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Abstract
M. Kruskal showed that each continuous-time nearly periodic dynamical system
admits a formalU (1)-symmetry, generated by the so-called roto-rate.When the nearly
periodic system is also Hamiltonian, Noether’s theorem implies the existence of a cor-
responding adiabatic invariant.We develop a discrete-time analog of Kruskal’s theory.
Nearly periodic maps are defined as parameter-dependent diffeomorphisms that limit
to rotations along a U (1)-action. When the limiting rotation is non-resonant, these
maps admit formal U (1)-symmetries to all orders in perturbation theory. For Hamil-
toniannearly periodicmaps on exact presymplecticmanifolds,weprove that the formal
U (1)-symmetry gives rise to a discrete-time adiabatic invariant using a discrete-time
extension of Noether’s theorem. When the unperturbed U (1)-orbits are contractible,
we also find a discrete-time adiabatic invariant for mappings that are merely presym-
plectic, rather than Hamiltonian. As an application of the theory, we use it to develop
a novel technique for geometric integration of non-canonical Hamiltonian systems on
exact symplectic manifolds.
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1 Introduction

A continuous-time dynamical system with vector parameter γ is nearly periodic if all
of its trajectories are periodic with nowhere-vanishing angular frequency in the limit
γ → 0.Examples fromphysics include chargedparticle dynamics in a strongmagnetic
field, the weakly relativistic Dirac equation, and any mechanical system subject to a
high-frequency, time-periodic force. In the broader context of multi-scale dynamical
systems, nearly periodic systems play a special role because they display perhaps the
simplest possible non-dissipative short-timescale dynamics. They therefore provide a
useful proving ground for analytical and numerical methods aimed at more complex
multi-scale models.

In a seminal paper (Kruskal 1962), Kruskal deduced the basic asymptotic properties
of continuous-time nearly periodic systems. In general, each such system admits a
formal U (1)-Lie symmetry whose infinitesimal generator Rγ is known as the roto-
rate. In the Hamiltonian setting, existence of the roto-rate implies existence of an
all-orders adiabatic invariant μγ by way of Noether’s theorem. General expressions
forμγ maybe found inBurby andSquire (2020). Recently (Burby andHirvijoki 2021),
we extended Kruskal’s analysis by proving that the (formal) set of fixed points for the
roto-rate is an elliptic almost invariant slow manifold. Moreover, in the Hamiltonian
case, we demonstrated that normal stability of the slow manifold is mediated by
Kruskal’s adiabatic invariant.

The purpose of this article is to introduce discrete-time analogs of continuous-
time nearly periodic systems that we call nearly periodic maps. These objects can
be motivated as follows. A nearly periodic system characteristically displays limiting
short-timescale dynamics that ergodically covers circles in phase space.This ergodicity
is ultimately what gives rise to Kruskal’s roto-rate and, in the presence of Hamiltonian
structure, adiabatic invariance. It is therefore sensible to regard parameter-dependent
maps whose limiting iterations ergodically cover circles as discrete-time analogs of
nearly periodic systems. Ergodicity requires that the rotation angle associated with
each circle be an irrational multiple of 2π . In principle, these rotation angles could
vary fromcircle to circle, but smoothness removes this freedomand imposes a common
rotation angle across circles. Nearly periodic maps are defined by limiting iterations
that rotate a family of circles foliating phase space by a common rotation angle. Such
a map is resonant or non-resonant when the rotation angle is a rational or irrational
multiple of 2π , respectively. The preceding remarks suggest that non-resonant nearly
periodic maps should share important features with continuous-time nearly periodic
systems.
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We will show that non-resonant nearly periodic maps always admit formal U (1)-
symmetries by modifying Kruskal’s construction of a normal form for the roto-rate.
Thus, non-resonant nearly periodic maps formally reduce to mappings on the space
of U (1)-orbits, corresponding to elimination of a single dimension in phase space.
In the Hamiltonian setting, we will establish a discrete-time analog of Noether’s the-
orem that will allow us to construct all-orders adiabatic invariants for non-resonant
nearly periodic maps. In contrast to the continuous-time case, there may be topolog-
ical obstructions to the Noether theorem-based construction. Nevertheless, assuming
(a) existence of a fixed point for formal U (1)-symmetry, or (b) existence of a time-
dependent Hamiltonian suspension for the nearly periodic map ( a time-dependent
Hamiltonian flow that interpolates between the identity and the nearly periodic map),
these topological obstructions disappear. When an adiabatic invariant does exist,
the phase-space dimension is formally reduced by two instead of one. On the slow
manifold, corresponding to vanishing of the adiabatic invariant, the reduction in dimen-
sionality may be even more dramatic.

We anticipate that non-resonant nearly periodic maps will have important appli-
cations to numerical integration of nearly periodic systems. While development of
integrators for such systems is straightforward when the numerical timestep h resolves
the short-timescale dynamics, considerablymore care is requiredwhen “steppingover”
the period of limiting oscillations.One approachwould be to design an integrator on the
unreduced space that is constrained to be a non-resonant nearly periodicmap.Although
such an integrator would not accurately resolve the phase of short-scale oscillations
when taking large timesteps, it would automatically possess an all-orders reduction to
the space of U (1)-orbits. By designing the reduced map to discretize the continuous-
time reduced dynamics, the slow component of the continuous-time dynamics could be
accurately resolved without directly simulating the reduced dynamical variables. This
opens the door to a type of asymptotic-preserving integrator capable of seamlessly
transitioning between large- and small-timestep regimes, generalizing those proposed
in Ricketson and Chacón (2020), Xiao and Qin (2021) for magnetized charged parti-
cle dynamics. Moreover, in the Hamiltonian case, the integrator would automatically
enjoy an all-orders adiabatic invariant close to the continuous-time invariant. Such a
capability would complement previous results on short-timestep adiabatic invariants
for variational integrators (Hairer and Lubich 2020). We provide a proof-of-principle
demonstration of these ideas in Sect. 5.1

