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Abstract
The theory of generalized Nijenhuis torsions, which extends the classical notions
due to Nijenhuis and Haantjes, offers new tools for the study of normal forms of
operator fields. We prove a general result ensuring that, given a family of commuting
operator fields whose generalized Nijenhuis torsion of level m vanishes, there exists
a local chart where all operators can be simultaneously block-diagonalized. We also
introduce the notion of generalized Haantjes algebra, consisting of operators with
a vanishing higher-level torsion, as a new algebraic structure naturally generalizing
standard Haantjes algebras.
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1 Introduction

The purpose of this article is to establish a new geometric setting for the block-
diagonalization of operator fields on a differentiable manifold.

The problem of finding normal forms of (1,1)-tensor fields on a differentiable
manifoldM is relevant inmany theoretical and applicative contexts. Indeed, it is useful
in the determination of a reduced form for a system of partial differential equations
Bogoyavlenskij (1996, 2006, 2007) and in the theory of hydrodynamic-type systems
(Ferapontov and Marshall 2007; Ferapontov and Khusnutdinova 2006). Besides, it
finds applications in classical mechanics, since it may allow to construct separation
variables for completely integrable Hamiltonian systems (Chanu and Rastelli 2019).

In this article, we address this problem within a tensorial approach based on the
notions of Nijenhuis and Haantjes torsions and their generalizations, recently intro-
duced in Tempesta and Tondo (2022b).

In the last decades, the interest in the geometry ofNijenhuis andHaantjes tensors has
considerably increased. Indeed, new applications have been found in many different
contexts: for instance, the characterization of integrable chains of partial differential
equations of hydrodynamic type (see, e.g., Ferapontov and Marshall 2007; Ferapon-
tov and Khusnutdinova 2006) and their integrable reductions (Ferapontov and Pavlov
2022), as well as the study of topological field theories (Magri 2018). Also, Nijenhuis
geometry, which plays a crucial role in the theory of almost complex structures (New-
lander and Nirenberg 1957), has been extended to contexts as the study of analytic
matrix functions, linearization theory, operator algebras (Bolsinov et al. 2022), etc.

In Tempesta and Tondo (2021), two of the present authors introduced the concept of
Haantjes algebra. It has been shown that for an Abelian algebra of semisimple operator
fields with vanishing Haantjes torsion there exist local coordinate charts where all the
operators of the algebra can be simultaneously diagonalized. In Tempesta and Tondo
(2022a); Reyes et al. (2022), the geometry ofωH manifolds (namely symplecticman-
ifolds endowed with an algebra of Haantjes operators) has been proposed as a natural
setting for the formulation of the theory of finite-dimensional integrable Hamiltonian
systems. The related class of PH manifolds has been discussed in Tondo (2018).

A new, infinite family of higher-order torsions of level m, generalizing both the
Nijenhuis and the Haantjes ones, have been defined and discussed in Tempesta and
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Tondo (2022b). These torsions can also be derived from a family of higher-order
Haantjes brackets, which generalize the Frölicher–Nijenhuis (FN) one. As the FN
bracket is the polarization of the Nijenhuis torsion, so the higher Haantjes brackets are
related to the polarization of our higher-order torsions (Tempesta and Tondo 2023).
Operator fields with a vanishing generalized torsion are called generalized Nijenhuis
operators.

We remind that a different formulation of the theory of generalized Nijenhuis tor-
sions has been proposed in Kosmann-Schwarzbach (2019).

Besides, a generalization of the classical Haantjes theorem was proved in Tem-
pesta and Tondo (2022b). Precisely, it has been proved that, given an operator field
A : X(M) → X(M), the vanishing of any generalized Nijenhuis torsion is suffi-
cient to guarantee the mutual integrability of the eigen-distributions of A, namely the
integrability of each of them and of all of their direct sums.

From a theoretical point of view, a first result of this work is Theorem 4. It states
that for a set of commuting operators on a differentiable manifold, if at least one of
them is a generalized Nijenhuis operator, then there exists a local coordinate chart
where these operators take simultaneously a block-diagonal form.

This statement is further refined by requiring that all of the commuting operators
are generalized Nijenhuis operators of a (common) level m and their joint eigen-
distributions are pairwise integrable (see Definition 11). Thus, our main result is
Theorem 5 ensuring that, under these hypotheses, on a local coordinate chart all of
them take a block-diagonal form with finer blocks.

These results naturally suggest the notion of generalized Haantjes algebra of level
m. It consists of a set of generalized Nijenhuis operators of the same level m, forming
a C∞(M)-module; besides, this set is closed under the product of operators.

Wewill discuss in detail the properties of the class of unigeneratedHaantjes algebras
of level m, which are generated by the independent powers of a single generalized
Nijenhuis operator.

Another crucial result is that given an operator A whose generalized Nijenhuis
torsion of level m vanishes, any polynomial P(A) whose coefficients are functions
in C∞(M) also has the same level-m torsion vanishing. This property allows us to
construct generalized Haantjes algebras in a very natural and direct way. We shall
present some nontrivial examples of unigenerated generalized Haantjes algebras of
level three and four. In particular, we will show how to construct local coordinate
charts allowing the simultaneous block-diagonalization of all the operators forming
these algebras.

The approach proposed in this work offers a new perspective on the classical prob-
lem of the normal form of operator fields.We remind that a relevant contribution to this
problem, in the spirit of tensor analysis, was given in Bogoyavlenskij (2006, 2007),
where necessary and sufficient conditions have been proposed for the existence of local
charts were a given operator acquires a block-diagonal form. Themain difference with
respect to those results is that we solve the problem for a complete family of commuting
operators. At the same time, no knowledge a priori of the eigen-distributions of the
given operators is required. This aspect is crucial, since the spectral analysis of oper-
ator fields computationally becomes rapidly intractable by increasing the dimension
of the underlying differentiable manifold. Thus, we offer sufficient tensorial condi-
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tions for the simultaneous block-diagonalization of a family of operators which can
be easily checked with the aid of computer algebra, without entering the study of their
eigen-distributions. Of course, for the explicit construction of local charts where the
simultaneous block-diagonalization of the given family of operators takes place, it is
necessary to determine their spectral properties. However, our result can be interpreted
as a tensorial test, ensuring a priori the block-diagonalizability of the whole family.
Once this property is ascertained for a concrete family, then one can proceed to the
construction of the required local charts.

A thorough study of the rich algebraic properties of the generalized Haantjes alge-
bras represents an interesting research perspective, that will be developed in future
works.

The paper is organized as follows. In Sect. 2, the theory of Nijenhuis and Haan-
tjes torsions is briefly reviewed. In Sect. 3, the concept of generalized Nijenhuis
operator is discussed. In Sect. 4, the new notion of generalized Haantjes algebra
is presented. In Sect. 5, the main theorems of this work, concerning simultaneous
block-diagonalization of non-semisimple operator fields, are proved. In Sects. 6 and
7, examples of generalized Haantjes algebras are discussed and local charts ensuring
simultaneous block-diagonalization are explicitly determined.

