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Abstract

This work is devoted to deriving small mass limiting equation for a class of Hamiltonian systems with

multiplicative Lévy noise. Derivation of the limiting equation depends on the structure of the stochastic

Hamiltonian systems, in which a noise-induced drift term arises. We prove convergence to the limiting

equation in probability under appropriate assumptions on smoothness and boundedness. Furthermore, we

demonstrate convergence in moment under stronger assumptions. A Lévy type Smoluchowski-Kramers

approximation result is presented as an illustrative example.

Keywords: Homogenization; Hamiltonian systems; non-Gaussian Lévy noise; noise-induced drift; small
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1. Introduction

The motion of a diffusing particle of mass m can be modeled by a stochastic differential equation

(SDE)

dqt = vtdt, mdvt = −γvtdt+ σdWt,

where γ is the dissipation coefficient, σ is the diffusion coefficient and W is a Wiener process. The small

mass limit problem was studied by Smoluchowski [1] and Kramers [2] when the mass m → 0. Following

their pioneering work, this subject has been investigated by a number of authors. For example, Nelson

[3] derived the limiting equation when γ and σ are constants and a Fokker-Planck equation approach was

provided by Doering [4]. Convergence in probability for γ constant and σ position-dependent was shown

by Freidlin [5]. For the infinite dimensional case, the problem was studied by Cerrai-Freidlin [6]. These
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above problems can be illustrated in the framework of homogenization, for which a splendid relevant

reference is given [7].

Recently, the phenomenon of presence of noise-induced drift term in the small mass limit problem

attracted wide attentions. It arises when the dissipation and diffusion coefficients depend on the state

variable. Then there will be an additional drift term which does not appear in the original system.

This phenomenon was firstly discovered by Hanggi [8] for systems satisfying the fluctuation-dissipation

relation. Then Volpe et al. [9] made an experimental observation for this phenomenon. Hottovy et al. [10]

derived the limiting equation of SDEs with arbitrary state-dependent friction. Birrell et al. developed

small mass limit theory on compact Riemannian manifolds [11] and for Hamiltonian systems [12]. A

generalized homogenization theorem for Langevin systems was proved in [13]. Lim et al. [14] discussed

generalized Langevin equation for non-Markovian anomalous diffusions. We point out that most existing

works mentioned above are for Gaussian noise.

However, random fluctuations in nonlinear dynamical systems are often non-Gaussian [15]. The par-

ticle undergoing Lévy superdiffusion is performing motion with random jumps and step lengths following

a power-law distribution [16]. As an important kind of non-Gaussian noise, Lévy noise have been found

widely in atmospheric turbulence [17], epidemic spreading [18] and cell biological behaviour [19]. Lévy

noise-driven non-equilibrium systems are known to manifest interesting physical properties. It is worth

mentioning that Lévy noise-driven systems do not satisfy classical fluctuation dissipation relation. There-

fore, linear response theory, which is viewed as a generalization of the fluctuation-dissipation theorem,

has been studied for SDEs driven by Lévy noise [20, 21]. It is similar to the previous part that there are

also some small mass limit results for SDEs driven by Lévy noise. For example, Talibi [22] developed

Nelson theory for the α-stable Lévy process. Zhang [23] obtained Smoluchowski-Kramers approximation

for SDEs driven by Lévy noise whose moment is finite.

Hamiltonian dynamics [24], as an equivalent description of Newton’s second law in the framework of

classical mechanics, form the framework of statistical mechanics. Dissipative Hamiltonian systems with

noise have been investigated recently [25, 26].

In this present paper, we derive the small mass limiting equation of a class of dissipative Hamiltonian

systems with Lévy noise

dqεt = ∇pH
ε(t, xε

t )dt,

dpεt = (−γ(t, xε
t )∇pH

ε(t, xε
t )−∇qH

ε(t, xε
t ) + F (t, xε

t ))dt+ σ(t, xε
t−)dLt,

(1.1)

where xε
t = (qεt , p

ε
t ) and H is a Hamiltonian function with small mass parameter ε. The functions

γ, σ and F are dissipation coefficient, diffusion coefficient and external force dependent on (qεt , p
ε
t ),

respectively. Here the process L = {Lt}t≥0 is a Lévy process. An inspiration for this paper goes back
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to the work by Birrell-Wehr [12]. The main idea of proof is the following: By means of the structure of

Hamiltonian systems and a Lyapunov equation, we derive the limiting equation including a noise-induced

drift term. Then, we prove that under appropriate assumptions, the original systems converge to the

limiting equation in moment. Finally, utilizing non-explosion property of the solution of original systems,

we show the convergence in probability for weaker assumptions.

This paper is organized as follows. In Section 2, we recall some basic notations and introduce a class

of dissipative Hamiltonian systems with Lévy noise. In Section 3, we state and prove the homogenization

result. More precisely, in Section 3.1, we obtain the moment estimation of kinetic function and get some

relevant estimation results. In Section 3.2, we derive the limiting equation by using a Lyapunov equation.

In Section 3.3, we finish the proof of the main results (Theorem 3.1 and Theorem 3.2). In Section 3.4,

we extend the result to some more general systems. In Section 4, we present an illustrative example .

2. Preliminaries

2.1. Lévy motion

Let (Ω,P) be a probability space. An stochastic process Lt = L(t) taking values in R
n with L(0) =

0 a.s. (almost surely) is called an n-dimensional Lévy process if it is stochastically continuous, with

independent increments and stationary increments.

An n-dimensional Lévy process Lt can be expressed by Lévy-Itô decomposition, i.e., there exist a drift

vector b ∈ R
n, a covariance matrix Q such that

Lt = bt+BQ(t) +

∫

||x||<1

xÑ(t, dx) +

∫

||x||≥1

xN(t, dx),

where N(dt, dx) is the Poisson random measure on R× (Rn\{0}), Ñ(dt, dx) , N(dt, dx)− ν(dx)dt is the

compensated Poisson random measure, ν , EN(1, ·) is the jump measure, and BQ(t) is an independent

n-dimensional Brownian motion with covariance matrix Q. The triple (b,Q, ν) is called the generating

triple for the Lévy process Lt. A Lévy process Lt has θ-th moment if and only if
∫
||x||>1 ||x||θν(dx) < ∞.

2.2. Dissipative Hamiltonian system with Lévy noise

We consider the dissipative Hamiltonian system described in [12]. Given a time-dependent Hamil-

tonian function H(t, xt), where xt = (qt, pt) ∈ R
n × R

n. The following Hamiltonian system describe a

system with dissipative force and an external force.

q̇t = ∇pH(t, xt),

ṗt = −γ(t, xt)∇pH(t, xt)−∇qH(t, xt) + F (t, xt),
(2.1)
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with dissipation coefficient γ : [0,∞)×R
2n → R

n×n, and external forcing function F : [0,∞)×R
2n → R

n.

A natural example for Hamiltonian function is H(q, p) = p2

2m + V (q), where p2

2m represents kinetic energy

of system and m represents mass. Hence we are interested in a family of Hamiltonians depending on

some small parameter ε of the form

Hε(t, q, p) , Kε(t, q, p) + V (t, q) = K(ε, t, q, p/
√
ε) + V (t, q). (2.2)

We remark that the notation K and V may not represent physical kinetic energy and potential energy.

Actually, the splitting is more extensive as long as it satisfies the assumptions we will make below.

However, we still call K kinetic energy and V potential energy function in the following sections.

In this paper, we study the following Hamiltonian system perturbed by Lévy fluctuation

dqεt = ∇pH
ε(t, xε

t )dt,

dpεt = (−γ(t, xε
t )∇pH

ε(t, xε
t )−∇qH

ε(t, xε
t ) + F (t, xε

t ))dt+ σ(t, xε
t−)dLt,

(2.3)

with initial data (qε0, pε0), where σ : [0,∞)× R
2n → R

n×d is noise intensity function and L = {Lt}t≥0 is

a R
d-valued pure jump Lévy process with triple (0, 0, ν).

Remark 2.1. We consider only pure jump Lévy process here, since by Lévy-Itô decomposition, Lévy

process could be expressed as a sum of a Brownian motion and a pure jump Lévy process, in addition to a

drift term which may be absorbed in the vector field in SDE. Homogenization of dissipative Hamiltonian

systems with Brownian motion was studied in [12]. Thereby we use same notations as in [12] to make

sure the influence of Brownian motion can be added to our results.