Aside from serving as integrators for nearly periodic systems, nearly periodic maps
may also be used as tools for structure-preserving simulation of general Hamiltonian
systems on exact symplectic manifolds. (See Abraham and Marsden 2008; Mars-
den and Ratiu 1999 for the foundations of Hamiltonian mechanics on symplectic
manifolds.) The basic idea is to first embed the original Hamiltonian system as an
approximate invariant manifold inside of a larger nearly periodic Hamiltonian sys-
tem, as discussed in Burby and Hirvijoki (2021). Then, it is possible to construct
a symplectic nearly periodic map that integrates the larger system while preserving
the approximate invariant manifold. Discrete-time adiabatic invariance ensures that
the approximate invariant manifold enjoys long-term normal stability, which is tanta-
mount to the integrator providing a persistent approximation of the original system’s
dynamics.We describe and analyze this construction in Sect. 4.2. In Sect. 5.2, we apply
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the general theory to the non-canonical Hamiltonian dynamics of a charged particle’s
guiding center (Northrop 1963; Littlejohn 1981, 1983) in a magnetic field of the form
B = B(x, y) ez (Littlejohn 1979).

The remainder of this article is organized as follows. After providing a brief
non-technical overview, we review Kruskal’s theory of nearly periodic systems using
modern terminology in Sect. 3. Then, we develop the general theory of nearly periodic
maps in Sect. 4, including their special properties in the symplectic case, and their
ability to serve as geometric integrators for Hamiltonian systems on exact symplectic
manifolds. Wherever possible, proofs of general properties of nearly periodic maps
parallel Kruskal’s arguments from the continuous-time setting. Section5 contains a
pair of interesting applications of nearly periodic map technology. Finally, Sect. 6
provides additional review and context for this work.

1.1 Notational Conventions

In this article, smooth shall always meanC∞, and� will always denote a vector space.
We reserve the symbol M for a smooth manifold equipped with a smooth auxiliary
Riemannian metric g. We say fγ : M1 → M2, γ ∈ �, is a smooth γ -dependent
mapping between manifolds M1, M2 when the mapping M1 × R → M2 : (m, γ ) �→
fγ (m) is smooth. Similarly, Tγ is a smooth γ -dependent tensor field on M when
(a) Tγ (m) is an element of the tensor algebra Tm(M) at m for each m ∈ M and
γ ∈ �, and (b) Tγ is a smooth γ -dependent mapping between the manifolds M and
T (M) = ⋃

m∈M Tm(M).
The symbol Xγ will always denote a smooth γ -dependent vector field on M . If

Tγ is a smooth γ -dependent section of either T M ⊗ T M or T ∗M ⊗ T ∗M , then T̂γ

is the corresponding smooth γ -dependent bundle map T ∗M → T M : α �→ ιαTγ ,
or T M → T ∗M : X �→ ιXTγ , respectively. Note that if � is a symplectic form on
M with associated Poisson bivector J then �̂−1 = −Ĵ . Finally, we introduce the
following definition to address presymplectic forms that depend on a parameter.

Definition 1 Let� � γ be a finite-dimensional vector space. A γ -dependent presym-
plectic manifold is a manifold M equipped with a smooth γ -dependent 2-form �γ

such that d�γ = 0 for each γ ∈ �. We say (M,�γ ) is exact when there is a smooth
γ -dependent 1-form ϑγ such that �γ = −dϑγ .

2 Overview

This article contains a pair of interrelated contributions, an analog of Kruskal’s nearly
periodic system theory in discrete time, and an application of the new theory to
structure-preserving integration of non-canonical Hamiltonian systems. Each con-
tribution requires understanding a fair amount of technical background material to
fully digest. This section therefore aims to present a (mostly) non-technical synopsis
of our work. Readers interested in proceeding directly to the technical content should
start with Sect. 3.
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Kruskal’s theory Kruskal (1962) represented an outgrowth of vigorous investi-
gations into charged particle motion in strong magnetic fields as part of Project
Matterhorn, the first serious attempt by the US government to develop nuclear fusion
for peaceful energy production. Such charged particles execute rapid rotation around
magnetic field lines superposed on a much slower drift motion. Moreover, the mag-
netic flux that threads their tight helical trajectories remains approximately constant in
time over large time intervals, almost as if each particle behaved as a superconducting
ring of current. Kruskal recognized that this problem comprised just one example of a
rich class of multi-scale dynamical systems for which much could be said using ana-
lytical methods. These systems, now called nearly periodic, exhibit two time scales, a
short one on which every trajectory is periodic, and a much longer one associated with
slow drifting motion. Kruskal also recognized that the magnetic flux invariant from
charged particle theory generalizes to nearly periodic systems provided the nearly
periodic system admits Hamiltonian structure.

Nearly periodic systems bear similarities with the nearly integrable systems
addressed by Kolmogorov–Arnol’d–Moser (KAM) theory. They depend on a small
parameter ε that measures a degree of timescale separation. When ε → 0, all trajecto-
ries become very simple—even explicitly integrable in the right coordinate system. In
fact, nearly periodic systems may be viewed as special examples of nearly integrable
systems. However, where nearly integrable systems generically exhibit resonances
nearly periodic systems never do. The limiting dynamics for a nearly integrableHamil-
tonian system comprise quasiperiodic motion on invariant Lagrangian tori in phase
space characterized by several fast phases. On many of these tori, the fast frequen-
cies exhibit integer relationships that notoriously cause perturbation series to break
down. But for a nearly periodic system the tori are one-dimensional, making reso-
nance impossible. Kruskal exploited this lack of obstruction to perturbative methods
to prove a remarkable result: every nearly periodic system admits a unique hidden
continuous symmetry at the level of perturbation theory. While Kruskal did not prove
that the series defining his symmetry converge or represent a genuine symmetry in any
sense, formal existence and uniqueness proved sufficient to explain the magnetic flux
invariant for charged particles, and more generally adiabatic invariants in any nearly
periodic system.