2 Preliminaries on the Nijenhuis and Haantjes Geometry

In this section, we shall review some basic notions concerning the geometry of Nijen-
huis and Haantjes torsions, following the original papers (Haantjes 1955; Nijenhuis
1951) and the related ones (Nijenhuis 1955a, b; Frölicher and Nijenhuis 1956). Here,
we shall focus only on the aspects of the theory which are relevant for the subsequent
discussion.

Let M be a differentiable manifold of dimension n,X(M) the Lie algebra of vector
fields on M and A : X(M) → X(M) be a smooth (1, 1)-tensor field. In the following,
all tensors will be considered to be smooth.

Definition 1 The Nijenhuis torsion of A is the the vector-valued 2-form defined by

τA(X ,Y ) := A2[X ,Y ] + [AX , AY ] − A
(
[X , AY ] + [AX ,Y ]

)
, (2.1)

where X ,Y ∈ X(M) and [ , ] denotes the commutator of two vector fields.

Definition 2 The Haantjes torsion associated with A is the vector-valued 2-form
defined by

HA(X ,Y ) := A2τA(X ,Y ) + τA(AX , AY ) − A
(
τA(X , AY ) + τA(AX ,Y )

)
.(2.2)

The Haantjes (Nijenhuis) vanishing condition inspires the following definition.

Definition 3 A Haantjes (Nijenhuis) operator is a (1,1)-tensor field whose Haantjes
(Nijenhuis) torsion identically vanishes.
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A simple, relevant case of Haantjes operator is that of a tensor field A which takes
a diagonal form in a local chart x = (x1, . . . , xn):

A(x) =
n∑

i=1

λi (x)
∂

∂xi
⊗ dxi , (2.3)

where λi (x) := λii (x) are the eigenvalue fields of A and
(

∂
∂x1

, . . . , ∂
∂xn

)
are the fields

forming the so called natural frame associated with the local chart (x1, . . . , xn). As
is well known, the Haantjes torsion of the diagonal operator (2.3) vanishes.

We also recall that two frames {X1, . . . , Xn} and {Y1, . . . ,Yn} are said to be equiv-
alent if n nowhere vanishing smooth functions fi exist, such that

Xi = fi (x)Yi , i = 1, . . . , n .

Definition 4 An integrable frame is a reference frame equivalent to a natural frame.

It is interesting to observe that the algebraic properties of Haantjes operators are
richer than those of Nijenhuis operators. Hereafter, I : X(M) → X(M) will denote
the identity operator. A useful result is the following.

Proposition 1 (Bogoyavlenskij 1996). Let A be a (1,1)-tensor field. The following
identity holds:

H f I+gA(X ,Y ) = g4HA(X ,Y ), (2.4)

where f , g : M → R are C∞(M) functions.

Proof See Proposition 1, p. 255 of Bogoyavlenskij (1996). ��
Interestingly enough, such a property does not hold in the case of a Nijenhuis operator.
Many more examples of Haantjes operators, relevant in classical mechanics and in
Riemannian geometry, can be found for instance in the works (Reyes et al.2022;
Tempesta and Tondo 2016; 2021; 2022a; 2022b; 2023).

3 The Generalized Nijenhuis Operators and Block-Diagonalization

In this section, for the sake of clarity, we shall briefly review some of the main alge-
braic and geometric properties of the new class of generalized Nijenhuis operators
introduced and studied in Tempesta and Tondo (2021, 2022b).

Definition 5 Let A : X(M) → X(M) be a (1,1)-tensor field. The generalized Nijen-
huis torsion of A of levelm, for each integerm ≥ 1, is the skew-symmetric (1,2)-tensor
field defined by
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τ
(m)
A (X ,Y ) = A2τ

(m−1)
A (X ,Y ) + τ

(m−1)
A (AX , AY )

− A
(
τ

(m−1)
A (X , AY ) + τ

(m−1)
A (AX ,Y )

)
, X ,Y ∈ X(M) . (3.1)

Here, the notation τ
(0)
A (X ,Y ) := [X ,Y ], τ (1)

A (X ,Y ) := τA(X ,Y ) and τ
(2)
A (X ,Y ) :=

HA(X ,Y ) is adopted.

Definition 6 Let A : X(M) → X(M) be a (1,1)-tensor field. If τ
(m)
A (X ,Y ) = 0 for

some m ∈ N\{0}, we shall say that A is a generalized Nijenhuis operator of level m.

We recall a result which is crucial in the following analysis.

Theorem 1 Let A : X(M) → X(M) be an operator. Assume that

τ
(m)
A (X ,Y ) = 0, X ,Y ∈ X(M) (3.2)

for some m ≥ 1. Then, each eigen-distribution of A, as well as each direct sum of its
eigen-distributions, is integrable.

3.1 Eigen-Distributions and Spectral Properties of Generalized Nijenhuis
Operators

We shall recall now some of the spectral properties of generalized Nijenhuis operators.
Let us denote by Spec(A) := {λ1(x), λ2(x), . . . , λs(x)}, x ∈ M , the set of the
eigenvalues of an operator A : X(M) → X(M), which will always be assumed to be
real and pointwise distinct. We denote by

Di (x) = ker
(
A(x) − λi (x)I

)ρi
, i = 1, . . . , s (3.3)

the i-th eigen-distribution of index ρi ≥ 1, which includes all the (generalized) eigen-
vectors corresponding to the eigenvalue λi . In Eq. (3.3), ρi stands for the Riesz index
of λi , which is the minimum integer such that

ker
(
A(x) − λi (x)I

)ρi ≡ ker
(
A(x) − λi (x)I

)ρi+1
. (3.4)

In the forthcoming considerations, we shall always suppose a regularity condition,
namely that the rank of the distributions and ρi are (locally) independent of x. When
ρi = 1, Di is a proper eigen-distribution.

It is also useful, from an applicative point of view, to consider the explicit action of
a generalized Nijenhuis torsion on a pair of generalized eigenvectors of A, as in the
following result:

Proposition 2 Let A be a (1,1)-tensor and Xα ∈ Dμ, Yβ ∈ Dν be two of its generalized
eigenvectors corresponding to the eigenvalues μ, ν respectively. Then, for any integer
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m ≥ 2 the following formula holds:

τ
(m)
A (Xα,Yβ) =

m∑
i, j=0

(−1)i+ j
(
m

i

)(
m

j

)(
A − μI

)m−i(
A − νI

)m− j [Xα−i ,Yβ− j ] ,

(3.5)

where

AXα = μXα + Xα−1, AYβ = νYβ + Yβ−1 , 1 ≤ α ≤ ρμ, 1 ≤ β ≤ ρν ,

(3.6)

and X0 and Y0 are, by definition, null vector fields.

