µ, λ in the system. Then (ρ − 1, u) ∈ L∞(0,+∞; H[ n
2

]+k) and satisfies















‖∂αx (ρ − 1)‖Lq . (1 + t)−
1+λ

2
γ1,q− 1+λ

2
|α|, 0 ≤ |α| ≤ 1,

‖u‖Lq . (1 + t)−
1+λ

2
γ1,q− 1−λ

2 ,
(1.12)

where γ1,q = n(1 − 1/q). All the decay estimates in (1.12) are optimal.

To derive the optimal decay rates of the solutions for the Euler system with time-dependent damp-

ing (1.1), it is essential to investigate the fundamental solutions to the linear system (1.5) and two

kinds of wave equations (1.6) and (1.7). Here we state the optimal decays of the solutions for the

linear wave equations (1.6) and (1.7) and the linear hyperbolic system (1.5) as follows.

Theorem 1.3 (Optimal decay rates of linear wave equations) Let v(t, x) and u(t, x) be the so-

lutions of the Cauchy problems (1.6) and (1.7) corresponding to the initial data (v(s, x), ∂tv(s, x)) and

(u(s, x), ∂tu(s, x)) starting from the initial time s, respectively. Then for q ∈ [2,∞] and 1 ≤ p, r ≤ 2

(or θ ∈ [0, n
2
)), we have

‖∂αx v(t, ·)‖Lq .Γ
γp,q (t, s) · Θ|α|(t, s)

·
(∥

∥

∥(v(s, ·), (1 + s)λ∂tv(s, ·))
∥

∥

∥

l

Lp +

∥

∥

∥(∂
|α|+ωr,q

x v(s, ·), (1 + s)λ∂
|α|−1+ωr,q

x ∂tv(s, ·))
∥

∥

∥

h

Lr

)

,

(1.13)

and

‖∂αx u(t, ·)‖Lq .

( 1 + t

1 + s

)λ
· Γγp,q(t, s) · Θ|α|(t, s)

·
(∥

∥

∥(u(s, ·), (1 + s)λ∂tu(s, ·))
∥

∥

∥

l

Lp +

∥

∥

∥(∂
|α|+ωr,q

x u(s, ·), (1 + s)λ∂
|α|−1+ωr,q

x ∂tu(s, ·))
∥

∥

∥

h

Lr

)

,

(1.14)

where γp,q := n(1/p − 1/q) (or γp,q replaced by βθ,q := θ + γ2,q and ‖ · ‖Lp norm replaced by ‖ · ‖Ḣ−θ),
and ωr,q > γr,q for (r, q) , (2, 2) and ω2,2 = 0.
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The decay estimates (1.13) and (1.14) are optimal for all t ≥ s ≥ 0 such that the “.” in (1.13) and

(1.14) can be replaced by “≈” for some nontrivial initial data (v(s, x), ∂tv(s, x)) and (u(s, x), ∂tu(s, x)).

Moreover, there exists a number T0 ≥ 0 such that the decay estimates (1.13) and (1.14) are

element-by-element optimal for t
2
≥ s ≥ T0 in the following sense: there exist four kinds of nontrivial

initial data (v(s, x), 0), (0, ∂tv(s, x)), (u(s, x), 0), and (0, ∂tu(s, x)) starting from the time s such that

the four corresponding solutions satisfy

‖∂αx v(t, ·)‖Lq ≈Γγp,q(t, s) · Θ|α|(t, s) ·
(∥

∥

∥v(s, ·)
∥

∥

∥

l

Lp +

∥

∥

∥∂
|α|+ωr,q

x v(s, ·)
∥

∥

∥

h

Lr

)

,

‖∂αx v(t, ·)‖Lq ≈(1 + s)λ · Γγp,q (t, s) · Θ|α|(t, s) ·
(∥

∥

∥∂tv(s, ·)
∥

∥

∥

l

Lp +

∥

∥

∥∂
|α|−1+ωr,q

x ∂tv(s, ·)
∥

∥

∥

h

Lr

)

,

‖∂αx u(t, ·)‖Lq ≈
( 1 + t

1 + s

)λ
· Γγp,q (t, s) · Θ|α|(t, s) ·

(∥

∥

∥u(s, ·)
∥

∥

∥

l

Lp +

∥

∥

∥∂
|α|+ωr,q

x u(s, ·)
∥

∥

∥

h

Lr

)

,

‖∂αx u(t, ·)‖Lq ≈(1 + t)λ · Γγp,q (t, s) · Θ|α|(t, s) ·
(∥

∥

∥∂tu(s, ·)
∥

∥

∥

l

Lp +

∥

∥

∥∂
|α|−1+ωr,q

x ∂tu(s, ·)
∥

∥

∥

h

Lr

)

,

respectively.

Corollary 1.2 Let v(t, x) and u(t, x) be the solutions of the Cauchy problems (1.6) and (1.7) corre-

sponding to the initial data (v(0, x), ∂tv(0, x)) and (u(0, x), ∂tu(0, x)) respectively. Then for q ∈ [2,∞]

and 1 ≤ p, r ≤ 2 (or θ ∈ [0, n
2
)), we have

‖∂αx v(t, ·)‖Lq .(1 + t)−
1+λ

2
(γp,q+|α|) ·

(∥

∥

∥(v(0, ·), ∂tv(0, ·))
∥

∥

∥

l

Lp +

∥

∥

∥(∂
|α|+ωr,q

x v(0, ·), ∂|α|−1+ωr,q

x ∂tv(0, ·))
∥

∥

∥

h

Lr

)

,

and

‖∂αx u(t, ·)‖Lq .(1 + t)−
1+λ

2
(γp,q+|α|)+λ ·

(∥

∥

∥(u(0, ·), ∂tu(s, ·))
∥

∥

∥

l

Lp +

∥

∥

∥(∂
|α|+ωr,q

x u(0, ·), ∂|α|−1+ωr,q

x ∂tu(0, ·))
∥

∥

∥

h

Lr

)

,

where γp,q := n(1/p − 1/q) (or γp,q replaced by βθ,q := θ + γ2,q and ‖ · ‖Lp norm replaced by ‖ · ‖Ḣ−θ),
and ωr,q > γr,q for (r, q) , (2, 2) and ω2,2 = 0.

The above decay estimates are optimal such that the “.” can be replaced by “≈” for some

nontrivial initial data (v(0, x), ∂tv(0, x)) and (u(0, x), ∂tu(0, x)).

Remark 1.1 The decay estimate (1.13) for s = 0 was first proved by Wirth [37] by developing

a perfect diagonalization method. For the application to nonlinear systems, we need to consider

the evolution of initial data starting from any s ≥ 0 to t ≥ s since the damping is time-dependent.

One of the main difficulties caused by the time-dependent damping is that the evolution of the initial

data starting from s ≥ 0 to t ≥ s is completely different from that starting from 0 to t − s, as can

be seen from the estimates (1.13) and (1.14). As a consequence, the estimate on the decay rate of
∫ t

0
G(t, s)Q(s, x)ds is slower than Q(t, x), where G(t, s) is a general Green function and Q(t, x) is a

general non-homogeneous term.

Remark 1.2 It is surprising here that the two Cauchy problems (1.6) and (1.7) decay with differ-

ent rates. We note that the function

ϕ(t, x) :=
1

(1 + t)
1+λ

2
n

e
− µ(1+λ)|x|2

4(1+t)1+λ ,
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which satisfies
µ

(1+t)λ
∂tϕ = ∆ϕ, is an asymptotic profile of (1.6), while ψ(t, x) := ϕ(t, x)/(

µ

(1+t)λ
), which

satisfies ∂t(
µ

(1+t)λ
ψ) = ∆ψ, is a good asymptotic profile of (1.7), and ψ(t, x) decays slower than ϕ(t, x).

The functions ϕ(t, x) and ψ(t, x) decay at the same rates as v(t, x) and u(t, x) proved in Theorem 1.3.

Theorem 1.4 (Optimal decay rates of linear hyperbolic system) Let (v(t, x), u(t, x)) be the so-

lution of the linear hyperbolic system (1.5) (the third equation of w(t, x) is neglected as it decays

sub-exponentially) corresponding to the initial data (v(s, x), u(s, x)) starting from the time s. There

exists a universal constant T0 ≥ 0 such that for q ∈ [2,∞] and 1 ≤ p, r ≤ 2 (or θ ∈ [0, n
2
)), and for

t ≥ s ≥ T0, we have

‖∂αx v(t, ·)‖Lq .Γ
γp,q(t, s) · Θ|α|(t, s) ·

(∥

∥

∥v(s, ·)
∥

∥

∥

l

Lp +

∥

∥

∥∂
|α|+ωr,q

x v(s, ·)
∥

∥

∥

h

Lr

)

+ (1 + s)λ · Γγp,q (t, s) · Θ|α|+1(t, s) ·
(∥

∥

∥u(s, ·)
∥

∥

∥

l

Lp +

∥

∥

∥∂
|α|+ωr,q

x u(s, ·)
∥

∥

∥

h

Lr

)

, (1.15)

and

‖∂αx u(t, ·)‖Lq .

( 1 + t

1 + s

)λ
· Γγp,q (t, s) · Θ|α|(t, s) ·

(∥

∥

∥u(s, ·)
∥

∥

∥

l

Lp +

∥

∥

∥∂
|α|+ωr,q

x u(s, ·)
∥

∥

∥

h

Lr

)

+ (1 + t)λ · Γγp,q(t, s) · Θ|α|+1(t, s) ·
(∥

∥

∥v(s, ·)
∥

∥

∥

l

Lp +

∥

∥

∥∂
|α|+ωr,q

x v(s, ·)
∥

∥

∥

h

Lr

)

, (1.16)

where γp,q := n(1/p − 1/q) (or γp,q replaced by βθ,q := θ + γ2,q and ‖ · ‖Lp norm replaced by ‖ · ‖Ḣ−θ),
and ωr,q > γr,q for (r, q) , (2, 2) and ω2,2 = 0.

Furthermore, u(t, ·) decays faster than (1.16) provided one order higher regularity:

‖∂αx u(t, ·)‖Lq .(1 + t)λ · Γγp,q(t, s) · Θ|α|+1(t, s) ·
(∥

∥

∥v(s, ·)
∥

∥

∥

l

Lp +

∥

∥

∥∂
|α|+1+ωr,q

x v(s, ·)
∥

∥

∥

h

Lr

)

+ (1 + t)λ(1 + s)λ · Γγp,q (t, s) · Θ|α|+2(t, s) ·
(∥

∥

∥u(s, ·)
∥

∥

∥

l

Lp +

∥

∥

∥∂
|α|+1+ωr,q

x u(s, ·)
∥

∥

∥

h

Lr

)

. (1.17)

Moreover, the decay estimates (1.15) is element-by-element optimal for t
2
≥ s ≥ T0 in the follow-

ing sense: there exist two kinds of nontrivial initial data (v(s, x), 0) and (0, u(s, x)) starting from the

time s such that the two corresponding solutions satisfy

‖∂αx v(t, ·)‖Lq ≈ Γγp,q(t, s) · Θ|α|(t, s) ·
(∥

∥

∥v(s, ·)
∥

∥

∥

l

Lp +

∥

∥

∥∂
|α|+ωr,q

x v(s, ·)
∥

∥

∥

h

Lr

)

,

and

‖∂αx v(t, ·)‖Lq ≈(1 + s)λ · Γγp,q(t, s) · Θ|α|+1(t, s) ·
(∥

∥

∥u(s, ·)
∥

∥

∥

l

Lp +

∥

∥

∥∂
|α|+ωr,q

x u(s, ·)
∥

∥

∥

h

Lr

)

,

respectively.

The decay estimate (1.16) and (1.17) are optimal with respect to v(s, x) for all t
2
≥ s ≥ T0 in the

following sense: there exists nontrivial initial data (v(s, x), 0) such that

‖∂αx u(t, ·)‖Lq ≈(1 + t)λ · Γγp,q(t, s) · Θ|α|+1(t, s) ·
(∥

∥

∥v(s, ·)
∥

∥

∥

l

Lp +

∥

∥

∥∂
|α|+ωr,q

x v(s, ·)
∥

∥

∥

h

Lr

)

.

The decay estimates (1.15) and (1.17) are optimal for all t ≥ s ≥ 0 such that

‖∂αx v(t, ·)‖Lq ≈Γγp,q (t, s) · Θ|α|(t, s)
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·
(∥

∥

∥v(s, ·)
∥

∥

∥

l

Lp +

∥

∥

∥∂
|α|+ωr,q

x v(s, ·)
∥

∥

∥

h

Lr +

∥

∥

∥u(s, ·)
∥

∥

∥

l

Lp +

∥

∥

∥∂
|α|+ωr,q

x u(s, ·)
∥

∥

∥

h

Lr

)

,

and

‖∂αx u(t, ·)‖Lq ≈(1 + t)λ · Γγp,q(t, s) · Θ|α|+1(t, s)

·
(∥

∥

∥v(s, ·)
∥

∥

∥

l

Lp +

∥

∥

∥∂
|α|+1+ωr,q

x v(s, ·)
∥

∥

∥

h

Lr +

∥

∥

∥u(s, ·)
∥

∥

∥

l

Lp +

∥

∥

∥∂
|α|+1+ωr,q

x u(s, ·)
∥

∥

∥

h

Lr

)

,

for some nontrivial initial data (v(s, x), u(s, x)).

Corollary 1.3 Let (v(t, x), u(t, x)) be the solution of the linear hyperbolic system (1.5) (the third

equation of w(t, x) is neglected as it decays sub-exponentially) corresponding to the initial data

(v(0, x), u(0, x)). Then for q ∈ [2,∞] and 1 ≤ p, r ≤ 2 (or θ ∈ [0, n
2
)), we have

‖∂αx v(t, ·)‖Lq ≈(1 + t)−
1+λ

2
(γp,q+|α|)

·
(∥

∥

∥v(0, ·)
∥

∥

∥

l

Lp +

∥

∥

∥∂
|α|+ωr,q

x v(0, ·)
∥

∥

∥

h

Lr +

∥

∥

∥u(0, ·)
∥

∥

∥

l

Lp +

∥

∥

∥∂
|α|+ωr,q

x u(0, ·)
∥

∥

∥

h

Lr

)

,

and

‖∂αx u(t, ·)‖Lq ≈(1 + t)−
1+λ

2
(γp,q+|α|)− 1−λ

2

·
(∥

∥

∥v(0, ·)
∥

∥

∥

l

Lp +

∥

∥

∥∂
|α|+1+ωr,q

x v(0, ·)
∥

∥

∥

h

Lr +

∥

∥

∥u(0, ·)
∥

∥

∥

l

Lp +

∥

∥

∥∂
|α|+1+ωr,q

x u(0, ·)
∥

∥

∥

h

Lr

)

,

where γp,q := n(1/p − 1/q) (or γp,q replaced by βθ,q := θ + γ2,q and ‖ · ‖Lp norm replaced by ‖ · ‖Ḣ−θ),
and ωr,q > γr,q for (r, q) , (2, 2) and ω2,2 = 0. The above decay estimates are optimal.