We assume that the pure jump Lévy process has finite moment. More precisely, we make the following

assumption for jump measure ν.

Assumption 1. There exists a constant θ such that the Lévy measure ν satisfies

∫

|x|≥1

|x|2∨θν(dx) < ∞,

here 2 ∨ θ = max{2, θ}.

3. Homogenization of dissipative Hamiltonian systems under Lévy fluctuations

In this section we formulate the assumptions and state the main results Theorem 3.1 and Theroem

3.2.
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3.1. Moment estimates

In this subsection, we derive the moment estimation for kinetic energyK and some relevant estimation

results. For the Hamiltonian function H we make the following assumptions.

Assumption 2. The Hamiltonian function H has form (2.2), where K(ε, t, q, z) is non-negative and

C2 in (t, q, z) for each ε. Moreover, there exists a constant C0 > 0 such that Kε(0, xε
0) ≤ C0. For every

fixed constant T > 0 and ε0 > 0, the following conditions hold on (0, ε0]× [0, T ]× R
2n:

1. There exist positive constants C,M1 such that

max {|∂tK(ε, t, q, z)|, ||∇qK(ε, t, q, z)||, ||∇zK(ε, t, q, z)||} ≤ M1 + CK(ε, t, q, z).

2. There exist positive constants c,M2 such that

||∇zK(ε, t, q, z)||2 +M2 ≥ cK(ε, t, q, z).

3. The kinetic energy K(ε, t, q, z) is Lipschitz w.r.t (with respect to) z, i.e. there exists a constant L such

that

|K(ε, t, q, z1)−K(ε, t, q, z2)| ≤ L|z1 − z2|.

4. The potential energy V (t, q) is C1 in (t, q) and ∇qV is bounded.

For dissipative matrix function γ, external force F and noise intensity σ, we assume that

Assumption 3. For every T > 0, the following conditions hold on [0, T ]× R
2n:

1. The function γ, F, σ are bounded and Lipschitz.

2. The matrix function γ is symmetric with eignevalues bounded below by some constant λ > 0.

Remark 3.1. Under the Assumption 1-3 and additional Assumption 4 below, the solution xε
t to stochastic

Hamiltonian system (2.3) exists and is unique. See Appendix for proof.

At this point, we begin to prove the moment estimations of K. We firstly give an upper bound of

kinetic energy K.

Lemma 3.1. For every θ ≥ 1 and T > 0 there exist positive constants α0, ε0 such that for all constant

α ∈ (0, α0], ǫ ∈ (0, ε0] and t ∈ [0, T ], we have

Kε(t, xε
t )

θ ≤ κ(ε)

α
+

∫ t

0

∫

Rd\{0}

e−α(t−s)/ε[Kε(s, qεs−, p
ε
s− + σ(s, xε

s−)x)
θ −Kε(s, qεs−, p

ε
s−)

θ]Ñ(ds, dx),

(3.1)

where κ(ε) = κ1 + κ2ε
1−θ/2 for positive constants κ1 and κ2.

Proof. Applying Itô formula to eαt/εKε(t, xε
t )

θ, we have
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eαt/εKε(t, xε
t )

θ

= Kε(0, xε
0)

θ +
α

ε

∫ t

0

eαs/εKε(s, xε
s)

θds+ θ

∫ t

0

eαs/εKε(s, xε
s)

θ−1(∂sK)ε(s, xε
s)ds

+
θ

ε

∫ t

0

eαs/εKε(s, xε
s)

θ−1(∇zK)ε(s, xε
s)(−γ(s, xε

s))(∇zK)ε(s, xε
s)ds

+
θ√
ε

∫ t

0

eαs/ε(∇zK)ε(s, xε
s)(−∇qV (s, qεs) + F (s, xε

s))ds

+

∫ t

0

∫

Rd\{0}

eαs/ε[Kε(s, qεs−, p
ε
s− + σ(s, xε

s−)x)
θ −Kε(s, qεs−, p

ε
s−)

θ]Ñ(ds, dx)

+

∫ t

0

∫

Rd\{0}

eαs/ε[Kε(s, qεs−, p
ε
s− + σ(s, xε

s−)x)
θ −Kε(s, qεs−, p

ε
s−)

θ]ν(dx)ds (I1)

−
∫ t

0

∫

|x|<1

eαs/εσi(s, xε
s−)x

θ√
ε
Kε(s, qεs−, p

ε
s−)

θ−1(∇ziK)ε(s, qεs−, p
ε
s−)]ν(dx)ds, (I2)

where we denote the last two integrals by I1, I2 respectively. The notation (∂sK)ε(s, x) is equal to

∂sK(ε, s, q, p/
√
ε) and similarly for (∇zK)ε(s, x).

First we estimate terms I1, I2. Using mean value theorem and Lipschitz condition of K for the term

I1 we have

I1 =

∫ t

0

∫

Rd\{0}

eαs/ε[Kε(s, qεs , p
ε
s + σ(s, xε

s)x)
θ −Kε(s, qεs, p

ε
s)

θ]ν(dx)ds

≤ 2θ−2θ

∫ t

0

∫

Rd\{0}

eαs/ε
[
Kε(s, qεs , p

ε
s)

θ−1 |Kε(s, qεs , p
ε
s + σ(s, xε

s)x)−Kε(s, qεs , p
ε
s)|

+ |Kε(s, qεs, p
ε
s + σ(s, xε

s)x) −Kε(s, qεs, p
ε
s)|θ
]
ν(dx)ds

≤ 2θ−2θL||σ||∞√
ε

∫

Rd\{0}

|x|ν(dx)
∫ t

0

eαs/εKε(s, qεs , p
ε
s)

2θ−1ds+
2θ−2θLθ||σ||∞

εθ/2

∫

Rd\{0}

|x|θν(dx)
∫ t

0

eαs/εds.

(3.2)

Under Assumption 2-3, for term I2 we have

I2 = −
∫ t

0

∫

|x|<1

eαs/εσi(s, xε
s)x

θ√
ε
Kε(s, qεs , p

ε
s)

θ−1(∇ziK)ε(s, qεs , p
ε
s)]ν(dx)ds

≤ θ||σ||∞
ε

∫

|x|<1

|x|ν(dx)
(
M1

∫ t

0

eαs/εKε(s, qεs, p
ε
s)

θ−1ds+ C

∫ t

0

eαs/εKε(s, qεs, p
ε
s)

θds

)
.

(3.3)
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Then combining these two inequalities (3.2), (3.3) with Assumption 2-3, we obtain

eαt/εKε(t, xε
t )

θ

≤ Kε(0, xε
0)

θ +

(
α

ε
+ Cθ − λcθ

ε
+

Cθ√
ε
|| − ∇qV + F ||∞

)∫ t

0

eαs/εKε(s, xε
s)

θds

+ θ

(
M1 +

λM2

ε
+

M1√
ε
|| − ∇qV + F ||∞

)∫ t

0

eαs/εKε(s, xε
s)

θ−1ds

+

(
2θ−2θL||σ||∞√

ε

∫

Rd\{0}

|x|ν(dx) + θ||σ||∞
ε

∫

|x|<1

|x|ν(dx)
)∫ t

0

eαs/εKε(s, xε
s)

θ−1ds

+
Cθ||σ||∞

ε

∫ t

0

eαs/εKε(s, qs, ps)
θds+

2θ−2θLθ||σ||θ∞
εθ/2

∫

Rd\{0}

|x|θν(dx)
∫ t

0

eαs/εds

+

∫ t

0

∫

Rd\{0}

eαs/ε[Kε(s, qεs−, p
ε
s− + σ(s, xε

s−)x)
θ −Kε(s, qεs−, p

ε
s−)

θ]Ñ(ds, dx).