A simple consequence of the existence of a formal hidden symmetry and corre-
sponding adiabatic invariant for a nearly periodic Hamiltonian system is existence
of a non-trivial class of phase space diffeomorphisms with hidden symmetries and
adiabatic invariants. At a minimum, this class contains the time-t flowmaps for nearly
periodic Hamiltonian systems, for any value of t . The work presented in this article
emerged from a desire to better understand this interesting class of maps. Following
Kruskal’s lead, our goal was to first define these maps axiomatically and then tran-
scribe Kruskal’s arguments to the extent possible in order to prove they have the right
properties. Section4 represents the successful culmination of this effort.

Our theory of discrete-time nearly periodic systems, or nearly periodic maps for
brevity, largely parallels Kruskal’s original theory in continuous time. But there is
one key technical challenge that appears in discrete time and not in continuous time,
which can be described as follows. Ultimately, perturbation theory for dynamical
systems involves integration along unperturbed trajectories. For a continuous-time
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nearly periodic system, such integrations manifest themselves in the form of partial
differential equations of the general type

ω(x) ∂θ f (x, θ) = S(x, θ), x ∈ R
n, θ ∈ R mod 2π

where the source function S(x, θ) and the (assumed nowhere vanishing) angular fre-
quencyω(x) are known and f (x, θ) is the dependent variable. Provided the θ -average
of S vanishes, this equation yields to solution by themethod of Fourier series. No reso-
nances appear. For nearly periodic maps, integrating along unperturbed orbits instead
leads to functional equations of the form

f (x, θ + θ0) − f (x, θ) = S(x, θ), x ∈ R
n, θ ∈ R mod 2π

where θ0 is a constant parameter characterizing the map’s limiting rotation angle.
Fourier analysis in θ reveals that solving for the nth Fourier coefficient fn requires
division by 1−exp(i n θ). This step becomes problematic whenever θ = 2π q, where
q is a rational number. Of course, this issue may be avoided formally by choosing the
limiting rotation angle to be an irrational fraction of 2π . But the possibility of resonance
remains in the theory, leading to a dichotomy between resonant and non-resonant
nearly periodic maps. Most of Kruskal’s arguments transcribe nicely to discrete time
in the non-resonant case only.

In light of our recent results from Burby and Hirvijoki (2021), existence of nearly
periodic maps presented interested possibilities for important applications of our the-
ory. For example, we showed that every Hamiltonian system on an exact symplectic
manifold embeds as a slow manifold for a larger nearly periodic system with a simple
Hamiltonian structure. Due to the close relationship between flow maps for nearly
periodic systems and nearly periodic maps, this suggests that nearly periodic maps
might be useful for simulating a very broad class of Hamiltonian systems without
the need for first identifying canonical variables. Section4.2 shows that this hunch is
actually correct. Given a possibly non-canonical Hamiltonian system, we first embed
the dynamics as a slow manifold in a nearly periodic Hamiltonian system using the
construction from Burby and Hirvijoki (2021). Then, we construct a nearly periodic
map that preserves the Hamiltonian structure of the larger system and approximately
integrates the nearly periodic flow. By restricting such an integrator to initial condi-
tions that lie on the zero level set of the map’s adiabatic invariant (guaranteed by the
general theory of nearly periodic maps), we obtain an effective structure-preserving
integrator for the original Hamiltonian dynamics. No canonical variables required.

3 Kruskal’s Theory of Nearly Periodic Systems

In 1962, Kruskal presented an asymptotic theory (Kruskal 1962) of averaging for
dynamical systems whose trajectories are all periodic to leading order. Nowadays,
Kruskal’s method is termed one-phase averaging (Lochak 1993), which suggests a
contrast with the multi-phase averaging methods underlying, e.g., KAM theory. Since
this theory provides amodel for the results in this article,we review itsmain ingredients
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here. In this section only, and merely for simplicity’s sake, we make the restriction
� = R.

Definition 2 A nearly periodic system on a manifold M is a smooth γ -dependent
vector field Xγ on M such that X0 = ω0 R0, where

• ω0 : M → R is strictly positive
• R0 is the infinitesimal generator for a circle action θ : M → M , θ ∈ U (1).
• LR0ω0 = 0.

The vector field R0 is called the limiting roto-rate, and ω0 is the limiting angular
frequency.

Remark 1 In addition to requiring that ω0 is sign-definite, Kruskal assumed that R0
is nowhere vanishing. However, this assumption is not essential for one-phase aver-
aging to work. It is enough to require that ω0 vanishes nowhere. This is an important
restriction to lift since many interesting circle actions have fixed points.

Kruskal’s theory applies to both Hamiltonian and non-Hamiltonian systems. In the
Hamiltonian setting, it leads to stronger conclusions. A general class of Hamiltonian
systems for which the theory works nicely may be defined as follows.

Definition 3 Let (M,�γ ) be amanifold equippedwith a smooth γ -dependent presym-
plectic form �γ . Assume there is a smooth γ -dependent 1-form ϑγ such that
�γ = −dϑγ . A nearly periodicHamiltonian system on (M,�γ ) is a nearly periodic
system Xγ on M such that ιXγ �γ = dHγ , for some smooth γ -dependent function
Hγ : M → R.