Remark 1.3 The decay estimate (1.16) for u in the linear hyperbolic system (1.5) with time-

dependent damping derived from the optimal decay estimate (1.14) in Theorem 1.3 is not optimal,

since the initial data u(0, x) = u0(x) and ∂tu(0, x) = Λv0(x)−µu0(x) are not independent. Cancelation

occurs and the decay rate increases as in (1.17). However, the estimate (1.16) is still of importance

in the decay estimates of the nonlinear system (1.3) since the regularity required is one order lower

than in the estimate (1.17).

Remark 1.4 We would like also to note some new features and difficulties caused by the time

dependent damping of the linear system (1.5) and two kinds of wave equations (1.6) and (1.7).

(i) The general solutions of the wave equation (1.7) (satisfied by u(t, x)) decay optimally slower

than those solutions of (1.6) (satisfied by v(t, x)); while in the linear system (1.5), u(t, x) decays faster

than v(t, x).

(ii) The solutions to the linear system (1.5) (and the linear wave equations (1.6) and (1.7)) decay

faster as λ ∈ [0, 1) increases. This may seem counterintuitive as weaker damping coefficients give

rise to solutions which decay faster. We may understand it as follows: when λ is larger, the high

frequencies decay slower as e−C(1+t)1−λ
, while the low frequencies decay faster as e−C|ξ|2(1+t)1+λ

, and

on the whole the increasing decay of the low frequencies dominates the decay rate of the system,

which is faster as λ increases.
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(iii) For the application to nonlinear problems, the fundamental solution of the linear hyperbolic

system (1.5) (and the linear wave equations (1.6) and (1.7)) starting from the time s to t, denoted by

G(t, s), is essentially dependent on s. That is, G(t, s) , G(t − s, 0) since the decaying damping
µ

(1+t)λ

on (s, t) is not comparable with the damping on (0, t − s).

(iv) Two main difficulties occur when showing the optimal decay rates: the first one is that we

cannot express the fundamental solution E (t, s, ξ) in the phase space as simply e
∫ t

0
B(τ,ξ)dτ and approx-

imated diagonalization scheme is applied such that in the elliptic zone Zv
ell

E (t, s, ξ) = e

∫ t

s
(
√
|mv(τ,ξ)|+ ∂t

√
|mv(τ,ξ)|

2
√
|mv(τ,ξ)|

)dτ
Ẽ (t, s, ξ),

where Ẽ (t, s, ξ) := MN1(t, ξ)Q(t, s, ξ)N−1
1

(t, ξ)M−1, see Lemma 2.1 below. Therefore, we need not

only to prove the lower bound of e

∫ t

s
(
√
|mv(τ,ξ)|+ ∂t

√
|mv(τ,ξ)|

2
√
|mv(τ,ξ)|

)dτ
, but also to show that some elements of the

matrix Ẽ (t, s, ξ) are not cancelled in the matrix product. The other one is that the low frequencies

are divided into elliptic zone Zv
ell

and mixed zones, where the frequencies in Zv
ell

decay slowest but the

region Zv
ell

is shrinking. As a result, higher decay rates are needed for frequencies in mixed zones in

order to avoid the possible cancellations between frequencies in different zones.

The paper is organized as follows. In Section 2 and Section 3, we formulate the optimal decay

estimates of the time-dependent damped wave equations and linear system separately. The optimal

L2 and Lq decay estimates of the nonlinear system are proved in Section 4.

2 Time-dependent damped wave equations

We first focus on the optimal decay rates of the time-dependent damped wave equations (1.6) and

(1.7). Here we need to consider the wave equations starting from any time s ≥ 0 to time t ≥ s for

application to nonlinear problems, since the evolution is not translation invariant due to the time-

dependent damping. This section is devoted to the proof of Theorem 1.3.

Taking Fourier transforms to the time-dependent damped wave equations (1.6) and (1.7), we have















∂2
t v̂ + |ξ|2v̂ + b(t)∂t v̂ = 0,

v̂(0, ξ) = v̂1(ξ), ∂tv̂(0, ξ) = v̂2(ξ),
(2.1)

and














∂2
t û + |ξ|2û + ∂t(b(t)û) = 0,

û(0, ξ) = û1(ξ), ∂tû(0, ξ) = û2(ξ),
(2.2)

where b(t) =
µ

(1+t)λ
with µ > 0 and λ ∈ [0, 1). The solutions can be represented in the form

v̂(t, ξ) = Φv
1(t, 0, ξ)v̂1(ξ) + Φv

2(t, 0, ξ)v̂2(ξ), (2.3)

û(t, ξ) = Φu
1(t, 0, ξ)û1(ξ) + Φu

2(t, 0, ξ)û2(ξ), (2.4)
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with Fourier multipliers Φv
j
(t, s, ξ) and Φu

j
(t, s, ξ), j = 1, 2, which represent the evolution of initial

data starting from s ≤ t. A perfect diagonalization scheme was developed by Wirth [36, 37] in order

to handle the time-dependent operators since the matrix is not commutative.

Let

ṽ(t, ξ) := e
1
2

∫ t

0
b(τ)dτv̂(t, ξ),

ũ(t, ξ) := e
1
2

∫ t

0
b(τ)dτû(t, ξ).

Then the equations in (2.1) and (2.2) are transformed into

∂2
t ṽ +

(

|ξ|2 − 1

4
b2(t) − 1

2
b′(t)

)

ṽ = 0, (2.5)

∂2
t ũ +

(

|ξ|2 − 1

4
b2(t) +

1

2
b′(t)

)

ũ = 0. (2.6)

For simplicity, we denote

mv(t, ξ) := |ξ|2 − 1

4
b2(t) − 1

2
b′(t), mu(t, ξ) := |ξ|2 − 1

4
b2(t) +

1

2
b′(t).

One may think that the difference between mv(t, ξ) and mu(t, ξ) is of no importance since |b′(t)| ≈
1

(1+t)1+λ is dominated by b2(t) ≈ 1
(1+t)2λ as λ ∈ [0, 1). However, we will prove that this difference makes

the solution u(t, x) of (1.7) essentially decay slower than the solution v(t, x) of (1.6).

We employ the diagonalization method developed by Wirth [36, 37] and we pay more attention

to the exact asymptotic behavior of different frequencies, especially the low frequencies such that

mv(t, ξ) < 0 or mu(t, ξ) < 0. We need to analyze the phase-time space for both (2.5) and (2.6). For the

sake of simplicity, we only write down the analysis and diagonalization of the problem (2.5) and then

we highlight the difference between the two problems. The phase-time space (t, ξ) of the problem

(2.5) is divided into the following parts:

Zv
hyp : = {(t, ξ);

√

|mv(t, ξ)| ≥ Nvb(t),mv(t, ξ) ≥ 0},

Zv
pd : = {(t, ξ); εvb(t) ≤

√

|mv(t, ξ)| ≤ Nvb(t),mv(t, ξ) ≥ 0},

Zv
red : = {(t, ξ);

√

|mv(t, ξ)| ≤ εvb(t)},
Zv

ell : = {(t, ξ);
√

|mv(t, ξ)| ≥ εvb(t),mv(t, ξ) ≤ 0, t ≥ tv
ell},

where εv > 0 is chosen to be sufficiently small such that the influence of the reduced zone Zv
red

on

the fundamental solution is relatively small, and Nv > εv, tv
ell
> 0. There remains a bounded part

{(t, ξ);
√

|mv(t, ξ)| ≥ εvb(t),mv(t, ξ) ≤ 0, t ∈ (0, tv
ell

)} which is of no influence. The treatment of the

zones, Zv
hyp

, Zv
pd

, Zv
red

, and Zv
ell

is similar to that in [37], here we present the treatment of the elliptic

zone Zv
ell

in detail since this part will determine the decay rates of solutions.

For any fixed constant c0 ≥ µNv, we would call

high frequencies: (t, ξ) ∈ Zv
hyp, |ξ| ≥ c0,
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low frequencies: (t, ξ) ∈ Zv
ell, or other mixed zones,

where mixed zones are Zv
pd

, Zv
red

, and Zv
hyp

with |ξ| ≤ c0. Note that the elliptic zone Zv
ell

is shrinking

and the frequencies in Zv
ell

decay slowest.

In the elliptic zone Zv
ell

, we let Dt := −i∂t and V := (
√

|mv(t, ξ)|ṽ,Dtṽ)T, where (·)T is the transpose

of a matrix or a vector. Then the equation (2.5) is converted into (note that mv(t, ξ) < 0)

DtV =





















Dt

√
|mv(t,ξ)|√
|mv(t,ξ)|

√

|mv(t, ξ)|

−
√

|mv(t, ξ)|





















V =: A(t, ξ)V. (2.7)

Let

M =

(

i −i

1 1

)

, M−1
=

1

2

(

−i 1

i 1

)

.

Then

Dt − A(t, ξ) = M(Dt −D(t, ξ) − R(t, ξ))M−1, (2.8)

where

Dt =

(

Dt

Dt

)

, D(t, ξ) =

(

−i
√

|mv(t, ξ)|
i
√

|mv(t, ξ)|

)

, R(t, ξ) =
Dt

√
|mv(t,ξ)|

2
√
|mv(t,ξ)|

(

1 −1

−1 1

)

.

An important note here is that Dt , DtI since DtF = −i∂tF is the time derivative of a scalar, or

vector, or matrix F, whileDtF for a matrix F is a multiplier such that

DtFG = Dt(FG) = (DtF)G + F(DtG) , (DtF)G

for general matrix or vector G. For a vector V , there holds DtV = DtV .

Now the matricesDt andD(t, ξ) are diagonal but R(t, ξ) is not. The bad thing is that ‖R(t, ξ)‖max .

1
1+t

(the norm ‖ · ‖max for a matrix is the maximum absolute value of all its elements), which is not

uniformly bounded integrable with respect to time. The key ingredient for the diagonalization method

developed by Wirth [36, 37] is to proceed a step further, such that

(Dt −D(t, ξ) − R(t, ξ))N1(t, ξ) = N1(t, ξ)(Dt −D(t, ξ) − F0(t, ξ) − R1(t, ξ)), (2.9)

with

N(1)(t, ξ) =
iDt

√
|mv(t,ξ)|

2|mv(t,ξ)|

(

1

−1

)

, F0(t, ξ) =
Dt

√
|mv(t,ξ)|

2
√
|mv(t,ξ)|

(

1

1

)

,

and N1(t, ξ) = I + N(1)(t, ξ) such that

N(1)(t, ξ)D(t, ξ) −D(t, ξ)N(1)(t, ξ) = R(t, ξ) − F0(t, ξ),

and then

R1(t, ξ) = −(I + N(1)(t, ξ))−1(DtN
(1)(t, ξ) − R(t, ξ)N(1)(t, ξ) + N(1)(t, ξ)F0(t, ξ)).

Now one can verify that ‖R1(t, ξ)‖max .
1

(1+t)2−λ , whose integral with respect to time over any interval

(s, t) is uniformly bounded. We also note that ‖N1(t, ξ)− I‖max = ‖N(1)(t, ξ)‖max .
1

(1+t)1−λ and N1(t, ξ)

is uniformly bounded invertible if the tv
ell

in the definition of Zv
ell

is chosen large.
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Lemma 2.1 The fundamental solution E (t, s, ξ) ofDt −A(t, ξ) (i.e. the equation (2.7)) for (t, ξ) ∈
Zv

ell
and 0 ≤ s ≤ t is

E (t, s, ξ) =MN1(t, ξ)e

∫ t

s
(
√
|mv(τ,ξ)|+ ∂t

√
|mv(τ,ξ)|

2
√
|mv(τ,ξ)|

)dτ
Q(t, s, ξ)N−1

1 (t, ξ)M−1

=e

∫ t

s
(
√
|mv(τ,ξ)|+ ∂t

√
|mv(τ,ξ)|

2
√
|mv(τ,ξ)|

)dτ
Ẽ (t, s, ξ),

where Ẽ (t, s, ξ) := MN1(t, ξ)Q(t, s, ξ)N−1
1

(t, ξ)M−1 and Q(t, s, ξ) is the solution of the following inte-

gral equation

Q(t, s, ξ) = H(t, s, ξ) + i

∫ t

s

H(t, θ, ξ)R1(θ, ξ)Q(θ, s, ξ)dθ, (2.10)

with

H(t, s, ξ) =















1 0

0 e−2
∫ t

s

√
|mv(τ,ξ)|dτ















.

Moreover, ‖Q(t, s, ξ)‖max is uniformly bounded and ‖Q(t, s, ξ)−H(t, s, ξ)‖max .
1

(1+s)1−λ for (t, ξ) ∈ Zv
ell

and s ≤ t.

Proof. According to the relation (2.8) and (2.9), it suffices to prove that the fundamental solution of

Dt −D(t, ξ) − F0(t, ξ) − R1(t, ξ) is Ẽ0Q(t, s, ξ) with

Ẽ0 := e

∫ t

s
(
√
|mv(τ,ξ)|+ ∂t

√
|mv(τ,ξ)|

2
√
|mv(τ,ξ)|

)dτ
.

That is, we need to show

∂t(Ẽ0Q) = iDt(Ẽ0Q) = (iD(t, ξ) + iF0(t, ξ) + iR1(t, ξ))(Ẽ0Q).

In fact,

∂t(Ẽ0Q) = (∂tẼ0)Q + Ẽ0∂tQ = (iD + iF0 −H)Ẽ0Q + Ẽ0∂tQ,

where

H(t, ξ) = i(D(t, ξ) + F0(t, ξ)) −
( √

|mv(t, ξ)| + ∂t

√
|mv(t,ξ)|

2
√
|mv(t,ξ)|

)

I =

(

0 0

0 −2
√

|mv(t, ξ)|

)

.

Noticing that Ẽ0 is scalar, we see that Q is the solution of

∂tQ(t, s, ξ) = H(t, ξ)Q(t, s, ξ) + iR1(t, ξ)Q(t, s, ξ), Q(s, s, ξ) = I,

which is equivalent to the integral equation (2.10). As proved in Theorem 15 of [37], there holds the

estimates

‖Q(t, s, ξ) − H(t, s, ξ)‖max
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.