3.2 Block-Diagonalization

As a nontrivial application of Theorem 1, one can also prove that, given an operator
A, condition (3.2) is also sufficient to ensure the existence of a local chart where the
operator A can be block-diagonalized. We envisage relevant applications, for instance,
in the theory of hydrodynamic-type systems (Bogoyavlenskij 2006), in the study of
partial separability of Hamiltonian systems (Chanu and Rastelli 2019) and, more gen-
erally, in the context of Courant’s problems for first-order hyperbolic systems of partial
differential equations (Courant and Hilbert 1962).

Let A be an operator satisfying condition (3.2); we denote by ri the rank of the
distribution Di of A. We also introduce the distribution (of corank ri )

Ei := Im
(
A − λi I

)ρi =
s⊕

j=1, j �=i

D j , i = 1, . . . , s (3.7)

which is spanned by all the generalized eigenvectors of A, except those associated
with the eigenvalue λi (we remind that by hypothesis A has real eigenvalues). We
shall say that Ei is a characteristic distribution of A. Let E◦

i denote the annihilator of
the distribution Ei . The cotangent spaces of M can be decomposed as

T ∗
x M =

s⊕
i=1

E◦
i (x). (3.8)

As a consequence of Theorem1, each characteristic distribution Ei is integrable. ByEi ,
we denote the foliation associated with Ei and by Ei (x) the connected leave through
x, belonging to Ei . Given the set of distributions {E1, E2, . . . , Es}, we have associated
an equal number of foliations {E1,E2, . . . ,Es}. This set of foliations is said to be the
characteristic web of A. The leaves Ei (x) of each foliation Ei are usually referred to
as the characteristic fibers of the web.
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Definition 7 Let A : X(M) → X(M) be a generalized Nijenhuis operator of level
m. A collection of ri smooth functions will be said to be adapted to the foliation Ei

of the characteristic web of A if the level sets of such functions coincide with the
characteristic fibers of Ei .

Definition 8 Let A : X(M) → X(M) be a generalized Nijenhuis operator of level m.
A parametrization of the characteristic web of A is an ordered set of n independent
smooth functions listed as ( f 1, . . . , f i , . . . , f s), such that for any i = 1, . . . , s, the
ordered subset f i = ( f i,1, . . . , f i,ri ) is adapted to the i-th characteristic foliation of
the web:

f i,k|Ei (x)
= ci,k ∀Ei (x) ∈ Ei , k = 1, . . . , ri . (3.9)

Here, ci,k are real constants depending on the indices i and k only. In this case, we
shall say that the collection of these functions is adapted to the web and that each of
them is a characteristic function.

In the case of a single operator with a vanishing higher-order torsion, the following
result gives a simple and very general tensorial criterion for the existence of local
coordinates ensuring block-diagonalizability.

Theorem 2 (Tempesta and Tondo 2022b) Let A : X(M) → X(M) be an operator. If

τ
(m)
A (X ,Y ) = 0 , X ,Y ∈ X(M) (3.10)

for some m ≥ 1, then A admits local charts adapted to the spectral decomposition
of the tangent spaces into generalized eigenspaces, where it takes a block-diagonal
form.

One of the main achievements of this work is to generalize this result to the case
of families of commuting operators. To this aim, we shall introduce a new class of
operator algebras.

4 Generalized Haantjes Algebras

4.1 Definitions

The notion of Haantjes algebra has been introduced and discussed in Tempesta and
Tondo (2021). In this section, we define a class of new, generalized Haantjes algebras.

Definition 9 A generalized Haantjes algebra of level m is a pair (M,H (m)) with the
following properties:

• M is a differentiable manifold of dimension n;
• H (m) is a set of operators K : X(M) → X(M) whose Nijenhuis torsion of level
m vanishes: τ (m)

K = 0. Also, they generate:
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– a free module over the ring of smooth functions on M :

τ
(m)(
f K1+gK2

)(X ,Y ) = 0 , ∀ X ,Y ∈ X(M) , f , g ∈ C∞(M) ,

∀ K 1, K 2 ∈ H (m); (4.1)

– a ring w.r.t. the composition operation

τ
(m)(
K1 K2

)(X ,Y ) = 0 , ∀ K 1, K 2 ∈ H (m), ∀ X ,Y ∈ X(M) . (4.2)

If

K 1 K 2 = K 2 K 1 , K 1, K 2 ∈ H (m) , (4.3)

the algebra (M,H (m)) will be said to be an Abelian generalized Haantjes algebra.
Moreover, if the identity operator I ∈ H (m), then (M,H (m)) will be said to be a
generalized Haantjes algebra with identity.

In other words, the setH (m) can be regarded as an associative algebra of generalized
Haantjes operators.

The case m = 2, namely that of standard Haantjes algebras, possesses several
important properties. Among them, we recall that for a given Abelian Haantjes algebra
H (2) ≡ H there exists an associated set of coordinates, calledHaantjes coordinates,
bymeans ofwhich all K ∈ H can bewritten simultaneously in a block-diagonal form.
In particular, ifH is also semisimple, on each set of Haantjes coordinates all K ∈ H
can be written simultaneously in a purely diagonal form. We mention that Haantjes
algebras play a relevant role in the theory of classical separable and multiseparable
Hamiltonian systems (Reyes et al. 2022).

The following result simplifies the study of the integrability of the eigen-
distributions of a family of operators forming anAbelian, generalizedHaantjes algebra.

Lemma 1 Let (M,H (m)) be an Abelian generalized Haantjes algebra of level m. We
shall assume that the rank of the eigen-distributions of the operators belonging to
H (m) is independent of x ∈ M. Then, each nontrivial intersection of these eigen-
distributions is integrable.

Proof Let {K 1, . . . , Kw} be a basis of (M,H (m)), and (D(1)
i1

, . . . ,D(w)
iw

), i1 =
1, . . . , s1, . . ., iw = 1, . . . , sw, where s j = card Spec (K j ), be the set of their eigen-
distributions. Let

Va = D(1)
i1

(x)
⋂

. . .
⋂

D(w)
iw

(x) a = 1, . . . , v, v ≤ n (4.4)

denote a nontrivial intersection of eigen-distributions of the operators {K 1, . . . , Kw},
which we call a joint eigen-distribution. Consequently, the distribution Va , being the
intersection of distributions which are involutive due to Theorem 1, is also involutive.

��
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4.2 Generalized and Unigenerated Haantjes Algebras

A special class of commutative generalized Haantjes algebras are those generated by
a single operator L and its independent powers. We denote by h the degree of the
minimal polynomial of L.

Definition 10 A generalized Haantjes algebra (M,H (m))will be said to be unigener-
ated (or cyclic) 1 if there exists an operator L : X(M) → X(M), with τ

(m)
L (X ,Y ) = 0,

such that H (m) ⊆ L(L), where L(L) is the set of all polynomials
∑h−1

k=0 ck(x)Lk in
the powers of L with coefficients ck(x) ∈ C∞(M).