Kruskal showed that all nearly periodic systems admit an approximate U (1)-
symmetry that is determined to leading order by the unperturbed periodic dynamics.
He named the generator of this approximate symmetry the roto-rate. In the Hamil-
tonian setting, he showed that both the dynamics and the Hamiltonian structure are
U (1)-invariant to all orders in γ .

Definition 4 A roto-rate for a nearly periodic system Xγ on a manifold M is a formal
power series Rγ = R0 + γ R1 + γ 2 R2 + . . . with vector field coefficients such that

• R0 is equal to the limiting roto-rate
• exp(2πLRγ ) = 1
• [Xγ , Rγ ] = 0,

where the second and third conditions are understood in the sense of formal power
series.

Proposition 1 (Kruskal (1962)) Every nearly periodic system admits a unique roto-
rate Rγ . The roto-rate for a nearly periodic Hamiltonian system on an exact
presymplectic manifold (M,�γ ) satisfies LRγ �γ = 0 in the sense of formal power
series.

Corollary 1 The roto-rate Rγ for a nearly periodic Hamiltonian system Xγ on an exact
presymplectic manifold (M,�γ ) with Hamiltonian Hγ satisfies LRγ Hγ = 0.
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Proof Since [Rγ , Xγ ] = LRγ Xγ = 0 and LRγ �γ = 0, we may apply the Lie
derivative LRγ to Hamilton’s equation ιXγ �γ = dHγ to obtain

LRγ (dHγ ) = LRγ (ιXγ �γ ) = ιLRγ Xγ
�γ + ιXγ (LRγ �γ ) = 0.

Thus, LRγ Hγ is a constant function. By averaging over the U (1)-action we conclude
that the constant must be zero. 	


To prove Proposition 1, Kruskal used a pair of technical results, each of which
is interesting in its own right. The first establishes the existence of a non-unique
normalizing transformation that asymptotically deforms theU (1)-action generated by
Rγ into the simplerU (1)-action generated by R0. The second is a subtle bootstrapping
argument that upgrades leading-order U (1)-invariance to all-orders U (1)-invariance
for integral invariants. We state these results here for future reference.

Definition 5 Let Gγ = γ G1 + γ 2 G2 + . . . be an O(γ ) (no constant term) formal
power series whose coefficients are vector fields on a manifold M . The Lie trans-
form with generator Gγ is the formal power series exp(LGγ ) whose coefficients are
differential operators on the tensor algebra over M .

Definition 6 A normalizing transformation for a nearly periodic system Xγ with
roto-rate Rγ is a Lie transform exp(LGγ ) with generator Gγ such that Rγ =
exp(LGγ )R0.

Proposition 2 (Kruskal) Each nearly periodic system admits a normalizing transfor-
mation.

Proposition 3 Let αγ be a smooth γ -dependent differential form on a manifold M.
Suppose αγ is an absolute integral invariant for a C∞ nearly periodic system Xγ on
M. If LR0α0 = 0 then LRγ αγ = 0, where Rγ is the roto-rate for Xγ .

Proof Integral invariance means LXγ αγ = 0 for each γ ∈ �. By Applying LRγ to
this relationship, and using [Rγ , Xγ ] = 0, we obtain LXγ LRγ αγ = 0. Now let Gγ be
the generator of a normalizing transformation for Xγ , and set Xγ = exp(−LGγ )Xγ ,
αγ = exp(−LGγ )αγ . We haveLXγ

LR0αγ = 0. SinceLR0αγ = O(γ ), the first-order
consequence of the previous formula isLω0 R0LR0α1 = 0, which can only be satisfied
if LR0α1 is R0-invariant. But since theU (1)-average of LR0α1 vanishes, we conclude
LR0α1 = 0. Repeating this argument gives LR0αk = 0 for k > 1 as well. In other
words LR0αγ = 0 to all orders in γ , which is equivalent to the theorem’s claim. 	


According to Noether’s celebrated theorem, a Hamiltonian system that admits a
continuous family of symmetries also admits a corresponding conserved quantity.
Therefore, one might expect that a Hamiltonian system with approximate symmetry
must also have an approximate conservation law. Kruskal showed that this is indeed
the case for nearly periodic Hamiltonian systems, as the following generalization of
his argument shows.
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Proposition 4 Let Xγ be a nearly periodic Hamiltonian system on the exact presym-
plectic manifold (M,�γ ). Let Rγ be the associated roto-rate. There is a formal power
series θγ = θ0 + γ θ1 + . . . with coefficients in �1(M) such that �γ = −dθγ and
LRγ θγ = 0. Moreover, the formal power series μγ = ιRγ θγ is a constant of motion
for Xγ to all orders in perturbation theory. In other words,

LXγ μγ = 0,

in the sense of formal power series.

Proof To construct the U (1)-invariant primitive θγ , we select an arbitrary primitive
ϑγ for �γ and set

θγ = 1

2π

∫ 2π

0
exp(θLRγ )ϑγ dθ.

This formal power series satisfies LRγ θγ = 0 because

LRγ θγ = 1

2π

∫ 2π

0

d

dθ
exp(θLRγ )ϑγ dθ = 0.

Moreover, since LRγ �γ = 0 by Kruskal’s Proposition 1, we have

−dθγ = 1

2π

∫ 2π

0
exp(θLRγ )�γ dθ = 1

2π

∫ 2π

0
�γ dθ = �γ ,

whence θγ is a primitive for �γ .
To establish all-orders time independence of μγ = ιRγ θγ , we apply Cartan’s for-

mula and Corollary 1 according to

LXγ μγ = ιXγ dιRγ θγ = −ιRγ ιXγ �γ = −LRγ Hγ = 0.

	

Definition 7 The formal constant of motion μγ provided by Proposition 4 is the adi-
abatic invariant associated with a nearly periodic Hamiltonian system.

4 Nearly Periodic Maps

Nearly periodic maps are natural discrete-time analogs of nearly periodic systems.
The following provides a precise definition.