(3.4)

Note that Young inequality allows Kθ−1 ≤ 1
θ

(
M
δ

)θ−1
+ δ

MKθ. Let M = max{M1,M2}. We get

Kε(t, xε
t )

θ ≤ e−αt/εKε(0, xε
0)−

D

ε

∫ t

0

e−α(t−s)/εKε(s, xε
s)

θds+
d

α

+

∫ t

0

∫

Rd\{0}

e−α(t−s)/ε[Kε(s, qεs−, p
ε
s− + σ(s, xε

s−)x)
θ −Kε(s, qεs−, p

ε
s−)

θ]Ñ(ds, dx),

(3.5)

where

D =λcθ − α− Cθε− Cθ
√
ε|| − ∇qV + F ||∞ − θδε− θδλ − θδ

√
ε|| − ∇qV + F ||∞

− 2θ−2θLδ||σ||∞M−1√ε

∫

Rd\{0}

|x|ν(dx) − θδ||σ||∞
∫

|x|<1

|x|ν(dx) − Cθδ||σ||∞,
(3.6)

and

d =

(
M

δ

)θ−1
(
Mε+ λM +M

√
ε|| − ∇qV + F ||∞ + 2θ−2L

√
ε||σ||∞

∫

Rd\{0}

|x|ν(dx) + ||σ||∞
∫

|x|<1

|x|ν(dx)
)

+

(
M

δ

)θ−1

2θ−2Lθ||σ||θ∞ε1−θ/2

∫

Rd\{0}

|x|θν(dx).

(3.7)

For all ε, δ, α sufficiently small, D is non-negative. In addition, Kε(0, xǫ
0) is bounded by Assumption 2.

Thus we obtain the required inequality (3.1).

Now we give the moment estimation of the kinetic energy Kε(t, xε
t ) by means of above assumptions

and lemma.

Lemma 3.2. (Supremum of expectation of the kinetic energy) Under Assumption 1-3, for every
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positive T and θ, the kinetic energy K has the following uniform estimate

sup
t∈[0,T ]

E
[
Kε(t, xε

t )
θ
]
= O(ε1−

2∨θ
2 ), as ε → 0. (3.8)

Proof. We first consider θ ≥ 1. Note that

∫ t

0

∫

Rd\{0}

e−α(t−s)/ε[Kε(s, qεs−, p
ε
s− + σ(s, xε

s)x)
θ −Kε(s, qεs−, p

ε
s−)

θ]Ñ(ds, dx)

is a local martingale and it is in fact a martingale by using appropriate sequence of stopping times (see

[16], page 266). Then we obtain the following equality

E

[∫ t

0

∫

Rd\{0}

e−α(t−s)/ε[Kε(s, qεs−, p
ε
s− + σ(s, xε

s)x)
θ −Kε(s, qεs−, p

ε
s−)

θ]Ñ(ds, dx)

]
= 0.

It follows that the equality (3.8) holds from Lemma 3.1 and preceding equation for θ ≥ 1. The results

for 0 < θ < 1 follows by Hölder’s inequality.

Lemma 3.3. (Expectation of supremum of the kinetic energy) Under Assumption 1-3 and for

every positive T and θ, the kinetic energy K has the following uniform estimate

E

[
sup

t∈[0,T ]

Kε(t, xε
t )

θ

]
= O(ε−

θ
2 ), as ε → 0. (3.9)

Proof. By Lemma 3.1 we have

Kε(t, xε
t ) ≤

κ

α
+

∫ t

0

∫

Rd\{0}

e−α(t−s)/ε[Kε(s, qεs−, p
ε
s− + σ(s, xε

s−)x)−Kε(s, qεs−, p
ε
s−)]Ñ(ds, dx). (3.10)

Itô’s product formula implies that

∫ t

0

∫

Rd\{0}

e−α(t−s)/ε[Kε(s, qεs−, p
ε
s− + σ(s, xε

s−)x)−Kε(s, qεs−, p
ε
s−)]Ñ(ds, dx)

=

∫ t

0

∫

Rd\{0}

[Kε(s, qεs−, p
ε
s− + σ(s, xε

s−)x)−Kε(s, qεs−, p
ε
s−)]Ñ(ds, dx)

+

∫ t

0

α

ε
e−α(t−s)/ε

∫ s

0

∫

Rd\{0}

[Kε(r, qεr−, p
ε
r− + σ(r, xε

r−)x) −Kε(r, qεr−, p
ε
r−)]Ñ(dr, dx)ds.

(3.11)

We first show the proposition in the case when θ ≥ 2. Substituting (3.11) into (3.10) and taking
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supremum and expectation on both side, we have

E

[
sup

t∈[0,T ]

Kε(t, xε
t )

θ

]

≤2θ−1
(κ
α

)θ
+ 4θ−1

E



 sup
t∈[0,T ]

∣∣∣∣∣

∫ t

0

∫

Rd\{0}

[Kε(s, qεs−, p
ε
s− + σ(s, xε

s−)x)−Kε(s, qεs−, p
ε
s−)]Ñ(ds, dx)

∣∣∣∣∣

θ




+4θ−1
E


 sup
t∈[0,T ]

∣∣∣∣∣

∫ t

0

α

ε
e−α(t−s)/ε

∫ s

0

∫

Rd\{0}

[Kε(r, qεr−, p
ε
r− + σ(r, xε

r−)x)−Kε(r, qεr−, p
ε
r−)]Ñ (dr, dx)ds

∣∣∣∣∣

θ

 .

(3.12)

For the first Poisson stochastic integral term, Kunita first inequality ([16], Theorem 4.4.23) implies

that

E


 sup
t∈[0,T ]

∣∣∣∣∣

∫ t

0

∫

Rd\{0}

Kε(s, qεs−, p
ε
s− + σ(s, xε

s−)x)−Kε(s, qεs−, p
ε
s−)Ñ(ds, dx)

∣∣∣∣∣

θ



≤D(θ)E



(∫ T

0

∫

Rd\{0}

|Kε(s, qεs−, p
ε
s− + σ(s, xε

s−)x) −Kε(s, qεs−, p
ε
s−)|2ν(dx)ds

) θ
2




+E

[∫ T

0

∫

Rd\{0}

|Kε(s, qεs−, p
ε
s− + σ(s, xε

s−)x)−Kε(s, qεs−, p
ε
s−)|θν(dx)ds

]

≤D(θ)ε−
θ
2 T

θ
2Lθ||σ||θ∞

(∫

Rd\{0}

|x|2ν(dx)
) θ

2

+ ε−
θ
2 TLθ||σ||θ∞

∫

Rd\{0}

|x|θν(dx)

=O(ε−
θ
2 ).

(3.13)

Next we deal with the second Poisson stochastic integral term

E


 sup
t∈[0,T ]

∣∣∣∣∣

∫ t

0

α

ε
e−α(t−s)/ε

∫ s

0

∫

Rd\{0}

[Kε(r, qεr−, p
ε
r− + σ(r, xε

r−)x)−Kε(r, qεr−, p
ε
r−)]Ñ(dr, dx)ds

∣∣∣∣∣

θ



≤E


 sup
t∈[0,T ]

∣∣∣∣∣

∫ t

0

α

ε
e−α(t−s)/ε sup

s∈[0,t]

∣∣∣∣∣

∫ s

0

∫

Rd\{0}

[Kε(r, qεr−, p
ε
r− + σ(r, xε

r−)x)−Kε(r, qεr−, p
ε
r−)]Ñ (dr, dx)

∣∣∣∣∣ ds
∣∣∣∣∣

θ



≤E


 sup
t∈[0,T ]

∣∣∣∣∣

∫ t

0

∫

Rd\{0}

Kε(s, qεs−, p
ε
s− + σ(s, xε

s−)x) −Kε(s, qεs−, p
ε
s−)Ñ(ds, dx)

∣∣∣∣∣

θ



=O(ε−
θ
2 ),

(3.14)

where the last equality is obtained by utilizing (3.13). Therefore, equality (3.9) holds for θ ≥ 2 by (3.12),

(3.13)and (3.14). It follows for all θ > 0 by Hölder’s inequality.
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We make an additional assumption for kinetic energy K as follows.

Assumption 4 For every T > 0, there exist c > 0, η > 0 such that

K(ε, t, q, z) ≥ c||z||η.

Now we can deduce an useful proposition under this assumption. Proposition 3.1 is a direct deduction

from Lemma 3.2, Lemma 3.3 and Assumption 4.