Given a unigenerated algebra (M,H (m)) generated by an operator L, its rank is
less than or equal to h.

Remark 1 Unigenerated Haantjes algebras of level m as algebraic structures are not
rare. Indeed, as we will prove in Theorem 3, given an operator L with τ

(m)
L (X ,Y ) =

0, any polynomial in L having coefficients in C∞(M) is still an operator having a
vanishing torsion of the same level. Thus, the independent powers of any operator
with a given vanishing generalized torsion provide naturally a basis of a unigenerated
generalized algebra.

In the following, we shall prove this fundamental fact. To this aim, we shall use
and adapt to our general case several algebraic techniques and results introduced and
proved in Bogoyavlenskij (2004) for the case of Nijenhuis and Haantjes operators. In
particular, we shall use a representation of (1,2)-tensors in the ring S3 of polynomials of
three independent variables z, λ, μ with coefficients depending on x ∈ M . A generic
polynomial of this ring has the form

S(z, λ, μ) :=
N∑

i, j,k

si jk(x)ziλ jμk, x ∈ M

with N ∈ N\{0}, si jk(x) ∈ C∞(M). Given an operator A and a (1,2)-tensor T (X ,Y ),
we introduce the representation defined by Bogoyavlenskij (2004)

RS(T )(X ,Y ) =
N∑

i, j,k

si jk(x)Ai T (A j X , AkY ) . (4.5)

Thus, the action of λ and μ is associated with the first and second arguments of
T (X ,Y ), whereas z is associatedwith the powers of A acting on the values of T (X ,Y ).
Representation (4.5) satisfies the basic properties

RS1+S2 = RS1 + RS2 , (4.6)

1 We borrow the terminology of unigenerated polynomial algebras from Kreuzer and Robbiano (1993),
although in our context it is defined for the more general case of polynomial algebras with variable coeffi-
cients. In our previous works, the same notion was equivalently denominated “cyclic algebras.”
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RS1·S2 = RS2·S1 = RS1 · RS2 . (4.7)

This framework allows us to represent the “tower" of generalized Nijenhuis torsions
in a direct way.

Lemma 2 Let A : X(M) → X(M) be an operator. We have:

τ
(m+1)
A (X ,Y ) = Rσ τ

(m)
A (X ,Y ) (4.8)

where σ is the polynomial σ(z, λ, μ) = (z − λ)(z − μ).

Proof It is an immediate consequence of formula (3.1), which indeed can be written
as

R(z2−zλ−zμ+λμ)τ
(m)
A (X ,Y ) = A2τ

(m)
A (X ,Y ) + τ

(m)
A (AX , AY )

− A
(
τ

(m)
A (X , AY ) + τ

(m)
A (AX ,Y )

)

= τ
(m+1)
A (X ,Y ) . (4.9)

��

When m = 2, we recover the formula

HA(X ,Y ) = Rσ τA(X ,Y )

first stated in Bogoyavlenskij (2004). We also remind that, given a polynomial P(z) =∑N
k=0 ck(x)zk , the Bézout identity holds:

P(z) − P(λ) = (z − λ)QP(z, λ) (4.10)

where

QP (z, λ) =
N∑

k=1

ck(x)
∑

p+q=k−1

z pλq .

We prove now a useful technical result.

Lemma 3 Let A : X(M) → X(M) be an operator. Let P := P(A) = ∑N
k=0 ck(x)Ak

be a polynomial in A with variable coefficients. We have

τ
(m)
P (X , Y ) = R(QP (z,λ))m (QP (z,μ))m τ

(m)
A (X ,Y ), m ≥ 2 . (4.11)
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Proof We shall proceed by induction over m ≥ 2. The case m = 2, corresponding
to the Haantjes torsion, has been proved in Bogoyavlenskij (2004). Thus, we assume
that the property is true for the case of a torsion of level m − 1 and we prove that it
holds true for the case of a torsion of level m. According to Lemma 2, we have

τ
(m)
A (X ,Y ) = Rσ τ

(m−1)
A (X ,Y ) (4.12)

where σ = (z − λ)(z − μ). Also, in terms of the operator P expression (4.12) can be
written as

τ
(m)
P (X ,Y ) = R(P(z)−P(λ))(P(z)−P(μ))τ

(m−1)
P (X ,Y ) . (4.13)

Thus, applying twice the Bézout identity (4.10), we get

(P(z) − P(λ))(P(z) − P(μ)) = (z − λ)(z − μ)QP (z, λ)QP (z, μ) .

Exploiting property (4.7), we obtain

τ
(m)
P (X ,Y ) = RQP (z,λ)QP (z,μ)Rσ τ

(m−1)
P (X ,Y ) . (4.14)

By the induction hypothesis, we have

τ
(m−1)
P (X ,Y ) = R(QP (z,λ))m−1(QP (z,μ))m−1τ

(m−1)
A (X ,Y ) .

Consequently, due to Eq. (4.14) and Lemma 2, we deduce that

τ
(m)
P (X ,Y ) = R(QP (z,λ))m (QP (z,μ))m Rσ τ

(m−1)
A (X ,Y )

= R(QP (z,λ))m (QP (z,μ))m τ
(m)
A (X ,Y ) , (4.15)

which completes the proof. ��
We can now state the main result of this section.

Theorem 3 Let A : X(M) → X(M) be an operator with τ
(m)
A (X ,Y ) = 0, m ≥ 2.

Then

τ
(m)(∑N

k=0 ck(x)Ak
)(X ,Y ) = 0, X ,Y ∈ X(M) , (4.16)

where ck(x) ∈ C∞(M).

Proof Let P := P(A) = ∑N
k=0 ck(x)Ak . It is sufficient to apply Lemma 3, taking

into account the assumption τ
(m)
A (X ,Y ) = 0. ��

Interestingly enough, Theorem 3 does not hold in general for the case of the Nijen-
huis torsion (i.e., m = 1). However, as is well known, relation (4.16) is valid for the
Nijenhuis torsion if the coefficients ck(x) are all constant.
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5 Generalized Nijenhuis Torsions and Simultaneous
Block-Diagonalization

In this section, we state our main theoretical results. We first recall the following

Definition 11 We shall say that a set of distributions {Di ,D j , . . . ,Dk} is pairwise
integrable if each pair Di + D j , i �= j is integrable.

Definition 12 Let us consider a set of distributions {Di ,D j , . . . ,Dk}. We shall say
that these distributions are mutually integrable if

(i) each of them is integrable
(ii) they are pairwise integrable.

We consider first the case of a single generalized Nijenhuis operator belonging to an
arbitrary family of commuting operators.