Definition 8 (nearly periodic map) Let � be a vector space. A nearly periodic map
on a manifold M with parameter space � is a smooth mapping F : M ×� → M such
that Fγ : M → M : m �→ F(m, γ ) has the following properties:

123



38 Page 10 of 43 Journal of Nonlinear Science (2023) 33 :38

• Fγ is a diffeomorphism for each γ ∈ �.
• There exists a U (1)-action θ : M → M and a constant θ0 ∈ U (1) such that

F0 = θ0 .

We say F is resonant if θ0 is a rational multiple of 2π , otherwise F is non-resonant.
The infinitesimal generator of θ , R0, is the limiting roto-rate.

Let X be a vector field on a manifold M with time-t flow map Ft . A U (1)-action
θ is a symmetry for X if Ft ◦ θ = θ ◦ Ft , for each t ∈ R and θ ∈ U (1).
Differentiating this condition with respect to θ at the identity implies F∗

t R = R,
where R denotes the infinitesimal generator for the U (1)-action. Conversely, if R is
any vector field with 2π -periodic orbits and F∗

t R = R for each t ∈ R then the R-
flow defines a U (1)-action that is a symmetry for X . Since we would like to think of
nearly periodic maps as playing the part of a nearly periodic system’s flow map, the
latter characterization of symmetry allows us to naturally extend Kruskal’s notion of
roto-rate to our discrete-time setting.

Definition 9 A roto-rate for a nearly periodic map F is a formal power series Rγ =
R0 + R1[γ ] + R2[γ, γ ] + . . . whose coefficients are homogeneous polynomial maps
from � into vector fields on M such that

• R0 is the limiting roto-rate.
• F∗

γ Rγ = Rγ in the sense of formal power series.
• exp(2πLRγ ) = 1 in the sense of formal power series.

Definition 10 Let Gγ = G1[γ ] + G2[γ, γ ] + . . . be an O(γ ) (no constant term)
formal power series whose coefficients are homogeneous polynomial maps from �

into vector fields on M . The Lie transform with generator Gγ is the formal power
series exp(LGγ ) whose coefficients are homogeneous polynomial maps from � into
differential operators on the tensor algebra over M .

Remark 2 Since the parameter γ in the previous two definitions is vector valued, the
formal power series Rγ and Gγ may be usefully interpreted as multivariate formal
power series.

Definition 11 A normalizing transformation for a nearly periodic map F with roto-
rate Rγ is a Lie transform exp(LGγ ) with generator Gγ such that Rγ = exp(LGγ )R0.

Our first and most fundamental result concerning nearly periodic maps establishes
the existence and uniqueness of the roto-rate in the non-resonant case. Like the cor-
responding result due to Kruskal in continuous time, this result holds to all orders in
perturbation theory.

Theorem 1 (Existence and uniqueness of the roto-rate) Each non-resonant nearly
periodic map admits a unique roto-rate.

Proof First we will show that there exists a Lie transform with generator Gγ such that
Rγ ≡ exp(LGγ )R0 is a roto-rate.
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To that end, we introduce a convenient way of representing γ -dependent pullback
operators at the level of formal power series. Let ψγ be a smooth γ -dependent dif-
feomorphism on M . By the Lie derivative formula, there is a unique γ -dependent
�∗-valued vector field Wγ such that

d

ds

∣
∣
∣
∣
s=0

ψ∗
γ+s δγ = ψ∗

γL〈Wγ ,δγ 〉, (1)

for each γ, δγ ∈ �. Here 〈·, ·〉 denotes the natural pairing between � and its dual
space �∗. The object Wγ both determines and is determined by the pullback operator
ψ∗

γ at the level of formal power series. This follows from recursive application of the
identity

ψ∗
sγ = ψ∗

0 +
∫ s

0
ψ∗
s1γL〈Ws1 γ ,γ 〉 ds1, (2)

which may be understood as a consequence of (1) and the fundamental theorem of
calculus. This can be viewed as Picard iteration of (1) or fixed point iteration of (2).
The first step in the recursion is to substitute (2) with s = s1 into (2) with s = 1,
resulting in

ψ∗
γ = ψ0 +

∫ 1

0

(

ψ∗
0 +

∫ s1

0
ψ∗
s2γL〈Ws2 γ ,γ 〉 ds2

)

L〈Ws1 γ ,γ 〉 ds1

= ψ0 +
∫ 1

0
ψ∗
0L〈Ws1 γ ,γ 〉 ds1 +

∫ 1

0

∫ s1

0
ψ∗
s2γL〈Ws2 γ ,γ 〉L〈Ws1 γ ,γ 〉 ds2 ds1.

The second step involves substituting (2) with s = s2 into the preceding expression,
thereby producing a triple integral. Continuing in this manner, it is straightforward to
derive the following time-ordered exponential formulas for both the pullback ψ∗

γ and
pushforward operator ψγ ∗,

ψ∗
γ = ψ∗

0

[

1 +
∫ 1

0
L〈Ws1 γ ,γ 〉 ds1 +

∫ 1

0

∫ s1

0
L〈Ws2 γ ,γ 〉L〈Ws1 γ ,γ 〉 ds2 ds1 + . . .

]

(3)

ψγ ∗ =
[

1 −
∫ 1

0
L〈Ws1 γ ,γ 〉 ds1 +

∫ 1

0

∫ s1

0
L〈Ws1 γ ,γ 〉L〈Ws2 γ ,γ 〉 ds2 ds1 + . . .

]

ψ0 ∗.

