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Abstract
We present a diffuse-interface model for the solid-state dewetting problem with
anisotropic surface energies in R

d for d ∈ {2, 3}. The introduced model consists
of the anisotropic Cahn–Hilliard equation, with either a smooth or a double-obstacle
potential, together with a degenerate mobility function and appropriate boundary con-
ditions on thewall. Upon regularizing the introduced diffuse-interfacemodel, andwith
the help of suitable asymptotic expansions, we recover as the sharp-interface limit
the anisotropic surface diffusion flow for the interface together with an anisotropic
Young’s law and a zero-flux condition at the contact line of the interface with a fixed
external boundary. Furthermore, we show the existence of weak solutions for the reg-
ularized model, for both smooth and obstacle potential. Numerical results based on an
appropriate finite element approximation are presented to demonstrate the excellent
agreement between the proposed diffuse-interface model and its sharp-interface limit.
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1 Introduction

Deposited solid thin films are unstable and could dewet to form isolated islands on the
substrate in order to minimize the total surface energy (Leroy et al. 2016; Thompson
2012). This phenomenon is known as solid-state dewetting (SSD), since the thin films
remain in a solid state during the process. SSD has attracted a lot of attention recently
and is emerging as a promising route to produce patterns of arrays of particles used
in sensor technology, optical and magnetic devices, and catalyst formations, see, e.g.,
Armelao et al. (2006), Benkouider et al. (2015), Schmidt et al. (2009), Bollani et al.
(2019), Salvalaglio et al. (2020), Backofen et al. (2017).

The dominant mass transport mechanism in SSD is surface diffusion (Srolovitz and
Safran 1986). This evolution lawwas first introduced byMullins (1957) to describe the
mass diffusion within interfaces in polycrystalline materials. For surface diffusion, the
normal velocity of the interface is proportional to the surface Laplacian of the mean
curvature. In the case of SSD, the evolution of the interface that separates the thin
film from the surrounding vapor also involves the motion of the contact line, i.e., the
region where the film/vapor interface meets the substrate. The equilibrium contact
angle is given by Young’s law which prescribes a force balance along the substrate.
Many efforts have been devoted to SSD problems in recent years. For example, a large
body of experiments have revealed that the pattern formations could depend highly
on the crystallographic alignments, the film sizes and shapes, as well as the substrate
topology, see, e.g., Ye and Thompson (2011), Amram et al. (2012), Thompson (2012),
Naffouti et al. (2017), Bollani et al. (2019). In addition, mathematical studies based on
different models have been considered in Srolovitz and Safran (1986), Burger (2005),
Dornel et al. (2006), Fonseca et al. (2012), Jiang et al. (2012), Naffouti et al. (2017),
Boccardo et al. (2022), Jiang and Zhao (2019), Wang et al. (Jan 2015), Jiang et al.
(2020), Dziwnik et al. (2017).

In this work, we aim to study the SSD problem with anisotropic surface energies
in the diffuse-interface framework. In the isotropic case, diffuse-interface models are
based on the Ginzburg–Landau energy

Eiso(ϕ) =
∫

�

ε

2
|∇ϕ|2 + ε−1F(ϕ) dx, (1.1)

where � ⊂ R
d is a given domain with d ∈ {2, 3}, ϕ : � → R is the order parameter,

ε > 0 is a small parameter proportional to the thickness of the interfacial layer, and
F(ϕ) is the free energy density. The following three choices for F are mainly used in
the literature:

(i) The smooth double-well potential (Taylor and Cahn 1994)

F(ϕ) = 1

2
(1 − ϕ2)2, (1.2a)

which has two global minimum points at ϕ = ±1 and a local maximum point at
ϕ = 0;
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(ii) The logarithmic potential (Cahn and Hilliard 1958)

F(ϕ) = 1

2
θ [(1 + ϕ) log(1 + ϕ) + (1 − ϕ) log(1 − ϕ)] + 1

2
(1 − ϕ2),

(1.2b)

where θ > 0 is the absolute temperature. This potential has two minima ϕ =
±(1 − k̃(θ)), where k̃(θ) is a small positive real number satisfying k̃(θ) → 0 as
θ → 0, and its usage enforces ϕ to attain values within (−1, 1);

(iii) The double-obstacle potential (Blowey and Elliott 1991)

F(ϕ) =
{ 1

2 (1 − ϕ2) if |ϕ| ≤ 1,
∞ otherwise.

(1.2c)

It can be characterized via the deep quench limit of the logarithmic potential, i.e.,
the limit of (1.2b) as θ → 0.

The (isotropic) Cahn–Hilliard equation can be interpreted as a weighted H−1-gradient
flow of the free energy (1.1). It reads as

∂tϕ = ∇ · (m(ϕ)∇μ), μ = −ε�ϕ + ε−1F ′(ϕ), (1.3)

where m(ϕ) is a mobility function, together with Neumann boundary conditions for μ
and ϕ. The Cahn–Hilliard equation was first introduced to study the spinodal decom-
position in binary alloys (Cahn and Hilliard 1958; Cahn 1961) and has since then
been used to model many other phenomenon, e.g., Abels et al. (2012), Garcke and
Novick-Cohen (2000), Khain and Sander (2008), Bertozzi et al. (2006). We note that
the double-obstacle potential is not differentiable at ϕ = ±1, and the definition of the
generalized chemical potential in this case becomes

μ ∈ −ε�ϕ + ε−1∂ F(ϕ), (1.4)

where ∂ F(ϕ) is the Fréchet sub-differential of F at ϕ and �ϕ has to be understood
in a weak sense, see Blowey and Elliott (1991), Barrett et al. (2013). In the case of a
constantmobilitym(ϕ) ≡ 1, (1.3) converges to theMullins–Sekerka problem (Mullins
and Sekerka 1963) as ε → 0 (Pego 1989; Alikakos et al. 1994). In order to obtain the
surface diffusion equation in the sharp-interface limit, a degenerate mobility needs to
be chosen. For example, it was shown in Cahn et al. (1996) by a formal asymptotic
analysis that the surface diffusion flow is recovered by considering a slow time scale
τ = O(ε−1t) of (1.3) with m(ϕ) = (1 − ϕ2)+ and with the potential F(ϕ) either
chosen as in (1.2c), or as in (1.2b) with θ = O(εξ ), ξ > 0. When using the smooth
double-well potential (1.2a), the situation is less clear. While the limiting motion of
surface diffusion is obtained with the choice m(ϕ) = (1 − ϕ2)2 (Voigt 2016; Rätz
et al. 2006; Jiang et al. 2012; Dai and Du 2014), using the less degenerate mobility
m(ϕ) = (1 − ϕ2)+ may not lead to pure surface diffusion in the limit ε → 0, since
an additional bulk diffusion term is conjectured to be present due to the nonzero-
flux contributions (Dai and Du 2014; Lee et al. 2015, 2016). However, in all these
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Fig. 1 Sketch of the structure for
SSD near the contact line (green
point), where the vapor, film and
substrate phases meet (Color
figure online)

cases, no rigorous proof for the sharp-interface limit or the presence of nonzero-flux
contributions is available so far.

A natural generalization of the free energy (1.1) to the case of anisotropic surface
energies is given by

Eγ (ϕ) =
∫

�

ε

2
|γ (∇ϕ)|2 + ε−1F(ϕ) dx =

∫
�

εA(∇ϕ) + ε−1F(ϕ) dx, (1.5)

see, e.g., Kobayashi (1993), Elliott (1997). Here, γ : R
d → [0,∞) is the anisotropic

density function, which is positively homogeneous of degree one, and A := 1
2γ

2. This
then gives rise to the anisotropic Cahn–Hilliard equation

∂tϕ = ∇ · (m(ϕ)∇μ), μ = −ε∇ · A′(∇ϕ) + ε−1F ′(ϕ), (1.6)

where A′ represents the gradient of the map A : R
d → [0,∞). In contrast to the

isotropic case, diffuse-interface models based on (1.5) result in a nonuniform asymp-
totic interface thickness, which in fact depends on the anisotropic density function
γ (∇ϕ), see Wheeler and McFadden (1996), Wheeler (2006), Bellettini and Paolini
(1996), Elliott and Schätzle (1996), Alfaro et al. (2010). To remedy this issue, an
alternative energy of the form

Ẽγ (ϕ) =
∫

�

|∇ϕ|−1γ (∇ϕ)
(ε

2
|∇ϕ|2 + ε−1F(ϕ)

)
dx (1.7)

can be considered, see Torabi et al. (2009), Salvalaglio et al. (2015), so that a constant
thickness of the asymptotic interface is achieved. However, the resulting diffuse-
interface models based on (1.7) become more nonlinear and are singular at ∇ϕ = 0,
which poses great challenges in the mathematical analysis and the stable numeri-
cal approximation. Therefore, in this work, we will restrict ourselves to the classical
energy in (1.5). We also note that to guarantee that (1.6) converges to the anisotropic
surface diffusion flow as ε → 0, a rescaled anisotropic coefficient needs to be intro-
duced to the degenerate mobility (Rätz et al. 2006; Li et al. 2009). We refer to Sect. 2
below for the precise details.

When it comes to SSD, as shown in Fig. 1, the total surface energy of the system
consists of the film/vapor interface energy Einf and the substrate energy Esub,

Einf =
∫

�(t)
γ (ν) dS, Esub = γF S

∫
�F S

dS + γV S

∫
�V S

dS, (1.8)

where �(t) is the dynamic film/vapor interface with ν being the interface normal
pointing into the vapor phase, �F S and �V S are the interfaces between film/substrate
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andvapor/substrate, respectively, andγF S andγV S are the corresponding surface energy
densities. In order to model SSD by the diffuse-interface approach, we associate the
vapor phase with ϕ ≈ 1 and the film phase with ϕ ≈ −1. Then, the Ginzburg–Landau
type energy (1.5), up to a multiplicative constant, will approximate the sharp-interface
energy Einf . Moreover, the contribution to the wall energy Esub can be approximated
by

Ew(ϕ) =
∫

�F S∪�V S

γV S + γF S

2
+ (γV S − γF S)G(ϕ) dS, (1.9)

where G(ϕ) is a smooth function satisfying G(±1) = ± 1
2 , see Jiang et al. (2012),

Dziwnik et al. (2017),Huang et al. (2019),Backofen et al. (2017) for SSDand (Jacqmin
2000; Qian et al. 2003) for moving contact lines in fluid mechanics.

There are several results on the existence of weak solutions for the degenerate
Cahn–Hilliard equation (1.3) with homogeneous boundary conditions or its variants
with inhomogeneous boundary conditions, see Elliott and Garcke (1996), Dai and Du
(2016), Yin (1992). However, little is known about the anisotropic case except the
work in Dziwnik (2019) which focuses on a particular n-fold anisotropy in two space
dimensions.

The main aim of this work is to develop a diffuse-interface approach to SSD in
the case of anisotropic surface energies based on the energy contributions (1.5) and
(1.9). The obtained diffuse-interfacemodel consists of a degenerate anisotropic Cahn–
Hilliard equation with appropriate boundary conditions. We study the sharp-interface
limit and show the existence of weak solutions to the diffuse-interface model.

The rest of the paper is organized as follows. In Sect. 2, we review a sharp-interface
model for SSD and then introduce a diffuse-interface model based on a gradient flow
approach. We then derive the sharp-interface limit from a regularized model with the
help of asymptotic expansions in Sect. 3. In Sect. 4, we prove the existence of weak
solutions to the diffuse-interface model. Numerical tests are presented in Sect. 5,
where a comparison between sharp-interface approximations and diffuse-interface
approximations is made.

2 Modeling Aspects

In this section, we first review a sharp-interface model for SSD with anisotropic
surface energies in two or three space dimensions. Then, we propose a suitable diffuse-
interface model to approximate this sharp-interface model. Here, we note that there
exist several works on the modeling of SSD using a diffuse-interface approach in the
literature. However, these works consider either the isotropic case, e.g., Jiang et al.
(2012), Backofen et al. (2017), or the anisotropic case in 2d, e.g., Dziwnik et al. (2017).

123



34 Page 6 of 56 Journal of Nonlinear Science (2023) 33 :34

2.1 The Sharp-Interface Model

We consider the dewetting of a solid thin film on a flat substrate in R
d with d ∈ {2, 3},

as shown in Fig. 1. We parameterize the interface of �(t) over the initial interface as
follows

x(·, t) : �(0) × [0, T ] → R
d ,

where T > 0 is a prescribed final time. The induced velocity is then given by

V(x(q, t), t) = ∂tx(q, t) for all q ∈ �(0), t ∈ [0, T ],

where �(0) is a smooth hypersurface with boundary. The sharp-interface model for
SSD (cf. Cahn and Taylor 1994; Taylor and Cahn 1994; Barrett et al. 2010a; Jiang
et al. 2020) reads as

V = −∇s · (D(ν)∇sκγ ), (2.1a)

κγ = −∇s · γ ′(ν), (2.1b)

which has to hold for all t ∈ [0, T ] and all points on �(t). Here, V = V · ν is the
normal velocity, ν is the unit normal to �(t) pointing into the vapor, and ∇s is the
surface gradient operator on �(t). Besides, D(ν) is an orientation-dependent mobility
(cf. Taylor and Cahn 1994). The function D needs to be defined for unit vectors, but
here, we extend its domain to R

d such that it is positively homogeneous of degree
one. The term κγ represents the anisotropic mean curvature, and γ ′(ν) is the Cahn–
Hoffman vector, where γ ′ denotes the gradient of γ (cf. Hoffman and Cahn 1972).
The above equations are subject to the following boundary conditions at the contact
line, where the film/vapor interface �(t) meets the substrate:

• Attachment condition

V · nw = 0, (2.2a)

• Contact angle condition

γ ′(ν) · nw + σ = 0, (2.2b)

• Zero-flux condition

D(ν)∇sκγ · nc = 0, (2.2c)

where

σ = γV S − γF S (2.3)

denotes the difference of the substrate energy densities across the contact line. Here,
nw is the unit normal to the substrate and points in the direction of the substrate,
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and nc is the conormal vector of �(t), i.e., it is the outward unit normal to ∂�(t)
and it lies within the tangent plane of �(t). We observe that (2.2b) enforces an angle
condition between the Cahn–Hoffman vector γ ′(ν) and the substrate unit normal nw.
For example, in the isotropic case, γ (p) = |p|, the Cahn–Hoffman vector reduces
to the normal ν, and so if σ = 0, the condition (2.2b) encodes a 90◦ contact angle
between the film/vapor interface and the substrate.

We assume that the anisotropy function γ that belongs toC2
(
R

d \{0})∩C(Rd , R≥0)

is convex and satisfies γ > 0 on R
d \ {0}. We further assume that γ is positively

homogeneous of degree one, meaning that

γ (λp) = λγ (p) for all λ > 0,p ∈ R
d .

This immediately implies γ (0) = 0 and the gradient of γ (p) satisfies

γ ′(p) · p = γ (p) for all p ∈ R
d \ {0}. (2.4)

Similarly, the orientation-dependent mobility function D ∈ C2
(
R

d \ {0}) ∩
C(Rd , R≥0) is assumed to satisfy D > 0 on R

d \ {0} and

D(λp) = λD(p) for all λ > 0,p ∈ R
d .