Proposition 3.1. Under Assumption 1-4, for every T > 0 we have

sup
t∈[0,T ]

E
[
||pεt ||θ

]
=




O(ε

θ
2 ), if θ ≤ 2η,

O(ε
θ
2
+1− θ

2η ), if θ > 2η,
as ε → 0, (3.15)

and

E

[
sup

t∈[0,T ]

||pεt ||θ
]
= O(ε

θ
2
− θ

2η ), as ε → 0. (3.16)

Proof. From Assumption 4, we have

sup
t∈[0,T ]

E
[
||pεt ||θ

]
≤ ε

θ
2 sup
t∈[0,T ]

E

[
Kε(t, xε

t )
θ
η

]
.

Note that Lemma 3.2 implies supt∈[0,T ] E [Kε(t, xε
t )

a] = O(1) for a ≤ 2 and supt∈[0,T ] E [Kε(t, xε
t )

a] =

O(ε1−
a
2 ) for a > 2. Hence we get (3.15). Equation (3.16) follows similar arguments and Lemma 3.3.

Remark 3.2. If the parameter η in Assumption 4 was given, then proposition 1 told us the order of

momentum pεt convergence to zero. For example, assume that η in Assumption 4 equals to 2, we have

supt∈[0,T ] E
[
||pεt ||θ

]
= O(ε

θ
2 ) when θ ≤ 4 and supt∈[0,T ] E

[
||pεt ||θ

]
= O(ε1+

θ
4 ) when θ > 4. Moreover,

E

[
supt∈[0,T ] ||pεt ||θ

]
= O(ε

θ
4 ).

3.2. Derivation of the limit equation

In this subsection, we derive the limit equation of the system (2.3) as ε → 0. To this end we make an

additional assumption on γ.

Assumption 5 Every element γj
i in matrix function γ is C1 and independent of p.

Note that stochastic Hamiltonian equation (2.3) can be simplified to

d(qεt ) = ∇pH
ε(t, xε

t )dt

= γ−1(t, xε
t )(∇qH

ε(t, xε
t )− F (t, xε

t ))dt+ γ−1(t, xε
t )σ(t, x

ε
t−)dLt − γ−1(t, xε

t )d(p
ε
t ).

(3.17)
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Since matrix function γ has bounded eigenvalues, γ is invertible. Taking stochastic integration by parts

formula for the last term γ−1(t, xε
t )d(p

ε
t ) on the right hand side of (3.17), we have

(γ−1)ji (t, q
ε
t )d(p

ε
t )j =− d((γ−1)ji (t, q

ε
t )(p

ε
t )j) + (pεt−)j∂t(γ

−1)ji (t, q
ε
t )dt

+ (pεt−)j∂ql(γ
−1)ji (t, q

ε
t )∂pl

Hε(t, xε
t )dt,

where ∂ql(γ
−1)ji means the l-th component of ∇q(γ

−1)ji , and ∂pl
H means the l-th component of ∇qH .

Here we used Einstein summation notation. Therefore,

d(qεt )i =(γ−1)ji (t, q
ε
t )(∂qjH

ε(t, xε
t )− Fj(t, x

ε
t ))dt+ (γ−1)ji (t, q

ε
t )σ

ρ
j (t, x

ε
t−)d(Lt)ρ

− d((γ−1)ji (t, q
ε
t )(p

ε
t )j) + (pεt−)j∂t(γ

−1)ji (t, q
ε
t )dt+ (pεt−)j∂ql(γ

−1)ji (t, q
ε
t )∂pl

Hε(t, xε
t )dt.

(3.18)

To simplify the last term (pεt )j∂pl
Hε(t, xε

t )dt, we compute

d((pεt )i(p
ε
t )j) = (pεt−)id(p

ε
t )j + (pεt−)jd(p

ε
t )i + d[pεi , p

ε
j ]t

=(pεt−)i
[
(−γk

j (t, p
ε
t )∂pk

Hε(t, xε
t )− ∂qjH

ε(t, xε
t ) + Fj(t, x

ε
t ))dt+ σρ

j (t, x
ε
t−)d(Lt)ρ

]

+(pεt−)j
[
(−γk

i (t, p
ε
t )∂pk

Hε(t, xε
t )− ∂qiH

ε(t, xε
t ) + Fi(t, x

ε
t ))dt+ σρ

i (t, x
ε
t−)d(Lt)ρ

]

+

∫

Rd\{0}

σk
i (t, x

ε
t−)σ

l
j(t, x

ε
t−)xkxlN(dt, dx).

(3.19)

Rewrite this equation in the form of the following Lyapunov equation [27]

γk
j (Vt)ki + γk

i (Vt)kj = (Ct)ij , (3.20)

where (Vt)ij = ∂pi
Hε(t, xε

t )(p
ε
t−)jdt, and

(Ct)ij =− d((pεt )i(p
ε
t )j) + (pεt−)i

[
−∂qjH

ε(t, xε
t ) + Fj(t, x

ε
t )
]
dt+ (pεt−)j [−∂qiH

ε(t, xε
t ) + Fi(t, x

ε
t )] dt

+(pεt−)iσ
ρ
j (t, x

ε
t−)d(Lt)ρ + (pεt−)jσ

ρ
i (t, x

ε
t−)d(Lt)ρ +

∫

Rd\{0}

σk
i (t, x

ε
t−)σ

l
j(t, x

ε
t−)xkxlN(dt, dx).

By solving Lyapunov equation (3.20), we have

(Vt)ij =

∫ ∞

0

e−yγk
i (Ct)kle

−yγl
jdy.
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Hence, we have

(pεt−)j∂pl
Hε(t, xε

t )dt = Gab
jl (t, q

ε
t )(Ct)ab

= Gab
jl (t, q

ε
t )
[
−d((pεt )a(p

ε
t )b) + (pεt−)a(−∂pb

Hε(t, xε
t ) + Fb(t, x

ε
t ))dt

+(pεt−)b(−∂pa
Hε(t, xε

t ) + Fa(t, x
ε
t ))dt + (pεt−)aσ

ρ
b (t, x

ε
t−)d(Lt)ρ + (pεt−)bσ

ρ
a(t, x

ε
t−)d(Lt)ρ

+

∫

Rd\{0}

σk
a(t, x

ε
t−)σ

l
b(t, x

ε
t−)xkxlN(dt, dx)],

(3.21)

where Gab
jl (t, q

ε
t ) =

∫∞

0
e−yγa

j (t,q
ε
t )e−yγb

l (t,q
ε
t )dy.

Combining Eq.(3.18) and Eq.(3.21) together, we see that qεt satisfies the equation

d(qεt )i = (γ−1)ji (t, q
ε
t )
(
∂qjV (t, qεt ) + Fj(t, x

ε
t )
)
dt+ (γ−1)ji (t, q

ε
t )σ

ρ
j (t, x

ε
t−)d(Lt)ρ

+ (γ−1)ji (t, q
ε
t )∂qjK

ε(t, xε
t )dt− ∂qh(γ

−1)ji (t, q
ε
t )G

ab
jh(t, q

ε
t )

∫

Rd\{0}

σk
a(t, x

ε
t−)σ

l
b(t, x

ε
t−)xkxlN(dt, dx)

+ d(Rε
t )i,

(3.22)

where

d(Rε
t )i = d((γ−1)ji (t, q

ε
t )(p

ε
t )j)− (pεt )j∂t(γ

−1)ji (t, q
ε
t )dt

− ∂qh (γ
−1)ji (t, q

ε
t )G

ab
jh(t, q

ε
t )
[
−d((pεt )a(p

ε
t )b) + (pεt−)a(−∂pb

Hε(t, xε
t ) + Fb(t, x

ε
t ))dt

+ (pεt−)b(−∂pa
Hε(t, xε

t ) + Fa(t, x
ε
t ))dt+ (pεt−)aσ

ρ
b (t, x

ε
t−)d(Lt)ρ + (pεt−)bσ

ρ
a(t, x

ε
t−)d(Lt)ρ

]
.

(3.23)

Note that term (γ−1)ji (t, q
ε
t )∂qjK

ε(t, xε
t )dt in (3.22) will survive in the limiting equation. Here we make

another assumption.

Assumption 6 Every element ∂qjK in ∇qK is Lipschitz w.r.t q.

Remark 3.3. This assumption seems a little strong. However, it is reasonable since we assume function

K is C2, hence K is locally Lipschitz. Indeed we will extend our results to locally Lipshitz K in Section

3.4. If K is independent of q, then this term can be ignored. If K does not have additional assumption,

we refer to [13] for estimations of this term.