Theorem 4 Let S = {K 1, . . . , Kw}, Kα : X(M) → X(M), α = 1, . . . , w be a set of
commuting operator fields; we assume that one of them, say K 1, satisfies the condition

τ
(m)
K1

(X ,Y ) = 0, X ,Y ∈ X(M) , (5.1)

for some m ≥ 1. Then, there exist local charts in which all of the operators Kα can
be written simultaneously in a block-diagonal form.

Proof Assuming that condition (5.1) is satisfied, Proposition 2 ensures the existence
of an equivalence class of integrable frames and local charts where the operator K 1
takes a block-diagonal form. Such coordinates are adapted to the characteristic web
associated with the spectral decomposition of K 1:

TxM = Di (x)
⊕

Ei (x) =
s⊕

i=1

Di (x) . (5.2)

with

x = (x1, . . . , xi , . . . , xs) . (5.3)

The variables xi = (xi,1, . . . , xi,ri ) are defined over the integral leaves of the eigen-
distribution Di , whereas the remaining ones, namely

(x1, . . . , xi−1, xi+1, . . . , xs)

are coordinates of the leaves, i.e., are constant (x1 = c1, . . . , xi−1 = ci−1, xi+1 =
ci+1, . . . , xs = cs) on each leaf Di (c) of the foliation. Here
c := (c1, . . . , ci−1, ci+1, . . . , cs). Since all operators of the set S commute, every
distribution Di is invariant under the action of the operators {K 2, . . . , Kw}. As a
direct consequence of this property, all the operators Kα ∈ S in the local chart (5.3)

123



35 Page 14 of 24 Journal of Nonlinear Science (2023) 33 :35

take a block-diagonal form, where the i-th (ri × ri ) block matrix [K (i)
α ]|Di (c) coincides

with the matrix [Kα|Di (c)], i = 1, . . . , s, which represents the restricted operator Kα

to the leaf Di (c). ��
Theorem 5 Let S = {K 1, . . . , Kw}, Kα : X(M) → X(M), be a set of commuting
operator fields. If

(i) all the operators of the family have vanishing generalized torsion of level m:

τ
(m)
Kα

(X ,Y ) = 0 , α = 1, . . . , w, X ,Y ∈ X(M) (5.4)

(ii) their joint eigen-distributions

Va(x) :=
s1,...,sw⊕
i1,...,iw

D(1)
i1

(x)
⋂

. . .
⋂

D(w)
iw

(x) , a = 1, . . . , v ≤ n (5.5)

are pairwise integrable, then there exist sets of local coordinates, adapted to the
decomposition

TxM =
v⊕

a=1

Va(x) x ∈ M, (5.6)

in which all operators Kα admit simultaneously a block-diagonal form with pos-
sibly finer blocks with respect to those considered in Theorem 4.

Proof According to Theorem 4, since by hypothesis τ
(m)
K1

(X ,Y ) = 0, X ,Y ∈ X(M),
all the operators take simultaneously a block-diagonal form in a local chart adapted
to the spectral decomposition of K 1. Assume also that τ

(m)
K2

(X ,Y ) = 0. Then, the
tangent space at any point x admits the finer decomposition

TxM =
s1,s2⊕
i1,i2

D(1)
i1

(x) ∩ D(2)
i2

(x) , (5.7)

whereD(2)
i2

are the eigen-distributions of K 2. These eigen-distributions are integrable
by virtue of Theorem 1. Consequently, the generalized Haantjes Theorem 1 can also
be applied to the restriction of K 2 to D(1)

i1
(c1). Therefore, there exists a transformation

of coordinates, acting only on the coordinates over the leaves of the foliation D(1)
i1

� : M → M, (x1, . . . , xi1, . . . , xs1) �→ (x1, . . . , yi1 , . . . , xs1) , (5.8)

such that the new coordinates yi1 = (yi1,1, . . . , yi1,ri1 ) = f i1(xi1) are adapted to the
decomposition

TxD
(1)
i1

(c1) =
s2⊕
i2

D(1)
i1

(x) ∩ D(2)
i2

(x), x ∈ D(1)
i1

(c1) . (5.9)
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Thus, we have

[K (i1)
α ] =

⎡
⎢⎢⎣
K (i1,1)

α 0 0

0
. . . 0

0 0 K (i1,s2)
α

⎤
⎥⎥⎦ , α = 1, . . . , w (5.10)

where [K (i1, j)
α ]|

D(1)
i1

(c1)∩D(2)
j (c2)

=
[
Kα|

D(1)
i1

(c1)∩D(2)
j (c2)

]
, j = 1, . . . , s2. Let us consider

the decomposition

TxM =
s1,s2⊕
i1,i2

D(1)
i1

(x) ∩ D(2)
i2

(x) =
u⊕

γ=1

Uγ (x) x ∈ M , (5.11)

where in the direct sum (5.7) Uγ �= {0}, u ≤ n and rγ denotes the rank of Uγ

(
∑u

γ=1 rγ = n). Clearly, the distributions Uγ are invariant under the action of each
operator Kα ∈ S. Besides, these distributions are involutive as are realized as the inter-
section of involutive distributions. By assumption, their direct sums are also integrable.
Therefore, there exist local charts in M of the form

{U , (y1,1, . . . , y1,r1; . . . ; yi1,1, . . . , yi1,ri1 ; . . . ; ys1,1, . . . , ys1,rs1 )} (5.12)

adapted to the decomposition (5.7), where all the operators Kα ∈ S admit simultane-
ously a (possibly) finer block-diagonal form. By extending the previous procedure to
the Haantjes operators K 3, . . . , Kw, we obtain the decomposition

TxM =
s1,...,sw⊕
i1,...,iw

D(1)
i1

(x)
⋂

. . .
⋂

D(w)
iw

(x) =
v⊕

a=1

Va(x), (5.13)

where in the direct sum (5.13) Va �= {0}, v ≤ n and ra denotes the rank of Va

(
∑v

a=1 ra = n). Since the involutive distributions Va are mutually integrable as a
consequence of the previous reasoning, then there exist local charts

{U , ( y1, . . . , ya, . . . , yv)} (5.14)

adapted to the decomposition (5.13), such that

Va =
〈

∂

∂ ya,1 , . . . ,
∂

∂ ya,ra

〉
a = 1, . . . , v, (5.15)

where the natural frame
{

∂
∂ ya,1 , . . . ,

∂
∂ ya,ra

}
over the leaves of Va is formed by joint

generalized eigenvector fields of the operators {K 1, . . . , Kw}. ��
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Remark 2 Given a generalized Haantjes algebra (M,H (m)) with generator L, the
hypothesis (i i) of Theorem 5 is automatically satisfied. Indeed, the joint eigen-
distributions Va either coincide with the eigen-distributions of the generator L or are
direct sumsof them. In both cases, since (due toTheorem1) the eigen-distributions of L
are mutually integrable, it turns out that the direct sums of the joint eigen-distributions
Va are integrable as well.