Consequently, for the map

A : R
d → R, p �→ 1

2γ
2(p) (2.5)

introduced in (1.5), we have A ∈ C2
(
R

d \ {0})∩ C(Rd , R≥0). It also follows directly
from (2.4) that the relations

A(λp) = λ2A(p), A′(p) = γ (p)γ ′(p), A′(p) · p = 2A(p), (2.6a)

A′(λp) = λA′(p), A′′(λp) = A′′(p), A′′(p)p = A′(p) (2.6b)

hold for all p ∈ R
d \ {0} and all λ > 0. Here, A′ and A′′ denote the gradient and the

Hessian of A, respectively.

2.2 The Diffuse-Interface Model

Let ϕ : � × [0, T ] → R be an order parameter such that the zero level set {x ∈
� : ϕ(x, t) = 0} approximates the film/vapor interface �(t), {x ∈ � : ϕ(x, t) < 0}
corresponds to the region occupied by the thin film at time t , whereas {x ∈ � :
ϕ(x, t) > 0} represents the region occupied by the vapor at time t (see Fig. 2). In
addition, �w ⊂ ∂� models the boundary of the substrate. As a combination of (1.5)
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Fig. 2 Geometric setup for SSD
in a bounded domain � with
� = �−(t) ∪ �+(t), where
�−(t) := {x ∈ � : ϕ(x, t) < 0}
and �+(t) := {x ∈ � :
ϕ(x, t) > 0}

Thin film

Vapor

and (1.9), the total free energy of the system is given by

E(ϕ) := 1

cF

Eγ (ϕ) + Ew(ϕ) − γV S |�w|

= 1

cF

∫
�

εA(∇ϕ) + ε−1F(ϕ) dx + σ

∫
�w

G(ϕ) dS − σ

2
|�w|, (2.7)

where cF = ∫ 1
−1

√
2F(s) ds and |�w| = ∫

�w
dS. This choice of cF ensures that

1

cF

Eγ (ϕ) ≈
∫

�(t)
γ (ν) dS

for sufficiently small ε > 0. Besides, the constant term −γV S |�w| was added to the
total energy such that E(ϕ) now only depends on the single parameter σ (see (2.3))
instead of on γV S and γF S . We next derive the diffuse-interface model. To this end, we
use the smooth double-well potential

F(ϕ) = 1

2
(1 − ϕ2)2. (2.8)

This implies

cF =
∫ 1

−1

√
2F(s) ds = 4

3
.

We further choose

G(ϕ) = 1

4
(3ϕ − ϕ3), (2.9)

which yields G(±1) = ± 1
2 and G ′(±1) = 0. Letψ : � → R be a sufficiently smooth

function. Then, the first variation in the total free energy (2.7) in the direction of ψ

can be computed as

lim
δ→0

E(ϕ + δψ) − E(ϕ)

δ
= 1

cF

∫
�

εA′(∇ϕ) · ∇ψ + ε−1F ′(ϕ)ψ dx + σ

∫
�w

G′(ϕ)ψ dS
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= 1

cF

∫
�

[ε−1F ′(ϕ) − ε∇ · A′(∇ϕ)]ψ dx + 1

cF

∫
∂�\�w

εA′(∇ϕ) · nψ dS

+ 1

cF

∫
�w

[
εA′(∇ϕ) · nw + cF σ G′(ϕ)

]
ψ dS, (2.10)

where n is the outward unit normal to ∂� \ �w and nw is the outward unit normal
to �w, as defined previously. The following diffuse-interface model for SSD can be
interpreted as a weighted H−1-gradient flow of the energy functional (2.7):

α ∂tϕ = ε−1 ∇ · (m(ϕ) β(∇ϕ)∇μ) , in Q = � × (0, T ], (2.11a)

μ = −ε∇ · A′(∇ϕ) + ε−1F ′(ϕ), in Q. (2.11b)

Here, α > 0 is a time scaling coefficient, m(ϕ) is the degenerate mobility given by

m(ϕ) = (1 − ϕ2)2+ =
{
2 F(ϕ) if |ϕ| ≤ 1,
0 otherwise,

(2.12)

and β(∇ϕ) is defined as

β(∇ϕ) = D(∇ϕ)

γ (∇ϕ)
, (2.13)

and so is positively homogeneous of degree zero.
We now write � = ∂� × (0, T ] and �w = �w × (0, T ]. On �w, we impose the

boundary conditions

m(ϕ) β(∇ϕ)∇μ · nw = 0, εA′(∇ϕ) · nw + cF σ G ′(ϕ) = 0. (2.14a)

Here, the first equation is the zero-flux condition on the boundary, whereas the second
equation guarantees the integral over �w in (2.10) vanishes. Moreover, on � \ �w,
we impose the natural boundary conditions

m(ϕ) β(∇ϕ)∇μ · n = 0, A′(∇ϕ) · n = 0. (2.14b)

Remark 2.1 It is also possible to consider the double-obstacle potential (1.2c) along
with the mobility m(ϕ) = (1−ϕ2)+. Then, the corresponding diffuse-interface model
consists of (2.11a) and the variational inclusion

μ ∈ −ε∇ · A′(∇ϕ) + ε−1∂ F(ϕ). (2.15)

instead of (2.11b).
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3 The Sharp-Interface Limit

We consider the smooth double-well potential introduced in (2.8) and regularize the
coefficients m(ϕ) and β(∇ϕ) of the diffuse-interface model (2.11) with the help of
the interfacial parameter ε by defining

mε(ϕ) := εr + m(ϕ) = εr + (1 − ϕ2)2+, (3.1)

βε(∇ϕ) :=
√

d2
1ε

r + D2(∇ϕ)

γ 2
0 εr + γ 2(∇ϕ)

, (3.2)

where r ≥ 2. The regularized diffuse-interface model is then given by

α ∂tϕ
ε = ε−1∇ · (mε(ϕε) βε(∇ϕε)∇με

)
in Q, (3.3a)

με = −ε∇ · A′(∇ϕε) + ε−1F ′(ϕε) in Q, (3.3b)

mε(ϕε) βε(∇ϕε)∇με · nw = 0 on �w, (3.3c)

εA′(∇ϕε) · nw + cF σ G ′(ϕε) = 0 on �w, (3.3d)

mε(ϕε) βε(∇ϕε)∇με · n = 0 on � \ �w, (3.3e)

εA′(∇ϕε) · n = 0 on � \ �w. (3.3f)

We note that the introduction of the three regularization terms εr in (3.1) and (3.2)
allows for a mathematical analysis of (3.3) in Sect. 4 below. In fact, on defining

γ0 := min|p|=1
γ (p) > 0, γ1 := max|p|=1

γ (p) > 0,

d0 := min|p|=1
D(p) > 0, d1 := max|p|=1

D(p) > 0,

we have

εr ≤ mε(ϕ) ≤ εr + 1 and
d0
γ1

≤ βε(∇ϕ) ≤ d1
γ0

.

Moreover, by choosing r ≥ 2, we ensure that the sharp-interface limit of (3.3) is
unchanged compared to the limit of (2.11).

We now formally derive the sharp-interface limit of the regularizedmodel (2.11) via
the method of matched asymptotic expansions. We suppose that for ε > 0, (ϕε, με)

is the solution of the regularized diffuse-interface model (3.3). Then, we write

�ε(t) := {
x ∈ � | ϕε(x, t) = 0

}
and �ε(t) := �ε(t) ∩ �w (3.4)

to denote the interface and the contact line, respectively. We further assume that their
limits as ε → 0 are given by �(t) and �(t), respectively. We introduce a local
parameterization for �(t) on an open subset O ⊂ R

d−1 by

r(s, t) : O × [0, T ] → R
d . (3.5)
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Our asymptotic analysis for the interface dynamics will follow similar techniques in
the literature for degenerate Cahn-Hilliard equations, see, e.g., Cahn et al. (1996), Dai
and Du (2014), for the isotropic case and Rätz et al. (2006), Dziwnik et al. (2017) for
the anisotropic case in 2d.

3.1 Outer Expansions

Away from the interface and the contact line, we assume that the following ansatz
holds

ϕε(x, t) = ϕ0(x, t) + εϕ1(x, t) + ε2ϕ2(x, t) + · · · , (3.6a)

με(x, t) = ε−1 μ−1(x, t) + μ0(x, t) + εμ1(x, t) + ε2μ2(x, t) + · · · . (3.6b)

Moreover, in view of (3.1) and (3.2), we know that

mε(ϕε) = m(ϕ0) + ε m′(ϕ0) ϕ1 + O(ε2), (3.7a)

βε(∇ϕε) = β(∇ϕ0) + ε β ′(∇ϕ0) · ∇ϕ1 + O(ε2), (3.7b)

since r ≥ 2 and βε(p) = β(p)+ O(εr ), where β ′ denotes the gradient of β. Plugging
the expansions (3.6) and (3.7) into (3.3a) and (3.3b) gives

0 = ∇ · (β(∇ϕ0) m(ϕ0)∇μ−1), μ−1 = F ′(ϕ0).

As the energy (1.5) is expected to be bounded at leading order, it needs to hold F(ϕ0) =
0. This means that ϕ0 attains only the values −1 and 1. Hence, μ−1 = 0. We now
define

�+(t):={x ∈ � | ϕ0(x, t) = 1
}
, �−(t):={x ∈ � | ϕ0(x, t) = −1

}
,

as the outer regions, meaning that ϕ0 = ±1 in �±(t).

3.2 Inner Expansions

In the inner region near the interface �(t), we introduce the annular neighborhood

N (t) :=
{
x ∈ � : |d(x, t)| < δ

}
, δ > 0,

where d(x, t) represents the signed distance of x to �(t), defined to be positive in
�+(t). Assuming �(t) to be sufficiently smooth, we find a δ > 0 such that for every
x ∈ N (t), there exist unique vectors r(x, t) and s(x, t) such that

x = r(s(x, t), t) + d(x, t) ν(s(x, t), t). (3.8)

Here, ν(s, t) is the unit normal vector on �(t) at r(s, t) pointing into �+(t).
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Due to rapid changes of ϕε in normal direction, we introduce the stretched variable
ρ(x, t) = ε−1d(x, t). Any scalar function b(x, t) can be expressed in the new coor-
dinate system as b(x, t) = b(s(x, t), ρ(x, t), t). For any vector field b(x, t), we use
an analogous notation. Without loss of generality, we assume that {t1, t2, · · · , td−1}
forms an orthonormal basis of the tangent space of �(t) at the point r(s, t) such that

ti · t j = δi j , t j = ∂s j r, ∂s j t j = −κ j ν for s = (s1, s2, · · · , sd−1)
T ,

where κ j is the principal curvature of �(t) at the point r(s, t) in the direction of t j .
As in Dai and Du (2014), we obtain the identities

∇d = ε ∇ρ = ν(s, t) and ∇s j = 1

1 + ε ρ κ j (s, t)
t j (s, t), 1 ≤ j ≤ d − 1, inN (t).

Therefore, using the new coordinates, we calculate

∂t b = ∂t b +
d−1∑
j=1

∂s j b ∂t s j + ∂ρb ∂tρ = ∂�
t b − ε−1V ∂ρb, (3.9a)

∇b = ∇ρ ∂ρb +
d−1∑
j=1

∂s j b∇ s j = ε−1 ν ∂ρb + ∇sb + O(ε), (3.9b)

∇ · b = ∇ρ · ∂ρb +
d−1∑
j=1

∂s jb · ∇ s j = ε−1ν · ∂ρb + ∇s · b + O(ε), (3.9c)

where ∇s = ∑d−1
j=1 t j ∂s j denotes the surface gradient operator on �(t),

∂�
t b = ∂t b +

d−1∑
j=1

∂s j b ∂t s j ,

and V is the velocity of �(t) in the direction of ν, i.e., V = −∂td = −ε ∂tρ.
In the inner region, we assume the following expansions

ϕε = �0(s, ρ, t) + ε�1(s, ρ, t) + ε2�2(s, ρ, t) + · · · , (3.10a)

με = ε−1 M−1(s, ρ, t) + M0(s, ρ, t) + εM1(s, ρ, t) + ε2M2(s, ρ, t) + · · · .

(3.10b)

In particular, on assuming ∂ρ�0 > 0, we have, similarly to (3.7), that

mε(∇ϕε) = m(�0) + ε m′(�0)�1 + O(ε2), (3.11a)

βε(∇ϕε) = β(ν) + ε β ′(ν) · ∇s�0 + O(ε2), (3.11b)

where we have used the fact that β is positively homogeneous of order zero.
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Plugging (3.10) and (3.11) into (3.3a), we obtain the leading order term

0 = ∂ρ

(
β(ν)m(�0)∂ρ M−1

)
, (3.12)

which implies that m(�0)∂ρ M−1 is independent of ρ, i.e., it can be expressed as

m(�0) ∂ρ M−1 = J (s, t).

In addition, using the matching condition

lim
ρ→±∞ �0(ρ) = ±1, (3.13)

we infer J (s, t) = 0 due to the degenerate mobility m(�0). Since m(s) > 0 if
s ∈ (−1, 1), we thus conclude that M−1 is independent ofρ. By thematching condition
limρ→±∞ M−1(s, t) = μ−1, we obtain

M−1 = M−1(s, t) ≡ 0.

For the terms of order O( 1
ε3

), we obtain

0 = ∂ρ

(
β(ν)m(�0)∂ρ M0

)
.

Repeating the above line of argument, we deduce

∂ρ M0 = 0, M0 = M0(s, t). (3.14)

Using the fact that M−1 = 0 and ∂ρ M0 = 0, we then have the following expansions

∇ · (βε(∇ϕε) mε(ϕε)∇με)

= 1

ε
∂ρ(β(ν) m(�0) ∂ρ M1)

+ ∂ρ(β ′(ν) · ∇s�0 m(�0) ∂ρ M1 + β(ν)m′(�0)�1 ∂ρ M1)

+ ∂ρ(β(ν) m(�0) ∂ρ M2) + ∇s · (β(ν) m(�0)∇s M0) + O(ε). (3.15)

Considering the order O( 1
ε2

) of (3.3a), we obtain that

0 = ∂ρ

(
β(ν) m(�0) ∂ρ M1

)
. (3.16)

Similarly, by using the matching conditions, we arrive at

M1 = M1(s, t). (3.17)

At O( 1
ε
), using ∂ρ M1 = 0 and (3.15), we have

− α V∂ρ�0 = ∂ρ

(
β(ν) m(�0) ∂ρ M2

)+ ∇s · (β(ν) m(�0)∇s M0) . (3.18)
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We next consider the expansion of (3.3b). Using the identities in (2.6) and assuming
∂ρ�0 > 0, we expand the anisotropic term A′(∇�ε) as follows:

A′(∇�ε)=A′
(
1

ε
∂ρ�ε ν+∇s�

ε + O(ε)

)
=1

ε
∂ρ�ε A′(ν)+A′′(ν)∇s�

ε + O(ε).