The proceeding calculations motivate the proposed lower dimensional limiting equation for the dy-

namics of position q:

d(qt)i = (γ−1)ji (t, qt)
(
∂qjV (t, qt) + Fj(t, xt)

)
dt+ (γ−1)ji (t, qt)σ

ρ
j (t, xt−)d(Lt)ρ

+ (γ−1)ji (t, qt)∂qjK(t, xt)dt− ∂qh(γ
−1)ji (t, qt)G

ab
jh(t, qt)

∫

Rd\{0}

σk
a(t, xt−)σ

l
b(t, xt−)xkxlN(dt, dx),

(3.24)
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where xt = (qt, 0) since momentum pεt converges to 0 from Proposition 3.1. Here we denote

Si(t, x) =

∫ t

0

∂qh(γ
−1)ji (t, q)G

ab
jh(s, q)

∫

Rd\{0}

σk
a(s, xs−)σ

l
b(s, xs−)zkzlN(ds, dz). (3.25)

Actually it is the noise-induced drift in limiting equation.

3.3. Proof of convergence to the limiting equation

In this subsection, we show that the stochastic Hamiltonian system (2.3) converge to homogenized

equation (3.24) in moment under an additional assumption:

Assumption 7. Assume that function γ is C2 and ∂tγ, ∂qiγ, ∂t∂q
iγ and ∂qi∂qjγ are bounded on

[0, T ]× R
n, for every T .

Now we demonstrate that the remainder term Rε
t converges to zero. For convenience, we denote C̃ a

finite positive constant whose value may vary from line to line and the notation C̃(·) to emphasize the

dependence on the quantities appearing in the parentheses.

Lemma 3.4. Under Assumption 1-7, for every T > 0, η > 1 and θ < η, we have

E

[
sup

t∈[0,T ]

||Rε
t ||θ
]
= O(εβ), as ε → 0, (3.26)

where Rε
t was defined in Eq. (3.23) and β(θ) is a piecewise function

β(θ) =






θ
2

(
1− 1

η

)
, 0 < θ ≤ 2η

η+1 ,

1− θ
η , θ > 2η

η+1 .
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Proof. Integrating Eq. (3.23) on [0, T ], then taking expectation and supremum on it, we have

E

[
sup

t∈[0,T ]

||Rε
t ||θ
]
≤ 8θ−1

(
E

[
sup

t∈[0,T ]

||(γ−1)ji (t, q
ε
t )(p

ε
t )j ||θ

]
+ E

[
sup

t∈[0,T ]

||(γ−1)ji (0, q
ε
0)(p

ε
0)j ||θ

]

+ E

[
sup

t∈[0,T ]

∣∣∣∣

∣∣∣∣
∫ t

0

(pεs)j∂s(γ
−1)ji (s, q

ε
s)ds

∣∣∣∣

∣∣∣∣
θ
]
+ E

[
sup

t∈[0,T ]

∣∣∣∣

∣∣∣∣
∫ t

0

∂qh(γ
−1)ji (s, q

ε
s)G

ab
jh(s, q

ε
s)d((p

ε
s)a(p

ε
s)b)

∣∣∣∣

∣∣∣∣
θ
]

+ E

[
sup

t∈[0,T ]

∣∣∣∣

∣∣∣∣
∫ t

0

∂qh(γ
−1)ji (s, q

ε
s)G

ab
jh(s, q

ε
s)(p

ε
s)a (∂qbK

ε(s, xε
s) + ∂qbV (s, qεs) + Fb(s, x

ε
s)ds)

∣∣∣∣

∣∣∣∣
θ
]

+ E

[
sup

t∈[0,T ]

∣∣∣∣
∣∣∣∣
∫ t

0

∂qh(γ
−1)ji (s, q

ε
s)G

ab
jh(s, q

ε
s)(p

ε
s)b (∂qaK

ε(s, xε
s) + ∂qaV (s, qεs) + Fa(s, x

ε
s)ds)

∣∣∣∣
∣∣∣∣
θ
]

+ E

[
sup

t∈[0,T ]

∣∣∣∣
∣∣∣∣
∫ t

0

∂qh(γ
−1)ji (t, q

ε
t )G

ab
jh(t, q

ε
t )(p

ε
t−)aσ

ρ
b (t, x

ε
t )d(Lt)ρ

∣∣∣∣
∣∣∣∣
θ
]

+ E

[
sup

t∈[0,T ]

∣∣∣∣
∣∣∣∣
∫ t

0

∂qh(γ
−1)ji (t, q

ε
t )G

ab
jh(t, q

ε
t )(p

ε
t−)bσ

ρ
a(t, x

ε
t )d(Lt)ρ

∣∣∣∣
∣∣∣∣
θ
]

:=

8∑

i=1

Ji.

We will now give upper bounds of terms {Ji}8i=1 for θ ≥ 1. For the first two terms,

J1 + J2 ≤ 2||γ−1||θ∞E

[
sup

t∈[0,T ]

||pεt ||θ
]
.

For the third term, we have

J3 ≤ T θ−1||∂tγ−1||θ∞E

[∫ T

0

||pεs||θds
]
≤ T θ||∂tγ−1||θ∞ sup

t∈[0,T ]

E
[
||pεt ||θ

]
.

Note by Assumption 7 we can deduce that the function ∂q(γ
−1)(t, q)G(t, q) is bounded and C1. Hence

we have the following estimation (see Appendix)

J4 ≤ C̃(θ, T,M1, C, γ)

(
E[ sup

t∈[0,T ]

||pεt ||2θ] + ε−
θ
2 sup
t∈[0,T ]

E
[
||pεt ||2θ

]
+ ε−

θ
2 sup
t∈[0,T ]

E
[
||pεt ||2θKε(t, xε

t )
θ
]
)
.

(3.27)

Applying Hölder inequality and Assumption 2-3 we have

J5 ≤ T θ−1
E

[
sup

t∈[0,T ]

∫ t

0

||pεs||θ
(
||∇qK

ε(s, xε
s)||

θ
+ ||∇qV + F ||θ∞

)
ds

]

≤ T θ

(
sup

t∈[0,T ]

E
[
||pεt ||θ||Kε(t, xε

t )||θ
]
+ (Mθ

1 + ||∇qV + F ||θ∞) sup
t∈[0,T ]

E
[
||pεt ||θ

]
)
.

14



The estimation of J6 is similar to J5. For the last two term (see Appendix), we have

J7 ≤ C̃(θ, T, ν) sup
t∈[0,T ]

E
[
||pεt ||θ

]
. (3.28)

The estimation of J8 is similar to J7 as well. Substitute all these upper bound together, we obtain

E

[
sup

t∈[0,T ]

||Rε
t ||θ
]
≤ C̃

(
E

[
sup

t∈[0,T ]

||pεt ||θ
]
+ E

[
sup

t∈[0,T ]

||pεt ||2θ
]
+ sup

t∈[0,T ]

E
[
||pεt ||θ

]
+ ε−

θ
2 sup
t∈[0,T ]

E
[
||pεt ||2θ

]

+ sup
t∈[0,T ]

E
[
||pεt ||θKε(t, xε

t )
θ
]
+ ε−

θ
2 sup
t∈[0,T ]

E
[
||pεt ||2θKε(t, xε

t )
θ
]
)

≤ C̃

(
E

[
sup

t∈[0,T ]

||pεt ||θ
]
+ E

[
sup

t∈[0,T ]

||pεt ||2θ
]
+ sup

t∈[0,T ]

E
[
||pεt ||θ

]
)

+ C̃ε
θ
2

(
sup

t∈[0,T ]

E

[
Kε(t, xε

t )
θ+ θ

η

]
+ sup

t∈[0,T ]

E

[
Kε(t, xε

t )
2θ
η

]
+ sup

t∈[0,T ]

E

[
Kε(t, xε

t )
θ+ 2θ

η

])
.

The last inequality follows from the similar arguments in proposition 3.1. Now we only need to compare

order of ε in these terms. By means of Lemma 3.2 and Proposition 3.1, we obtain

E

[
sup

t∈[0,T ]

||Rε
t ||θ
]
= O(ε

θ
2 (1−

1

η )) + O(ε1−
θ
η ). (3.29)

Thus if θ > 2− 2
η+1 , then E

[
supt∈[0,T ] ||Rε

t ||θ
]
= O(ε1−

θ
η ). If 1 ≤ θ ≤ 2− 2

η+1 then E

[
supt∈[0,T ] ||Rε

t ||θ
]
=

O(ε
θ
2 (1−

1

η )). As for the case θ < 1, Hölder inequality implies that E
[
supt∈[0,T ] ||Rε

t ||θ
]
= O(ε

θ
2 (1−

1

η )).