In the following sections, we shall illustrate the results proposed. First, we will
show some examples of generalized Haantjes algebras of operator fields. Then, we
shall present the explicit construction of local charts of coordinates allowing their
simultaneous block-diagonalization.

6 Block-Diagonalization of Generalized Haantjes Algebras

As stated in Theorems 4 and 5, we can block-diagonalize families of commuting
generalized Nijenhuis operators by constructing a suitable coordinate chart. To this
aim, we propose the following procedure.

(1) Determine the joint eigen-distributions Va of the given family of operator fields
(2) Determine a basis of closed one-forms for each of the corresponding annihilators
(3) Integrate them to find the characteristic coordinates
(4) Compute the expression of the operators of the given family in these coordinates

To illustrate this procedure, we shall first construct families of operator fields,
depending on arbitrary functions and having a prescribed vanishing higher-level tor-
sion. A direct approach consists in considering an operator field whose entries are all
arbitrary functions, and imposing both that a certain higher-level torsion is vanishing,
and simultaneously that the lower-level ones are not. In this way, one can obtain a set
of differential constraints that can be solved (possibly with suitable ansätze) to obtain
families of operator fields with a vanishing higher-level torsion, still depending on
arbitrary functions. Generally speaking, there is a lot of freedom in this approach.

From this analysis, it emerges that generalized Haantjes algebras are not rare. Thus,
by specializing the arbitrary functions contained in the families of operators determined
according to the procedure proposed, we can obtain infinitely many examples of new,
higher-level Haantjes algebras.

6.1 A Third-Level Generalized Haantjes Algebra

Let M be a five-dimensional differentiable manifold. In local coordinates x =
(x1, x2, x3, x4, x5), a first example is given by the family of operators

L(x) =

⎡
⎢⎢⎢⎢⎣

f1 1 0 1 0
f1 − f2 + 1 f1 + 1 − f3 f1 − f2 + 1 − f3

1 0 f2 + f3 1 f3
f2 − f1 −1 f3 f2 − 1 f3

−1 0 − f3 − 1 −1 f2 − f3 − 1

⎤
⎥⎥⎥⎥⎦

, (6.1)
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where f1 = f1(x1, x2), f2 = f2(x3, x4, x5) and f3 = f3(x3) are arbitrary functions.
A direct computation allows us to prove the following result.

Proposition 3 The family of operators L satisfies the following properties:

• τ
(3)
L (X ,Y ) = 0

• HL(X ,Y ) �= 0 if and only if f ′
3 �= 0.

The minimal polynomial of L is generically of fifth degree and reads

mL(x, λ) = (λ − f1 − 1)(λ − f1 + 1) (λ − f2 + 1) (λ − f2)
2 . (6.2)

Thus, it coincides with the characteristic polynomial; therefore L is a cyclic oper-
ator and the Riesz indices ρi coincide with the rank of the eigen-distributions Di .
Also, notice that L is generically non-semisimple. The eigenvalues and generalized
eigenvectors of L are

λ1 = f1 + 1, ρ1 = 1, D1 =
〈

∂

∂x1
+ 2

∂

∂x2
− ∂

∂x4

〉
,

λ2 = f1 − 1, ρ2 = 1, D2 =
〈

∂

∂x1
− ∂

∂x4

〉
,

λ3 = f2 − 1, ρ3 = 1, D3 =
〈
f3

∂

∂x2
− f3

∂

∂x4
+ ∂

∂x5

〉
,

λ4 = f2, ρ4 = 2, D4 =
〈

∂

∂x3
− ∂

∂x5
,

∂

∂x2
− ∂

∂x4

〉
.

(6.3)

From these eigen-distributions, we can compute their characteristic distributions
and consequently their annihilators:

E1 = ⊕i �=1Di =
〈

∂

∂x1
− ∂

∂x4
, f3

∂

∂x2
− f3

∂

∂x4
+ ∂

∂x5
,

∂

∂x2
− ∂

∂x4
,

∂

∂x3
− ∂

∂x5

〉

�⇒ E◦
1 = 〈dx1 + dx2 + dx4〉,

E2 = ⊕i �=2Di =
〈

∂

∂x1
+ 2

∂

∂x2
− ∂

∂x4
, f3

∂

∂x2
− f3

∂

∂x4
+ ∂

∂x5
,

∂

∂x2
− ∂

∂x4
,

∂

∂x3
− ∂

∂x5

〉

�⇒ E◦
2 = 〈dx1 − dx2 − dx4〉,

E3 = ⊕i �=3Di =
〈

∂

∂x1
+ 2

∂

∂x2
− ∂

∂x4
,

∂

∂x1
− ∂

∂x4
,

∂

∂x2
− ∂

∂x4
,

∂

∂x3
− ∂

∂x5

〉

�⇒ E◦
3 = 〈dx3 + dx5〉,

E4 = ⊕i �=4Di =
〈

∂

∂x1
+ 2

∂

∂x2
− ∂

∂x4
,

∂

∂x1
− ∂

∂x4
, f3

∂

∂x2
− f3

∂

∂x4
+ ∂

∂x5

〉

�⇒ E◦
4 = 〈dx3, dx1 + dx4 + f3dx

5〉.

(6.4)

Remark 3 We can easily extract an Abelian unigenerated algebraH (3) from the class
(6.1). In order to achieve that, we set f3 = x3 for all the operators of the algebra and
vary the other arbitrary functions. Observe that all the operators of the family obtained
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in this way will share both the same eigen-distributions and the degree of the minimal
polynomial. Thus, any of them generate the whole algebraH (3) with its independent
powers. Notice that for this algebra the hypotheses of Theorem 5 are all satisfied, as
discussed in Remark 2.

By way of an example of simultaneous block-diagonalization, we can consider the
three commuting operators

L1(x) =

⎡
⎢⎢⎢⎢⎣

x1 1 0 1 0
x1 + 1 x1 + 1 −x3 x1 + 1 −x3

1 0 x3 1 x3

−x1 −1 x3 −1 x3

−1 0 −x3 − 1 −1 −x3 − 1

⎤
⎥⎥⎥⎥⎦

, (6.5)

L2(x) =

⎡
⎢⎢⎢⎢⎣

x2 1 0 1 0
x2 − x5 + 1 x2 + 1 −x3 x2 − x5 + 1 −x3

1 0 x3 + x5 1 x3

−x2 + x5 −1 x3 x5 − 1 x3

−1 0 −x3 − 1 −1 −x3 + x5 − 1

⎤
⎥⎥⎥⎥⎦

, (6.6)

L3(x) =

⎡
⎢⎢⎢⎢⎣

0 1 0 1 0
−x4 − x3x5 + 1 1 −x3 −x4 − x3x5 + 1 −x3

1 0 x4 + x3
(
x5 + 1

)
1 x3

x4 + x3x5 −1 x3 x4 + x3x5 − 1 x3

−1 0 −x3 − 1 −1 x4 + x3
(
x5 − 1

) − 1

⎤
⎥⎥⎥⎥⎦

.