This then yields

∇ · A′(∇�ε) = 1

ε
∂ρ [A′(∇�ε)] · ν + ∇s · A′(∇�ε)

= 1

ε
∂ρ

(
1

ε
∂ρ�ε 2A(ν) + A′(ν) · ∇s�

ε

)

+ ∇s ·
(
1

ε
∂ρ�ε A′(ν) + A′′(ν)∇s�

ε

)
+ O(ε)

= 2

ε2
∂ρρ�ε A(ν) + 1

ε

(
A′(ν) · ∂ρ(∇s�

ε) + ∇s · (∂ρ�ε A′(ν))
)+ O(1).

Now, plugging (3.10) into (3.3b), we obtain for the leading order term that

2A(ν)∂ρρ�0 − F ′(�0) = M−1 = 0. (3.19)

Using the translation identity �0(0) = 0, we then obtain

�0(ρ) = tanh

(
ρ

γ (ν)

)
, −∞ < ρ < +∞. (3.20)

Similarly, the O(1) term resulting from (3.3b) implies

2A(ν)∂ρρ�1 + A′(ν) · ∂ρ(∇s�0) + ∇s · (∂ρ�0 A′(ν)) − F ′′(�0)�1 = −M0(s, t).

(3.21)

Multiplying (3.21) by ∂ρ�0 and then integrating from −∞ to ∞ with respect to ρ

yields

∫ +∞

−∞
(

A′(ν) · ∂ρ(∇s�0) + ∇s · (∂ρ�0 A′(ν))
)
∂ρ�0 dρ

+
∫ +∞

−∞
(
2A(ν)∂ρρ�1∂ρ�0 − F ′′(�0)�1∂ρ�0

)
dρ = −M0

∫ +∞

−∞
∂ρ�0 dρ.

(3.22)

Differentiating (3.19) with respect to ρ gives

2A(ν)∂ρρρ�0 − F ′′(�0)∂ρ�0 = 0.
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Therefore, since limρ→±∞ ∂ρ�0 = 0 and limρ→±∞ �1 = 0, we compute

∫ +∞

−∞
(
2A(ν)∂ρρ�1∂ρ�0 − F ′′(�0)�1∂ρ�0

)
dρ

=
∫ +∞

−∞
(2A(ν)∂ρρρ�0 − F ′′(�0)∂ρ�0)�1 dρ = 0

via integration by parts. Then, using (3.20) and the matching condition in (3.13), we
can reformulate (3.22) as

∫ +∞

−∞
(

A′(ν) · ∂ρ(∇s�0) + ∇s · (∂ρ� A′(ν))
)
∂ρ�0 dρ = −2M0(s, t). (3.23)

It further follows from (3.20) that ∂ρ(∇s�0) = ∇s(∂ρ�0). We thus have

∫ +∞

−∞
∇s · [A′(ν)(∂ρ�0)

2] dρ = −2M0(s, t),

which yields

M0(s, t) = −1

2
∇s ·

(
A′(ν)

∫ +∞

−∞
(∂ρ�0)

2 dρ

)
= −1

2
cF ∇s · γ ′(ν) = 1

2
cF κγ ,

(3.24)

where κγ = −∇s · γ ′(ν) is the weighted mean curvature defined in (2.1b).
We now return to (3.18) and integrate it with respect to ρ from −∞ to +∞. Using

the fact that limρ→±∞ m(�0)∂ρ M2 = 0, we get

−2 α V = ∇s ·
(

β(ν)

∫ ∞

−∞
m(�0) dρ ∇s M0

)
= cF ∇s · [D(ν)∇s M0],

where we recall (3.20) and also use the identities

β(ν) = D(ν)

γ (ν)
and

∫ +∞

−∞
m(�0) dρ =

∫ +∞

−∞
2 F(�0(ρ)) dρ = cF γ (ν).

We thus obtain

V = − c2
F

4α
∇s · [D(ν)∇sκγ ] with κγ = −∇s · γ ′(ν). (3.25)

3.3 Expansions Near the Intersection with the Substrate

We next study the expansions near the intersection with the substrate using the tech-
nique discussed in Dziwnik et al. (2017), Owen et al. (1990).
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3.3.1 The Boundary Layer Near the Wall

In the boundary layer near �w, we first introduce the variable η = ε−1 dw(x), where
dw(x) represents the distance from x to the wall�w. Then, for a scalar function b(x, t),
we can write it as b(x, t) = b̂(η, y, t), where y is the (d − 1)-dimensional coordinate
system that is orthogonal to η. This implies

∇b = ∇yb̂ − ε−1∂ηb̂ nw.

We consider the expansions

ϕε = ϕ̂0(η, y, t) + εϕ̂1(η, y, t) + ε2ϕ̂2(η, y, t) + · · · , (3.26)

με = μ̂0(η, y, t) + εμ̂1(η, y, t) + ε2μ̂2(η, y, t) + · · · , (3.27)

and plug them into (3.3a) and (3.3b). The leading order terms yield

∂η

(
β̂0 m(ϕ̂0) ∂ημ̂0

) = 0, (3.28a)

∂η[A′(−∂ηϕ̂0 nw)] · nw + F ′(ϕ̂0) = 0, (3.28b)

where β̂0 = β(−∂ηϕ̂0 nw). At the boundary η = 0, it holds

−A′(−∂ηϕ̂0 nw) · nw + cF σ G ′(ϕ̂0) = 0, (3.29a)

β̂0 m(ϕ̂0)∂ημ̂0 = 0. (3.29b)

Thus, from (3.28a) and (3.29b), we obtain

m(ϕ̂0)∂ημ̂0 = 0.

Multiplying (3.28b) by ∂ηϕ̂0 and using the identities in (2.6), we arrive at

0 = −∂ηη ϕ̂0 nw · A′′(−∂ηϕ̂0 nw) ∂ηϕ̂0 nw + F ′(ϕ̂0)∂ηϕ̂0

= ∂ηηϕ̂0 nw · A′(−∂ηϕ̂0 nw) + F ′(ϕ̂0)∂ηϕ̂0. (3.30)

Integrating (3.30) over η leads to

F(ϕ̂0) = A(−∂ηϕ̂0 nw) + c(y, t) = (∂ηϕ̂0)
2 A(−nw), (3.31)

where c(y, t) = 0 due to the matching condition when η → ∞. This implies

∂ηϕ̂0 =
⎧⎨
⎩

−
√

F(ϕ̂0)
A(−nw)

if ∂ηϕ̂0 < 0,

+
√

F(ϕ̂0)
A(−nw)

if ∂ηϕ̂0 > 0.
(3.32)
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3.3.2 The Inner Layer Near the Contact Line

We assume that a local parameterization of the contact line �(t) is given by

rw(sw, t) : Ow × [0, T ] → R
d , (3.33)

where in the case d = 2, we simply set Ow = {0}. For a contact point xc ∈ �(t), we
then introduce an interior layer near it. Precisely, for any x in the plane that contains
xc and is spanned by ns and nw, we write

ξ = ε−1 (x − xc) · ns, η = −ε−1 (x − xc) · nw,

where ns is the unit normal to �(t) on the wall �w and pointing into �+(t). For a
scalar function b(x, t), we can rewrite it as b(x, t) = b̃(sw, ξ, η, t). In a similarmanner
to (3.9), we compute

∂t b = −ε−1∂ξ b̃ (∂txc · ns) + ∂�
t b̃, (3.34)

∇b = ε−1 (∂ξ b̃ ns − ∂ηb̃ nw) + ∇sw b̃ + O(ε), (3.35)

∇ · b = ε−1 (∂ξ b̃ · ns − ∂ηb̃ · nw) + ∇sw · b̃ + O(ε), (3.36)

where ∇�
t b̃ = ∂t b̃ + ∂t sw · ∇sw b̃. We then consider the expansions

ϕε = ϕ̃0(sw, ξ, η, t) + εϕ̃1(sw, ξ, η, t) + ε2ϕ̃2(sw, ξ, η, t) + · · · , (3.37)

με = μ̃0(sw, ξ, η, t) + εμ̃1(sw, ξ, η, t) + ε2μ̃2(sw, ξ, η, t) + · · · , (3.38)

and plug them into (3.3a) and (3.3b). By defining ∇c = ns ∂ξ − nw ∂η, the leading
order term yields

∇c · (β̃0 m(ϕ̃0)∇cμ̃0
) = 0, (3.39a)

∂ξ

(
A′(∇cϕ̃0) · ns

)− ∂η

(
A′(∇cϕ̃0) · nw

) = F ′(ϕ̃0), (3.39b)

where β̃0 = β(∇cϕ̃0). Similarly, the leading order terms of the boundary conditions
(3.3c) and (3.3d) give

β̃0 m(ϕ̃0)∂ημ̃0 = 0, (3.40a)

A′(∇cϕ̃0) · nw + cF σ G ′(ϕ̃0) = 0. (3.40b)

Besides, we have the matching condition

lim
ξ→±∞ ϕ̃0 = lim

y→y(x±
c )

ϕ̂0(y, η) = ϕ̂±
0 . (3.41)
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Now, multiplying (3.39b) by ∂ξ ϕ̃0 and integrating the resulting equation in a box
R := [−ξ1, ξ1] × [0, η1], we get

∫ ξ1

−ξ1

∫ η1

0
∂ξ ϕ̃0

[
∂ξ

(
A′(∇cϕ̃0) · ns

)− ∂η

(
A′(∇cϕ̃0) · nw

)]
dηdξ

=
∫ ξ1

−ξ1

∫ η1

0
∂ξ ϕ̃0 F ′(ϕ̃0) dηdξ,

which can be rewritten as

∫ η1

0

∫ ξ1

−ξ1

∂ξ

[
F(ϕ̃0) + A(∇cϕ̃0) − ∂ξ ϕ̃0 A′(∇cϕ̃0) · ns

]
dξdη

+
∫ ξ1

−ξ1

∫ η1

0
∂η

[
∂ξ ϕ̃0 A′(∇cϕ̃0) · nw

]
dηdξ = 0, (3.42)

by using the identity

− ∂ξ ϕ̃0 ∂ξ [A′(∇cϕ̃0) · ns] − ∂ξ ∂ηϕ̃0 A′(∇cϕ̃0) · nw

= ∂ξ

[
A(∇cϕ̃0) − ∂ξ ϕ̃0 A′(∇cϕ̃0) · ns

]
.

For the first integral in (3.42), applying Gauss’s theorem and using the matching
condition in (3.41) as well as the fact limξ→+∞ ∂ξ ϕ̃0 = 0, we have

lim
ξ1,η1→+∞

∫ η1

0

[
F(ϕ̃0) + A(∇cϕ̃0) − ∂ξ ϕ̃0 A′(∇cϕ̃0) · ns

]ξ1
−ξ1

dη

=
∫ +∞

0
F(ϕ̂+

0 ) + A(−∂ηϕ̂
+
0 nw) dη −

∫ +∞

0
F(ϕ̂−

0 ) + A(−∂ηϕ̂
−
0 nw) dη

= 2
∫ +∞

0
F(ϕ̂+

0 ) dη − 2
∫ +∞

0
F(ϕ̂−

0 ) dη

= 2
√

A(−nw)
(∫ +∞

0

√
F(ϕ̂+

0 )∂η�
+
0 dη +

∫ +∞

0

√
F(ϕ̂−

0 )∂η�
−
0 dη

)
= 0,

(3.43)

where we have used (3.31) and (3.32).
We then apply Gauss’s theorem to the second integral in (3.42). Recalling the

boundary condition (3.40b), we obtain

∫ ξ1

−ξ1

[
∂ξ ϕ̃0 A′(∇cϕ̃0) · nw

]∣∣
η1
dξ −

∫ ξ1

−ξ1

[
∂ξ ϕ̃0 A′(∇cϕ̃0) · nw

]∣∣
0 dξ

=
∫ ξ1

−ξ1

[
∂ξ ϕ̃0 A′(∇cϕ̃0) · nw

]∣∣
η1
dξ + cF σ

∫ ξ1

−ξ1

∂ξ ϕ̃0 G ′(ϕ̃0) dξ = I + I I .

(3.44)
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Fig. 3 Sketch of the local coordinates (ξ, η) and (ρ, ζ ) at a contact point xc , where θd ∈ (0, π) is the
contact angle

Sending ξ1 → +∞ and recalling (2.9), we obtain

lim
ξ1→+∞ I I = lim

ξ1→+∞ cF σ

∫ ξ1

−ξ1

∂ξ ϕ̃0 g(ϕ̃0) dξ = cF σ (G(1) − G(−1)) = cF σ.

(3.45)

Next, we rewrite the term I in terms of the new coordinate system (ρ, ζ ), which
can be regarded as a transformation from (η, ξ) with a counterclockwise rotation of
θd in the plane (see Fig. 3). Precisely, it holds that

ρ = ξ sin θd + η cos θd , ζ = −ξ cos θd + η sin θd , (3.46a)

and thus,

∂ξ = ∂ρ sin θd − ∂ζ cos θd , ∂η = ∂ρ cos θd + ∂ζ sin θd . (3.46b)

Moreover, we have

∇c = ns ∂ξ − nw ∂η = ν ∂ρ − nc ∂ζ , nc = sin θd nw + cos θd ns, (3.46c)

where nc is the conormal vector of �(t) at xc. By (3.46), we can recast the term I as

I =
∫ ξ1 sin θd+η1 cos θd

−ξ1+η1 cos θd

[
∂ρϕ̃0 − ∂ζ ϕ̃0 cot θd

]
A′(∂ρϕ̃0ν − ∂ζ ϕ̃0 nc) · nw dρ. (3.47)

By the matching condition limζ→+∞ ϕ̃0 = �0(ρ), we have limζ→+∞ ∂ζ ϕ̃0 = 0.
Then, it follows directly that

lim
ξ1,η1→+∞ I =

∫ +∞

−∞
(∂ρ�0)

2A′(ν) · nw dρ = cF A′(ν) · nw

γ (ν)
= cF γ ′(ν) · nw.

(3.48)
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Collecting the results in (3.43), (3.45) and (3.48) yields that

γ ′(ν) · nw + σ = 0, (3.49)

which is exactly the anisotropic Young’s law in (2.2b).
We next derive the zero-flux condition. Similarly to the above, we integrate (3.39a)

over the box R. Applying Gauss’s theorem and using the boundary condition (3.40a)
gives rise to

0 =
∫ η1

0

∫ ξ1

−ξ1

∂ξ [β̃0 m(ϕ̃0) ∂ξ μ̃0] + ∂η[β̃0 m(ϕ̃0) ∂ημ̃0] dξdη

=
∫ η1

0

[
β̃0 m(ϕ̃0) ∂ξ μ̃0

] ∣∣ξ1−ξ1
dη +

∫ ξ1

−ξ1

[
β̃0 m(ϕ̃0) ∂ημ̃0

] ∣∣
η1
dξ = I I I + I V .