Thus we can show that the stochastic Hamiltonian system (2.3) uniformly converges to the homoge-

nized equation (3.24) in moment as follows.

Theorem 3.1. (Convergence to the limiting equation in moment) Suppose Assumption 1-7

holds. Let xε
t be the solution of SDE (2.3) with initial condition (pε0, q

ε
0) and qt be the solution of SDE

(3.24)with initial condition q0. Also suppose that for every ε > 0, η > 1, the initial condition satisfies

integrable conditions E[||qε0||θ] < ∞,E[||q0||θ] < ∞ and E[||qε0 − q0||θ] = O(εβ). Then for every T > 0 and

θ < η, we have

E

[
sup

t∈[0,T ]

||qεt − qt||θ
]
= O(εβ) as ε → 0. (3.30)

Proof. First let θ ≥ 2. Define a vector F̃ (t, x) and a matrix σ̃(t, x) as follows respectively

F̃i(t, x) = (γ−1)ji (t, q)(∂pj
K(t, x) + ∂pj

V (t, q) + Fj(t, x)),
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σ̃ρ
i (t, x) = (γ−1)ji (t, q)σ

ρ
j (t, x).

Hence we can rewrite Eq.(3.22) as

(qεt )i = (qε0)i +

∫ t

0

F̃i(s, x
ε
s)ds+

∫ t

0

σ̃ρ
i (s, x

ε
s)d(Ls)ρ + Si(t, x

ε
t ) + (Rε

t )i, (3.31)

and Eq.(3.24) as

(qt)i = (q0)i +

∫ t

0

F̃i(s, xs)ds+

∫ t

0

σ̃ρ
i (s, xs)d(Ls)ρ + Si(t, xt). (3.32)

Therefore, we obtain the following estimation

E

[
sup

s∈[0,t]

||qεs − qs||θ
]

≤ C̃E

[
sup

s∈[0,t]

(
||qε0 − q0||θ +

∣∣∣∣
∣∣∣∣
∫ s

0

F̃i(r, x
ε
r)− F̃i(r, xr)dr

∣∣∣∣
∣∣∣∣
θ

+

∣∣∣∣
∣∣∣∣
∫ s

0

σ̃ρ
i (r, x

ε
r)− σρ

i (r, xr)d(Lr)ρ

∣∣∣∣
∣∣∣∣
θ

+ ||Si(s, x
ε
s)− Si(s, xs)||θ + ||Rε

s||θ
)]

.

(3.33)

By the Lipschitz property of F̃ and σ̃ due to Assumptions, we have

E

[
sup

s∈[0,t]

∣∣∣∣

∣∣∣∣
∫ s

0

F̃i(r, x
ε
r)− F̃i(r, xr)dr

∣∣∣∣

∣∣∣∣
θ
]
≤ E

[
sup

s∈[0,t]

sθ−1

∫ s

0

||F̃i(r, x
ε
s)− F̃i(r, xs)||θds

]

≤ T θ−1
E

[∫ t

0

∣∣∣
∣∣∣Fi(r, x

ε
r)− F̃i(r, xr)

∣∣∣
∣∣∣
θ

dr

]

≤ C̃

(∫ t

0

E[ sup
r∈[0,s]

||qεr − qr||θ]ds+ sup
s∈[0,t]

E[||pεs||θ]
)
,

(3.34)
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and

E

[
sup

s∈[0,t]

∣∣∣∣
∣∣∣∣
∫ s

0

σ̃ρ
i (r, x

ε
r)− σ̃ρ

i (r, xr)d(Lr)ρ

∣∣∣∣
∣∣∣∣
θ
]

≤ C̃E



 sup
s∈[0,t]




∣∣∣∣∣

∣∣∣∣∣

∫ s

0

∫

Rd\{0}

(σ̃ρ
i (r, x

ε
r)− σ̃ρ

i (r, xr))xÑ (dr, dx)

∣∣∣∣∣

∣∣∣∣∣

θ

+

∣∣∣∣∣

∣∣∣∣∣

∫ s

0

∫

|x|>1

(σ̃ρ
i (r, x

ε
r)− σ̃ρ

i (r, xr))xν(dx)dr

∣∣∣∣∣

∣∣∣∣∣

θ








≤ C̃



E




(∫ t

0

∫

Rd\{0}

||σ̃ρ
i (s, x

ε
s)− σ̃ρ

i (s, xs)||2|x|2ν(dx)ds
) θ

2





+ E

[∫ t

0

∫

Rd\{0}

||σ̃ρ
i (s, x

ε
s)− σ̃ρ

i (s, xs)||θ|x|θν(dx)ds
]
+ E




∫ t

0

∣∣∣∣∣

∣∣∣∣∣

∫

|x|>1

xν(dx)(σ̃ρ
i (s, x

ε
s)− σ̃ρ

i (s, xs))

∣∣∣∣∣

∣∣∣∣∣

θ

ds









≤ C̃E

(∫ t

0

||σ̃ρ
i (s, x

ε
s)− σ̃ρ

i (s, xs)||θds
)

≤ C̃

(∫ t

0

E[ sup
r∈[0,s]

||qεr − qr||θ]dr + sup
s∈[0,t]

E[||pεs||θ]
)
.

(3.35)

We can also get a similar bound for the noise-induced term

E

[
sup

s∈[0,t]

||Si(s, x
ε
s)− Si(s, xs)||θ

]
≤ C̃

(∫ t

0

E[ sup
r∈[0,s]

||qεr − qr||θ]dr + sup
s∈[0,t]

E[||pεs||θ]
)
. (3.36)

Consequently, estimations (3.34)-(3.36) together with Proposition 3.1 and Lemma 3.4 yield that

E

[
sup

s∈[0,t]

||qεs − qs||θ
]
≤ C̃

∫ t

0

E

[
sup

r∈[0,s]

||qεr − qr||θ
]
ds+O(εβ), (3.37)

for all t ∈ [0, T ]. If E
[
sups∈[0,t] ||qεs − qs||θ

]
∈ L1[0, T ]. Then Gronwall’s inequality implies

E

[
sup

s∈[0,t]

||qεs − qs||θ
]
≤ O(εβ)eC̃t, (3.38)

which is precisely the result we want to prove. Indeed,

E

[
sup

t∈[0,T ]

||qεt ||θ
]
≤ C

(
E

[
sup

t∈[0,T ]

||qε0||θ
]
+ E

[
sup

t∈[0,T ]

∣∣∣∣
∣∣∣∣
∫ t

0

F̃ (s, xε
s)ds

∣∣∣∣
∣∣∣∣
θ
]

+E

[
sup

t∈[0,T ]

∣∣∣∣
∣∣∣∣
∫ t

0

σ̃ρ(s, xε
s)d(Ls)ρ

∣∣∣∣
∣∣∣∣
θ
]
+ E

[
sup

t∈[0,T ]

||S(t, xε
t )||θ

]
+ E

[
sup

t∈[0,T ]

||(Rε
t )||θ

])

< ∞,
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and similarly we can get E
[
supt∈[0,T ] ||qt||θ

]
< ∞.

3.4. Extension

In this section, we relax some assumptions that we make before. Actually we can extend all Lipschitz

conditions to locally Lipschitz condition and remove all boundedness conditions. Organize and summarize

the assumptions in the previous article, now we give a complete theorem.

Theorem 3.2. (Convergence to the limit equation in probability) Suppose the family of Hamil-

tonians have the form

Hε(t, q, p) = Kε(t, q, p) + V (t, q) = K(ε, t, q, p/
√
ε) + V (t, q),

and the following conditions hold:

1. The function Kε(t, q, p) is non-negative and C2.

2. There exist constant C > 0,M1 > 0 such that

max {|∂tK(ε, t, q, z)|, ||∇qK(ε, t, q, z)||, ||∇zK(ε, t, q, z)||} ≤ M1 + CK(ε, t, q, z).