∞
∑

j=1

∫ t

s

‖R1(t1, ξ)‖max

∫ t1

s

‖R1(t2, ξ)‖max · · ·
∫ t j−1

s

‖R1(t j, ξ)‖maxdt j · · · dt2dt1

.

∞
∑

j=1

1

j!

(

∫ t

s

‖R1(τ, ξ)‖maxdτ
) j
. e

∫ t

s
‖R1(τ,ξ)‖maxdτ − 1.

The proof is completed since

∫ t

s

‖R1(τ, ξ)‖maxdτ .

∫ t

s

1

(1 + τ)2−λ dτ .
1

(1 + s)1−λ ,

which tends to zero as s→ ∞. �

The following asymptotic analysis will be used to show the optimal decay rates of the solutions

v̂(t, ξ) and û(t, ξ) for equations (2.1) and (2.2).

Lemma 2.2 For (t, ξ) ∈ Zv
ell

, there holds (note that b′(t) ≤ 0)































√

|mv(t, ξ)| + ∂t

√
|mv(t,ξ)|

2
√
|mv(t,ξ)|

− b(t)

2
≤ −|ξ|2 1

b(t)
+

b′(t)

b(t)
+ |rv(t, ξ)|,

√

|mv(t, ξ)| + ∂t

√
|mv(t,ξ)|

2
√
|mv(t,ξ)|

− b(t)

2
≥ −|ξ|2 C

b(t)
+

b′(t)

b(t)
− |rv(t, ξ)|,

(2.11)

and for (t, ξ) ∈ Zu
ell

(the definition of zones in the phase-time space corresponding to ũ is completely

similar to that of ṽ), there holds































√

|mu(t, ξ)| + ∂t

√
|mu(t,ξ)|

2
√
|mu(t,ξ)|

− b(t)

2
≤ −|ξ|2 C1

b(t)
+ |ru(t, ξ)|,

√

|mu(t, ξ)| + ∂t

√
|mu(t,ξ)|

2
√
|mu(t,ξ)|

− b(t)

2
≥ −|ξ|2 C2

b(t)
− |ru(t, ξ)|,

(2.12)

where |rv(t, ξ)| . 1
(1+t)2−λ and |ru(t, ξ)| . 1

(1+t)2−λ such that the integrals of |rv(t, ξ)| and |ru(t, ξ)| with

respect to time are uniformly bounded.

Proof. Recall that

mv(t, ξ) := |ξ|2 − 1

4
b2(t) − 1

2
b′(t), mu(t, ξ) := |ξ|2 − 1

4
b2(t) +

1

2
b′(t),

and in the elliptic zone Zv
ell

or Zu
ell

, mv(t, ξ) < 0 and
√

|mv(t, ξ)| ≥ εvb(t), or mu(t, ξ) < 0 and
√

|mu(t, ξ)| ≥ εub(t), respectively. Then we have |mv(t, ξ)| = 1
4
b2(t) + 1

2
b′(t) − |ξ|2 ≥ ε2

vb2(t),

|mv(t, ξ)| ≤ 1
4
b2(t) and

√

|mv(t, ξ)| + ∂t

√
|mv(t,ξ)|

2
√
|mv(t,ξ)|

− b(t)

2

=
|mv(t, ξ)|2 − 1

4
b2(t)

√

|mv(t, ξ)| + b(t)
2

+

1
2
b(t)b′(t) + 1

2
b′′(t)

4(1
4
b2(t) + 1

2
b′(t) − |ξ|2)
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=
−|ξ|2

√

|mv(t, ξ)| + b(t)
2

+

1
2
b′(t)

√

|mv(t, ξ)| + b(t)
2

+

1
2
b(t)b′(t)

4(1
4
b2(t) + 1

2
b′(t) − |ξ|2)

+

1
2
b′′(t)

4(1
4
b2(t) + 1

2
b′(t) − |ξ|2)

≤ −|ξ|2 1

b(t)
+

b′(t)

b(t)
+ rv(t, ξ), (2.13)

with |rv(t, ξ)| =
∣

∣

∣

1
2

b′′(t)

4( 1
4

b2(t)+ 1
2

b′(t)−|ξ|2)

∣

∣

∣ .
b′′(t)
ε2

vb2(t)
.

1
(1+t)2−λ . This shows the first inequality in (2.11).

As for mu(t, ξ), we have |mu(t, ξ)| = 1
4
b2(t)− 1

2
b′(t)−|ξ|2 ≥ ε2

ub2(t) and |mu(t, ξ)| = 1
4
b2(t)− 1

2
b′(t)−

|ξ|2 ≤ 1
2
b2(t) since |b′(t)| . 1

(1+t)1+λ is dominated by b2(t) ≈ 1
(1+t)2λ and the elliptic zone Zu

ell
is defined

within t ≥ tu
ell

which can be chosen large. Now, we see that

√

|mu(t, ξ)| + ∂t

√
|mu(t,ξ)|

2
√
|mu(t,ξ)|

− b(t)

2

=
|mu(t, ξ)| − 1

4
b2(t)

√

|mu(t, ξ)| + b(t)
2

+

1
2
b(t)b′(t) − 1

2
b′′(t)

4(1
4
b2(t) − 1

2
b′(t) − |ξ|2)

=
−|ξ|2

√

|mu(t, ξ)| + b(t)
2

+
− 1

2
b′(t)

√

|mu(t, ξ)| + b(t)
2

+

1
2
b(t)b′(t)

4(1
4
b2(t) − 1

2
b′(t) − |ξ|2)

+

1
2
b′′(t)

4(1
4
b2(t) − 1

2
b′(t) − |ξ|2)

=
−|ξ|2

√

|mu(t, ξ)| + b(t)
2

+ r̄u(t, ξ),

with
−|ξ|2√

|mu(t,ξ)|+ b(t)
2

≈ −|ξ|2 1
b(t)

and

|r̄u(t, ξ)| =
∣

∣

∣

∣

− 1
2
b′(t)

√

|mu(t, ξ)| + b(t)
2

+

1
2
b(t)b′(t)

4(1
4
b2(t) − 1

2
b′(t) − |ξ|2)

+

1
2
b′′(t)

4(1
4
b2(t) − 1

2
b′(t) − |ξ|2)

∣

∣

∣

∣

.

∣

∣

∣

∣

− 1
2
b′(t)

√

|mu(t, ξ)| + b(t)
2

+

1
2
b′(t)

b(t)

∣

∣

∣

∣

+

∣

∣

∣

∣

1
2
b(t)b′(t)

4(1
4
b2(t) − 1

2
b′(t) − |ξ|2)

−
1
2
b′(t)

b(t)

∣

∣

∣

∣

+

∣

∣

∣

∣

b′′(t)

b2(t)

∣

∣

∣

∣

.
|b′(t)||

√

|mu(t, ξ)| − b(t)
2
|

|b(t)||
√

|mu(t, ξ)| + b(t)
2
|
+
|b′(t)||2b′(t) + 4|ξ|2|
|b(t)||mu(t, ξ)| +

|b′′(t)|
b2(t)

.
|b′(t)|| − 1

2
b′(t) − |ξ|2|

|b(t)||
√

|mu(t, ξ)| + b(t)
2
|2
+
|b′(t)||2b′(t) + 4|ξ|2|
|b(t)||mu(t, ξ)| +

|b′′(t)|
b2(t)

.|ξ|2 1

b(t)
· |b
′(t)|

b2(t)
+
|b′(t)|2
b3(t)

+
|b′′(t)|
b2(t)

.

By noticing that
|b′(t)|
b2(t)
.

1
(1+t)1−λ , which tends to zero as t →∞, we find that r̄u(t, ξ) can be split into

r̄u(t, ξ) = |ξ|2 1

b(t)
· ω(t, ξ) + ru(t, ξ),

with

|ru(t, ξ)| . |b
′(t)|2

b3(t)
+
|b′′(t)|
b2(t)

.
1

(1 + t)2−λ ,
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and
−|ξ|2

√

|mu(t, ξ)| + b(t)
2

+ |ξ|2 1

b(t)
· ω(t, ξ) ≈ −|ξ|2 1

b(t)

since |ω(t, ξ)| . 1
(1+t)1−λ and we can choose tu

ell
large enough (it suffices to let |ω(t, ξ)| ≤ 1/4).

We show that the second inequality in (2.11) holds. Note that in the Zv
ell

,

ε2
vb2(t) ≤ |mv(t, ξ)| = 1

4
b2(t) +

1

2
b′(t) − |ξ|2 ≤ 1

4
b2(t).

Then (2.13) reads as

√

|mv(t, ξ)| + ∂t

√
|mv(t,ξ)|

2
√
|mv(t,ξ)|

− b(t)

2

=
−|ξ|2

√

|mv(t, ξ)| + b(t)
2

+

1
2
b′(t)

√

|mv(t, ξ)| + b(t)
2

+

1
2
b(t)b′(t)

4(1
4
b2(t) + 1

2
b′(t) − |ξ|2)

+

1
2
b′′(t)

4(1
4
b2(t) + 1

2
b′(t) − |ξ|2)

≥ −|ξ|2 2

b(t)
+

1
2
b′(t)

b(t)
2
+

b(t)
2

+

1
2
b(t)b′(t)

b2(t)
+ r̄v(t, ξ)

≥ −|ξ|2 2

b(t)
+

b′(t)

b(t)
+ r̄v(t, ξ),

with

r̄v(t, ξ) ≥
(

1
2
b′(t)

√

|mv(t, ξ)| + b(t)
2

−
1
2
b′(t)

b(t)
2
+

b(t)
2

)

+

(

1
2
b(t)b′(t)

4(1
4
b2(t) + 1

2
b′(t) − |ξ|2)

−
1
2
b(t)b′(t)

b2(t)

)

−
∣

∣

∣

∣

1
2
b′′(t)

4(1
4
b2(t) + 1

2
b′(t) − |ξ|2)

∣

∣

∣

∣

&

1
2
b′(t)(1

2
b(t) −

√

|mv(t, ξ)|)
(
√

|mv(t, ξ)| + b(t)
2

)b(t)
+

1
2
b(t)b′(t)(−2b′(t) + 4|ξ|2)

4(1
4
b2(t) + 1

2
b′(t) − |ξ|2)b2(t)

− |b
′′(t)|

b2(t)

&
b′(t)

b2(t)
·
− 1

2
b′(t) + |ξ|2

1
2
b(t) +

√

|mv(t, ξ)|
− |b

′(t)|2
b3(t)

+
b′(t)

b2(t)
· |ξ|

2

b(t)
− |b

′′(t)|
b2(t)

&
b′(t)

b2(t)
· |ξ|

2

b(t)
− |b

′(t)|2
b3(t)

− |b
′′(t)|

b2(t)

& − |ξ|2 C3

b(t)
− |rv(t, ξ)|,

where C3 := maxt≥0
|b′(t)|
b2(t)
. maxt≥0

1
(1+t)1−λ is bounded, and

|rv(t, ξ)| . |b
′(t)|2

b3(t)
+
|b′′(t)|
b2(t)

.
1

(1 + t)2−λ .

Therefore, the second inequality in (2.11) holds with C = C3 + 2. The proof is completed. �

According to the asymptotic analysis of the frequencies, we can formulate the following esti-

mates.
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Lemma 2.3 The multiplies Φv
j
(t, s, ξ) and Φu

j
(t, s, ξ), j = 1, 2, in the equations (2.3) and (2.4)

have the following estimates: there exist c0 > 0, ε ∈ (0, 1/2), C > 0, and T0 ≥ 0 (only depending on

µ and λ) such that

(i) For (t, ξ) ∈ Zv
ell

and 0 ≤ s ≤ t, there hold

|Φv
1(t, s, ξ)| . e

−C|ξ|2
∫ t

s
1

b(τ)
dτ
, |Φv

2(t, s, ξ)| . 1

b(s)
· e−C|ξ|2

∫ t

s
1

b(τ)
dτ

; (2.14)

for (t, ξ) ∈ Zv
hyp

, 0 ≤ s ≤ t, and |ξ| ≥ c0, there holds

|Φv
1(t, s, ξ)| + |ξ||Φv

2(t, s, ξ)| . e−( 1
2−ε)

∫ t

s
b(τ)dτ;

and for (t, ξ) < Zv
ell

with 0 ≤ s ≤ t and |ξ| ≤ c0, there hold

|Φv
1(t, s, ξ)| . e

−C|ξ|2
∫ max{s,tv

ξ
}

s
1

b(τ)
dτ−( 1

2
−ε)

∫ t

max{s,tv
ξ
} b(τ)dτ

,

|Φv
2(t, s, ξ)| . 1

b(min{s,tv
ξ
}) · e

−C|ξ|2
∫ max{s,tv

ξ
}

s
1

b(τ) dτ−( 1
2−ε)

∫ t

max{s,tv
ξ
} b(τ)dτ

,

where tv
ξ

:= sup{t; (t, ξ) ∈ Zv
ell
}.

(ii) For (t, ξ) ∈ Zu
ell

and 0 ≤ s ≤ t, there hold

|Φu
1(t, s, ξ)| . b(s)

b(t)
· e−C|ξ|2

∫ t

s
1

b(τ)
dτ
, |Φu

2(t, s, ξ)| . 1

b(t)
· e−C|ξ|2

∫ t

s
1

b(τ)
dτ

; (2.15)

for (t, ξ) ∈ Zu
hyp

, 0 ≤ s ≤ t, and |ξ| ≥ c0, there holds

|Φu
1(t, s, ξ)| + |ξ||Φu

2(t, s, ξ)| . e−( 1
2
−ε)

∫ t

s
b(τ)dτ;

and for (t, ξ) < Zu
ell

with 0 ≤ s ≤ t and |ξ| ≤ c0, there hold

|Φu
1(t, s, ξ)| . b(min{s,tu

ξ
})

b(tu
ξ
)
· e
−C|ξ|2

∫ max{s,tu
ξ
}

s
1

b(τ)
dτ−( 1

2
−ε)

∫ t

max{s,tu
ξ
} b(τ)dτ

,

|Φu
2(t, s, ξ)| . 1

b(tu
ξ
)
· e
−C|ξ|2

∫ max{s,tu
ξ
}

s
1

b(τ)
dτ−( 1

2
−ε)

∫ t

max{s,tu
ξ
} b(τ)dτ

,

where tu
ξ

:= sup{t; (t, ξ) ∈ Zu
ell
}.

(iii) For (t, ξ) ∈ Zv
ell

and T0 ≤ s ≤ t, the estimate (2.14) is optimal:

|Φv
1(t, s, ξ)| & e

−C|ξ|2
∫ t

s
1

b(τ)
dτ
, |Φv

2(t, s, ξ)| & 1

b(s)
· e−C|ξ|2

∫ t

s
1

b(τ)
dτ
, (2.16)

with another universal constant C > 0.