(3.50)

Taking ξ1 → ∞ and using fact limξ→±∞ ϕ̃0 = ±1, as well as m(ϕ̃0) = 0, we get
I I I = 0. On recalling (3.46), as well as the matching conditions,

lim
ζ→+∞ ϕ̃0 = �0(ρ) = tanh

( ρ

γ (ν)

)
, lim

ζ→+∞ μ̃0 = M0(s, t) = κγ , lim
ζ→+∞ ∂ζ ϕ̃0 = 0,

we get in the case of ξ1, η1 → ∞ that

0 =
∫ ∞

−∞
[
m(�0) β(ν)∂ζ κγ

]
dρ = −β(ν)

∫ ∞

−∞
m(�0) dρ nc · ∇sκγ .

This yields the zero-flux condition

D(ν)nc · ∇sκγ = 0. (3.51)

In addition, the attachment condition in (2.2a) follows naturally.
In summary, we thus obtain the following system of equations as the sharp-interface

limit of the regularized diffuse-interface model (3.3):

V = − c2
F

4α
∇s · [D(ν)∇sκγ ] with V = V · ν and κγ = −∇s · γ ′(ν) on �(t),

(3.52a)

V · nw = 0, γ ′(ν) · nw + σ = 0, D(ν) nc · ∇sκγ = 0 on �(t).
(3.52b)

Remark 3.1 In the case of the double-obstacle potential (1.2c) and the degenerate
mobility m(ϕ) = (1 − ϕ2)+, we could obtain (3.52a) in a similar manner. But the
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leading order inner solution (3.20) should be replaced by

�0(ρ) =
⎧⎨
⎩

sin( ρ
γ (ν)

) if ρ ∈ [−π
2 γ (ν), π

2 γ (ν)],
−1 if ρ < −π

2 γ (ν),

1 if ρ > π
2 γ (ν).

(3.53)

This yields cF = π
2 in (3.52a). The boundary conditions in (3.52b) can be derived

similarly. It is also possible to consider the logarithmic potential (see (1.2b)) along
with the mobilitym(ϕ) = (1−ϕ2)+. If θ = O(εξ ) for some ξ > 0, it can be shown by
means of the techniques from Cahn et al. (1996) that the same desired sharp-interface
limit is obtained.

4 Analysis of the Diffuse-Interface Model

In this section, we analyze a general class of diffuse-interface models of the type

α ∂tϕ = ∇ · (M(∇ϕ, ϕ)∇μ
)

in Q, (4.1a)

μ = −ε∇ · A′(∇ϕ) + ε−1F ′(ϕ) in Q, (4.1b)

∇μ · n = 0 on �, (4.1c)

εA′(∇ϕ) · n + cF σ G ′(ϕ) = 0 on �w, (4.1d)

εA′(∇ϕ) · n = 0 on � \ �w, (4.1e)

ϕ|t=0 = ϕ0 in �, (4.1f)

where α, ε, cF ∈ R>0 and σ ∈ R are given constants. In contrast to the previous
sections, the potential F : R → R and G : R → R, A : R

d → R and M : R
d ×R →

R are general functions satisfying certain conditions that will be specified in Sect. 4.1.
If A, F , G, mε and βε are chosen as in (2.5), (2.8), (2.9), (3.1) and (3.2), respectively,
and if M is defined by M(p, s) := βε(p)mε(s) for all p ∈ R

d and s ∈ R, then the
system (4.1) is exactly the model (3.3) that was introduced in Sect. 3. The total free
energy functional E : H1(�) → R associated with the system (4.1), up to an additive
constant, reads as

E(ϕ) := 1

cF

∫
�

εA(∇ϕ) + ε−1F(ϕ) dx + σ

∫
�w

G(ϕ) dS. (4.2)

It is also possible to consider the system (4.1) for F being the double-obstacle potential,
which can be expressed as

F : R → [0,∞], F(s) = F0(s) + I[−1,1](s), (4.3)

where the function

F0 : R → [0,∞), F0(s) = 1
2 (1 − ϕ2), (4.4)
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represents its regular part, and

I : R → [0,∞], I[−1,1](s) =
{
0 if |s| ≤ 1,

+∞ if |s| > 1
(4.5)

denotes the indicator functional of the interval [−1, 1]. In this case, (4.1b) needs to be
represented by a variational inequality, see (4.18b).

4.1 Notation and Preliminaries

Notation. In this section, we use the following notation: For any 1 ≤ p ≤ ∞ and
k ≥ 0, the standard Lebesgue and Sobolev spaces on � are denoted by L p(�) and
W k,p(�). Their standard norms are written as ‖ · ‖L p(�) and ‖ · ‖W k,p(�). In the case
p = 2, these spaces are Hilbert spaces, and we write Hk(�) = W k,2(�). Here, we
identify H0(�) with L2(�). For the Lebesgue and Sobolev spaces on ∂�, we use an
analogous notation. For any Banach space X , its dual space is denoted by X ′, and the
associated duality pairing by 〈· , ·〉X . If X is a Hilbert space, we write (·, ·)X to denote
its inner product. We further define

〈 f 〉� := 1

|�| 〈 f , 1〉H1(�) for f ∈ H1(�)′

as the generalized spatial mean of f , where |�| denotes the d-dimensional Lebesgue
measure of �. With the usual identification L1(�) ⊂ H1(�)′, it holds that 〈 f 〉� =
1

|�|
∫
�

f dx if f ∈ L1(�). In addition, we introduce

H1
(m)(�) := {

u ∈ H1(�)
∣∣ 〈u〉� = m

}
for any m ∈ R,

H−1
(0) (�) := {

f ∈ (H1(�)
)′ ∣∣ 〈 f 〉� = 0

}
.

We point out that for every m ∈ R, H1
(m)(�) is an affine subspace of the Hilbert space

H1(�). In the case m = 0, it is even a closed linear subspace, meaning that H1
(0)(�)

is also a Hilbert space.
General assumptionsWe make the following general assumptions that are supposed
to hold throughout this section.

A1 The set � ⊂ R
d with d ∈ {2, 3} is a bounded Lipschitz domain. Moreover, T > 0

denotes an arbitrary final time.
A2 The function G : R → R is non-negative and twice continuously differentiable.

Moreover, there exists an exponent q ∈ [2, 4), as well as positive constants CG

and CG ′ , such that

G(s) ≤ CG(1 + |s|q) and
∣∣G ′(s)

∣∣ ≤ CG ′(1 + |s|q−1)

for all s ∈ R.
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A3 “The function A : R
d → R is continuously differentiable, positively homoge-

neous of degree 2 and positive on R
d 0. Hence there exist constants A0, A1 ∈ R

with 0 < A0 ≤ A1 such that”

A0 |p|2 ≤ A(p) ≤ A1 |p|2 for all p ∈ R
d .

The gradient A′ : R
d → R

d is strongly monotone, i.e., there exists a constant
a0 > 0 such that

(
A′(p) − A′(q)

) · (p − q) ≥ a0 |p − q|2 for all p,q ∈ R
d ,

which implies that A is strongly convex and thus strictly convex. Moreover, there
exists a constant a1 > 0 such that

∣∣A′(p)
∣∣ ≤ a1 |p| for all p ∈ R

d .

A4 The function M : R
d×R → R is continuous and there exist constants M0, M1 ∈ R

with 0 < M0 ≤ M1 such that

M0 ≤ M(p, s) ≤ M1 for all p ∈ R
d and s ∈ R.

Remark 4.1 (a) We point out that the choices

G(s) := 1

4
(3s − s3) for all s ∈ R

(
cf. (2.9)

)
,

M(p, s) := βε(p) mε(s)

with

mε(s) := εr + (1 − s2)2+ for all s ∈ R
(
cf. (3.1)

)
,

βε(p) :=
√

d2
1 ε2r + D2(p)

γ 2
0 ε2r + γ 2(p)

for all p ∈ R
d (

cf. (3.2)
)
,

are admissible as they satisfy the conditions imposed in A2 (with q = 3) and A4.
(b) Suppose that the function γ that was introduced in Sect. 2.1 additionally satisfies

the following convexity condition: There exists a constant α0 > 0 such that

γ ′′(p)q · q ≥ α0|q|2 for all p,q ∈ R
d with |p| = 1 and p · q = 0,

(4.6)

where γ ′′ represents the Hessian of γ . Thus, the function

A : R
d → R, A(p) = 1

2γ
2(p)
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is admissible as it satisfies all conditions imposed in assumption A3. In particular,
as shown in Gräser et al. (2013), the convexity condition (4.6) ensures that A′ is
strongly monotone.

A special inner product on H−1
(0) (�). We now introduce a certain inner product on the

function space H−1
(0) (�) based on the solution operator of a suitable elliptic problem.

Therefore, let a ∈ L∞(�) be a uniformly positive function, i.e., there exist a0, a1 ∈ R

with 0 < a0 < a1 such that

a0 ≤ a ≤ a1 a.e. in �.

Then, for every f ∈ H−1
(0) (�), there exists a unique weak solution u f ∈ H1

(0)(�) of
the elliptic boundary value problem

−∇ · (a∇u
) = f in �, (4.7a)

∇u · n = 0 on ∂�, (4.7b)

meaning that

∫
�

a∇u f · ∇ζ dx = 〈
f , ζ

〉
H1 for all ζ ∈ H1(�). (4.8)

We can thus define a solution operator

Sa : H−1
(0) (�) → H1

(0)(�), f �→ Sa( f ) := u f . (4.9)

We next define the bilinear form

(· , ·)Sa
: H−1

(0) (�) × H−1
(0) (�) → R,

(
f , g

)
Sa

:=
∫

�

a ∇Sa( f ) · ∇Sa(g) dx,

(4.10)

which defines an inner product on H−1
(0) (�) sincea is uniformly positive and∇Sa( f ) =

0 a.e. in � already implies f = 0 a.e. in �. Its induced norm is given by

‖ · ‖Sa
: H−1

(0) (�) → R, ‖ f ‖Sa
:= (

f , f
)1/2

Sa
. (4.11)

We point out that on the space H−1
(0) (�), the norm ‖ · ‖Sa

is equivalent to the standard
operator norm ‖ · ‖(H1(�))′ . The bilinear form (· , ·)Sa

also defines an inner product on
the space H1

(0)(�). Moreover, ‖ · ‖Sa
is also a norm on H1

(0)(�) but the space is not
complete with respect to this norm.

4.2 Existence ofWeak Solutions

For ease of presentation, in what follows, we simply fix α = ε = σ = cF = 1, since
the precise choice of these values has no impact on the mathematical analysis.
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4.2.1 Weak Solutions for Smooth Potentials

In this subsection, we make the following assumption on the potential F :

F1 The potential F : R → R is continuously differentiable. Moreover, there exists
an exponent p ∈ [2, 6), as well as non-negative constants BF , CF and CF ′ such
that

−BF ≤ F(s) ≤ CF (1 + |s|p) and
∣∣F ′(s)

∣∣ ≤ CF ′(1 + |s|p−1).

for all s ∈ R.

Obviously, the smooth double-well potential introduced in (1.2a) fulfills F1 with p =
4. However, the logarithmic potential (see (1.2b)) and the double-obstacle potential
(see (1.2c)) do not satisfy this assumption.

A weak solution of the general diffuse-interface model (4.1) is then defined as
follows.

Definition 4.2 Suppose that the assumptions A1–A4 and F1 are fulfilled, and let
ϕ0 ∈ H1(�) be any initial datum. Then, the pair (ϕ, μ) is called a weak solution
to system (4.1) if the following properties hold:

(i) The functions ϕ and μ have the following regularity:

ϕ ∈ C0,1/4([0, T ]; L2(�)
) ∩ L∞(0, T ; H1(�)

) ∩ H1(0, T ; H1(�)′
)
,

μ ∈ L2(0, T ; H1(�)
)
.

(ii) The pair (ϕ, μ) satisfies the weak formulations

〈
∂tϕ , ζ

〉
H1(�)

= −
∫

�

M(∇ϕ, ϕ)∇μ · ∇ζ dx, (4.12a)
∫

�

μη dx =
∫

�

A′(∇ϕ) · ∇η + F ′(ϕ) η dx +
∫

�w

G ′(ϕ) η dS (4.12b)

a.e. on [0, T ] for all test functions ζ, η ∈ H1(�). Moreover, ϕ satisfies the initial
condition

ϕ(0) = ϕ0 a.e. in �. (4.13)

(iii) The pair (ϕ, μ) satisfies the weak energy dissipation law

E
(
ϕ(t)

)+ 1

2

∫ t

0

∫
�

M(∇ϕ, ϕ) |∇μ|2 dx dt ≤ E(ϕ0) for almost all t ∈ [0, T ].
(4.14)

The existence of such a weak solution is ensured by the following theorem.
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Theorem 4.3 Suppose that the assumptions A1–A4 and F1 are fulfilled, and let
ϕ0 ∈ H1(�) be any initial datum. Then, there exists a weak solution (ϕ, μ) to the
system (4.1) in the sense of Definition 4.2.

The proof of this theorem is presented in Sect. 4.3.
In the next subsection, we intend to prove the existence of a weak solution to the

diffuse-interfacemodel (4.1) for the double-obstacle potential (1.2c). Our strategy is to
approximate the double-obstacle potential by a sequence of regular potentials. To this
end, in Corollary 4.4, we will present an additional uniform estimate for F ′(ϕ), where
(ϕ, μ) is a weak solution to (4.1) with a regular potential F satisfying the following
assumption:

F2 The potential F : R → R is twice continuously differentiable and there exist
constants c0, c1 ≥ 0 such that

−c0 ≤ F ′′(s) ≤ c1 for all s ∈ R. (4.15)

We point out that if F2 is fulfilled, then F1 holds with p = 2.

Corollary 4.4 Suppose that the assumptions A1–A4 and F2 are fulfilled. Let ϕ0 ∈
H1(�) be any initial datum satisfying

∣∣〈ϕ0〉�
∣∣ ≤ 1 − κ for some κ ∈ (0, 1], and

let (ϕ, μ) be a corresponding weak solution. Then, there exists a constant c > 0
depending only on ϕ0, E(ϕ0), c0 and the constants in A1–A4, but not on c1, such that

∥∥F ′(ϕ)
∥∥2

L2(Q)
≤ c

κ2

(
1 + ‖F‖2L∞([−R,R])

)
, (4.16)

where R := ∣∣〈ϕ0〉�
∣∣+ κ

2 < 1.

Remark 4.5 InCorollary 4.4, the assumption
∣∣〈ϕ0〉�

∣∣ ≤ 1−κ ismade in order to ensure
R ≤ 1, which is crucial for later use. However, without this assumption, a similar
estimate can be derived if R > 1 is allowed. For instance, choosing R := ∣∣〈ϕ0〉�

∣∣+1,
we obtain the estimate

∥∥F ′(ϕ)
∥∥2

L2(Q)
≤ c

(
1 + ‖F‖2L∞([−R,R])

)
(4.17)

instead of (4.16) even without the mean value assumption.

4.2.2 Weak Solutions for the Double-Obstacle Potential

In this subsection, we assume that F = F0 + I[−1,1] is the double-obstacle potential
as introduced in (4.3). Then, a weak solution of the general diffuse-interface model
(4.1) is defined as follows.