3. There exist constant c > 0,M2 ≥ 0 such that

||∇zK(ε, t, q, z)||2 +M2 ≥ cK(ε, t, q, z).

4. For every T > 0, there exist constant c > 0, η > 1 such that

K(ε, t, q, z) ≥ c||z||η.

5. The potential energy function V (t, q) is C1.

6. The dissipative coefficient γ is C2, independent of p and symmetric with eigenvalues bounded below by

a constant λ > 0.

7. The external force F and noise intensity coefficient σ are continuous and locally Lipschitz.

Let xε
t be the solution of SDE (2.3) with initial condition (pε0, q

ε
0) and qt be the solution of SDE (3.24)with

initial condition q0. Also suppose that for every ε > 0 and θ ∈ (0, η), the initial condition satisfies

integrable conditions E[||qε0||θ] < ∞,E[||q0||θ] < ∞ and E[||qε0−q0||θ] = O(εβ). Then for every T > 0, δ > 0

we have

lim
ε→0

P

(
sup

t∈[0,T ]

||qεt − qt|| > δ

)
= 0. (3.39)
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Proof. Let χ : Rn → [0, 1] be a C∞ function. Define

Vr(t, q) = χr(q)V (t, q), Fr(t, x) = χr(q)χr(p)F (t, x), σr(t, x) = χr(q)χr(p)σ(t, x),

K(ε, t, q, z) = χr(z)K(ε, t, q, z), γr(t, q) = χr(q)γ(t, q) + (1− χr(q))λI

Replacing the function V, F,K, γ, σ in (2.3) by Vr, Fr,Kr, γr, σr, we arrive at an SDE satisfying the

condition in Theorem 3.1. Let xr,ε
t be solution to the corresponding SDE. Similarly, let qrt be the

solution to the corresponding limiting SDE (3.24). Proposition 3.1 and Theorem 3.1 imply that, for

every T > 0, η > 1 and θ ∈ (0, η)

E

[
sup

t∈[0,T ]

||pr,εt ||θ
]
= O(ε

θ
2
− θ

2η ) as ε → 0, (3.40)

and

E

[
sup

t∈[0,T ]

||qr,εt − qrt ||θ
]
= O(εβ) as ε → 0. (3.41)

We will use this result to prove that qεt converges to qt in probability.

Denfine stopping times τεr = inf{t : ||qεt || ≥ r}, ηεr = inf{t : ||pεt || ≥ εr} and τr = inf{t : ||qt|| ≥ r}.
The drifts and diffusions of the modified and unmodified SDEs agree on the ball {||q|| < r, ||p|| < εr}.
Hence

qετε
r∧ηε

r∧t = qr,ετε
r∧ηε

r∧t, qτr∧t = qrτr∧t for all t ≥ 0 a.s.

For every T > 0, δ > 0, we deduce that

P

(
sup

t∈[0,T ]

||qεt − qt|| > δ

)

=P

(
τr ∧ τεr ∧ ηεr > T, sup

t∈[0,T ]

||qετε
r∧ηε

r∧t − qτr∧t|| > δ

)
+ P

(
τr ∧ τεr ∧ ηεr ≤ T, sup

t∈[0,T ]

||qεt − qt|| > δ

)

=P

(
τr ∧ τεr ∧ ηεr > T, sup

t∈[0,T ]

||qr,εt − qrt || > δ

)
+ P

(
τr ∧ τεr ∧ ηεr ≤ T, sup

t∈[0,T ]

||qεt − qt|| > δ

)

≤P

(
sup

t∈[0,T ]

||qr,εt − qrt || > δ

)
+ P (τr ∧ τεr ∧ ηεr ≤ T ) ,

(3.42)

where the first term on the right hand side converges to 0 as ε → 0 by (3.41). Then we focus on the
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second term,

P (τr ∧ τεr ∧ ηεr ≤ T )

=P(τr ≤ T ) + P (τr > T, τεr ∧ ηεr ≤ T )

≤P(τr ≤ T ) + P

(
sup

t∈[0,T ]

||qr,εt − qrt || > 1

)
+ P

(
τr > T, τεr ∧ ηεr ≤ T, sup

t∈[0,T ]

||qr,εt − qrt || ≤ 1

)

≤P

(
sup

t∈[0,T ]

||qrt || > r

)
+ P

(
sup

t∈[0,T ]

||qr,εt − qrt || > 1

)
+ P

(
τεr ∧ ηεr ≤ T, ||qr,ετε

r∧ηε
r∧T − qrτε

r∧ηε
r∧T || ≤ 1

)

≤P

(
sup

t∈[0,T ]

||qrt || > r

)
+ P

(
sup

t∈[0,T ]

||qr,εt − qrt || > 1

)
+ P

(
ηεr > T, τεr ≤ T, ||qr,ετε

r∧T − qrτε
r∧T || ≤ 1

)

+ P

(
ηεr ≤ T, ||qr,ετε

r∧ηε
r∧T − qτε

r∧ηε
r∧T || ≤ 1

)
.

(3.43)

Note that when τεr ≤ T , we have ||qτε
r∧T || ≥ r. Hence by ||qr,ετε

r∧T − qrτε
r∧T || ≤ 1, we can deduce

||qrτε
r∧T || ≥ ||qr,ετε

r∧T || − ||qr,ετε
r∧T − qrτε

r∧T || > r − 1.

This implies that

P

(
τεr ≤ T, ||qr,ετε

r∧T − qrτε
r∧T || ≤ 1

)
≤ P

(
||qrτε

r∧T || > r − 1
)
≤ P

(
sup

t∈[0,T ]

||qrt || > r − 1

)
. (3.44)

Combining (3.42),(3.43) and (3.44) together, we have

P

(
sup

t∈[0,T ]

||qεt − qt|| > δ

)

≤ P

(
sup

t∈[0,T ]

||qr,εt − qrt || > δ

)
+ P

(
sup

t∈[0,T ]

||qrt || > r

)
+ P

(
sup

t∈[0,T ]

||qr,εt − qrt || > 1

)

+ P

(
sup

t∈[0,T ]

||qrt || > r − 1

)
+ P (ηεr ≤ T ) .

(3.45)

On the other hand, by Chebyshev inequality and (3.40), we have

P (ηεr ≤ T ) ≤ P

(
sup

t∈[0,T ]

||pr,εt || > εr

)
≤ (εr)−2

E

[
sup

t∈[0,T ]

||pr,εt ||2
]
= O(ε−1− 1

η )r−2. (3.46)

Then if we let r−1 = o(ε
1

2 (1+
1

η )), i.e., the speed of r goes to infinity faster than ε−
1

2 (1+
1

η ). We have

P

(
sup

t∈[0,T ]

||qεt − qt|| > δ

)
→ 0 as r → ∞, ε → 0 (3.47)
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by the non-explosion property of qrt .

4. An Example

In this section, we present a prototypical example with Hamiltonian H(m, t, q, p) = p2

2m + V (t, q),

where m is the mass of a particle. In this case, the small mass limit is also called Smoluchowski-Kramers

limit. We consider the stochastic Hamiltonian system with external force F (t, x) and Lévy noise Lt

dqmt =
1

m
pmt dt,

dpmt =

(
1

m
γ(t, qmt )pmt −∇qV (t, qmt ) + F (t, xm

t )

)
dt+ σ(t, xm

t )dLt.
(4.1)

By Proposition 3.1, pmt converges to zero. Then the homogenized equation in the small mass limit is

dqt = γ−1(t, qt)(∇qV (t, qt) + F (t, qt, 0))dt+ γ−1(t, qt)σ(t, qt, 0)dLt + S(t, qt), (4.2)

where the noise induced drift is

Si(t, qt) =

∫ t

0

∫

Rd\{0}

∂qh(γ
−1)ji (t, qt)

∫ ∞

0

(
e−yγ(s,qs)

)a
j

(
e−yγ(s,qs)

)b
l
dyσk

a(s, qt, 0)σ
l
b(s, qt, 0)zkzlN(ds, dz).

(4.3)

Moreover, when dissipative coefficient γ is independent of q, the noise-induced drift (4.3) vanish, and

the homogenized equation becomes

dqt = γ−1(t)(∇qV (t, qt) + F (t, qt, 0))dt+ γ−1(t)σ(t, qt, 0)dLt. (4.4)

This result coincide with that in [23].