(4)

Upon introducing the formal power series expansionWγ = W0+W1[γ ]+W2[γ, γ ]+
. . . , the integrals in these formulas can be carried out, leading to the somewhat more
explicit formulas
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ψ∗
γ = ψ∗

0

[

1 + L〈W0,γ 〉 + 1

2
L〈W1[γ ],γ 〉 + 1

2
L2〈W0,γ 〉 + O(γ 3)

]

(5)

ψγ ∗ =
[

1 − L〈W0,γ 〉 − 1

2
L〈W1[γ ],γ 〉 + 1

2
L2〈W0,γ 〉 + O(γ 3)

]

ψ0 ∗. (6)

The preceding discussion applies in particular to ψ∗
γ = F∗

γ . In this case, we will
use the symbol Vγ forWγ . The discussion also applies to the formal pullback operator
ψ∗

γ = φ∗
γ , where

φ∗
γ = exp(LGγ ),

as well as its inverse φγ ∗ = (φ∗
γ )−1. In this case we will use ξγ in place of Wγ . Thus,

we have the defining identities

d

ds

∣
∣
∣
∣
s=0

F∗
γ+s δγ = F∗

γ L〈Vγ ,δγ 〉 (7)

d

ds

∣
∣
∣
∣
s=0

φ∗
γ+s δγ = φ∗

γL〈ξγ ,δγ 〉. (8)

We will now establish existence of the Lie transform with generator Gγ by con-
structing an appropriate ξγ . The Lie transform itself can then be constructed using the
formulas (3) and (4). Define Rγ = exp(LGγ )R0 = φ∗

γ R0, where Gγ , or equivalently
ξγ , is yet to be determined. This Rγ satisfies exp(2πLRγ ) = 1 and Rγ=0 = R0 auto-
matically. We will determine the formal power series ξγ = ξ0+ξ1[γ ]+ξ2[γ, γ ]+ . . .

by requiring F∗
γ Rγ = Rγ . If this can be done, then Rγ will be a roto-rate.

The equation we would like to solve is equivalent to

(φ−1
γ )∗F∗

γ φ∗
γ R0 = R0, (9)

where (φ−1
γ )∗ = (φ∗

γ )−1. Formally, this is just the statement that the “diffeomorphism”

Fγ = φγ ◦Fγ ◦φ−1
γ preserves the limiting roto-rate R0. Instead of solving (9) directly,

we will demand that its γ -derivative vanishes. This derivative condition is

0 = d

ds

∣
∣
∣
∣
s=0

F
∗
γ+s δγ R0 = F

∗
γL〈V γ ,δγ 〉R0, (10)

where V γ is readily shown to be given by

V γ = ξγ − Fγ ∗ξγ + φγ ∗Vγ .

Note that requiring the γ -derivative of (9) to vanish implies (9) itself since the latter
is clearly satisfied when γ = 0. Also note that since F

∗
γ is formally invertible, the

derivative condition is equivalent to

LR0V γ = 0. (11)
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To solve (11), wewill expand the equation in powers of γ and then argue inductively
that each equation in the resulting sequence can be solved. At O(γ 0) we have

LR0(ξ0 − θ0 ∗ξ0 + V0) = 0.

Denoting the limiting U (1)-average operation as 〈T 〉 = (2π)−1
∫ 2π
0 ∗

θT dθ , where
T is any tensor field on M , and Tosc = T − 〈T 〉, this equation is equivalent to

Aθ0ξ
osc
0 = −V osc

0 ,

where we have introduced the homological operator

Aθ0 = 1 − θ0 ∗.

Since Fγ is assumed to be non-resonant, the homological operator, regarded as a
linear automorphism of the oscillating subspace of vector fields, is invertible. We may
therefore solve the O(γ 0) equation by setting

ξ0 = −A−1
θ0

V osc
0 .

At O(γ n), (11) leads to

Aθ0ξn[γ, . . . , γ ]osc = Sn[γ, . . . , γ ]osc,

where Sn[γ, . . . , γ ] involves coefficients of Vγ = V0 + V1[γ ] + V2[γ, γ ] and ξγ =
ξ0 + ξ1[γ ] + ξ2[γ, γ ] + . . . with polynomial degree (for ξ ) at most n − 1. Assuming
the ξk with k < n have already been determined by solving the O(γ k) components of
(11), we may therefore solve the O(γ n) equation by setting

ξn[γ, . . . , γ ] = A−1
θ0

Sn[γ, . . . , γ ]osc.

Since we have already established that the O(γ 0) equation has a solution, we now
conclude by induction that (11) may be solved for ξγ to all orders in γ . It follows that
a roto-rate exists.

Next we prove uniqueness of the Rγ just constructed. Suppose R′
γ is a possi-

bly distinct roto-rate, and consider the commutator Cγ = [Rγ , R′
γ ]. Immediate

properties of Cγ include C0 = 0 and F∗
γ Cγ = Cγ . By construction of Rγ , we

have Rγ = exp(LGγ )R0, which implies Cγ = exp(−LGγ )Cγ = [R0, R
′
γ ], where

R
′
γ = exp(−LGγ )R′

γ . Thus, the mean 〈Cγ 〉 = 0 vanishes to all orders in γ . Since

F∗
γ Cγ = Cγ , we also have F

∗
γCγ = Cγ , where F

∗
γ ≡ exp(−LGγ )F∗

γ exp(LGγ ).

The first-order consequence of the last condition is ∗
θ0
C1[γ ] = C1[γ ], which

implies LR0C1[γ ] = 0 by non-resonance. But since the mean of C1[γ ] vanishes,
we must have C1[γ ] = 0 for all γ ∈ �. The same argument applied repeatedly
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implies Cn = 0 for all n ≥ 1. In other words, Rγ and R′
γ commute. To fin-

ish the argument for uniqueness, we now use commutativity of Rγ and R′
γ to find

1 = exp(2πLRγ ) = exp(2πLR′
γ

+ 2πLRγ −R′
γ
) = exp(2πLRγ −R′

γ
), which can only

be satisfied if Rγ − R′
γ = 0, since R0 − R′

0 = 0.
	