Definition 4.6 Suppose that the assumptions A1–A4 are fulfilled, and let ϕ0 ∈ H1(�)

be any initial datum satisfying |ϕ0| ≤ 1 a.e. in �. Then, the pair (ϕ, μ) is called a
weak solution to system (4.1) if the following properties hold:
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(i) The functions ϕ and μ have the following regularity:

ϕ ∈ C0,1/4([0, T ]; L2(�)
) ∩ L∞(0, T ; H1(�)

) ∩ H1(0, T ; H1(�)′
)
,

μ ∈ L2(0, T ; H1(�)
)
.

(ii) It holds that |ϕ| ≤ 1 a.e. in Q and the pair (ϕ, μ) satisfies the weak formulation

〈
∂tϕ , ζ

〉
H1(�)

= −
∫

�

M(∇ϕ, ϕ)∇μ · ∇ζ dx, (4.18a)

for all ζ ∈ H1(�) as well as the variational inequality

∫∫
Q

μ (ϕ − η) dx dt ≥
∫∫

Q
A′(∇ϕ) · (∇ϕ − ∇η) + F ′

0(ϕ)(ϕ − η) dx dt

+
∫∫

�w

G ′(ϕ) (ϕ − η) dS dt (4.18b)

for all η ∈ L2(0, T ; H1(�)) with |η| ≤ 1 a.e. in Q. Moreover, ϕ satisfies the
initial condition

ϕ(0) = ϕ0 a.e. in �. (4.19)

(iii) The pair (ϕ, μ) satisfies the weak energy dissipation law

E
(
ϕ(t)

)+ 1

2

∫ t

0

∫
�

M(∇ϕ, ϕ) |∇μ|2 dx dt ≤ E(ϕ0) for almost all t ∈ [0, T ].
(4.20)

The existence of such a weak solution is ensured by the following theorem.

Theorem 4.7 Suppose that the assumptions A1–A4 are fulfilled, and let ϕ0 ∈ H1(�)

be any initial datum satisfying |ϕ0| ≤ 1 a.e. in � and
∣∣〈ϕ0〉�

∣∣ ≤ 1 − κ for some
κ ∈ (0, 1]. Then, there exists a weak solution (ϕ, μ) to the system (4.1) in the sense
of Definition 4.6.

The idea behind the proof of Theorem 4.7 is to approximate the double-obstacle
potential by a sequence (Fn)n∈N of regular potentials where for each n ∈ N, Fn is a
regular potential fulfilling the condition F2. Therefore, Corollary 4.4 can be applied to
derive a suitable uniform bound on the terms involving F ′

n . We point out that the same
strategy could be used to construct a weak solution to the diffuse-interface model (4.1)
in the case that F is the logarithmic potential (1.2b).

4.3 Proofs

4.3.1 Proof of Theorem 4.3

The proof is divided into five steps.
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Step 1: Implicit time discretization. Let N ∈ N be arbitrary. We define τ := T /N
as our time step size. Let now n ∈ {0, ..., N −1} be arbitrary. We now define functions
ϕn with n = 0, ..., N by the following recursion:

• The zeroth iterate is defined as the initial datum, i.e., ϕ0 := ϕ0.
• If for some n ∈ {0, ..., N −1}, the n-th iterate ϕn is already constructed, we choose

ϕn+1 ∈ H1
(m) as a minimizer of the functional

Jn : H1
(m)(�) → R, Jn(ϕ) := 1

2τ

∥∥ϕ − ϕn
∥∥2

Sa
+ E(ϕ). (4.21)

Here, E is the energy functional defined in (4.2), with ε = σ = cF = 1, and ‖·‖Sa

is the norm defined in (4.11) with a being chosen as

a := M(∇ϕn, ϕn). (4.22)

This choice is actually possible since the function M is assumed to be bounded
and uniformly positive (see A4). The existence of a minimizer of the functional
Jn will be established in Step 2.

The idea behind this construction is that the first variation in the functional Jn at the
point ϕn+1 is zero since ϕn+1 is a minimizer of Jn . This means that

(
ϕn+1 − ϕn

τ
, η

)

Sa

+
∫
�

A′(∇ϕn+1) · ∇η + F ′(ϕn+1) η dx +
∫
�w

G′(ϕn+1) η dS = 0

(4.23)

for all test functions η ∈ H1
(0)(�). We now define

μn+1 := Sa

(
−ϕn+1 − ϕn

τ

)
+ cn+1 ∈ H1(�), (4.24)

with

cn+1 := 1

|�|
(∫

�

F ′(ϕn+1) dx +
∫

�w

G ′(ϕn+1) dS

)
(4.25)

and a being chosen as in (4.22). Recalling the definition of the inner product (· , ·)Sa

(see (4.10)), we infer from (4.23) that

∫
�

μn+1 η dx =
∫

�

A′(∇ϕn+1) · ∇η + F ′(ϕn+1) η dx +
∫

�w

G ′(ϕn+1) η dS

(4.26)

for all η ∈ H1
(0)(�). Due to the choice of the constant cn+1, a straightforward com-

putation reveals that (4.26) remains true even for all test functions η ∈ H1(�). This
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means that for every n ∈ {0, ..., N − 1}, the pair (ϕn+1, μn+1) satisfies the equations

〈
ϕn+1 − ϕn

τ
, ζ

〉
H1(�)

= −
∫

�

M(∇ϕn, ϕn)∇μn+1 · ∇ζ dx, (4.27a)

∫
�

μn+1 η dx =
∫

�

A′(∇ϕn+1) · ∇η + F ′(ϕn+1) η dx +
∫

�w

G ′(ϕn+1) η dS

(4.27b)

for all test functions ζ, η ∈ H1(�).Here, (4.27a) followsdirectly from the construction
of μn+1 in (4.24) and the definition of the solution operator Sa (see (4.9)). The system
(4.27) can be interpreted as a time-discrete approximation of the weak formulation
(4.12).

The time-discrete approximate solution now needs to be extended onto the whole
time interval [0, T ]. The piecewise constant extension (ϕN , μN ) is defined as

(
ϕN , μN

)
(·, t) :=

{
(ϕ0, μ0) if t ≤ 0,

(ϕn, μn) if t ∈ ((n − 1)τ, nτ
]
, n ∈ {1, ..., N }, (4.28)

whereas the piecewise linear extension (ϕN , μN ) is defined as

(ϕN , μN )(·, t) := λ(ϕn, μn) + (1 − λ)(ϕn−1, μn−1) (4.29)

for t = λnτ + (1 − λ)(n − 1)τ with n ∈ {1, ..., N } and λ ∈ [0, 1].
Henceforth, the letter C will denote generic positive constants that may depend

only on ϕ0 and the constants introduced in A2–A4 and F1 but not on n, N or τ . These
constants may also change their value from line to line.

Step 2: Existence of a minimizer to the functional Jn . We now prove that the func-
tional Jn introduced in (4.21) actually possesses a minimizer. Therefore, we employ
the direct method of the calculus of variations.

For any ϕ ∈ H1
(m)(�), we obtain

‖ϕ‖L2(�) ≤ ∥∥〈ϕ〉�
∥∥

L2(�)
+ ∥∥ϕ − 〈ϕ〉�

∥∥
L2(�)

≤ C
(
1 + ‖∇ϕ‖L2(�)

)

by means of Poincaré’s inequality. This directly implies

‖ϕ‖H1(�) ≤ c∗
(
1 + ‖∇ϕ‖L2(�)

)
for all ϕ ∈ H1

(m)(�) (4.30)

for some positive constant c∗ depending only on m and �. Recalling the assumptions
on A (see A3), that F ≥ −BF (see F1) and that G ≥ 0 (see A2), we use Poincaré’s
inequality to derive the estimate

Jn(ϕ) ≥
∫

�

A(∇ϕ) dx − BF |�| ≥ A0 ‖∇ϕ‖2L2(�)
− BF |�|

≥ A0

c2∗
‖ϕ‖2H1(�)

− A0 − BF |�| (4.31)
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for all ϕ ∈ H1
(m)(�). This means that Jn is coercive and bounded from below. Hence,

the infimum

I := inf
H1

(m)
(�)

Jn

exists, and consequently, there also exists a corresponding minimizing sequence
(ϕk)k∈N with

Jn(ϕk) → I as k → ∞ and Jn(ϕk) ≤ I + 1 for all k ∈ N.

Now, (4.31) directly implies that (ϕk)k∈N is bounded in H1
(m)(�). Using the Banach–

Alaoglu theorem, the compact embeddings H1
(m)(�) ↪→ L p(�) and H1

(m)(�) ↪→
Lq(∂�), we infer that there exists a function ϕ ∈ H1

(m)(�) such that

ϕk → ϕ weakly in H1
(m)(�), strongly in L p(�) and in Lq(∂�),

pointwise a.e. in �, and pointwise a.e. on ∂�
(4.32)

along a non-relabeled subsequence. Since A is continuous and convex (see A3), we
infer

∫
�

A(∇ϕ) dx ≤ lim inf
k→∞

∫
�

A(∇ϕk) dx (4.33)

due to weak lower semicontinuity. Recalling the growth conditions on F and G (see
F1 and A2) and the convergences in (4.32), we apply Lebesgue’s general convergence
theorem (see Alt 2016, [Section 3.25]) to conclude

∫
�

F(ϕk) dx →
∫

�

F(ϕ) dx and
∫

�w

G(ϕk) dS →
∫

�w

G(ϕ) dS (4.34)

as k → ∞. Combining (4.33) and (4.34), we obtain

Jn(ϕ) ≤ lim inf
k→∞ Jn(ϕk) = I.

This proves that ϕ is a minimizer of the functional Jn .
Step 3: A priori estimates for the piecewise constant extension. We now claim that

the piecewise constant extension (ϕN , μN ) fulfills the uniform priori estimate

‖ϕN ‖L∞(0,T ;H1(�)) + ‖μN ‖L2(0,T ;H1(�)) ≤ C . (4.35)

To prove (4.35), we exploit the recursive construction of the time-discrete approx-
imate solution. Since for any n ∈ {0, ..., N − 1}, ϕn+1 was chosen to be a minimizer
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of the functional Jn , we have

1

2τ

∥∥∥ϕn+1 − ϕn
∥∥∥2

Sa
+ E(ϕn+1) = Jn(ϕn+1) ≤ Jn(ϕn) = E(ϕn) (4.36)

for all n ∈ {0, ..., N − 1}. By a simple induction, we thus infer

E(ϕn) ≤ E(ϕ0) for all n ∈ {0, ..., N − 1}. (4.37)

Recalling the assumptions on A (see A3) and that the potentials F and G are bounded
from below (see A2 and F1), we use estimate (4.30) and (4.37) to obtain

∥∥∥ϕn+1
∥∥∥2

H1(�)
≤ C + C

∥∥∥∇ϕn+1
∥∥∥2

L2(�)
≤ C + C

∫
�

A(∇ϕn+1) ≤ C + CE(ϕn+1) ≤ C

(4.38)

for all n ∈ {0, ..., N − 1}. By the definition of ϕN , this directly implies

‖ϕN ‖L∞(0,T ;H1(�)) ≤ C . (4.39)

For any n ∈ {1, ..., N }, we now set tn := nτ . By the definition of the piecewise
constant extension, we have

ϕN (t) = ϕ(tn) = ϕn and μN (t) = μ(tn) = μn (4.40)

for all t ∈ (tn−1, tn]. Recalling the priori estimate (4.36) and the definition of μn (see
(4.24)), we obtain

E
(
ϕN (tn)

)+ 1

2

∫ tn

tn−1

∫
�

M
(∇ϕN (s − τ), ϕN (s − τ)

) |∇μN (s)|2 dx ds

= E
(
ϕN (tn)

)+ 1

2τ 2

∫ tn

tn−1

‖ϕN (s) − ϕN (s − τ)‖2Sa
ds

= E
(
ϕN (tn)

)+ 1

2τ
‖ϕN (tn) − ϕN (tn − τ)‖2Sa

≤ E
(
ϕN (tn−1)

)

for all n ∈ {0, ..., N − 1}. Hence, by induction, we get

E
(
ϕN (tn)

)+ 1

2

∫ tn

0

∫
�

M
(∇ϕN (s − τ), ϕN (s − τ)

) |∇μN (s)|2 dx ds ≤ E(ϕ0)
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for all n ∈ {0, ..., N −1}. Now, for any t ∈ (0, T ], we find an index n ∈ {0, ..., N −1}
such that t ∈ (tn−1, tn]. Recalling (4.40), we eventually conclude that

E
(
ϕN (t)

)+ 1

2

∫ t

0

∫
�

M
(∇ϕN (s − τ), ϕN (s − τ)

) |∇μN (s)|2 dx ds ≤ E(ϕ0)

(4.41)

for all t ∈ [0, T ]. In particular, choosing t = T , we obtain the uniform bound

‖∇μN ‖2L2(0,T ;L2(�))
≤ C . (4.42)

We now test (4.27b) with the constant function η ≡ 1/ |�|. Using the growth assump-
tions fromF1, the continuous embeddings H1(�) ↪→ L5(�) and H1(�) ↪→ L3(∂�),
as well as the uniform bound (4.39), we derive the estimate

∣∣〈μN (t)〉�
∣∣ ≤ 1

|�|
(∫

�

∣∣F ′(ϕN (t)
)∣∣ dx +

∫
�w

∣∣G ′(ϕN (t)
)∣∣ dS

)

≤ C
(
1 + ‖ϕN (t)‖5L5(�)

+ ‖ϕN (t)‖3L3(∂�)

)
≤ C

(
1 + ‖ϕN ‖5L∞(0,T ;H1(�))

+ ‖ϕN ‖3L∞(0,T ;H1(�))

) ≤ C .

Applying Poincaré’s inequality, we thus obtain

‖μN (t)‖L2(�) ≤ ∥∥〈μN (t)〉�
∥∥

L2(�)
+ ∥∥μN − 〈μN (t)〉�

∥∥
L2(�)

≤ C
(
1 + ‖∇μN (t)‖L2(�)

)
. (4.43)

Combining (4.42) and (4.43), this yields

‖μN ‖L2(0,T ;H1(�)) ≤ C . (4.44)

Due to (4.39) and (4.44), the a priori estimate (4.35) is now established.
Step 4: A priori estimate for the piecewise linear extension. We next claim that for

all s, t ∈ [0, T ],
∥∥ϕN (t) − ϕN (s)

∥∥
L2(�)

≤ C |t − s| 14 , (4.45a)
∥∥ϕN (t) − ϕN (t)

∥∥
L2(�)

≤ Cτ
1
4 , (4.45b)∥∥∂tϕN

∥∥
L2(0,T ;H1(�)′) ≤ C . (4.45c)

In particular, the first estimate means that the piecewise linear extension ϕN is Hölder
continuous in time.