(iv) For (t, ξ) ∈ Zu
ell

and T0 ≤ s ≤ t, the estimate (2.15) is optimal:

|Φu
1(t, s, ξ)| & b(s)

b(t)
· e−C|ξ|2

∫ t

s
1

b(τ)
dτ
, |Φu

2(t, s, ξ)| & 1

b(t)
· e−C|ξ|2

∫ t

s
1

b(τ)
dτ
, (2.17)

with another universal constant C > 0.
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Proof. The estimates (i) with s = 0 was proved by Wirth in Theorem 17 of [37]. Here we need to

consider Φv
j
(t, s, ξ) with s ≤ t for the application to nonlinear system (1.3). It should be noted that

Φ
v
j
(t, s, ξ) behaves different from Φv

j
(t − s, 0, ξ) since the damping is time-dependent.

We first focus on the elliptic zones Zv
ell

and Zu
ell

. Using the fundamental solution E (t, s, ξ) of

Dt − A(t, ξ) in Lemma 2.1, we can express the solution of (2.7) as

( √

|mv(t, ξ)|ṽ(t, ξ)

Dtṽ(t, ξ)

)

= E (t, s, ξ)

( √

|mv(s, ξ)|ṽ(s, ξ)

Dtṽ(s, ξ)

)

= e

∫ t

s
(
√
|mv(τ,ξ)|+ ∂t

√
|mv(τ,ξ)|

2
√
|mv(τ,ξ)|

)dτ
Ẽ (t, s, ξ)

(√

|mv(s, ξ)|ṽ(s, ξ)

Dtṽ(s, ξ)

)

,

where Ẽ (t, s, ξ) := MN1(t, ξ)Q(t, s, ξ)N−1
1

(t, ξ)M−1 and ‖Ẽ (t, s, ξ)‖max is uniformly bounded. Accord-

ing to the relation

ṽ(t, ξ) = e
1
2

∫ t

0
b(τ)dτv̂(t, ξ),

we arrive at (note that Dt = −i∂t)

(
√

|mv(t, ξ)|v̂(t, ξ)

Dtv̂(t, ξ) − i
b(t)
2

v̂(t, ξ)

)

= e

∫ t

s
(
√
|mv(τ,ξ)|+ ∂t

√
|mv(τ,ξ)|

2
√
|mv(τ,ξ)|

− b(τ)
2

)dτ
· Ẽ (t, s, ξ)

(
√

|mv(s, ξ)|v̂(s, ξ)

Dtv̂(s, ξ) − i
b(s)

2
v̂(s, ξ)

)

.

Therefore,

Φ
v
1(t, s, ξ) =

1
√

|mv(t, ξ)|
e

∫ t

s
(
√
|mv(τ,ξ)|+ ∂t

√
|mv(τ,ξ)|

2
√
|mv(τ,ξ)|

− b(τ)
2 )dτ

(
√

|mv(s, ξ)|[Ẽ (t, s, ξ)]11 − i
b(s)

2
[Ẽ (t, s, ξ)]12),

Φ
v
2(t, s, ξ) =

−i
√

|mv(t, ξ)|
e

∫ t

s
(
√
|mv(τ,ξ)|+ ∂t

√
|mv(τ,ξ)|

2
√
|mv(τ,ξ)|

− b(τ)
2

)dτ
[Ẽ (t, s, ξ)]12, (2.18)

such that

v̂(t, ξ) = Φv
1(t, s, ξ)v̂(s, ξ) + Φv

2(t, s, ξ)∂tv̂(s, ξ),

where [·] jk denotes the ( j, k)-element of a matrix. Note that in the elliptic zone Zv
ell

, we have

εvb(t) ≤
√

|mv(t, ξ)| ≤ 1

2
b(t).

We apply the estimate (2.11) in Lemma 2.2 to get

e

∫ t

s
(
√
|mv(τ,ξ)|+ ∂t

√
|mv(τ,ξ)|

2
√
|mv(τ,ξ)|

− b(τ)
2

)dτ
. e
−|ξ|2

∫ t

s
1

b(τ)
dτ · e

∫ t

s

b′(τ)
b(τ)

dτ
=

b(t)

b(s)
· e−|ξ|

2
∫ t

s
1

b(τ)
dτ
,

which implies (2.14).

Similarly, we have

Φ
u
1(t, s, ξ) =

1
√

|mu(t, ξ)|
e

∫ t

s
(
√
|mu(τ,ξ)|+ ∂t

√
|mu(τ,ξ)|

2
√
|mu(τ,ξ)|

− b(τ)
2

)dτ
(
√

|mu(s, ξ)|[Ẽ (t, s, ξ)]11 − i
b(s)

2
[Ẽ (t, s, ξ)]12),
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Φ
u
2(t, s, ξ) =

−i
√

|mu(t, ξ)|
e

∫ t

s
(
√
|mu(τ,ξ)|+ ∂t

√
|mu(τ,ξ)|

2
√
|mu(τ,ξ)|

− b(τ)
2

)dτ
[Ẽ (t, s, ξ)]12. (2.19)

Here we have slightly abused the notion Ẽ (t, s, ξ), which should be replaced by the matrix corre-

sponding to the problem of ũ(t, ξ). We apply the estimate (2.12) in Lemma 2.2 to get

e

∫ t

s
(
√
|mu(τ,ξ)|+ ∂t

√
|mu(τ,ξ)|

2
√
|mu(τ,ξ)|

− b(τ)
2

)dτ
. e
−|ξ|2

∫ t

s
1

b(τ)
dτ
,

which completes the proof of (2.15).

The treatment in the zones Zv
hyp

, Zv
pd

, and Zv
red

of the phase-time space of ṽ(t, ξ) is similar to that

in [37]. We note that for (t, ξ) ∈ Zv
hyp

and |ξ| ≥ c0, 1
b(s)

,
b(s)
b(t)

, and 1
b(t)

are all dominated by eε
∫ t

s
b(τ)dτ.

For (t, ξ) < Zv
ell

and |ξ| ≥ c0, we can apply the estimate (2.14) to Φv
j
(tv
ξ
, s, ξ) if s ≤ tv

ξ
. This completes

the proof of (i) and the proof of (ii) follows similarly.

We prove that the estimate of Φv
2
(t, s, ξ) in (2.14) is optimal. According to the optimal estimate

(2.11) in Lemma 2.2, we see that for (t, ξ) ∈ Zv
ell

,

e

∫ t

s
(
√
|mv(τ,ξ)|+ ∂t

√
|mv(τ,ξ)|

2
√
|mv(τ,ξ)|

− b(τ)
2 )dτ
& e
−|ξ|2

∫ t

s
C

b(τ)
dτ · e

∫ t

s

b′(τ)
b(τ)

dτ
=

b(t)

b(s)
· e−|ξ|

2
∫ t

s
C

b(τ)
dτ
.

Then (2.18) reads as

|Φv
1(t, s, ξ)| = 1

√

|mv(t, ξ)|
e

∫ t

s
(
√
|mv(τ,ξ)|+ ∂t

√
|mv(τ,ξ)|

2
√
|mv(τ,ξ)|

− b(τ)
2

)dτ∣
∣

∣

√

|mv(s, ξ)|[Ẽ (t, s, ξ)]11 − i
b(s)

2
[Ẽ (t, s, ξ)]12

∣

∣

∣

& e
−|ξ|2

∫ t

s
C

b(τ)
dτ

∣

∣

∣

√

|mv(s, ξ)|
b(s)

[Ẽ (t, s, ξ)]11 −
i

2
[Ẽ (t, s, ξ)]12

∣

∣

∣,

and

|Φv
2(t, s, ξ)| = 1

√

|mv(t, ξ)|
e

∫ t

s
(
√
|mv(τ,ξ)|+ ∂t

√
|mv(τ,ξ)|

2
√
|mv(τ,ξ)|

− b(τ)
2

)dτ∣
∣

∣[Ẽ (t, s, ξ)]12

∣

∣

∣,

&
1

b(s)
· e−|ξ|

2
∫ t

s
C

b(τ)
dτ

∣

∣

∣[Ẽ (t, s, ξ)]12

∣

∣

∣.

It suffices to show that there is no cancellation between the elements of the matrix product of Ẽ (t, s, ξ)

such that
∣

∣

∣

√
|mv(s,ξ)|
b(s)

[Ẽ (t, s, ξ)]11 − i
2
[Ẽ (t, s, ξ)]12

∣

∣

∣ & 1 and |[Ẽ (t, s, ξ)]12| & 1. Noticing that

Ẽ (t, s, ξ) = MN1(t, ξ)Q(t, s, ξ)N−1
1 (t, ξ)M−1

= M(I + N(1)(t, ξ))Q(t, s, ξ)(I + N(1)(t, ξ))−1M−1,

where ‖N(1)(t, ξ)‖max .
1

(1+t)1−λ and ‖Q(t, s, ξ) − H(t, s, ξ)‖max .
1

(1+s)1−λ with

H(t, s, ξ) =















1 0

0 e−2
∫ t

s

√
|mv(τ,ξ)|dτ
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as shown in Lemma 2.1, we can find T0 ≥ 0 such that for any T0 ≤ s ≤ t and (t, ξ) ∈ Zv
ell

, there holds

‖Ẽ (t, s, ξ) − MH(t, s, ξ)M−1‖max ≤
1

16
,

and furthermore we have

∥

∥

∥

∥
MH(t, s, ξ)M−1 − 1

2

(

1 i

−i 1

)

∥

∥

∥

∥

max
=

1

2
e−2

∫ t

s

√
|mv(τ,ξ)|dτ

∥

∥

∥

∥

(

1 −i

i 1

)

∥

∥

∥

∥

max
≤ 1

2
e−2

∫ t

s
εvb(τ)dτ ≤ 1

16
,

if t > s such that
∫ t

s
εvb(τ)dτ ≥ 3 ln 2/2, which is easily achieved since

∫ ∞
s

b(τ)dτ is divergent.

Therefore, |[Ẽ (t, s, ξ)]12 − i
2
| ≤ 1

8
and |[Ẽ (t, s, ξ)]11 − 1

2
| ≤ 1

8
, which means

∣

∣

∣

∣

(

√

|mv(s, ξ)|
b(s)

[Ẽ (t, s, ξ)]11 −
i

2
[Ẽ (t, s, ξ)]12

) − (

√

|mv(s, ξ)|
b(s)

· 1

2
− i

2
· i

2

)

∣

∣

∣

∣

≤
√

|mv(s, ξ)|
b(s)

1

8
+

1

2

1

8
≤ 3

16
.

It follows that

∣

∣

∣

∣

(

√

|mv(s, ξ)|
b(s)

[Ẽ (t, s, ξ)]11 −
i

2
[Ẽ (t, s, ξ)]12

)

∣

∣

∣

∣

≥
∣

∣

∣

∣

(

√

|mv(s, ξ)|
b(s)

· 1

2
− i

2
· i

2

)

∣

∣

∣

∣

− 3

16
≥ 1

16
,

and the proof of (iii) is completed.

We turn to prove (iv) in a similar way as (iii). According to the optimal estimate (2.12) in Lemma

2.2, for (t, ξ) ∈ Zv
ell

, we have

e

∫ t

s
(
√
|mu(τ,ξ)|+ ∂t

√
|mv(τ,ξ)|

2
√
|mv(τ,ξ)|

− b(τ)
2

)dτ
& e
−|ξ|2

∫ t

s
C

b(τ)
dτ
.

Then (2.19) reads as

|Φu
1(t, s, ξ)| = 1

√

|mu(t, ξ)|
e

∫ t

s
(
√
|mu(τ,ξ)|+ ∂t

√
|mu(τ,ξ)|

2
√
|mu(τ,ξ)|

− b(τ)
2

)dτ∣
∣

∣

√

|mu(s, ξ)|[Ẽ (t, s, ξ)]11 − i
b(s)

2
[Ẽ (t, s, ξ)]12

∣

∣

∣

&
b(s)

b(t)
· e−|ξ|

2
∫ t

s
C

b(τ)
dτ

∣

∣

∣

√

|mu(s, ξ)|
b(s)

[Ẽ (t, s, ξ)]11 −
i

2
[Ẽ (t, s, ξ)]12

∣

∣

∣,

and

|Φu
2(t, s, ξ)| = 1

√

|mu(t, ξ)|
e

∫ t

s
(
√
|mu(τ,ξ)|+ ∂t

√
|mu(τ,ξ)|

2
√
|mu(τ,ξ)|

− b(τ)
2 )dτ∣

∣

∣[Ẽ (t, s, ξ)]12

∣

∣

∣,

&
1

b(t)
· e−|ξ|

2
∫ t

s
C

b(τ)
dτ

∣

∣

∣[Ẽ (t, s, ξ)]12

∣

∣

∣.

The proof of |[Ẽ (t, s, ξ)]12| & 1 and
∣

∣

∣

√
|mu(s,ξ)|
b(s)

[Ẽ (t, s, ξ)]11 − i
2
[Ẽ (t, s, ξ)]12

∣

∣

∣ & 1 in the case of ũ(t, ξ) is

the same as in (iii). �

The above frequency analysis is used to show the optimal decay estimates of the wave equations

(1.6) and (1.7). Note that the time decay functions Γ(t, s) and Θ(t, s) are defined as in (1.8).
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Proof of Theorem 1.3. The estimate (1.13) for s = 0 was proved by Wirth [37]. Here we focus on

the influence of s and show that u(t, x) decays slower than v(t, x). We also prove that those estimates

are optimal. According to the frequency decay estimates Lemma 2.3 and the representation

v̂(t, ξ) = Φv
1(t, s, ξ)v̂(s, ξ) + Φv

2(t, s, ξ)∂tv̂(s, ξ),

we need to calculate the integral ‖|ξ||α|v̂(t, ξ)‖Lq′ decomposed into several zones, where q′ := p/(p−1)

is the conjugate of q′ with 1′ = ∞. For the low frequencies in the elliptic zone (t, ξ) ∈ Zv
ell

, we

consider the case p ∈ (1, 2) and q ∈ [2,∞) and take |ξ||α||Φv
1
(t, s, ξ)||v̂(s, ξ)| for example. Let ξt :=

sup{|ξ|; (t, ξ) ∈ Zv
ell
}. We have

∫

|ξ|≤ξt

(

|ξ||α||Φv
1(t, s, ξ)||v̂(s, ξ)|

)q′

dξ

.

∫

|ξ|≤ξt

|ξ||α|q′e−Cq′ |ξ|2
∫ t

s
1

b(τ) dτ|v̂(s, ξ)|q′dξ

.