(6.7)

These operators are C∞(R)-linearly independent. Any of these three operators can
be chosen to be the generator of a level-three Haantjes unigenerated algebra H (3)

of rank 5. A basis of this algebra is, for instance, B = {I, L1, L2
1, L

3
1, L

4
1}. In the

following subsection, we shall determine a set of coordinates which block-diagonalize
the algebra H (3).

6.2 Block-Diagonalization

By integrating the annihilators (6.4) of the eigen-distributions of operators (6.5)-(6.7)
and leaving f3 = f3(x3) arbitrary, we obtain a set of coordinates which block-
diagonalize the algebra H (3). We have explicitly:

y1 = x1 + x2 + x4,

y2 = x1 − x2 − x4,

y3 = x3 + x5,

y4 = x3,

y5 = x1 + x4 + f3(x
3)x5.

(6.8)

Precisely, in these block-separation coordinates, the operators L1, L2, L3 read:
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L1( y) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
2

(
y1 + y2

)
+ 1 0 0 0 0

0 1
2

(
y1 + y2

)
− 1 0 0 0

0 0 −1 0 0
0 0 0 −y3 + 2y4 1

0 0 0 −
(
y3 − 2y4

)2
y3 − 2y4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (6.9)

L2( y) =

⎡
⎢⎢⎢⎢⎢⎢⎣

y1 + (y3 − y4)y4 − y5 + 1 0 0 0 0
0 y1 + (y3 − y4)y4 − y5 − 1 0 0 0
0 0 y3 − y4 − 1 0 0
0 0 0 y4 1

0 0 0 −
(
y3 − 2y4

)2
2y3 − 3y4

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(6.10)

L3( y) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 −1 0 0 0
0 0 − 1

2 (y1 + y2) + y5 − 1 0 0
0 0 0 − 1

2 (y1 + y2) − y3 + 2y4 + y5 1

0 0 0 −
(
y3 − 2y4

)2 − 1
2 (y1 + y2) + y3 − 2y4 + y5

⎤
⎥⎥⎥⎥⎥⎥⎦

(6.11)

Observe that more generally, in coordinates (6.8) the whole class (6.1) takes the block-
diagonal form

L( y) =

⎡
⎢⎢⎢⎢⎣

f1 + 1 0 0 0 0
0 f1 − 1 0 0 0
0 0 f2 − 1 0 0
0 0 0 f2 + f3 − (y3 − y4) f ′

3 1

0 0 0 − (
f3 − (y3 − y4) f ′

3

)2
f2 − f3 + (y3 − y4) f ′

3

⎤
⎥⎥⎥⎥⎦

,

(6.12)

where f1 = f1
( 1
2 (y

1 + y2), y1 + (y3 − y4) f3 − y5
)
, f2 = f2

(
y4,− 1

2 (y
1 + y2)

−(y3 − y4) f3 + y5, y3 − y4
)
and f3 = f3(y4) are arbitrary functions (with f ′

3 �= 0).

7 A Fourth-Level Generalized Haantjes Algebra

Let us consider the following fourth-level generalized Nijenhuis family of operator
fields defined over a seven-dimensional differentiable manifold M , which is obtained
with the same procedure described in the previous section:

K(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1 x1 x1 + g2 −x1 x1 −x1 x1

1 g5 −g1 + g5 + x1 g4 − g5 0 g1 − g5 − x1 −1 − g4 + g5
0 0 g1 0 0 0 0

1 + g1 − g4 x1 x1 + g2 −1 − x1 + g4 x1 −x1 x1

0 g1 − g5 g1 + g3 − g5 + 1
x1

−g1 + g5 g1 −g1 + g5 − 1
x1

g1 − g5

0 0 x1 0 0 g1 − x1 0
g1 − g4 x1 x1 + g2 −1 − x1 x1 −x1 1 + x1 + g4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7.1)

Here, g1 = g1(x1, x2, x3, x4), g2 = g2(x1, x2, x3, x4), g3 = g3(x1, x2, x3, x4),
g4 = g4(x5, x6), g5 = g5(x7).

As a result of a direct computation, one can prove the following
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Proposition 4 The operator family (7.1) satisfies the property:

τ
(4)
K (X ,Y ) = 0 .

In addition, its third-level torsion does not vanish whenever g3 �= 0.

7.1 Spectral Analysis

Its minimal polynomial is generically of seventh degree,

mK (x, λ) = (λ − g5)(λ − g4 − 1)(λ − g4 + 1)(λ − g1 + x1)(λ − g1)
3, (7.2)

and its eigenvalues and generalized eigenvectors are

λ1 = g5, ρ1 = 1, D1 =
〈

∂

∂x2
− ∂

∂x5

〉
,

λ2 = g4 + 1, ρ2 = 1, D2 =
〈

∂

∂x2
− ∂

∂x7

〉
,

λ3 = g4 − 1, ρ3 = 1, D3 =
〈

∂

∂x2
+ 2

∂

∂x4
+ ∂

∂x7

〉
,

λ4 = g1 − x1, ρ4 = 1, D4 =
〈

∂

∂x1
− (x1)2

∂

∂x2
+ ∂

∂x4
− ∂

∂x5
− (x1)2

∂

∂x6
+ ∂

∂x7

〉
,

λ5 = g1, ρ5 = 3, D5 =
〈

∂

∂x1
+ ∂

∂x4
+ ∂

∂x7
,

∂

∂x5
,

∂

∂x3
+ ∂

∂x6

〉
.

(7.3)

The characteristic distributions and the corresponding annihilators are

E1 = ⊕i �=1 Di =
〈

∂

∂x2
− ∂

∂x7
,

∂

∂x2
+ 2

∂

∂x4
+ ∂

∂x7
,

∂

∂x1
− (x1)2

∂

∂x2

+ ∂

∂x4
− ∂

∂x5
− (x1)2

∂

∂x6

+ ∂

∂x7
,

∂

∂x1
+ ∂

∂x4
+ ∂

∂x7
,

∂

∂x3
+ ∂

∂x6
,

∂

∂x5

〉

�⇒ E◦
1 = 〈dx2 + dx3 − dx4 − dx6 + dx7〉,

E2 = ⊕i �=2 Di =
〈

∂

∂x2
− ∂

∂x5
,

∂

∂x2
+ 2

∂

∂x4
+ ∂

∂x7
,

∂

∂x1

− (x1)2
∂

∂x2
+ ∂

∂x4
− ∂

∂x5
− (x1)2

∂

∂x6
+ ∂

∂x7
,

∂

∂x1

+ ∂

∂x4
+ ∂

∂x7
,

∂

∂x3
+ ∂

∂x6
,

∂

∂x5

〉

�⇒ E◦
2 = 〈dx1 + dx4 − 2dx7〉,
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E3 = ⊕i �=3 Di =
〈