To prove these inequalities, we first infer from (4.27a) and the definition of the
piecewise linear extension (see (4.29)) that

〈
∂tϕN (τ ) , ζ

〉
H1(�)

= −
∫

�

∇μN (τ ) · ∇ζ dx (4.46)
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for almost all τ ∈ [0, T ] and all ζ ∈ H1(�). Let now ξ ∈ L2(0, T ; H1(�)) be
arbitrary. We test (4.46) with ξ(τ ) and integrate the resulting equation with respect to
τ from 0 to T . Then, using Hölder’s inequality as well as the a priori estimate (4.35),
we obtain

∣∣∣∣
∫ T

0

〈
∂tϕN (τ ) , ξ

〉
H1(�)

dt

∣∣∣∣ ≤ ‖μN ‖L2(0,T ;H1(�)) ‖ξ‖L2(0,T ;H1(�)) ≤ C ‖ξ‖L2(0,T ;H1(�)) .

(4.47)

Taking the supremum over all ξ ∈ L2(0, T ; H1(�)) with ‖ξ‖L2(0,T ;H1(�)) ≤ 1, this
proves estimate (4.45c).

Next, let s, t ∈ [0, T ] be arbitrary. Without loss of generality, we assume s < t .
Integrating (4.46) with respect to τ from s to t , choosing ζ = ϕN (t) − ϕN (s), and
using Hölder’s inequality, we derive the estimate

∥∥ϕN (t) − ϕN (s)
∥∥2

L2(�)
≤ ∥∥∇ϕN (t) − ∇ϕN (s)

∥∥
L2(�)

∫ t

s
‖∇μN (τ )‖L2(�) dτ

≤ 2 ‖ϕN ‖L∞(0,T ;H1(�)) ‖μN ‖L2(0,T ;L2(�)) |s − t | 12 .

(4.48)

In view of the a priori estimate (4.35), this proves (4.45a).
Let now t ∈ [0, T ] be arbitrary. Then, we find λ ∈ [0, 1] and n ∈ {1, ..., N } such

that t = λnτ + (1 − λ)(n − 1)τ . We thus obtain

∥∥ϕN (t) − ϕN (t)
∥∥

L2(�)
=
∥∥∥λϕn + (1 − λ)ϕn−1 − ϕn

∥∥∥
L2(�)

= (1 − λ)

∥∥∥ϕn − ϕn−1
∥∥∥

L2(�)

= (1 − λ)
∥∥ϕN

(
nτ
)− ϕN

(
(n − 1)τ

)∥∥
L2(�)

.

Applying (4.45a) with t = nτ and s = (n − 1)τ , we conclude (4.45b). This means
that all estimates in (4.45) are established.

Step 5: Convergence to a weak solution. In view of the uniform a priori esti-
mate (4.35), the Banach–Alaoglu theorem implies the existence of functions ϕ ∈
L∞(0, T ; H1(�)) and μ ∈ L2(0, T ; H1(�)) such that

ϕN → ϕ weakly −∗ in L∞(0, T ; H1(�)), (4.49)

μN → μ weakly in L2(0, T ; H1(�)), (4.50)

as N → ∞, along a non-relabeled subsequence. We further know that

∥∥ϕN

∥∥
L∞(0,T ;H1(�))

≤ ‖ϕN ‖L∞(0,T ;H1(�)) ≤ C .
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In combinationwith the uniformestimate (4.45c),we use theBanach–Alaoglu theorem
to infer ϕ ∈ H1(0, T ; H1(�)′) with

ϕN → ϕ weakly in H1(0, T ; H1(�)′) (4.51)

as N → ∞, up to subsequence extraction. Moreover, due to the compact embeddings
H1(�) ↪→ L p(�) and H1(�) ↪→ Lq(∂�), we apply the Aubin–Lions lemma to
obtain

ϕN → ϕ strongly in C([0, T ]; L p(�)) ∩ C([0, T ]; Lq(∂�)). (4.52)

By passing to the limit in estimate (4.45a), we conclude ϕ ∈ C0,1/4([0, T ], L2(�)).
This means that the functions ϕ and μ satisfy the regularity conditions of Defini-
tion 4.2(i). Using the estimate (4.45b), we directly deduce from (4.52) that

ϕN → ϕ strongly in L∞(0, T ; L p(�)) ∩ L∞(0, T ; Lq(∂�)),

a.e. in �, and a.e. on ∂�,
(4.53)

as N → ∞, after another subsequence extraction.
From the time-discrete weak formulation (4.27), we infer that the piecewise con-

stant extension (ϕN , μN ) and the piecewise linear extension (ϕN , μN ) satisfy the
approximate weak formulation

∫ T

0

〈
∂tϕN (t) , ξ

〉
H1(�)

dt = −
∫∫

Q
M
(∇ϕN (t − τ), ϕN (t − τ)

)∇μN (t) · ∇ξ dx dt,

(4.54a)∫∫
Q

μN ϑ dx dt =
∫∫

Q
A′(∇ϕN ) · ∇ϑ + F ′(ϕN ) ϑ dx dt +

∫∫
�w

G′(ϕN ) ϑ dS dt

(4.54b)

for all test functions ξ, ϑ ∈ L2(0, T ; H1(�)). Recalling the growth conditions on F ′
and G ′ from F1 and A2, as well as the priori estimate (4.35), we infer that the sequence
(F ′(ϕN ))N∈N is bounded in L∞(0, T ; L6/5(�)) and the sequence (G ′(ϕN ))N∈N is
bounded in L∞(0, T ; L4/3(∂�)). Hence, according to the Banach–Alaoglu theorem,
there exist functions f ∗ ∈ L∞(0, T ; L6/5(�)) and g∗ ∈ L∞(0, T ; L4/3(∂�)) such
that

F ′(ϕN ) → f ∗ weakly −∗ in L∞(0, T ; L6/5(�)),

G ′(ϕN ) → g∗ weakly −∗ in L∞(0, T ; L4/3(∂�)),

as N → ∞, along a non-relabeled subsequence. Moreover, the convergences in (4.53)
directly imply F ′(ϕN ) → F ′(ϕ) a.e. in � and G ′(ϕN ) → G ′(ϕ) a.e. on ∂�. By a
convergence principle based on Egorov’s theorem (see DiBenedetto 2002, [Proposi-
tion 9.2c]), we now infer f ∗ = F ′(ϕ) a.e. in � and g∗ = G ′(ϕ) a.e. on ∂�. This
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means that

F ′(ϕN ) → F ′(ϕ) weakly −∗ in L∞(0, T ; L6/5(�)), (4.55)

G ′(ϕN ) → G ′(ϕ) weakly −∗ in L∞(0, T ; L4/3(∂�)), (4.56)

as N → ∞. Testing the approximate weak formulation (4.54b) with ϑ = ϕN −ϕ and
employing the strong monotonicity condition on A′ from A3, we obtain

a0 ‖∇ϕN − ∇ϕ‖2L2(Q)
≤
∫∫

Q

(
A′(∇ϕN ) − A′(∇ϕ)

) · (∇ϕN − ∇ϕ
)
dx dt

=
∫∫

Q
μN (ϕN − ϕ) dx dt −

∫∫
Q

F ′(ϕN ) (ϕN − ϕ) dx dt

−
∫∫

�w

G ′(ϕN ) (ϕN − ϕ) dS dt

−
∫∫

Q
A′(∇ϕ) · (∇ϕN − ∇ϕ

)
dx dt . (4.57)

Using the convergences (4.50), (4.53), (4.55) and (4.56) along with the weak-strong
convergence principle, we infer that the right-hand side of the above estimate tends to
zero. We thus conclude that

∇ϕN → ∇ϕ strongly in L2(Q) and a.e. in � (4.58)

as N → ∞, up to subsequence extraction. In view of the growth condition on A′ from
A3, Lebesgue’s general convergence theorem further reveals that

A′(∇ϕN ) → A′(∇ϕ) strongly in L2(Q; R
d). (4.59)

Due to the convergences (4.50), (4.55), (4.56) and (4.59), we can now pass to the limit
in (4.54b) to conclude that

∫∫
Q

μϑ dx dt =
∫∫

Q
A′(∇ϕ) · ∇ϑ + F ′(ϕ) ϑ dx dt +

∫∫
�w

G ′(ϕ) ϑ dS dt

(4.60)

holds for all ϑ ∈ L2(0, T ; H1(�)).
We now fix an arbitrary time t0 ∈ (0, T ]. Since τ = T /N → 0 as N → ∞,

we may assume (without loss of generality) that N is chosen large enough to ensure
t − τ ∈ [0, T ] for all t ∈ [t0, T ]. We have

‖∇ϕN (t − τ) − ∇ϕ(t)‖2L2(t0,T ;L2(�))

≤ C ‖∇ϕN (t − τ) − ∇ϕ(t − τ)‖2L2(t0,T ;L2(�))
+ C ‖∇ϕ(t − τ) − ∇ϕ(t)‖2L2(t0,T ;L2(�))

≤ C ‖∇ϕN (t) − ∇ϕ(t)‖2L2(0,T ;L2(�))
+ C ‖∇ϕ(t − τ) − ∇ϕ(t)‖2L2(t0,T ;L2(�))

(4.61)
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for almost all t ∈ [t0, T ]. Here, from the second to the third line, we used the change
of variables s = t − τ and the fact that [t0 − τ, T − τ ] ⊂ [0, T ] to estimate the
first summand. Now, as N → ∞, the first summand in the third line of (4.61) tends
to zero because of (4.58), whereas the second summand tends to zero since due to
mean-continuity in L p(Q) (see, e.g., Alt 2016, [Section 4.15]). This proves

∇ϕN ( · , · − τ) → ∇ϕ strongly in L2(� × [t0, T ]) (4.62)

as N → ∞. Since t0 ∈ (0, T ] was arbitrary, we deduce

∇ϕN ( · , · − τ) → ∇ϕ a.e. in Q (4.63)

as N → ∞, after extracting a subsequence. Proceeding similarly, and using the strong
convergenceϕN → ϕ in L2(Q) (which directly follows from (4.53)), we further obtain

ϕN ( · , · − τ) → ϕ a.e. in Q (4.64)

as N → ∞. Using (4.63) and (4.64) along with Lebesgue’s dominated convergence
theorem, we infer

M
(∇ϕN ( · , · − τ), ϕN ( · , · − τ)

)∇ζ → M(∇ϕ, ϕ)∇ζ (4.65)

strongly in L2(Q), as N → ∞, up to subsequence extraction. Employing the weak-
strong convergence principle, we can thus pass to the limit N → ∞ in the approximate
weak formulation (4.54a) to obtain

∫ T

0
〈∂tϕ , ζ 〉H1(�) dt = −

∫∫
Q

M(∇ϕ, ϕ)∇μ · ∇ζ dx dt (4.66)

for all ζ ∈ L2(0, T ; H1(�)). Combining (4.60) and (4.66), we eventually conclude
that the pair (ϕ, μ) satisfies the weak formulation (4.12). Moreover, as a direct conse-
quence of the convergence (4.52), ϕ satisfies the initial condition (4.13). This means
that all conditions of Definition 4.2(ii) are fulfilled.

Recalling the growth conditions on F and G from F1 and A2, as well as the
convergences in (4.53), we apply Lebesgue’s general convergence theorem (see Alt
2016, [Section 3.25]) to conclude

F(ϕN ) → F(ϕ) strongly in L1(Q), (4.67)

G(ϕN ) → G(ϕ) strongly in L1(Q). (4.68)

Then, from the convergences (4.58),(4.67) and (4.68), we infer that

E
(
ϕN (t)

) → E
(
ϕ(t)

)
for almost all t ∈ [0, T ], (4.69)

123



Journal of Nonlinear Science (2023) 33 :34 Page 37 of 56 34

as N → ∞. Recalling (4.50) and (4.65),we use theweak-strong convergence principle
to infer

√
M
(∇ϕN ( · , · − τ), ϕN ( · , · − τ)

) ∇μN →√
M(∇ϕ, ϕ) ∇μ weakly in L2(Q)

(4.70)

as N → ∞. We now use the convergences (4.69) and (4.70), the weak lower semicon-
tinuity of the L2(Q)-norm, as well as the discrete energy inequality (4.41), to derive
the estimate

E(ϕ(t)
)+ 1

2

∫ t

0

∫
�

M
(∇ϕ(s), ϕ(s)

) |∇μ(s)|2 dx ds

≤ lim inf
N→∞ E(ϕN (t)

)+ lim inf
N→∞

1

2

∫ t

0

∫
�

M
(∇ϕN (s − τ), ϕN (s − τ)

) |∇μN (s)|2 dx ds

≤ lim inf
N→∞

[
E(ϕN (t)

)+ 1

2

∫ t

0

∫
�

M
(∇ϕN (s − τ), ϕN (s − τ)

) |∇μN (s)|2 dx ds

]

≤ E(ϕ0) (4.71)

for almost all t ∈ [0, T ]. This proves the weak energy dissipation law (4.14), and thus,
the condition in Definition 4.2(iii) is fulfilled.

We eventually conclude that the pair (ϕ, μ) is a weak solution to system (4.1) in
the sense of Definition 4.2. Hence, the proof is complete. �

4.3.2 Proof of Corollary 4.4

Let (ϕ, μ) be a weak solution to the system (4.1), whose existence is guaranteed by
Theorem 4.3. By a straightforward computation, we notice that

∥∥F ′(ϕ)
∥∥2

L2(Q)
=
∫ T

0

∫
�

(F ′(ϕ))2 dx dt ≤ 2I1 + 2

|�| I2, (4.72)

where

I1 :=
∫ T

0

∫
�

(
F ′(ϕ) − 〈

F ′(ϕ)
〉
�

)2 dx dt and I2 :=
∫ T

0

(∫
�

∣∣F ′(ϕ)
∣∣ dx

)2

dt .

Hence, in the following, we intend to prove (4.16) by deriving suitable bounds on the
terms I1 and I2. The letter C will denote generic positive constants depending only
on ϕ0, E(ϕ0), c0 and the constants in A1–A4, but not on c1.