(

∫

|ξ|≤ξt

|v̂(s, ξ)|p′dξ
)q′/p′(

∫

|ξ|≤ξt

|ξ||α|p′q′/(p′−q′)e
−Cp′q′/(p′−q′)·|ξ|2

∫ t

s
1

b(τ)
dτ

dξ
)1−q′/p′

. (‖v(s, x)‖lLp )q′
(

∫ ξt

0

|ξ||α|p′q′/(p′−q′)+n−1e
−Cp′q′/(p′−q′)·|ξ|2

∫ t

s
1

b(τ)
dτ

d|ξ|
)1−q′/p′

.
(‖v(s, x)‖lLp (1 + (1 + t)1+λ − (1 + s)1+λ)−

1
2

(γp,q+|α|))q′
,

which is

‖|ξ||α|Φv
1(t, s, ξ)v̂(s, ξ)‖Lq . ‖v(s, x)‖lLp (1 + (1 + t)1+λ − (1 + s)1+λ)−

1
2

(γp,q+|α|), (2.20)

where we have used the fact that for general β ≥ 0 and C > 0,

∫ ∞

0

|ξ|βe−C|ξ|2
∫ t

s
1

b(τ)
dτ

d|ξ| =
∫ ∞

0

(|ξ|2
∫ t

s
1

b(τ)
dτ)

β

2 e
−C|ξ|2

∫ t

s
1

b(τ)
dτ

d(|ξ|2
∫ t

s
1

b(τ)
dτ)

1
2 ·

(

∫ t

s

1

b(τ)
dτ

)− β+1
2

.

(

∫ t

s

1

b(τ)
dτ

)− β+1
2
. (1 + (1 + t)1+λ − (1 + s)1+λ)−

β+1
2 , t ≥ s + 1.

We also have

|ξ||α| ≤ |ξt||α| . b|α|(t) . (1 + t)−λ|α|, ∀(t, ξ) ∈ Zv
ell,

and then

‖|ξ||α|Φv
1(t, s, ξ)v̂(s, ξ)‖Lq . (1 + t)−λ|α|‖Φv

1(t, s, ξ)v̂(s, ξ)‖Lq

. ‖v(s, x)‖lLp (1 + (1 + t)1+λ − (1 + s)1+λ)−
1
2
γp,q · (1 + t)−λ|α|. (2.21)

Combining (2.20) and (2.21) together, we have

‖|ξ||α|Φv
1(t, s, ξ)v̂(s, ξ)‖Lq . ‖v(s, x)‖lLp · Γγp,q(t, s) · Θ|α|(t, s).
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For the high frequencies such that (t, ξ) ∈ Zv
hyp

and |ξ| ≥ c0, we consider the case (r, q) , (2, 2)

and we have
∫

|ξ|≥c0

(

|ξ||α||Φv
1(t, s, ξ)||v̂(s, ξ)|

)q′

dξ

.

∫

|ξ|≥c0

|ξ||α|q′e−( 1
2
−ε)q′

∫ t

s
b(τ)dτ |v̂(s, ξ)|q′dξ

. e−( 1
2
−ε)q′

∫ t

s
b(τ)dτ

(

∫

|ξ|≥c0

(|ξ||α|+ωr,q |v̂(s, ξ)|)r′
dξ

)q′/r′(
∫

|ξ|≥c0

|ξ|−κdξ
)1−q′/r′

. (e−( 1
2
−ε)

∫ t

s
b(τ)dτ‖∂|α|+ωr,q

x v(s, x)‖hLr )
q′ ,

since κ := ωr,qr′q′/(r′ − q′) > n. Note that the sub-exponential function e−( 1
2
−ε)

∫ t

s
b(τ)dτ decays faster

than (1 + (1 + t)1+λ − (1 + s)1+λ)−
1
2

(γp,q+|α|).

For the mixed part of low frequencies such that (t, ξ) < Zell and |ξ| ≤ c0, we divide the proof into

two cases: (i) tv
ξ
≥ s+ t0 and (ii) tv

ξ
≤ s+ t0, where t0 ≥ 1 is a constant such that

∫ s+t0

s
1

b(τ)
dτ ≥ 1. Note

that 1
b(τ)
≈ (1 + τ)λ, and t0 can be chosen independent of s. For case (ii) with s < tv

ξ
≤ s + t0, we have

|ξ| ≈ b(tv
ξ
) ≈ b(τ) for τ ∈ (s, tv

ξ
), and

e
−C1 |ξ|2

∫ max{s,tv
ξ
}

s
1

b(τ)
dτ−C2

∫ t

max{s,tv
ξ
} b(τ)dτ

≈ e
−C1

∫ max{s,tv
ξ
}

s b(τ)dτ−C2

∫ t

max{s,tv
ξ
} b(τ)dτ

. e−min{C1,C2}
∫ t

s
b(τ)dτ,

which is also true for tv
ξ
≤ s. As for the case (i), we can use the following inequality for general β ≥ 0

|ξ|βe
−C1 |ξ|2

∫ max{s,tv
ξ
}

s
1

b(τ)
dτ−C2

∫ t

max{s,tv
ξ
} b(τ)dτ

=

(

|ξ|2
∫ tv

ξ

s
1

b(τ)
dτ

)

β
2
e
−C1 |ξ|2

∫ tv
ξ

s
1

b(τ)
dτ · e

−C2

∫ t

tv
ξ

b(τ)dτ(∫ tv
ξ

s
1

b(τ)
dτ

)− β2

. e
−C2

∫ t

tv
ξ

b(τ)dτ(∫ tv
ξ

s
1

b(τ)
dτ

)− β2

. e
−C2

∫ t

tv
ξ

b(τ)dτ(

1 +
∫ t

tv
ξ

1
b(τ)

dτ
/ ∫ tv

ξ

s
1

b(τ)
dτ

)

β

2
(∫ tv

ξ

s
1

b(τ)
dτ +

∫ t

tv
ξ

1
b(τ)

dτ
)− β

2

.

(

∫ t

s

1

b(τ)
dτ

)− β
2
,

since
∫ tv

ξ

s
1

b(τ)
dτ ≥

∫ s+t0

s
1

b(τ)
dτ ≥ 1. The rest of the proof is similar to the case (t, ξ) ∈ Zv

ell
.

Now we prove that the estimate (1.13) is optimal. The proof of the optimal decay of the estimate

(1.14) follows in a similar way. Without loss of generality, we assume that s ≥ 1 and t ≥ 2s. We

show that the L1-Lq estimates are sharp, other Lp-Lq and Ḣ−θ-Lq estimates can be deduced similarly

or using an interpolation theorem. Let T0 ≥ 0 be the constant in Lemma 2.3. If s ≥ T0, we consider

the initial data at the time s with v(s, x) = 0 and ∂tv(s, x) = F−1(χ) such that χ(ξ) is a nonnegative

and smooth function, χ(ξ) ≡ 1 for |ξ| ≤ R and suppχ ⊂ B2R(0). Replacing the upper bound estimates

(2.14) by the optimal lower bound estimate (2.16) of Φv
2
(t, s, ξ) in the estimates within Zv

ell
shows
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that the frequencies in Zv
ell

decay not faster than the desired rates in (1.13). Note that v̂(s, ξ) = 0

and then Φv
1
(t, s, ξ) has no influence. We only need to show that the low frequencies in the mixed

zones decay faster such that the cancellation between frequencies in different zones can not happen.

In fact, ξt := sup{|ξ|; (t, ξ) ∈ Zv
ell
} ≈ (1 + t)−λ and tξ := sup{t; (t, ξ) ∈ Zv

ell
} ≈ |ξ|− 1

λ , we can estimate for

ξt ≤ |ξ| ≤ c0 and |ξ| near ξt

e
−C1 |ξ|2

∫ tξ
s

1
b(τ)

dτ−C2

∫ t

tξ
b(τ)dτ

. e
−C1 |ξ|2t1+λ

ξ
−C2(t1−λ−t1−λ

ξ
)
. e−C1 |ξ|−

1−λ
λ −C2(t1−λ−|ξ|−

1−λ
λ )
. e−min{C1,C2}t1−λ ,

which decays sub-exponentially and is faster than the desired decay. We can also take the initial

data ∂tv(s, x) = 0 and v(s, x) = F−1(χ), and then using the optimal lower bound estimate (2.16) of

Φ
v
1
(t, s, ξ).

It remains to show the optimal decays for the case s ≤ T0. We first choose the initial data

(v(T0, x), ∂tv(T0, x)) at the time T0 such that v(t, x) decays not faster than the rate in (1.13). Then we

consider the backward wave equation (1.6) with the initial data (v(T0, x), ∂tv(T0, x)) at the time T0 and

backward to the time s ≤ T0. Note that the problem is a linear wave equation with bounded damping

coefficients on a bounded time interval (s, T0) ⊂ (0, T0), and the solution remains bounded. The proof

is completed. �

3 Time-dependent damped linear hyperbolic system

We next show the optimal decay estimates of the linear hyperbolic system (1.5) starting from any time

s ≥ 0 to time t ≥ s for the application to nonlinear Euler system (1.3).

Proof of Theorem 1.4. We first prove that

‖∂αx v‖Lq .Γ
γp,q (t, s) · Θ|α|+2(t, s)

·
(∥

∥

∥(v(s, ·), (1 + s)λu(s, ·))
∥

∥

∥

l

Lp +

∥

∥

∥(∂
|α|+ωr,q

x v(s, ·), (1 + s)λ∂
|α|+ωr,q

x u(s, ·))
∥

∥

∥

h

Lr

)

,

and

‖∂αx u‖Lq .

( 1 + t

1 + s

)λ
· Γγp,q (t, s) · Θ|α|+2(t, s)

(∥

∥

∥(u(s, ·), (1 + s)λv(s, ·))
∥

∥

∥

l

Lp +

∥

∥

∥(∂
|α|+ωr,q

x u(s, ·), (1 + s)λ∂
|α|+ωr,q

x v(s, ·))
∥

∥

∥

h

Lr

)

,

which follow from the estimates (1.13) and (1.14) in Theorem 1.3. That is, we regard v(t, x) as a

solution of (1.6) with the initial data v(s, x) and ∂tv(s, x) = −Λu(s, x), and u(t, x) as a solution of (1.7)

with the initial data u(s, x) and ∂tu(s, x) = Λv(s, x) − b(s)u(s, x). Note that,

∥

∥

∥(1 + s)λ∂tv(s, ·)
∥

∥

∥

l

Lp .

∥

∥

∥(1 + s)λΛu(s, ·)
∥

∥

∥

l

Lp .

∥

∥

∥(1 + s)λu(s, ·)
∥

∥

∥

l

Lp ,
∥

∥

∥(1 + s)λ∂
|α|−1+ωr,q

x ∂tv(s, ·)
∥

∥

∥

h

Lr .

∥

∥

∥(1 + s)λ∂
|α|+ωr,q

x u(s, ·)
∥

∥

∥

h

Lr ,

and

∥

∥

∥(1 + s)λ∂tu(s, ·)
∥

∥

∥

l

Lp .

∥

∥

∥(1 + s)λ(Λv(s, ·) − b(s)u(s, ·))
∥

∥

∥

l

Lp .

∥

∥

∥(u(s, ·), (1 + s)λv(s, ·))
∥

∥

∥

l

Lp ,
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∥

∥

∥(1 + s)λ∂
|α|−1+ωr,q

x ∂tu(s, ·)
∥

∥

∥

h

Lr .

∥

∥

∥(∂
|α|−1+ωr,q

x u(s, ·), (1 + s)λ∂
|α|+ωr,q

x v(s, ·))
∥

∥

∥

h

Lr .

However, the above estimates on low frequencies are not element-by-element optimal (the decay

rate of v(t, x) in dependence on the initial data v(s, x) is optimal, but that on u(s, x) is not). According

to the frequency decay estimates Lemma 2.3 and the representation

v̂(t, ξ) = Φv
1(t, s, ξ)v̂(s, ξ) + Φv

2(t, s, ξ)∂tv̂(s, ξ) = Φv
1(t, s, ξ)v̂(s, ξ) − |ξ|Φv

2(t, s, ξ)û(s, ξ),

we can improve the decay rate of v(t, x) in dependence on the initial data u(s, x) by Θ(t, s) in a similar

way as in the proof of Theorem 1.3 since the decay rate is determined by the frequencies in Zv
ell

. This

completes the proof of (1.15) and (1.16).

We show that u(t, x) decays faster than (1.16). According to the equation (1.5)2, we have

u(t, x) = e−
∫ t

s
b(τ)dτu(s, x) +

∫ t

s

e
−

∫ t

η
b(τ)dτ
Λv(η, x)dη. (3.1)

The sub-exponential function e−
∫ t

s
b(τ)dτ ≈ e−C((1+t)1−λ−(1+s)1−λ) decays faster than any desired alge-

braical decay and

∥

∥

∥

∥

∂αx

∫ t

s

e
−

∫ t

η
b(τ)dτ
Λv(η, x)dη

∥

∥

∥

∥

Lq

≤
∫ t

s

e
−

∫ t

η
b(τ)dτ‖∂αxΛv(η, x)‖Lq dη

.

∫ t

s

e
−

∫ t

η
b(τ)dτ
Γ
γp,q(η, s) · Θ|α|+1(η, s)dη ·

(∥

∥

∥v(s, ·)
∥

∥

∥

l

Lp +

∥

∥

∥∂
|α|+1+ωr,q

x v(s, ·)
∥

∥

∥

h

Lr

)

+

∫ t

s

e
−

∫ t

η
b(τ)dτ

(1 + s)λ · Γγp,q (η, s) · Θ|α|+2(η, s)dη ·
(∥

∥

∥u(s, ·)
∥

∥

∥

l

Lp +

∥

∥

∥∂
|α|+1+ωr,q

x u(s, ·)
∥

∥

∥

h

Lr

)

.

Integrating by parts yields

∫ t

s

e
−

∫ t

η
b(τ)dτ
Γ
γp,q(η, s) · Θ|α|+1(η, s)dη =

∫ t

s

Γ
γp,q (η, s) · Θ|α|+1(η, s)

1

b(η)
d
(

e
−

∫ t

η
b(τ)dτ)

.(1 + t)λ · Γγp,q(t, s) · Θ|α|+1(t, s).

This ends the proof of (1.17).