∂

∂x2
− ∂

∂x5
,

∂

∂x2
− ∂

∂x7
,

∂

∂x1
− (x1)2

∂

∂x2
+ ∂

∂x4
− ∂

∂x5

− (x1)2
∂

∂x6
+ ∂

∂x7
,

∂

∂x1
+ ∂

∂x4
+ ∂

∂x7
,

∂

∂x3
+ ∂

∂x6
,

∂

∂x5

〉

�⇒ E◦
3 = 〈dx1 − dx4〉,

E4 = ⊕i �=4 Di =
〈

∂

∂x2
− ∂

∂x5
,

∂

∂x2
− ∂

∂x7
,

∂

∂x2
+ 2

∂

∂x4
+ ∂

∂x7
,

∂

∂x1
+ ∂

∂x4
+ ∂

∂x7
,

∂

∂x3
+ ∂

∂x6
,

∂

∂x5

〉

�⇒ E◦
4 = 〈dx3 − dx6〉,

E5 = ⊕i �=5 Di =
〈

∂

∂x2
− ∂

∂x5
,

∂

∂x2
− ∂

∂x7
,

∂

∂x2
+ 2

∂

∂x4
+ ∂

∂x7
,

∂

∂x1
− (x1)2

∂

∂x2
+ ∂

∂x4
− ∂

∂x5
− (x1)2

∂

∂x6
+ ∂

∂x7

〉

�⇒ E◦
5 = 〈dx3, (x1)2dx1 + dx6, dx1 + dx2 − dx4 + dx5 − dx6 + dx7〉 .

(7.4)

By specializing the arbitrary functions g1, g2, g4, g5, but keeping the same function
g3 in all operators to have commutativity, we easily obtain an Abelian, unigenerated
and fourth-level Haantjes algebra. As in the previous example, all the operators of the
family obtained in this way will share both the same eigen-distributions and the degree
of the minimal polynomial. Thus, any of them generates the whole algebra.

To illustrate the simultaneous block-diagonalization procedure, by way of an exam-
ple we can consider the three commuting operators

K1(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2 x1 x1 −x1 x1 −x1 x1

1 0 x1 − x2 0 0 −x1 + x2 −1
0 0 x2 0 0 0 0

1 + x2 x1 x1 −1 − x1 x1 −x1 x1

0 x2 x2 −x2 x2 − 1
x1

− x2 x2

0 0 x1 0 0 −x1 + x2 0
x2 x1 x1 −1 − x1 x1 −x1 1 + x1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(7.5)

K2(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x3 x1 − 1
x1

−x1 x1 −x1 x1

1 x7 x1 − x3 + x7 x6 − x7 0 −x1 + x3 − x7 −1 − x6 + x7

0 0 x3 0 0 0 0
1 + x3 − x6 x1 − 1

x1
−1 − x1 + x6 x1 −x1 x1

0 x3 − x7 x3 − x7 −x3 + x7 x3 − 1
x1

− x3 + x7 x3 − x7

0 0 x1 0 0 −x1 + x3 0
x3 − x6 x1 − 1

x1
−1 − x1 x1 −x1 1 + x1 + x6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(7.6)
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K3(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x4 x1 0 −x1 x1 −x1 x1

1 1 1 + x1 − x4 −1 + x5 0 −1 − x1 + x4 −x5

0 0 x4 0 0 0 0
1 + x4 − x5 x1 0 −1 − x1 + x5 x1 −x1 x1

0 −1 + x4 −1 + x4 1 − x4 x4 1 − 1
x1

− x4 −1 + x4

0 0 x1 0 0 −x1 + x4 0
x4 − x5 x1 0 −1 − x1 x1 −x1 1 + x1 + x5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(7.7)

These operators are C∞(R)-linearly independent. Each of them generates a fourth-
level Haantjes algebraH (4) of rank 7. A basis of this algebra is given, for instance, by
B = {I, K 1, K 2

1, K
3
1, K

4
1, K

5
1, K

6
1}. In the following subsection, we shall determine

a set of coordinates which block-diagonalize the whole algebra H (4).

7.2 Block-Diagonalization

By integrating the annihilators (7.4) of the eigen-distributions of these operators, we
get the block-separating coordinates:

y1 = x2 + x3 − x4 − x6 + x7,

y2 = x1 + x4 − 2x7,

y3 = x1 − x4,

y4 = x3 − x6,

y5 = x3,

y6 = (x1)3

3
+ x6,

y7 = x1 + x2 − x4 + x5 − x6 + x7.

(7.8)

In these coordinates, all the operators of the algebraH (4) block-diagonalize simul-
taneously. In particular, by defining χ = 3

√
3(y4 − y5 + y6), the operators K 1, K 2,

K 3 take the form:

K 1( y) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 y1 + 1

2 (y2 − y3) − y4 − χ 0 0 0
0 0 0 0 y1 + 1

2 (y2 − y3) − y4 0 0
0 0 0 0 χ + χ3 y1 + 1

2 (y2 − y3) − y4 − χ χ3

0 0 0 0 χ −χ−1 y1 + 1
2 (y2 − y3) − y4 + χ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(7.9)
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K2( y) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
2 (y2 + y3) + χ 0 0 0 0 0 0

0 1 − y4 + y5 0 0 0 0 0
0 0 −1 − y4 + y5 0 0 0 0
0 0 0 y5 − χ 0 0 0
0 0 0 0 y5 0 0
0 0 0 0 0 y5 − χ χ3

0 0 0 0 −χ−1 −χ−1 y5 + χ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(7.10)

K3( y) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 − y1 + y5 − χ + y7 0 0 0 0 0
0 0 −1 − y1 + y5 − χ + y7 0 0 0 0
0 0 0 −y3 0 0 0
0 0 0 0 −y3 + χ 0 0
0 0 0 0 χ −y3 χ3

0 0 0 0 0 −χ−1 −y3 + 2χ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(7.11)

Also, in the block-separation coordinates, the family (7.1) takes a block-diagonal form:

K ( y) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

g5 0 0 0 0 0 0
0 g4 + 1 0 0 0 0 0
0 0 g4 − 1 0 0 0 0
0 0 0 g1 − χ 0 0 0
0 0 0 0 g1 0 0
0 0 0 0 g2χ2 + χ

(
1 + χ2

)
g1 − χ χ3

0 0 0 0 g3 + g2 + χ−1
(
1 + χ2

) −χ−1 g1 + χ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(7.12)

Here, g1 = g1(χ, y1+ 1
2 (y

2− y3)− y4, y5), g2 = g2(χ, y1+ 1
2 (y

2− y3)− y4, y5),
g3 = g3(χ, y1 + 1

2 (y
2 − y3) − y4, y5), g4 = g4(−y1 − χ + y5 + y7,−y4 + y5) and

g5 = g5(− 1
2 (y

2 + y3) + χ) are arbitrary functions of their arguments.
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