Let η ∈ H1(�) be arbitrary. Since A is convex (see A3), we know that

A′(∇ϕ) · ∇(η − ϕ) ≤ A(∇η) − A(∇ϕ) a.e. in Q.
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Testing the weak formulation (4.12b) with η − ϕ instead of η and using the above
estimate, we thus infer that the variational inequality

∫
�

F ′(ϕ)(ϕ − η) dx ≤
∫
�

μ(ϕ − η) dx +
∫
�

A(∇η) − A(∇ϕ) dx −
∫
�w

G′(ϕ)(ϕ − η) dS

(4.73)

holds a.e. in [0, T ] for all η ∈ H1(�). Moreover, since (ϕ, μ) is a weak solution of
(4.1), it satisfies the weak energy inequality (4.14). Using Poincaré’s inequality, we
infer

‖ϕ‖L∞(0,T ;H1(�)) + ‖μ‖L2(0,T ;H1(�)) ≤ C . (4.74)

Step 1: We first derive an estimate for the term I1. Therefore, we choose

η := ϕ − δ
(
F ′(ϕ) − 〈

F ′(ϕ)
〉
�

)
(4.75)

for sufficiently small δ > 0 which ensures 1 − δF ′′(ϕ) > 0. Since F ′(ϕ) ∈
L∞(0, T ; H1(�)) due to (4.15), we know that η ∈ L∞(0, T ; H1(�)). Recalling
that A is positively homogeneous of degree 2, we obtain

A
(∇η

)− A(∇ϕ) = A
(∇ϕ − δF ′′(ϕ)∇ϕ

)− A(∇ϕ)

= (
1 − δF ′′(ϕ)

)2
A(∇ϕ) − A(∇ϕ)

= (− 2F ′′(ϕ) + δ2F ′′(ϕ)2
)

A(∇ϕ) (4.76)

a.e. in Q. We now test the variational inequality (4.73) with η. After dividing the
resulting inequality by δ, we use (4.76) to deduce

∫
�

(
F ′(ϕ) − 〈

F ′(ϕ)
〉
�

)2 dx =
∫

�

F ′(ϕ)
(
F ′(ϕ) − 〈

F ′(ϕ)
〉
�

)
dx

≤
∫

�

(
μ − 〈μ〉�

)(
F ′(ϕ) − 〈

F ′(ϕ)
〉
�

)
dx

−
∫

�w

G ′(ϕ)
(
F ′(ϕ) − 〈

F ′(ϕ)
〉
�

)
dS

+
∫

�

(− 2F ′′(ϕ) + δ2F ′′(ϕ)2
)

A(∇ϕ) dx

a.e. in [0, T ]. Recalling that F2 implies that F1 holds with p = 2, we derive the
estimate

∣∣〈F ′(ϕ)
〉
�

∣∣ ≤ C + C
∫

�

|ϕ| dx ≤ C + C ‖ϕ‖L∞(0,T ;L1(�)) ≤ C
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a.e. in [0, T ]. Hence, using the growth condition on G ′ from A2 and the continuous
embedding H1(�) ↪→ L4(∂�), we deduce

∣∣∣∣
∫

�w

G ′(ϕ)
(
F ′(ϕ) − 〈

F ′(ϕ)
〉
�

)
dS

∣∣∣∣
≤
∫

�w

∣∣G ′(ϕ)
∣∣ ( ∣∣F ′(ϕ)

∣∣+ C
)
dS

≤
∫

�w

(
C + C |ϕ|3 )(C + C |ϕ| ) dS ≤ C + C

∫
�w

|ϕ|4 dS

≤ C + C ‖ϕ‖4L4(∂�)
≤ C + C ‖ϕ‖4H1(�)

(4.77)

a.e. in [0, T ]. Sending δ → 0 and using the growth condition from A3, the condition
−F ′′ ≤ c0 (cf. (4.15)) as well as Poincaré’s inequality and Young’s inequality, we
infer

∫
�

(
F ′(ϕ) − 〈

F ′(ϕ)
〉
�

)2 dx ≤ C
(
1 + ‖ϕ‖4H1(�)

+ ‖μ‖2H1(�)

)

a.e. in [0, T ]. Integrating this inequality with respect to time from 0 to T , and using
estimate (4.74), we eventually conclude the bound

I1 ≤ C . (4.78)

Step 2: We now derive a suitable estimate for the term I2. Let λ ∈ L∞([0, T ]) be
any function that will be fixed later. We set

η := ϕ − δ(ϕ − 〈ϕ〉�) (4.79)

for some δ > 0. Testing the variational formulation with this η, dividing the resulting
equation by δ, and recalling that A is positively homogeneous of degree 2, we derive
the estimate

∫
�

F ′(ϕ)(λ − 〈ϕ〉�) dx

=
∫

�

F ′(ϕ)(λ − ϕ) dx +
∫

�

F ′(ϕ)(ϕ − 〈ϕ〉�) dx

≤
∫

�

F ′(ϕ)(λ − ϕ) dx +
∫

�

(μ − 〈μ〉�)ϕ dx −
∫

�w

G ′(ϕ)(ϕ − 〈ϕ〉�) dS

+ δ(δ − 2)
∫

�

A(∇ϕ) dx . (4.80)
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Since F ′′ + c0 ≥ 0 due to (4.15), we know that the function s �→ F(s) + 1
2c0s2 is

convex. We thus have

F(λ) + 1
2c0λ

2 ≥ F(ϕ) + 1
2c0ϕ

2 + (
F ′(ϕ) + c0ϕ

)
(λ − ϕ)

≥ (
F ′(ϕ) + c0ϕ

)
(λ − ϕ)

a.e. in Q. Using this estimate, as well as Young’s inequality, we now get

∫
�

F ′(ϕ)(λ − ϕ) dx ≤
∫

�

F(λ) dx +
∫

�

3
2c0ϕ

2 + c0λ
2 dx (4.81)

almost everywhere in [0, T ]. Sending δ → 0 in (4.80) and using the above estimate, the
growth conditions from A2 and A3, the continuous embedding H1(�) ↪→ L4(∂�),
as well as Poincaré’s inequality, we infer

∫
�

F ′(ϕ)(λ − 〈ϕ〉�) dx ≤ C ‖F(λ)‖L∞([0,T ]) + C
(
1 + ‖ϕ‖4

H1(�)
+ ‖μ‖H1(�) ‖ϕ‖H1(�)

)
.

(4.82)

We now fix λ as

λ(t) :=
{

〈ϕ(t)〉� + κ
2 if

〈
F ′(ϕ(t)

)〉
�

≥ 0,

〈ϕ(t)〉� − κ
2 if

〈
F ′(ϕ(t)

)〉
�

< 0.
(4.83)

for all t ∈ [0, T ]. Testing (4.12a) with ζ ≡ 1 and integrating the resulting equation
with respect to time, we infer 〈ϕ(t)〉� = 〈ϕ0〉� for all t ∈ [0, T ]. In view of (4.82),
we thus get

κ

2

∫
�

∣∣F ′(ϕ)
∣∣ dx ≤ C ‖F(λ)‖L∞([0,T ]) + C

(
1 + ‖ϕ‖4H1(�)

+ ‖μ‖H1(�) ‖ϕ‖H1(�)

)
.

(4.84)

a.e. in [0, T ]. We now multiply this estimate by 2
κ
and take the square on both sides.

Integrating the resulting inequality with respect to time and using the uniform estimate
(4.74), we eventually conclude

I2 ≤ Cκ−2 ‖F‖2L∞([−R,R]) + Cκ−2(1 + ‖ϕ‖8H1(�)
+ ‖μ‖2H1(�)

‖ϕ‖2H1(�)

)
≤ Cκ−2 ‖F‖2L∞([−R,R]) + C . (4.85)

We finally plug the estimates (4.78) for I1 and (4.85) for I2 into (4.72). This proves
(4.16), and thus, the proof of Corollary 4.4 is complete. �
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4.3.3 Proof of Theorem 4.7

The proof is split into three steps.
Step 1: Approximation of the double-obstacle potential by smooth potentials. To

prove the assertion, we approximate the double-obstacle potential F by a sequence of
regular potentials (Fn)n∈N. Therefore, we define the function

J : R → [0,∞), s �→

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

6s2 + 20s + 17 if s ≤ −2,

(s + 1)4 if − 2 < s < −1,

0 if − 1 ≤ s ≤ 1,

(s − 1)4 if 1 < s < 2,

6s2 − 20s + 17 if s ≥ 2,

and for any n ∈ N, we set

Fn : R → [0,∞), s �→ F0(s) + n J (s). (4.86)

By this construction, we have J ∈ C2(R; [0,∞)), J is convex, and Fn = F0 on
[−1, 1] for all n ∈ N. It is straightforward to check that for all n ∈ N, the approximate
potential Fn satisfies the assumption F2 with c0 = 1 and c1 = 12n. It thus follows
that F1 is satisfied with p = 2 and BF = 3

2 . In the remainder of this proof, it will be
crucial that the constants BF and c0 are independent of n. For any n ∈ N, we further
define the approximate energy functional by

En : H1(�) → R, En(ϕ) :=
∫

�

A(∇ϕ) + Fn(ϕ) dx +
∫

�w

G(ϕ) dS. (4.87)

Step 2: A priori estimates for the sequence of approximate solutions. We now
conclude from Theorem 4.3 that for every n ∈ N, there exists a weak solution (ϕn, μn)

of the system (4.1) to the potential Fn in the sense of Definition 4.2. In the following,
the letter C will denote generic positive constants that may depend on ϕ0, κ and the
constants in A1–A4 but not on the approximation index n.

As the weak solutions (ϕn, μn) satisfy the weak energy dissipation law (4.14)
written for En , we deduce the estimate

1

2

∫
�

|∇ϕn(t)|2 dx − BF |�| + 1

2
M0

∫ t

0

∫
�

|∇μn(s)|2 dx ds

≤ En
(
ϕn(t)

)+ 1

2

∫ t

0

∫
�

M
(∇ϕn(s), ϕn(s)

) |∇μn(s)|2 dx ds

≤ En(ϕ0) ≤ C ‖∇ϕ0‖2L2(�)
+ C ‖F0‖L∞([−1,1]) ≤ C
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for almost all t ∈ [0, T ] and all n ∈ N. As BF is independent of n, we use Poincaré’s
inequality to conclude the uniform bound

‖ϕn‖L∞(0,T ;H1(�)) + ‖μn‖L2(0,T ;H1(�)) ≤ C . (4.88)

Integrating the weak formulation (4.12a) written for (ϕn, μn) with respect to time
from 0 to T , we now use (4.88) to derive the uniform estimate

‖∂tϕn‖L2(0,T ;H1(�)′) ≤ C . (4.89)

Furthermore, Corollary 4.4 provides the estimate

∥∥F ′
n(ϕ)

∥∥2
L2(Q)

≤ c

κ2

(
1 + ‖Fn‖2L∞([−R,R])

)
, (4.90)

where R = ∣∣〈ϕ0〉�
∣∣+ κ

2 < 1. Here, the constant c depends only on ϕ0, En(ϕ0), c0 = 1
and the constants inA1–A4. Since Fn = F0 on [−1, 1],weknow that Fn(ϕ0) = F0(ϕ0)

for all n ∈ N. Consequently, En(ϕ0) does not depend on n, and thus, c is independent
of n. We infer the uniform bound

∥∥F ′
n(ϕn)

∥∥2
L2(Q)

≤ c

κ2

(
1 + ‖F0‖2L∞([−1,1])

) ≤ C . (4.91)

Using (4.88), we further get

∥∥F ′
0(ϕn)

∥∥
L2(Q)

= ‖ϕn‖L2(Q) ≤ C ‖ϕn‖L∞(0,T ;L2(�)) ≤ C . (4.92)

Combining (4.91) and (4.92), we now conclude

∥∥J ′(ϕn)
∥∥

L2(Q)
≤ 1

n

( ∥∥F ′
0(ϕn)

∥∥
L2(Q)

+ ∥∥F ′
n(ϕn)

∥∥
L2(Q)

) ≤ C

n
. (4.93)

Step 3: Convergence to a weak solution. In view of the uniform estimates (4.88)
and (4.89), we now use the continuous embedding H1(�) ↪→ L4(∂�), the Banach–
Alaoglu theorem, and the Aubin–Lions lemma along with the compact embeddings
H1(�) ↪→ L2(�) and H1(�) ↪→ Lr (∂�) for r ∈ [1, 4) to conclude the existence of
functions ϕ and μ such that

∂tϕn → ∂tϕ weakly in L2(0, T ; H1(�)′), (4.94)

ϕn → ϕ weakly −∗ in L∞(0, T ; H1(�)) and in L∞(0, T ; L4(∂�)),

strongly in C([0, T ]; L2(�)), a.e. in Q,

strongly in C([0, T ]; Lr (∂�)) and a.e. on �, (4.95)

μn → μ weakly in L2(0, T ; H1(�)), (4.96)
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for all r ∈ [1, 4) as n → ∞, after extraction of a subsequence. Using the uniform
bound (4.93) along with the Banach–Alaoglu theorem, as well as the pointwise–
a.e. convergence stated in (4.95), we deduce

J ′(ϕn) → 0 strongly in L2(Q), (4.97a)

J ′(ϕn) → J ′(ϕ) a.e. in Q, (4.97b)

as n → ∞. As the strong limit in L2(Q) and the pointwise limit coincide, we have
J ′(ϕ) = 0 a.e. in Q. Since J ′(s) = 0 if |s| ≤ 1 and

∣∣J ′(s)
∣∣ > 0 if |s| > 1, we

conclude

|ϕ| ≤ 1 a.e. in Q.

As F ′
0(ϕn) = −ϕn , the convergence

F ′
0(ϕn) → F ′

0(ϕ) weakly in L2(Q) and a.e. in Q, (4.98)

follows directly from (4.95). Moreover, using the growth condition on G ′ (see A2),
(4.95) and Lebesgue’s general convergence theorem (see Alt 2016, [Section 3.25]),
we obtain

G ′(ϕn) → G ′(ϕ) strongly in L4/3(�) and a.e. on �, (4.99)

as n → ∞, after another subsequence extraction. Arguing as in the proof of Theo-
rem 4.3, we exploit the strong monotonicity condition on A′ from A3 to further derive
the convergences

∇ϕn → ∇ϕ strongly in L2(Q) and a.e. in Q, (4.100)

A′(∇ϕn) → A′(∇ϕ) strongly inL2(Q; R
d), (4.101)

as n → ∞, up to subsequence extraction.Combining (4.95) and (4.100),we eventually
get

M(∇ϕn, ϕn) → M(∇ϕ, ϕ) a.e. inQ. (4.102)

Let now n ∈ N be arbitrary and let ζ ∈ H1(�) and η ∈ L2(0, T ; H1(�)) with
|η| ≤ 1 a.e. in Q be an arbitrary test functions. This already implies that J ′(η) = 0
a.e. in Q. Moreover, since J is convex its derivative J ′ is monotonically increasing.
We thus have

J ′(ϕn)(ϕn − η) ≥ J ′(η)(ϕn − η) = 0 a.e. inQ. (4.103)

We now recall that the weak solution (ϕn, μn) satisfies the weak formulation (4.12)
written for (ϕn, μn) instead of (ϕ, μ). The weak formulation (4.12a) written for
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(ϕn, μn) and tested with ζ reads as

〈
∂tϕn , ζ

〉
H1(�)

= −
∫

�

M(∇ϕn, ϕn)∇μ · ∇ζ dx . (4.104)

Testing the weak formulation (4.12b) written for (ϕn, μn) with ϕn − η, integrating
with respect to time from 0 to T , and employing estimate (4.103), we obtain

∫∫
Q

μn (ϕn − η) dx dt ≥
∫∫

Q
A′(∇ϕn) · (∇ϕn − ∇η) + F ′

0(ϕn) (ϕn − η) dx dt

+
∫∫

�w

G ′(ϕn) (ϕn − η) dS dt . (4.105)

Using the convergences (4.94)–(4.102), Lebesgue’s dominated convergence theorem,
as well as the weak-strong convergence principle, we pass to the limit n → ∞ in
(4.104) and (4.105). This proves that the pair (ϕ, μ) satisfies the weak formulation
(4.18a) for all ζ ∈ H1(�), as well as the variational inequality (4.18b) for all η ∈
L2(0, T ; H1(�)) with |η| ≤ 1 a.e. in Q. Moreover, (4.95) directly implies that ϕ

satisfies the initial condition (4.19). This means that all conditions of Definition 4.6(ii)
are verified.