Theorem 2 (Existence of normalizing transformations) Each non-resonant nearly
periodic map admits a normalizing transformation.

Proof This follows immediately from the proof of Theorem 1. 	


4.1 Nearly Periodic MapsWith Hamiltonian Structure

As in the continuous-time theory, existence of the roto-rate leads to additional insights
for nearly periodic maps that are Hamiltonian in an appropriate sense. In this subsec-
tion, we will establish the basic properties of nearly periodic maps with Hamiltonian
structure. We start by defining what we mean by Hamiltonian structure.

Definition 12 (Presymplectic nearly periodic map) A Presymplectic nearly periodic
map on a γ -dependent presymplectic manifold (M,�γ ) is a nearly periodic map F
such that F∗

γ �γ = �γ for each γ ∈ �.

Definition 13 (Hamiltonian nearly periodic map) A Hamiltonian nearly periodic
map on a γ -dependent presymplectic manifold (M,�γ ) is a nearly periodic map
F such that there is a smooth (t, γ )-dependent vector field Yt,γ with the following
properties:

• t ∈ R.
• ιYt,γ �γ = dHt,γ , for some smooth (t, γ )-dependent function Ht,γ .
• For each γ ∈ �, Fγ is the t = 1 flow of Yt,γ .

Lemma 1 Each Hamiltonian nearly periodic map is a presymplectic nearly periodic
map.

Theorem 3 (Roto-rate is presymplectic) If F is a non-resonant presymplectic nearly
periodic map on a γ -dependent presymplectic manifold (M,�γ ) with roto-rate Rγ

then LRγ �γ = 0.

Proof First note that presymplecticity of F with γ = 0 implies F∗
0 �0 = ∗

θ0
�0 = �0.

Upon introducing the 2-form-valued Fourier coefficients,

�k
0 = 1

2π

∫ 2π

0
e−ikθ∗

θ�0 dθ, k ∈ Z, (12)

the last identity may be rewritten as the sequence of identities eikθ0�k
0 = �k

0, k ∈ Z.
But by non-resonance of F , 1 − eikθ0 is nonvanishing for each k. We conclude that
�k

0 = 0 for nonzero k, or, equivalently, LR0�0 = 0.
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Presymplecticity of F for nonzeroγ implies F∗
γ �γ = �γ for eachγ ∈ �. Applying

the Lie derivative LRγ to this identity and using F∗
γ Rγ = Rγ implies F∗

γ (LRγ �γ ) =
(LRγ �γ ). In other words, αγ = LRγ �γ is (formally) an absolute integral invariant for
Fγ . By the argument from the previous paragraph, we see immediately that α0 = 0. To
finish the proof,wewill use integral invariance togetherwith existence of a normalizing
transformation to find that αγ = 0 to all orders in γ . This argument will parallel the
proof of Proposition 3.

Let Gγ be the generator of a normalizing transformation for F given by Theorem
2. Set αγ = exp(−LGγ )αγ = α0 + α1[γ ] + α2[γ, γ ] + . . . . Note that αγ = 0 if and
only if αγ = 0. Since αγ is an integral invariant for Fγ , αγ must satisfy

exp(−LGγ )F∗
γ exp(LGγ )αγ = αγ . (13)

Because α0 = α0 = 0, the first-order consequence of (13) is F∗
0 α1[γ ] = ∗

θ0
α1[γ ] =

α1[γ ]. By our earlier argument, we must then have (α1[γ ])k = 0 for k �= 0. But using
exp(−LGγ )Rγ = R0, we also find αγ = LR0�γ , where �γ = exp(−LGγ )�γ . The
latter implies α0

γ = 0, and (α1[γ ])0 = 0 in particular. Thus, α1[γ ] = 0 for all γ ∈ �.
We may now repeat this argument for α2[γ, γ ], α3[γ, γ, γ ], etc., to obtain the desired
result. 	


Using presymplecticity of the roto-rate, wemay now use a version of Noether’s the-
orem to establish existence of adiabatic invariants for many interesting presymplectic
nearly periodic maps.

Theorem 4 (Existence of an adiabatic invariant) Let F be a non-resonant presymplec-
tic nearly periodic map on the exact γ -dependent presymplectic manifold (M,�γ )

with roto-rate Rγ . Assume one of the following conditions is satisfied.

(1) F is Hamiltonian.
(2) M is connected and the limiting roto-rate R0 has at least one zero.

There exists a smooth γ -dependent 1-form θγ such that LRγ θγ = 0 and −dθγ = �γ

in the sense of formal power series. Moreover the quantity

μζ = ιRγ θγ (14)

satisfies F∗
γ μγ = μγ in the sense of formal power series. In other words, μγ is an

adiabatic invariant for F.

Proof By Theorem 3, a primitive θγ with the desired properties may be constructed
as in the proof of Proposition 4.

To establish adiabatic invariance of μγ , first we compute the exterior derivative
of μγ using Cartan’s formula to obtain dμγ = ιRγ �γ . Since both Rγ and �γ are
Fγ -invariant, it follows that dF∗

γ μγ = dμγ . The difference cγ ≡ F∗
γ μγ − μγ must

therefore be a formal power series whose coefficients are homogeneous polynomial
maps from � into locally constant functions on M . To complete the proof, we must
demonstrate that cγ = 0 to all orders.
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First suppose F is Hamiltonian. Then, there is a smooth (t, γ )-dependent Hamil-
tonian vector field Yt,γ with Hamiltonian Ht,γ whose t = 1 flow is equal to Fγ . Let
Fγ
t denote the time-t flow map for Yt,γ with Fγ

0 = idM . By the fundamental theorem
of calculus, the definition of Lie derivative, and Cartan’s formula, we therefore have

F∗
γ μγ = ιRγ (Fγ

1 )∗θγ

= ιRγ θγ + ιRγ

∫ 1

0

d

dt
(Fγ

t )∗θγ dt

= μγ + ιRγ

∫ 1

0
(Fγ

t )∗(LYt,γ θγ ) dt

= μγ + ιRγ

∫ 1

0
(Fγ

t )∗(ιYt,γ dθγ + dιYt,γ θγ ) dt

= μγ + ιRγ

∫ 1

0
(Fγ

t )∗d(ιYt,γ θγ − Ht,γ ) dt

= μγ + LRγ

∫ 1

0
(Fγ

t )∗(ιYt,γ θγ − Ht,γ ) dt .