5. Conclusion and Discussion

In this paper, we derive the small mass limiting equation for a class of Hamiltonian systems with

multiplicative Lévy noise. Some interesting results appear. If the Hamiltonian function H(ε, q, p) pos-

sesses appropriate properties, then momentum p will always converge to zero in finite time under uniform

norm. The noise-induced drift term induced by pure jump Lévy noise is a Poisson process, which is rather

different from that induced by Gaussian noise [12]. Our results could be applied to a class of stochastic

Hamiltonian systems, such as a small mass particle in force field with state-dependent friction and a

particle on a Riemannian manifold.

However, we have to mention that the pure jump Lévy noises in this paper have finite moment. In

other words, it has bounded jumps. Large jumps could lead to some unpredictable dynamics although
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interlacing techniques allow us to deal with it. Hence an interesting problem is that how to accurately

deal with Lévy noise without finite moments such as α-stable Lévy noise, which will be studied in the

future.
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Appendix

A. Non-explosion of solution

In Appendix, we will prove that the solution of SDE (2.3) and limit equation are existence and unique

under Assumption 1-4.

Lemma A.1. Under Assumption 1-4, there exists a unique non-explosive solution to (2.3) in finite time

interval [0, T ].

Proof. First, we can verify that SDE with Assumption 1-3 satisfies Lipschitz condition and one side

growth condition (refer to [16]) in every bounded cylinder I ×U(R), where U(R) is a ball with radius R.

Then, we will prove that there is no explosion. Let τn be the first exit time of xε
t from the ball B(0, n).

From the right-continuity of the process xε
t we infer that

|xε
τn | ≥ n. (A.1)

Define a function Uε(t, xε
t ) = ||qεt ||2η +Kε(t, xε

t ). By Assumption 4, we obtain that

Uε(τn, x
ε
τn) = ||qετn ||

2η +Kε(τn, x
ε
τn)

≥ ||qετn ||2η + cε−η||pετn ||2η

≥ min{1, cε−η}||xε
τn ||

2η

≥ c|n|2η.

(A.2)
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On the other hand, we have

E
[
Uε(t ∧ τn ∧ T, xε

t∧τn∧T )
]

= E
[
Uε(t ∧ τn ∧ T, xε

t∧τn∧T )1{τn∧T≥t}

]
+ E

[
Uε(t ∧ τn ∧ T, xε

t∧τn∧T )1{τn∧T<t}

]

= E
[
Uε(t, xε

t )1{τn∧T≥t}

]
+ E

[
Uε(τn ∧ T, xε

τn∧T )1{τn∧T<t}

]

= E
[
Uε(t, xε

t )1{τn∧T≥t}

]
+ E

[
Uε(τn, x

ε
τn)1{τn<T}1{τn<t}

]
+ E

[
Uε(T, xε

T )1{τn≥T}1{T<t}

]

≥ E
[
Uε(τn, x

ε
τn)1{τn<t}

]
.

(A.3)

Therefore, for all n ∈ N

P(τn < t) ≤ c−1n−2η
E
[
Uε(t ∧ τn ∧ T, xε

t∧τn∧T )
]
. (A.4)

Notice that by Theorem 3.3 we have

E
[
Uε(t ∧ τn ∧ T, xε

t∧τn∧T )
]
≤ E

[
sup

t∈[0,T ]

||qεt ||2η
]
+ E

[
sup

t∈[0,T ]

Kε(t, xε
t )

]
= O(1). (A.5)

Hence,

lim
n→∞

P(τn < t) = 0 for all t. (A.6)

That is the desired assertion, as required.

B. Proofs of (3.27) and (3.28)

We give calculations for estimations of (3.27) and (3.28) in remainder term.

Proof of (3.27). By Assumption 7 we can deduce that the function ∂q(γ
−1)(t, q)G(t, q) is bounded and

C1. Let f(t, q) = ∂q(γ
−1)(t, q)G(t, q). We have

J4 = E

[
sup

t∈[0,T ]

∣∣∣∣
∣∣∣∣
∫ t

0

∂qh (γ
−1)ji (s, q

ε
s)G

ab
jh(s, q

ε
s)d((p

ε
s)a(p

ε
s)b)

∣∣∣∣
∣∣∣∣
θ
]

≤ E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

f(s, qεs)d((p
ε
s)i(p

ε
s)j)

∣∣∣∣
θ
]
.

(B.1)

Since f(s, qεs) is a C1-semimartingale, using integration by parts formula we obtain

∫ t

0

f(s, qεs)d((p
ε
s)i(p

ε
s)j) = f(t, qεt )(p

ε
t )i(p

ε
t )j − f(0, qε0)(p

ε
0)i(p

ε
0)j

−
∫ t

0

(pεs)i(p
ε
s)j (∂sf(s, q

ε
s) +∇qf(s, q

ε
s)∇pH

ε(s, xε
s)) ds.

(B.2)
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Hence, for θ ≥ 1, we have

J4 ≤ 3θ−1

(
2||f ||θ∞E[ sup

t∈[0,T ]

||pεt ||2θ] + E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

||pεs||2 (||∂sf ||∞ + ||∇qf ||∞|∇pK
ε(s, xε

s)|) ds
∣∣∣∣
θ
])

≤ 3θ−1

(
2||f ||θ∞E[ sup

t∈[0,T ]

||pεt ||2θ] + E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

||pεs||2
(
||∂sf ||∞ + ||∇qf ||∞

1√
ε
(M1 + CKε(s, xε

s))

)
ds

∣∣∣∣
θ
])

≤ 3θ−12||f ||θ∞E[ sup
t∈[0,T ]

||pεt ||2θ] + 6θ−1T θ−1
E

[∫ T

0

||pεs||2θ
(
||∂sf ||θ∞ +Mθ

1 ||∇qf ||θ∞ε−
θ
2 + CθKε(s, xε

s)
θε−

θ
2

)
ds

]
.

(B.3)

Proof of (3.28). Applying Kunita’s first inequality [16] on J7, we have

J7 = 2θ−1
E



 sup
t∈[0,T ]

∣∣∣∣∣

∣∣∣∣∣

∫ t

0

∫

Rd\{0}

∂qh(γ
−1)ji (s, q

ε
s)G

ab
jh(s, q

ε
s)(p

ε
s−)aσ

ρ
b (s, x

ε
s)xÑ (ds, dx)

∣∣∣∣∣

∣∣∣∣∣

θ

+ sup
t∈[0,T ]

∣∣∣∣∣

∣∣∣∣∣

∫ t

0

∫

|x|>1

∂qh(γ
−1)ji (s, q

ε
s)G

ab
jh(s, q

ε
s)(p

ε
s−)aσ

ρ
b (s, x

ε
s)xν(dx)ds

∣∣∣∣∣

∣∣∣∣∣

θ




≤ 2θ−1D(θ)E




(∫ T

0

∫

Rd\{0}

∣∣∣
∣∣∣∂qh (γ−1)ji (s, q

ε
s)G

ab
jh(s, q

ε
s)(p

ε
s−)aσ

ρ
b (s, x

ε
s)x
∣∣∣
∣∣∣
2

ν(dx)ds

) θ
2





+ 2θ−1
E

[∫ T

0

∫

Rd\{0}

∣∣∣
∣∣∣∂qh(γ−1)ji (s, q

ε
s)G

ab
jh(s, q

ε
s)(p

ε
s−)aσ

ρ
b (s, x

ε
s)x
∣∣∣
∣∣∣
θ

ν(dx)ds

]

+ 2θ−1T θC

(∫

|x|>1

|x|ν(dx)
)θ

E

[
sup

t∈[0,T ]

||pεt ||θ
]

≤ 2θ−1


D(θ)T

θ
2C

∫

R\{0}

|x|2ν(dx) θ
2 + TC

∫

R\{0}

|x|θν(dx) + T θC

(∫

|x|>1

|x|ν(dx)
)θ

 sup

t∈[0,T ]

E
[
||pεt ||θ

]
.

(B.4)

We have to mention that Kunita’s first inequality holds for θ ≥ 2. Actually J7 ≤ C̃ supt∈[0,T ] E
[
||pεt ||θ

]

still holds for θ ∈ [1, 2) since supt∈[0,T ] E
[
||pεt ||θ

]
= O(ε

θ
2 ) for θ ∈ (0, 2η).
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