Let T0 ≥ 0 be the constant in Lemma 2.3. We can prove that the estimates (1.15) on ‖∂αx v(t, x)‖Lq

is optimal in a similar way as (1.13) in Theorem 1.3. In fact, if s ≥ T0 we take v(s, x) = F−1(χ) and

u(s, x) = 0 to show the optimal decay with respect to v(s, x), such that v(t, x) is a solution of (1.6)

with the initial data v(s, x) = F−1(χ) and ∂tv(s, x) = −Λu(s, x) = 0, where T0 ≥ 0 is the constant

in Lemma 2.3 and χ(ξ) is the smooth function in the proof of Theorem 1.3. Alternatively, we take

u(s, x) = F−1(χ) and v(s, x) = 0 to show the optimal decay with respect to u(s, x). For the case

s ≤ T0, we apply the same procedure as in Theorem 1.3.
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Finally we show that the decay estimate (1.17) is optimal with respect to v(s, x) for all t
2
≥ s ≥ T0

by taking v(s, x) = F−1(χ) and u(s, x) = 0. For (t, ξ) ∈ Zu
ell

and s ≤ t, according to (2.19) in the proof

of Lemma 2.3, we have

û(t, ξ) = Φ
u
1(t, s, ξ)û(s, ξ) + Φu

2(t, s, ξ)∂tû(s, ξ)

= Φ
u
2(t, s, ξ)|ξ| · χ(ξ)

=
−i

√

|mu(t, ξ)|
e

∫ t

s
(
√
|mu(τ,ξ)|+ ∂t

√
|mu(τ,ξ)|

2
√
|mu(τ,ξ)|

− b(τ)
2

)dτ
· |ξ|[Ẽ (t, s, ξ)]12 · χ(ξ),

and |[Ẽ (t, s, ξ)]12| & 1. The rest of the proof is similar to the proof of the optimal decay in Theorem

1.3. The proof is completed. �

Remark 3.1 The estimate (1.16) on ‖∂αx u(t, x)‖Lq derived from the optimal estimate (1.14) is not

optimal with respect to u(s, x) for the linear system. If one take v(s, x) = 0 and u(s, x) = F−1(χ),

then the initial data of the wave equation satisfied by u(s, x) are u(s, x) = F−1(χ) and ∂tu(s, x) =

Λv(s, t) − b(s)u(s, x) = −b(s)F−1(χ). According to the estimates in the proof of Lemma 2.3, we see

that if s ≥ T0,

|Φu
1(t, s, ξ)û(s, ξ)| ≈ b(s)

b(t)
· e−|ξ|

2
∫ t

s
C

b(τ)
dτ
χ(ξ),

and

|Φv
2(t, s, ξ)∂tû(s, ξ)| ≈ 1

b(t)
· e−|ξ|

2
∫ t

s
C

b(τ)
dτ · b(s)χ(ξ) ≈ b(s)

b(t)
· e−|ξ|

2
∫ t

s
C

b(τ)
dτ
χ(ξ).

They are decaying of the same order and cancellations happen as we can prove a faster decay (1.17).

We have formulated two kinds of decay estimates on ‖∂αx u(t, ·)‖Lq in Theorem 1.4: one is (1.16)

without optimal decay rates, the other is (1.17) with optimal decay rates but the regularity required

is one order higher. In application to the nonlinear system, we can use the optimal (1.17) for the

estimates of ‖∂αx u(t, ·)‖Lq with lower index α and apply (1.16) to those with higher index α.

We improve the decay estimates (1.16) on ‖∂αx u(t, ·)‖Lq in Theorem 1.4 by taking advantage of the

cancellation between the initial data u(s, x) and ∂tu(s, x) = Λv(s, x) − b(s)u(s, x) if we regard u(t, x)

as a solution of the wave equation (1.7).

Proposition 3.1 (Decay rates improved by cancellation) Let (v(t, x), u(t, x)) be the solution of

the linear system (1.5) corresponding to the initial data (v(s, x), u(s, x)) starting from the time s. Then

for q ∈ [2,∞] and 1 ≤ p, r ≤ 2 (or θ ∈ [0, n
2
)), and for t ≥ s ≥ T0 (T0 ≥ 0 is the constant in Lemma

2.3), we have

‖∂αx u(t, ·)‖Lq .(1 + t)λ · Γγp,q(t, s) ·Θ|α|+1(t, s) ·
(∥

∥

∥v(s, ·)
∥

∥

∥

l

Lp +

∥

∥

∥∂
|α|+ωr,q

x v(s, ·)
∥

∥

∥

h

Lr

)

+ (1 + t)λ(1 + s)λ · Γγp,q(t, s) · Θ|α|+2(t, s) ·
(∥

∥

∥u(s, ·)
∥

∥

∥

l

Lp +

∥

∥

∥∂
|α|+ωr,q

x u(s, ·)
∥

∥

∥

h

Lr

)
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+ Ĉ
( 1 + t

1 + s

)λ
· Γγp,q(t, s) ·Θ|α|(t, s) ·

( 1

(1 + s)1−λ + (1 + (1 + t)1+λ − (1 + s)1+λ)−1
)

·
(∥

∥

∥u(s, ·)
∥

∥

∥

l

Lp +

∥

∥

∥∂
|α|+ωr,q

x u(s, ·)
∥

∥

∥

h

Lr

)

, (3.2)

where Ĉ ≥ 0 is a constant and γp,q := n(1/p − 1/q) (or γp,q replaced by βθ,q := θ + γ2,q and ‖ · ‖Lp

norm replaced by ‖ · ‖Ḣ−θ ), and ωr,q > γr,q for (r, q) , (2, 2) and ω2,2 = 0. The decay estimate (3.2) is

optimal with respect to v(s, x) for all t
2
≥ s ≥ T0.

Proof. If Ĉ = 0, the decay rates in (3.2) are equal to that in (1.17) in Theorem 1.4, but the regularity

required is one order lower. We note that the estimates on ‖∂αx u(t, ·)‖Lq in (1.17) are deduced from the

optimal decay estimates on ‖∇∂αx v(t, ·)‖Lq , which requires regularity one order higher. Noticing that

cancellations happen in the evolution between the initial data if we regard u(t, x) as a solution of the

wave equation (1.7), we make advantage of the cancellation to improve the decay estimates without

the one order higher regularity.

Similar to the proof of Lemma 2.3 but with more precise estimates concerned with the possible

cancellations, for (t, ξ) ∈ Zu
ell

and s ≤ t, we have

û(t, ξ) = Φ
u
1(t, s, ξ)û(s, ξ) + Φu

2(t, s, ξ)∂tû(s, ξ)

= Φ
u
1(t, s, ξ)û(s, ξ) + Φu

2(t, s, ξ)(|ξ|v̂(s, ξ) − b(s)û(s, ξ))

=
(

Φ
u
1(t, s, ξ) − b(s)Φu

2(t, s, ξ)
)

û(s, ξ) + |ξ|Φu
2(t, s, ξ)v̂(s, ξ)

=
1

√

|mu(t, ξ)|
e

∫ t

s
(
√
|mu(τ,ξ)|+ ∂t

√
|mu(τ,ξ)|

2
√
|mu(τ,ξ)|

− b(τ)
2

)dτ

·
(

(
√

|mu(s, ξ)|[Ẽ (t, s, ξ)]11 + i
b(s)

2
[Ẽ (t, s, ξ)]12)û(s, ξ) − i|ξ|[Ẽ (t, s, ξ)]12v̂(s, ξ)

)

,

according to (2.19) in the proof of Lemma 2.3, where we have proved that there are no cancelations

between
√

|mu(s, ξ)|[Ẽ (t, s, ξ)]11 − i
b(s)

2
[Ẽ (t, s, ξ)]12,

and here we show that the leading terms within the summation

√

|mu(s, ξ)|[Ẽ (t, s, ξ)]11 + i
b(s)

2
[Ẽ (t, s, ξ)]12

cancel each other. In fact, noticing that

Ẽ (t, s, ξ) = MN1(t, ξ)Q(t, s, ξ)N−1
1 (t, ξ)M−1

= M(I + N(1)(t, ξ))Q(t, s, ξ)(I + N(1)(t, ξ))−1M−1,

where ‖N(1)(t, ξ)‖max .
1

(1+t)1−λ and ‖Q(t, s, ξ) − H(t, s, ξ)‖max .
1

(1+s)1−λ with

H(t, s, ξ) =















1 0

0 e−2
∫ t

s

√
|mu(τ,ξ)|dτ
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as shown in Lemma 2.1, we have

‖Ẽ (t, s, ξ) − MH(t, s, ξ)M−1‖max .
1

(1 + s)1−λ , (3.3)

and

∥

∥

∥

∥

MH(t, s, ξ)M−1 − 1

2

(

1 i

−i 1

)

∥

∥

∥

∥

max
=

1

2
e−2

∫ t

s

√
|mu(τ,ξ)|dτ

∥

∥

∥

∥

(

1 −i

i 1

)

∥

∥

∥

∥

max
≤ 1

2
e−2

∫ t

s
εub(τ)dτ. (3.4)

Therefore, (3.3) and (3.4) imply

∥

∥

∥

∥

Ẽ (t, s, ξ) − 1

2

(

1 i

−i 1

)

∥

∥

∥

∥

max
.

1

(1 + s)1−λ + e−2
∫ t

s
εub(τ)dτ, (3.5)

which means

∣

∣

∣

∣

√

|mu(s, ξ)|
b(s)

[Ẽ (t, s, ξ)]11 +
i

2
[Ẽ (t, s, ξ)]12

∣

∣

∣

∣

.

∣

∣

∣

∣

√

|mu(s, ξ)|
b(s)

· 1

2
+

i

2
· i

2

∣

∣

∣

∣

+
1

(1 + s)1−λ + e−2
∫ t

s
εub(τ)dτ

.
1

b(s)

∣

∣

∣

∣

√

|mu(s, ξ)| − 1

2
b(s)

∣

∣

∣

∣

+
1

(1 + s)1−λ + e−2
∫ t

s
εub(τ)dτ

.
|ξ|2 + |b′(s)|

b2(s)
+

1

(1 + s)1−λ + e−2
∫ t

s
εub(τ)dτ.

It follows that

∣

∣

∣

∣

√

|mu(s, ξ)|[Ẽ (t, s, ξ)]11 + i
b(s)

2
[Ẽ (t, s, ξ)]12

∣

∣

∣

∣

. b(s) ·
∣

∣

∣

∣

√

|mu(s, ξ)|
b(s)

[Ẽ (t, s, ξ)]11 +
i

2
[Ẽ (t, s, ξ)]12

∣

∣

∣

∣

.
|ξ|2
b(s)
+

1

1 + s
+

1

(1 + s)λ
e−2

∫ t

s
εub(τ)dτ.

Compared with

∣

∣

∣

∣

√

|mu(s, ξ)|[Ẽ (t, s, ξ)]11

∣

∣

∣

∣

≈ b(t),
∣

∣

∣

∣

i
b(s)

2
[Ẽ (t, s, ξ)]12

∣

∣

∣

∣

≈ b(t),

the multiplier
|ξ|2

b2(s)
leads to a decay estimate multiplied by

Θ
2(t, s) · (1 + s)2λ,

and the multiplier

1

(1 + s)1−λ+e−2
∫ t

s
εub(τ)dτ

.
1

(1 + s)1−λ+e−2εu((1+t)1−λ−(1+s)1−λ)
.

1

(1 + s)1−λ+(1+(1+t)1+λ−(1+s)1+λ)−1,

since (1 + (1 + t)1+λ − (1 + s)1+λ)e−2εu((1+t)1−λ−(1+s)1−λ)
. 1 for all 0 ≤ s ≤ t. �

Remark 3.2 If Ĉ = 0, then (3.2) is reduced to the optimal decay estimate (1.17) with the higher

order regularity
∥

∥

∥∂
|α|+1+ωr,q

x (v(s, ·), u(s, ·))
∥

∥

∥

h

Lr replaced by
∥

∥

∥∂
|α|+ωr,q

x u(s, ·)
∥

∥

∥

h

Lr . That is, (3.2) is stronger

than both (1.16) and (1.17) if Ĉ = 0. Here we cannot prove that Ĉ = 0 due to the approximation error

in (3.5). Fortunately, the strategy of applying (1.17) and (1.16) to ‖∂αx u(t, ·)‖Lq with different index α

works for n ≥ 2 and λ ∈ [0, 1).
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4 Reformulated Euler system

We apply the optimal decay estimates Theorem 1.4 of the linear system (1.5) to the study of asymp-

totic behavior of nonlinear system (1.3). We rewrite (1.3) as

∂t

(

v

u

)

=

(

0 −∇·
−∇ − µ

(1+t)λ

) (

v

u

)

+

(

−u · ∇v −̟v∇ · u
−(u · ∇)u −̟v∇v

)

, (4.1)

and the solution can be expressed as by the Duhamel principle
(

v(t, x)

u(t, x)

)

= G(t, 0)

(

v(0, x)

u(0, x)

)

+

∫ t

0

G(t, s)Q(s, x)ds, (4.2)

where

Q(s, x) =

(

Q1(s, x)

Q2(s, x)

)

=

(

−u · ∇v −̟v∇ · u
−(u · ∇)u −̟v∇v

)

, G(t, s) =

(

G11(t, s) G12(t, s)

G21(t, s) G22(t, s)

)

.

The semigroup (Green matrix) G(t, s) stands for the evolution of the linear system starting from the

time s to t. For simplicity, we may write a function of time and space v(t, x) as v(t).

It should be noted that G(t, s) , G(t−s, 0) since the decaying damping
µ

(1+t)λ
on (s, t) is completely

different from the damping on (0, t − s). One should be careful that the optimal decay estimates of

G(t, s) depends on both t and s (not only on t − s).

4.1 Optimal L2 decay estimates

We start with the optimal L1-L2 decay estimates of the nonlinear system (1.3).

Lemma 4.1 For t ≥ s ≥ T0 (T0 ≥ 0 is the constant in Lemma 2.3), there hold

‖∂αxG11(t, s)φ(x)‖ .Γ n
2 (t, s) · Θ|α|(t, s) · (‖φ‖l

L1 + ‖∂|α|x φ‖h),

‖∂αxG12(t, s)φ(x)‖ .(1 + s)λ · Γ n
2 (t, s) · Θ|α|+1(t, s) · (‖φ‖l

L1 + ‖∂|α|x φ‖h),

‖∂αxG21(t, s)φ(x)‖ .(1 + t)λ · Γ n
2 (t, s) · Θ|α|+1(t, s) · (‖φ‖l

L1 + ‖∂|α|x φ‖h),

‖∂αxG22(t, s)φ(x)‖ .
( 1 + t

1 + s

)λ
· Γ n

2 (t, s) · Θ|α|(t, s) · (‖φ‖l
L1 + ‖∂|α|x φ‖h). (4.3)

Furthermore,

‖∂αxG22(t, s)φ(x)‖ .(1 + t)λ(1 + s)λ · Γ n
2 (t, s) · Θ|α|+2(t, s) · (‖φ‖l

L1 + ‖∂|α|+1
x φ‖h). (4.4)

Proof. These estimates are simple conclusions of Theorem 1.4. �

Lemma 4.2 For β > 0 and γ > 0, there holds
∫ t

0

(1 + (1 + t)1+λ − (1 + s)1+λ)−β(1 + s)−γds

.



