Proceeding similarly as in Step 4 of the proof of Theorem 4.3, and using the weak
formulation (4.18a), we can show a posteriori that ϕ is Hölder continuous in time
in the sense that ϕ ∈ C0,1/4([0, T ]; L2(�)). In combination with (4.94)–(4.96), this
proves that all conditions of Definition 4.6(i) are fulfilled.

Recalling that |ϕ| ≤ 1 a.e. in Q, we use (4.95) along with Lebesgue’s general
convergence theorem (see Alt 2016, [Section 3.25]) to conclude

∫
�

F(ϕ) dx =
∫

�

F0(ϕ) dx = lim
n→∞

∫
�

F0(ϕn) dx ≤ lim inf
n→∞

∫
�

Fn(ϕn) dx

a.e. in [0, T ]. Using the convergences (4.95), (4.96), (4.100) and (4.102), we now
proceed similarly as in Step 5 of the proof of Theorem 4.3 (cf. (4.71)) to verify
that the pair (ϕ, μ) satisfies the weak energy dissipation law (4.20). This means that
Definition 4.6(iii) is also fulfilled.

In summary, we conclude that the pair (ϕ, μ) is a weak solution to system (4.1)
(with F being the double-obstacle potential) in the sense of Definition 4.6. Hence, the
proof of Theorem 4.7 is complete. �

5 Numerical Results

In this section, we present numerical comparisons between the diffuse-interfacemodel
(3.3) and its sharp-interface limit (3.52).

For the sharp-interface computations, (SI), we employ the parametric finite element
approximation from Bao et al. (2023), which uses piecewise linear finite elements and
relies crucially on the stable approximation of the anisotropy introduced inBarrett et al.
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(2008a, b), see alsoBao andZhao (2022).Here,we recall that this stable approximation
is designed for anisotropy functions of the form

γ (p) =
L∑

�=1

√
��p · p, (5.1)

where ��, � = 1, . . . , L , are symmetric and positive definite matrices. We refer to
Barrett et al. (2008a), Barrett et al. (2008b), Barrett et al. (2010b), Bao and Zhao
(2022), Bao et al. (2023) for details. Clearly, for (5.1), the assumption A3 is satisfied,
recall Remark 4.1.

For the diffuse-interface approximations, (DI), we adapt the finite element dis-
cretizations from Barrett et al. (2014) to the system (3.3). To this end, we assume that
� is a polyhedral domain and let Th be a regular triangulation of � into disjoint open
simplices. Associated with Th is the piecewise linear finite element space

Sh =
{
ζ ∈ C0(�) : ζ|o ∈ P1(o)∀o ∈ Th

}
,

where we denote by P1(o) the set of all affine linear functions on o, cf. Ciarlet (1978).
We also let (·, ·) denote the L2-inner product on �, and let (·, ·)h be the usual mass
lumped L2-inner product on � associated with Th . In a similar fashion, we let 〈·, ·〉h

�w

denote themass lumped L2-inner product on�w. Finally,�t denotes a chosen uniform
time step size.

Our fully discrete finite element approximation of (3.3) is then given as follows.
For n ≥ 0, let ϕn

h ∈ Sh be given. Then, find (ϕn+1
h , μn+1

h ) ∈ Sh × Sh such that

α

(
ϕn+1

h − ϕn
h

�t
, χ

)h

+ ε−1(mε(ϕn
h )βε(∇ϕn

h )∇μn+1
h ,∇χ

) = 0, (5.2a)

ε
(
B(∇ϕn

h )∇ϕn+1
h ,∇η

)+ ε−1(F ′(ϕn+1
h ), η

)h + cF σ 〈G ′(ϕn+1
h ), η〉h

�w
= (μn+1

h , η)h

(5.2b)

for all (χ, η) ∈ Sh × Sh . The above scheme utilizes the linearization B(p)p = A′(p)

for anisotropies of the form (5.1), which was first introduced in Barrett et al. (2013).
In particular, the symmetric positive definite matrices B are defined by

B(p) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ (p)

L∑
�=1

��√
��p · p p �= 0,

L
L∑

�=1

�� p = 0.

(5.3)

We stress that the induced semi-implicit discretization of A′(∇ϕ) in (5.2b) ensures that
our numerical method is stable. In fact, using the techniques in Barrett et al. (2013),
Barrett et al. (2014), and on employing semi-implicit approximations of F ′(ϕ) and
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G ′(ϕ) based on convex/concave splittings of F and G, an unconditional stability
result can be shown. However, for the purposes of this paper, we prefer the simpler
approximation (5.2). We also note that extending the scheme (5.2) to the case of the
obstacle potential (1.2c),when (5.2b) needs to be replacedwith a variational inequality,
is straightforward. We refer to Barrett et al. (2013), Barrett et al. (2014) for the precise
details.

We implemented the scheme (5.2), and its obstacle potential variant, with the help
of the finite element toolbox ALBERTA, see (Schmidt and Siebert 2005). To increase
computational efficiency, we employ adaptive meshes, which have a finer mesh size

h f =
√
2

N f
within the diffuse interfacial regions and a coarser mesh size hc =

√
2

Nc

away from them, with N f , Nc ∈ N, see Baňas and Nürnberg (2008), Barrett et al.
(2004) for a more detailed description. The nonlinear systems of equations arising
from (5.2) at each time step are solved with a Newton method, where we employ
the sparse factorization package UMFPACK, see Davis (2004), for the solution of
the linear systems at each iteration. In the case of the double-obstacle potential, we
employ the solution method from Baňas and Nürnberg (2008), Barrett et al. (2014).

In all our computations, we fix the mobility D(ν) = 1 and, up to possible rotations,
use the anisotropy

γ (p) =
d∑

�=1

√
(1 − δ2)p2� + δ2|p|2, p = (p1, · · · , pd)T , (5.4)

which can be regarded as a smoothed �1-norm, with a small regularization parameter
δ > 0. Note that, (5.4) is a special case of (5.1). For the (DI) computations, we choose
for the potential F either (1.2a), so that cF = 4

3 , or (1.2c), so that cF = π
2 . We let G

be defined by (2.9), while the regularized mobility functions are defined via (3.1) and

(3.2), with r = 2 and γ0 = d1 = 1. We also choose α = c2
F
4 so that (3.25) is consistent

with (2.1a). Finally, unless otherwise stated, we use the smooth potential (1.2a) for
our (DI) computations.

5.1 2d Results

In numerical simulations of solid-state dewetting problems, it is often of interest
whether a thin filmofmaterial breaks up into islands. For example, in two space dimen-
sions and in the isotropic case with a 90◦ contact angle condition, it has been observed
that elongated films undergo pinch-off once the aspect ratio of length versus height
goes beyond a critical value R0 ≈ 127.9, (Dornel et al. 2006;Wang et al. Jan 2015). For
nonzero values of σ , the critical value behaves like R0 ≈ 96.6/ sin( 12 arccos σ)−8.66,
(Dornel et al. 2006).

it turns out that the anisotropy γ can have a dramatic influence on the critical value
R0. To investigate this numerically, we simulate the evolution of small thin films,
starting from an initial interface in the form of the upper half of a tube with aspect
ratio R = L/H , and fix H = 0.3. We consider the following four example situations:

(a) an island of R = 15 with anisotropy γ (R(π
4 )p) and σ = cos 5π

6 ;
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Fig. 4 Evolution of small island films toward the equilibrium (red line) for the SI approximations. a Plots at
t = 0, 0.002, 0.01, 0.02, 0.030878, 0.0319, 0.0339, 0.1,where the island occurs pinch-off at t = 0.030878;
b–d are the plots at t = 0, 0.01, 0.02, · · · , 0.1 (Color figure online)

(b) an island of R = 15 with anisotropy γ (p) and σ = cos 5π
6 ;

(c) an island of R = 15 with anisotropy γ (R(π
4 )p) and σ = cos π

2 ;
(d) an island of R = 13 with anisotropy γ (R(π

4 )p) and σ = cos 5π
6 ,

where R(θ) is the rotation matrix with an angle θ , and γ (p) is given by (5.4) with
d = 2, δ = 0.1. We note that anisotropies with a fourfold symmetry like our choices
above are often used in two-dimensional models for materials with a cubic crystalline
surface energy (Liu and Metiu 1993; McFadden et al. 2000; Zhang and Gladwell
2003).

Plots of the interface profiles for the SI approximations are presented in Fig. 4a–d
for the four examples, respectively, where the approximated polygonal curve consists
of 2048 line segments, and the time step size is fixed as 10−6. From these figures, we
can observe the influence of the anisotropy γ , the contact energy density difference
σ , and the aspect ratio R of the thin film on the evolution. In particular, comparing
the evolutions in Fig. 4a and d, we see that the critical value R0 for break-up to occur
appears to satisfy 13 < R0 ≤ 15, which is much smaller than in the isotropic case.
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Fig. 5 The time history of the energy for the DI and SI approximations in the four different examples using
the double smooth potential

Moreover, we see that either rotating the anisotropy, Fig. 4b, or changing the contact
angle, Fig. 4c, ensures that no break-up occurs, meaning that R0 > 15 in both cases.

Let us remark that the pinch-off observed in Fig. 4a represents a singularity for the
parametric description on which the SI approximations are based. Hence, we perform
a heuristical topological change, from a single curve to two separate curves, once an
inner vertex of the polygonal curve touches the substrate. In what follows, we will use
the computations in Fig. 4 as reference solutions for our DI approximations, in order
to empirically confirm our theoretical results from Sect. 3.

For our DI approximations, we consider the computational domain � = [0, 3] ×
[0, 1], on which for symmetry reasons, we only compute the right half of the evolving
thin film. As interfacial parameters, we consider ε = 1/(24+iπ), for i = 0, . . . , 2, and
choose the discretization parameters as N f = 28+i , Nc = 25+i , �t = 10−3/24+2i .
These spatial adaptive discretization parameters allow for a sufficient resolution of
the diffuse-interface, while the temporal discretization parameters yield an excellent
agreement with the SI approximations. In fact, in Fig. 5, we show the energy plots of
the DI approximations and compare them with the corresponding SI approximations
for the four different examples from Fig. 4. We observe that for sufficiently small
values of ε, there is excellent agreement between the SI and DI evolutions, in line with
our asymptotic analysis in Sect. 3. What is interesting to note is that for Example (a),
the pinch-off time predicted by the DI computations is too early when ε is not small,
and this can be explained by the fact that the wider interfacial region “sees” contact
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Fig. 6 Left panel: The time history of the energy for the DI and SI approximations in Example (d) using the
obstacle potential (1.2c). Right panel: The errors E� of the energy at the final time T = 0.1 between the
SI and DI approximations plotted against ε. Here, “(d)-obstacle” refers to Example (d) with the obstacle
potential, while the remaining graphs are for Examples (a)–(d) with the smooth potential

with the substrate earlier, leading to the break-up into two islands. For the same reason,
in Examples (c) and (d), the DI computations for ε = 1/(16π) erroneously predict a
pinch-off, leading to a larger final energy. But once ε is sufficiently small, no pinch-off
occurs, in agreement with the SI evolutions.

We note that using the double-obstacle potential (1.2c) leads to very similar results.
As an example, we show the evolution of the discrete energies for Example (d) in
Fig. 6. In addition, in order to also have a quantitative comparison between our SI and
DI computations, in the same figure, we also present plots of the energy difference
E� between the final SI and DI solutions against ε. The presented results suggest that
the DI energies of the final states approach the corresponding SI energy with O(ε).
Note that, the three instances where E� ≥ 10−1 correspond to cases where the DI
computations wrongly predict a pinch-off. Moreover, in practice, we observe that the
contact angles between DI and SI at the final time agree very well, with the error being
of order 10−3 throughout.

The qualitative behavior of the DI and SI approximations is compared in Figs. 7, 8,
9, 10. In all four examples, we note an excellent agreement between the two different
approaches. This is particularly noteworthy in Example (a) with the occurrence of a
topological change, which is not covered by our asymptotic analysis.

5.2 3d Results

In 3d, we compare our SI and DI approximations for the evolution of an initially
spherical island for the anisotropy γ (Rx (

π
4 )Ry(

π
4 )p), where γ (p) is given by (5.4)

with d = 3, δ = 0.1, and where Rx (θ),Ry(θ) are rotation matrices which rotate a
vector through an angle θ within the (y, z)- and (x, z)-planes, respectively. The initial
interface is chosen to be a semisphere of radius 0.4, attached to the (x, y)-plane, and
we let σ = cos( 5π6 ).

For the SI computation, we consider a polyhedral surface with 8256 triangles and
4225 vertices, and a time step size 10−4. For our DI approximations, on the other
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Fig. 7 [Example (a)] Interface profiles at times t = 0, 0.01, 0.02, 0.03, 0.04, 0.1 for the DI approximations
with ε = 1/(64π), and the red dash line represents the SI approximations (Color figure online)
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Fig. 8 [Example (b)] Interface profiles at times t = 0, 0.01, 0.02, 0.03, 0.04, 0.1 for the DI approximations
with ε = 1/(64π), and the red dash line represents the SI approximations (Color figure online)

hand, we consider the computational domain � = [− 1
2 ,

1
2 ]3 and as interfacial param-

eters consider ε = 1/(22+iπ), for i = 0, . . . , 2, with the corresponding discretization
parameters N f = 25+i , Nc = 22+i , �t = 10−3/22i . In Fig. 11, we show the energy
plots of the DI approximations and compare them with the corresponding SI simula-
tion, noting once again an excellent agreement when ε is sufficiently small. We also
present a plot of the error in the energy between the DI and SI approximations against
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Fig. 9 [Example (c)] Interface profiles at times t = 0, 0.01, 0.02, 0.03, 0.04, 0.1 for the DI approximations
with ε = 1/(64π), and the red dash line represents the SI approximations (Color figure online)
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Fig. 10 [ Example (d)] Interface profiles at times t = 0, 0.01, 0.02, 0.03, 0.04, 0.1 for the DI approxima-
tions with ε = 1/(64π), and the red dash line represents the SI approximations (Color figure online)

ε. Note that, the large error for ε = 1/(4π) is due to that DI simulation wrongly
predicting a pinch-off.

Moreover, a qualitative comparison between the evolutions of the interface for both
approaches is shown in Fig. 12. In particular, at the bottom of Fig. 12, we see that
the sharp-interface approximation agrees very well with the zero level set from the DI
computation, underlining once more our asymptotic analysis in Sect. 3.
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Fig. 11 Left panel: The time history of the energy for theDI and SI approximations for the semisphere exper-
iment in 3d. Right panel: The error E� of the energy at the final time between the DI and SI approximations
plotted against ε

Fig. 12 A visualization of the zero level sets of the DI approximations for ε = (16π)−1 at times t =
0, 0.01, 0.1, together with a slice through the adaptive mesh. Below a comparison between the DI and the
SI computation at time t = 0.01
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