(1 + t)−min{β(1+λ),γ}, if max{β(1 + λ), γ} > 1,

(1 + t)−min{β(1+λ),γ} ln(e + t), if max{β(1 + λ), γ} = 1,

(1 + t)−γ−β(1+λ)+1, if max{β(1 + λ), γ} < 1.

(4.5)
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Proof. Denote δp,q = 1 for p = q and δp,q = 0 for p , q, we can calculate

∫ t

0

(1 + (1 + t)1+λ − (1 + s)1+λ)−β(1 + s)−γds

.

(

∫ t/2

0

+

∫ t

t/2

)

(1 + (1 + t)1+λ − (1 + s)1+λ)−β(1 + s)−γds

.

∫ t/2

0

(1 + t)−β(1+λ)(1 + s)−γds +

∫ t

t/2

(1 + (1 + t)1+λ − (1 + s)1+λ)−β(1 + t)−γds

.(1 + t)−β(1+λ)(1 + t)max{1−γ,0}| ln(e + t)|δγ,1 + (1 + t)−γ(1 + t)max{1−β(1+λ),0}| ln(e + t)|δβ(1+λ),1 ,

since

∫ t

t/2

(1 + (1 + t)1+λ − (1 + s)1+λ)−βds .

∫ t

t/2

(1 + (t − s)1+λ)−βds

.

∫ t

t/2

(1 + t − s)−β(1+λ)ds =

∫ t/2

0

(1 + s)−β(1+λ)ds.

We can verify (4.5) in different cases. �

Lemma 4.3 For β > 0, γ > 0, and k ≥ 0, there holds

∫ t

0

(1 + s)λ · Γβ(t, s) · Θk+1(t, s) · (1 + s)−γds

.

∫ t

0

Γ
β(t, s) · Θk(t, s) · (1 + s)−γds .

∫ t

0

Γ
β+k(t, s) · (1 + s)−γds

.



























(1 + t)−min{ 1+λ
2

(β+k),γ}, if max{ 1+λ
2

(β + k), γ} > 1,

(1 + t)−min{ 1+λ
2

(β+k),γ} ln(e + t), if max{ 1+λ
2

(β + k), γ} = 1,

(1 + t)−γ−
1+λ

2
(β+k)+1, if max{ 1+λ

2
(β + k), γ} < 1.

(4.6)

Proof. We note that Θ(t, s) = min{Γ(t, s), (1 + t)−λ} as defined in (1.8). The proof is completed

according to Lemma 4.2. �

The following higher order energy estimates will be used to close the decay estimates of nonlinear

system (1.3).

Lemma 4.4 Assume that (v0, u0) ∈ H[ n
2

]+3 and a priori assume that

‖(v(t), u(t))‖
H

[ n
2

]+2 ≤ δ0b(t), (4.7)

where δ0 > 0 is a small constant. Then the nonlinear system (1.3) admits a global solution (v, u) such

that

‖(v, u)‖2
H

[ n
2

]+3
+

∫ t

0

b(s)
(‖∇v(s)‖2

H
[ n

2
]+2
+ ‖u(s)‖2

H
[ n

2
]+3

)

ds . ‖(v0, u0)‖2
H

[ n
2

]+3
. (4.8)
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Proof. The energy estimate (4.8) is proved through the following four steps. The case of time inde-

pendent damping and n = 3 is proved in [33]. Here the main difficulty lies in the absence of uniform

lower bound of the weak damping coefficient.

Step I: For 0 ≤ k ≤ [n
2
] + 2, we have

d

dt
‖∂k

x(v, u)‖2 + b(t)‖∂k
xu‖2 . ‖(v, u)‖

H
[ n

2
]+2 · (‖∂k+1

x v‖2 + ‖∂k
xu‖2). (4.9)

This is proved by applying ∂k
x to (1.3) and then multiplying the equation by ∂k

x(v, u), summing up and

integrating over Rn. Here we omit the details.

Step II: For 0 ≤ k ≤ [n
2
] + 2, we have

d

dt
‖∂k+1

x (v, u)‖2 + b(t)‖∂k+1
x u‖2 . ‖(v, u)‖

H
[ n

2
]+2 · (‖∂k+1

x v‖2 + ‖∂k+1
x u‖2). (4.10)

This is proved by applying ∂k+1
x to (1.3) and then multiplying the equation by ∂k+1

x (v, u), summing up

and integrating over Rn.

Step III: For 0 ≤ k ≤ [n
2
] + 2, we have

d

dt

∫

∂k
xu · ∇∂k

xv + ‖∂k+1
x v‖2 . ‖∂k

xu‖2 + ‖(v, u)‖
H

[ n
2

]+2 · (‖∂k+1
x v‖2 + ‖∂k+1

x u‖2). (4.11)

This is proved by applying ∂k
x to (1.3)2 and then multiplying it by ∇∂k

xv, utilizing (1.3)1 to dealing

with the mixed time derivative term
∫

∂k
x∂tu · ∇∂k

xv.

Step IV: Multiply (4.11) by b(t), for 0 ≤ k ≤ [n
2
] + 2, we have

d

dt

(

b(t)

∫

∂k
xu · ∇∂k

xv
)

+ b(t)‖∂k+1
x v‖2

.|b′(t)|
∫

∣

∣

∣∂k
xu · ∇∂k

xv
∣

∣

∣ + b(t)‖∂k
xu‖2 + b(t)‖(v, u)‖

H
[ n

2
]+2 · (‖∂k+1

x v‖2 + ‖∂k+1
x u‖2)

.ε1b(t)‖∂k+1
x v‖2 + b(t)‖∂k

xu‖2 + b(t)‖(v, u)‖
H

[ n
2

]+2 · (‖∂k+1
x v‖2 + ‖∂k+1

x u‖2),

where ε1 > 0 is a small constant. Therefore, for 0 ≤ k ≤ [n
2
] + 2,

d

dt

(

b(t)

∫

∂k
xu · ∇∂k

xv
)

+ b(t)‖∂k+1
x v‖2 . b(t)‖∂k

xu‖2 + b(t)‖(v, u)‖
H

[ n
2

]+2 · (‖∂k+1
x v‖2 + ‖∂k+1

x u‖2). (4.12)

Multiply (4.12) by a small constant ε2 > 0, summing it up with (4.9) and (4.10), we have

d

dt
‖(v, u)‖2

H
[ n

2
]+3
+

d

dt

(

ε2

[n/2]+2
∑

k=0

b(t)

∫

∂k
xu · ∇∂k

xv
)

+ b(t)(‖∇v‖2
H

[ n
2

]+2
+ ‖u‖2

H
[ n

2
]+3

) ≤ 0,

provided that the a priori assumption (4.7) is valid. The constant ε2 > 0 is small such that

∣

∣

∣

∣
ε2

[n/2]+2
∑

k=0

b(t)

∫

∂k
xu · ∇∂k

xv

∣

∣

∣

∣
≤ 1

2
‖(v, u)‖2

H
[ n

2
]+3
.

The proof is completed. �

We present the optimal L1-L2 decay rates of the nonlinear system (1.3).
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Proposition 4.1 (Decay rates of nonlinear system) For n ≥ 2 and λ ∈ [0, 1), there exists a con-

stant ε0 > 0, such that the solution (v, u) of the nonlinear system (1.3) corresponding to initial data

(v0, u0) with small energy ‖(v0, u0)‖
L1∩H

[ n
2

]+3 ≤ ε0 exists globally and satisfies







































‖∂αx v‖ . (1 + t)−
1+λ

4
n− 1+λ

2
|α|, 0 ≤ |α| ≤ [n

2
] + 1,

‖∂αx u‖ . (1 + t)−
1+λ

4
n− 1+λ

2
(|α|+1)+λ, 0 ≤ |α| ≤ [n

2
],

‖∂αx u‖ . (1 + t)−
1+λ

4
n− 1+λ

2
|α|+λ, |α| = [n

2
] + 1,

‖(v, u)‖
H

[ n
2

]+3 . 1.

(4.13)

The first two decay estimates in (4.13) (i.e., the decay estimates on ‖∂αx v‖ with 0 ≤ |α| ≤ [n
2
] + 1 and

‖∂αx u‖ with 0 ≤ |α| ≤ [n
2
]) are optimal.

Proof. Suppose that the local solution (v, u) exists for t ∈ (0, T ). Denote the weighted energy

En(t̃) := sup
t∈(0,t̃)

{
∑

0≤|α|≤[n/2]+1

(1 + t)
1+λ

4
n+ 1+λ

2
|α|‖∂αx v‖,

∑

0≤|α|≤[n/2]

(1 + t)
1+λ

4
n+ 1+λ

2
(|α|+1)−λ‖∂αx u‖,

∑

|α|=[n/2]+1

(1 + t)
1+λ

4
n+ 1+λ

2
|α|−λ‖∂αx u‖,

∑

|α|=[n/2]+2

(1 + t)
1+λ

4
n‖∂αx (v, u)‖,

∑

|α|=[n/2]+3

‖∂αx (v, u)‖
}

. (4.14)

We claim that under the condition ‖(v0, u0)‖
L1∩H

[ n
2

]+3 ≤ ε0, there holds

En(t̃) . δ0, ∀t̃ ∈ (0, T ), (4.15)

where ε0 > 0 and δ0 > 0 are small constants to be determined.

The global existence and the a priori assumption (4.15) (which implies the decay estimates (4.13))

will be proved in the following three steps. For the sake of simplicity, we take the case n = 3 for

example. Other cases with n ≥ 2 follow similarly. We may assume that T0 = 0, where T0 ≥ 0 is the

constant in Lemma 2.3. That is, we consider the nonlinear system (1.3) starting form the time T0 and

we write t − T0 as t for convenience.

Step I: Basic energy decay estimates.

According to the Duhamel principle (4.2) and the decay estimates of the Green matrix G(t, s) in

Lemma 4.1, we have

‖v(t)‖ .‖G11(t, 0)v0‖ + ‖G12(t, 0)u0‖ +
∫ t

0

‖G11(t, s)Q1(s)‖ds +

∫ t

0

‖G12(t, s)Q2(s)‖ds

.ε0(1 + t)−
1+λ

4
n
+

∫ t

0

Γ
n
2 (t, s) · (‖Q1(s)‖l

L1 + ‖Q1(s)‖h)ds

+

∫ t

0

(1 + s)λ · Γ n
2 (t, s) · Θ(t, s) · (‖Q2(s)‖l

L1 + ‖Q2(s)‖h)ds

.ε0(1 + t)−
1+λ

4
n
+ E2

n(t)

∫ t

0

Γ
n
2 (t, s) · (1 + s)−

1+λ
2

n−1ds

+ E2
n(t)

∫ t

0

(1 + s)λ · Γ n
2 (t, s) · Θ(t, s) · (1 + s)−

1+λ
2

n− 1+λ
2 ds
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.ε0(1 + t)−
1+λ

4
n
+ E2

n(t)(1 + t)−
1+λ

4
n,

where we have used Lemma 4.3 (note that 1+λ
2

n + 1+λ
2
> 1 for n ≥ 2 and λ ∈ [0, 1)) and the following

decay estimates on ‖Q(s)‖L1 and ‖Q(s)‖ (here and after, we use D j := ∂
j
x and we may also write u as

u for simplicity)

‖Q1(s)‖L1 . ‖uDv‖L1 + ‖vDu‖L1 . ‖u‖‖Dv‖ + ‖v‖‖Du‖ . E2
n(s)(1 + s)−

1+λ
2

n−1,

‖Q2(s)‖L1 . ‖uDu‖L1 + ‖vDv‖L1 . ‖u‖‖Du‖ + ‖v‖‖Dv‖ . E2
n(s)(1 + s)−

1+λ
2 n− 1+λ

2 .

For n = 3, we have

‖u(s)‖L∞ . ‖Du‖ 1
2 ‖D2u‖ 1

2 . En(s)(1 + s)−
1+λ

4
n−1,

‖v(s)‖L∞ . ‖Dv‖ 1
2 ‖D2v‖ 1

2 . En(s)(1 + s)−
1+λ

4
n− 1+λ

2
·3,

‖Du(s)‖L∞ . ‖D2u‖ 1
2 ‖D3u‖ 1

2 . En(s)(1 + s)−
1+λ

4 n− 1
2 ,

‖Dv(s)‖L∞ . ‖D2v‖ 1
2 ‖D3v‖ 1

2 . En(s)(1 + s)−
1+λ

4
n− 1

2
(1+λ),

‖D2u(s)‖L∞ . ‖D3u‖ 1
2 ‖D4u‖ 1

2 . En(s)(1 + s)−
1+λ

8
n,

‖D2v(s)‖L∞ . ‖D3v‖ 1
2 ‖D4v‖ 1

2 . En(s)(1 + s)−
1+λ

8
n,

and

‖Q1(s)‖ . ‖uDv‖ + ‖vDu‖ . ‖u‖L∞‖Dv‖ + ‖v‖L∞‖Du‖ . E2
n(s)(1 + s)−

1+λ
2

n− 1+λ
2
−1,

‖Q2(s)‖ . ‖uDu‖ + ‖vDv‖ . ‖u‖L∞‖Du‖ + ‖v‖L∞‖Dv‖ . E2
n(s)(1 + s)−

1+λ
2

n−2,

‖DQ1(s)‖ . ‖DuDv‖ + ‖uD2v‖ + ‖vD2u‖ . E2
n(s)(1 + s)−

1+λ
2

n−1− 1+λ
2 ,

‖DQ2(s)‖ . ‖uD2u‖ + ‖DuDu‖ + ‖vD2v‖ + ‖DvDv‖ . E2(s)(1 + s)−
1+λ

2
n−θ12 ,

where θ12 = min{ 3
2
, 1 + λ} ≥ 1+λ

2
.

Using the above estimates, we have

‖Dv(t)‖ .‖DG11(t, 0)v0‖ + ‖DG12(t, 0)u0‖ +
∫ t

0

‖DG11(t, s)Q1(s)‖ds +

∫ t

0

‖DG12(t, s)Q2(s)‖ds

.ε0(1 + t)−
1+λ

4
n− 1+λ

2 +

∫ t

0

Γ
n
2 (t, s) · Θ(t, s) · (‖Q1(s)‖L1 + ‖DQ1(s)‖)ds

+

∫ t

0

(1 + s)λ · Γ n
2 (t, s) · Θ2(t, s) · (‖Q2(s)‖L1 + ‖DQ2(s)‖)ds

.ε0(1 + t)−
1+λ

4
n− 1+λ

2 + E2
n(t)

∫ t

0

Γ
n
2 (t, s) · Θ(t, s) · (1 + s)−

1+λ
2

n−1ds

+ E2
n(t)

∫ t

0

(1 + s)λ · Γ n
2 (t, s) · Θ2(t, s) · (1 + s)−

1+λ
2

n− 1+λ
2 ds

.ε0(1 + t)−
1+λ

4
n− 1+λ

2 + E2
n(t)(1 + t)−

1+λ
4

n− 1+λ
2 ,
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and

‖D2v(t)‖ .‖D2G11(t, 0)v0‖ + ‖D2G12(t, 0)u0‖ +
∫ t

0

‖D2G11(t, s)Q1(s)‖ds +

∫ t

0

‖D2G12(t, s)Q2(s)‖ds

.ε0(1 + t)−
1+λ

4
n−(1+λ)

+

∫ t

0

Γ
n
2 (t, s) · Θ2(t, s) · (‖Q1(s)‖L1 + ‖D2Q1(s)‖)ds

+

∫ t

0

(1 + s)λ · Γ n
2 (t, s) · Θ3(t, s) · (‖Q2(s)‖L1 + ‖D2Q2(s)‖)ds

.ε0(1 + t)−
1+λ

4
n−(1+λ)

+ E2
n(t)

∫ t

0

Γ
n
2 (t, s) · Θ2(t, s) · (1 + s)−

1+λ
2

n−1ds

+ E2
n(t)

∫ t

0

(1 + s)λ · Γ n
2 (t, s) · Θ3(t, s) · (1 + s)−

1+λ
2

n− 1+λ
2 ds

.ε0(1 + t)−
1+λ

4
n−(1+λ)

+ E2
n(t)(1 + t)−

1+λ
4

n−(1+λ),

since
1 + λ

2
n +

1 + λ

2
≥ 1 + λ

4
n + (1 + λ), for n ≥ 2, λ ∈ [0, 1).

We have also used the following estimates

‖D2Q1(s)‖ . ‖uD3v‖ + ‖DuD2v‖ + ‖DvD2u‖ + ‖vD3u‖ . E2
n(s)(1 + s)−

1+λ
2

n−1,

‖D2Q2(s)‖ . ‖uD3u‖ + ‖DuD2u‖ + ‖vD3v‖ + ‖DvD2v‖ . E2
n(s)(1 + s)−

1+λ
2

n−1.

The decay estimates on ‖∂αx v‖ for 0 ≤ |α| ≤ [n
2
] + 1 are based on the optimal decay estimates on

‖∂αxG11(t, s)‖ and ‖∂αxG12(t, s)‖ in (4.3). However, the estimates on ‖∂αxG21(t, s)‖ and ‖∂αxG22(t, s)‖ in

(4.3) is insufficient for the optimal decay estimates on ‖∂αx u‖ for 0 ≤ |α| ≤ [n
2
]. In fact, we use the

optimal decay estimates in (4.4) to show the decay estimates on ‖∂αx u‖ for 0 ≤ |α| ≤ [n
2
] in a similar

way as ‖∂αx v‖ for 1 ≤ |α| ≤ [n
2
] + 1. One can check that the condition on the estimate of ‖∂k

xu‖ for

0 ≤ k ≤ [n
2
] is equivalent to the condition on the estimate of ‖∂k+1

x v‖.
Further, we use the decay estimates in (4.3) to show the decay estimates on ‖∂αx u‖ for [n

2
] + 1 ≤

|α| ≤ [n
2
] + 2 since the regularity required in (4.3) is one order lower than that in (4.4). We note that

in this case the condition on the estimate of ‖∂k
xu‖ for [n

2
] + 1 ≤ k ≤ [n

2
] + 2 is similar to the condition

on the estimate of ‖∂k
xv‖. We have

‖D3Q(s)‖ . ‖(v, u)D4(v, u)‖ + ‖D(v, u)D3(v, u)‖ + ‖D2(v, u)D2(v, u)‖ . E2
n(s)(1 + s)−

1+λ
4

n−θ3 ,

with

θ3 = min
{1 + λ

2
· 3, 1 + λ

4
n +

1

2
, 1 +

1 + λ

8
n
}

.

Therefore,

‖D3u(t)‖ .‖D3G21(t, 0)v0‖ + ‖D3G22(t, 0)u0‖ +
∫ t

0

‖D3G21(t, s)Q1(s)‖ds +

∫ t

0

‖D3G22(t, s)Q2(s)‖ds
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.ε0(1 + t)−
1+λ

4
n− 3

2
(1+λ)+λ

+

∫ t

0

(1 + t)λ · Γ n
2 (t, s) · Θ4(t, s) · (‖Q1(s)‖L1 + ‖D3Q1(s)‖)ds

+

∫ t

0

( 1 + t

1 + s

)λ
· Γ n

2 (t, s) · Θ3(t, s) · (‖Q2(s)‖L1 + ‖D3Q2(s)‖)ds

.ε0(1 + t)−
1+λ

4 n− 3
2 (1+λ)+λ

+ E2
n(t)

∫ t

0

(1 + t)λ · Γ n
2 (t, s) · Θ4(t, s) · (1 + s)−min{ 1+λ4 n+θ3 ,

1+λ
2 n+1}ds

+ E2
n(t)

∫ t

0

( 1 + t

1 + s

)λ
· Γ n

2 (t, s) · Θ3(t, s) · (1 + s)−min{ 1+λ
4

n+θ3 ,
1+λ

2
n+ 1+λ

2
}ds

.ε0(1 + t)−
1+λ

4
n
+ E2

n(t)(1 + t)−
1+λ

4
n,

since θ3 ≥ λ. The estimates on ‖D3v‖ follows similarly.

Step II: Higher order energy estimates. We note that the condition (4.15) is stronger than the a

priori assumption (4.7), and according to (4.8) in Lemma 4.4, we have

‖(v, u)‖2
H

[ n
2

]+3
+

∫ t

0

b(s)
(‖∇v(s)‖2

H
[ n

2
]+2
+ ‖u(s)‖2

H
[ n

2
]+3

)

ds . ‖(v0, u0)‖2
H

[ n
2

]+3
. (4.16)

Step III: Closure of the a priori estimate (4.15). Combining the above estimates and choosing

ε0 > 0 and δ0 > 0 to be sufficiently small such that C(ε0 + δ
2
0
) ≤ δ0, we see that the a priori estimate

(4.15) holds for all the time t ∈ (0,+∞).

Finally, we show that those estimates (‖∂αx v‖ with 0 ≤ |α| ≤ [n
2
] + 1 and ‖∂αx u‖ with 0 ≤ |α| ≤ [n

2
])

are optimal. We take the estimate on ‖v‖ for example. According to the optimal decay estimates

Lemma 4.1 and the energy estimates in Step I, we choose the initial data (v0, u0) such that ‖G11(t, 0)v0‖
decays optimally, then we have

‖v(t)‖ & ‖G11(t, 0)v0‖ − ‖G12(t, 0)u0‖ −
∫ t

0

‖G11(t, s)Q1(s)‖ds −
∫ t

0

‖G12(t, s)Q2(s)‖ds,

where ‖G12(t, 0)u0‖ decays faster than ‖G11(t, 0)v0‖, and
∫ t

0
‖G11(t, s)Q1(s)‖ds+

∫ t

0
‖G12(t, s)Q2(s)‖ds

decays no slower than ‖G11(t, 0)v0‖. We note that Q1(t, x) and Q2(t, x) are quadratic, and we rescale

the initial data as (ε1v0, ε1u0) with ε1 > 0 sufficiently small such that neither
∫ t

0
‖G11(t, s)Q1(s)‖ds

nor
∫ t

0
‖G12(t, s)Q2(s)‖ds is comparable with ‖G11(t, 0)v0‖. In fact, according to the proof in Step I,

we have
∫ t

0

‖G1 j(t, s)Q j(s)‖ds . E2
n(t)(1 + t)−

1+λ
4 n
. δ2

0(1 + t)−
1+λ

4 n, j = 1, 2,

and

‖G11(t, 0)v0‖ ≈ ε0(1 + t)−
1+λ

4 n,

where the small constants ε0 ≈ δ0 as in the proof Step III. That is, ‖v(t)‖ decays in the same order as

‖G11(t, 0)v0‖. The proof is completed. �

Proof of Theorem 1.1. This is proved in Proposition 4.1. �

35



4.2 Optimal Lq decay estimates

We now turn to the L1-Lq decay estimates of the nonlinear system (1.3). Similar to Lemma 4.4, we

have the following higher order energy estimates.

Lemma 4.5 Assume that (v0, u0) ∈ H[ n
2

]+k with k ≥ 2 and a priori assume that

‖(v(t), u(t))‖
H

[ n
2

]+2 ≤ δ0b(t),

where δ0 > 0 is a small constant. Then the nonlinear system (1.3) admits a global solution (v, u) such

that

‖(v, u)‖2
H

[ n
2

]+k
+

∫ t

0

b(s)
(‖∇v(s)‖2

H
[ n

2
]+k−1
+ ‖u(s)‖2

H
[ n

2
]+k

)

ds . ‖(v0, u0)‖2
H

[ n
2

]+k
. (4.17)

Proof. The proof is completely same as that in Lemma 4.4. We note that the a priori assump-

tion only requires the norms ‖(v(t), u(t))‖
H

[ n
2

]+2 , which is sufficient for the required estimates such as

‖∂x(v(t), u(t))‖L∞ and ‖(v(t), u(t))‖L∞ . �

Lemma 4.6 For q ∈ [2,∞] and 1 ≤ p, r ≤ 2 (or θ ∈ [0, n
2
)), and for t ≥ s ≥ T0 (T0 ≥ 0 is the

constant in Lemma 2.3), we have

‖∂αxG11(t, s)φ(x)‖Lq .Γ
γp,q(t, s) · Θ|α|(t, s) · (‖φ‖lLp + ‖∂|α|+ωr,q

x φ‖hLr ),

‖∂αxG12(t, s)φ(x)‖Lq .(1 + s)λ · Γγp,q(t, s) ·Θ|α|+1(t, s) · (‖φ‖lLp + ‖∂|α|+ωr,q

x φ‖hLr ),

‖∂αxG21(t, s)φ(x)‖Lq .(1 + t)λ · Γγp,q(t, s) ·Θ|α|+1(t, s) · (‖φ‖lLp + ‖∂|α|+ωr,q

x φ‖hLr ),

‖∂αxG22(t, s)φ(x)‖Lq .

( 1 + t

1 + s

)λ
· Γγp,q(t, s) · Θ|α|(t, s) · (‖φ‖lLp + ‖∂|α|+ωr,q

x φ‖hLr ),

where γp,q := n(1/p − 1/q) (or γp,q replaced by βθ,q := θ + γ2,q and ‖ · ‖Lp norm replaced by ‖ · ‖Ḣ−θ),
and ωr,q > γr,q for (r, q) , (2, 2) and ω2,2 = 0.

Furthermore,

‖∂αxG22(t, s)φ(x)‖Lq .(1 + t)λ(1 + s)λ · Γγp,q (t, s) · Θ|α|+2(t, s) · (‖φ‖lLp + ‖∂|α|+1+ωr,q

x φ‖hLr ).

Proof. These estimates are simple conclusions of Theorem 1.4. �

We present the following optimal Lq decay estimates of the nonlinear system (1.3).

Proposition 4.2 (Optimal Lq decay estimates) For n ≥ 2, λ ∈ [0, 1), q ∈ [2,∞] and k ≥
3+[γ2,q] with γ2,q := n(1/2−1/q), let (v, u) be the solution to the nonlinear system (1.3) corresponding

to initial data (v0, u0) with small energy such that ‖(v0, u0)‖
L1∩H

[ n
2

]+k ≤ ε0, where ε0 > 0 is a small con-

stant only depending on n, q, k and the constants γ, µ, λ in the system. Then (v, u) ∈ L∞(0,+∞; H[ n
2

]+k)

and satisfies














‖∂αx v‖Lq . (1 + t)−
1+λ

2
γ1,q− 1+λ

2
|α|, 0 ≤ |α| ≤ 1,

‖u‖Lq . (1 + t)−
1+λ

2
γ1,q− 1−λ

2 ,
(4.18)

where γ1,q = n(1 − 1/q). All the decay estimates in (4.18) are optimal.
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Proof. The decay estimates are based on the optimal L2 decay estimates Proposition 4.1, the higher

order energy estimates Lemma 4.5, and the L1-Lq decay estimates of the Green matrix in Lemma 4.6.

We prove the estimate on ‖∂αx v‖Lq with |α| = 1 in (4.18). According to the Duhamel principle (4.2)

and the L1-Lq decay estimates of the Green matrix in Lemma 4.6, we have

‖Dv(t)‖Lq . ‖DG11(t, 0)v0‖Lq + ‖DG12(t, 0)u0‖Lq

+

∫ t

0

‖DG11(t, s)Q1(s)‖Lq ds +

∫ t

0

‖DG12(t, s)Q2(s)‖Lqds

. ε0(1 + t)−
1+λ

2
γ1,q− 1+λ

2 +

∫ t

0

Γ
γ1,q(t, s) · Θ(t, s) · (‖Q1(s)‖L1 + ‖D1+ω2,q Q1(s)‖)ds

+

∫ t

0

(1 + s)λ · Γγ1,q (t, s) · Θ2(t, s) · (‖Q2(s)‖L1 + ‖D1+ω2,q Q2(s)‖)ds

. ε0(1 + t)−
1+λ

2
γ1,q− 1+λ

2 + E2
n(t)

∫ t

0

Γ
γ1,q(t, s) · Θ(t, s) · (1 + s)−

1+λ
2

n−1ds

+E2
n(t)

∫ t

0

(1 + s)λ · Γγ1,q (t, s) · Θ2(t, s) · (1 + s)−
1+λ

2
n− 1+λ

2 ds

. ε0(1 + t)−
1+λ

2 γ1,q− 1+λ
2 + E2

n(t)(1 + t)−
1+λ

2 γ1,q− 1+λ
2 ,

where ω2,q > γ2,q and
1 + λ

2
n +

1 + λ

2
≥ 1 + λ

2
γ1,q +

1 + λ

2
,

which is valid for all n ≥ 2, λ ∈ [0, 1), and q ∈ [2,∞]. Other estimates and cases can be proved

through a similar procedure. �

Proof of Theorem 1.2. This is proved in Proposition 4.2. �
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