Applying exp(θLR0) to this identity and averaging in θ gives the desired result.
Finally suppose that M is connected and that R0(m0) = 0 for some m0 ∈ M . Let

Gγ be the generator of a normalizing transformation. We have

exp(−LGγ )μγ (m0) = ιR0 exp(−LGγ )θγ (m0) = 0,

and

exp(−LGγ )F∗
γ μγ (m0)=exp(−LGγ )ιRγ F

∗
γ θγ (m0)= ιR0(exp(−LGγ )F∗

γ θγ )(m0) = 0.

It follows that cγ is zero on the connected component of M containing m0. But since
M is connected, cγ is therefore zero everywhere, as claimed. 	

Remark 3 Asimple example illustrates how existence of an adiabatic invariant can fail.
Let M = S1 × R � (ζ, I ), �γ = dζ ∧ d I = −d(I dζ ), and � = R. The mapping
F(ζ, I , γ ) = (ζ + θ0, I + γ ) defines a non-resonant nearly periodic map for almost
all θ0 ∈ U (1). The roto-rate is given to all orders by Rγ = ∂ζ . Moreover, Fγ is area-
preserving for each γ , and hence presymplectic. The quantity μγ = ιRγ (I dζ ) = I
from (14) is clearly not an adiabatic invariant for F since F∗

γ I = I + γ . Note that,
in this example, the R0-orbits are not contractible and that F is presymplectic but not
Hamiltonian.

4.2 Geometric Integration of Noncanonical Hamiltonian Systems Using Nearly
Periodic Maps

Let Q ⊂ E be a connected open subset of a finite-dimensional vector space E equipped
with an exact symplectic form ω = −dϑ . Consider a Hamiltonian system on (Q, ω =
−dϑ)withHamiltonian H : Q → R. Choose an almost complex structure J : T Q →
T Q compatible with the symplectic form ω = −dϑ , so that g(v,w) = ω(v, Jw)
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defines a metric tensor on Q. Equip the tangent bundle π : T Q → Q with the
“magnetic” symplectic form

�∗
ε = π∗ω + ε �,

where ε is a real parameter and � is the pullback of the canonical symplectic form on
T ∗Q along the bundle map T Q → T ∗Q defined by g. We may also define a natural
Hamilton function on T Q,

H∗
ε (q, v) = 1

2
ε2 gq(v, v) + ε H(q).

As explained in detail in Burby and Hirvijoki (2021), H∗
ε defines a Hamiltonian nearly

periodic system whose slow manifold dynamics recovers the dynamics of H on Q as
ε → 0. The limiting roto-rate is

R0(q, v) = Jq(v − XH (q)) · ∂v, (15)

where XH denotes the Hamiltonian vector field on Q associated with H , and the
angular frequency function ω0 = 1. Moreover, the adiabatic invariant associated with
H∗

ε ensures that the slow manifold enjoys long-term normal stability. It is crucial that
the metric g is determined by an almost complex structure J compatible with ω for
these results to hold. If g is a more general metric tensor then the larger system on
T Q need not be nearly periodic, and an adiabatic invariant need not exist.

The purpose of this section is to combine observations from Burby and Hirvijoki
(2021)with the theory of nearly periodicmaps in order to construct a geometric numer-
ical integrator for H . The integrator will be given as an implicitly defined mapping
on T Q that is provably presymplectic nearly periodic with limiting roto-rate R0. We
will show that this mapping admits a slow manifold diffeomorphic to Q on which
iterations of the map approximate the H -flow. In fact, the mapping is a slow man-
ifold integrator in the sense described in Burby and Klotz (2020). In addition, we
will argue using the Noether theorem for nearly periodic maps that this discrete-time
slow manifold enjoys long-term normal stability. This ensures that the mapping on
T Q will function effectively and reliably as a structure-preserving integrator for the
original Hamiltonian system on Q. We remark that the results described in this sec-
tion provide a general solution to the problem of structure-preserving integration of
non-canonical Hamiltonian systems on exact symplectic manifolds. For a completely
different approach that is less geometric, we refer readers to Kraus (2017).

We begin with some preliminary remarks.

Remark 4 It will be convenient to work with the parameter � = √
ε instead of ε. There

are technical reasons for doing so that will not be discussed here; however, an obvious
physical benefit will be that � may be interpreted as a timestep. The symplectic form
on T Q will therefore be given by

�∗
�

= π∗ω + �
2 �.
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Remark 5 It is useful to describe the goal of our construction in more concrete terms.
We aim to find a smooth �-dependent mapping �� : T Q → T Q that is both non-
resonant nearly periodic with limiting roto-rate R0 given by (15) and symplectic,
�∗

�
�∗

�
= �∗

�
, for all � � 1. Since Q is connected and R0 has a manifold of fixed

points of the form {(q, XH (q))} ⊂ T Q, Theorem 4 (Noether’s theorem for nearly
periodic maps) ensures that the mapping we seek will admit an adiabatic invariantμ�.

Remark 6 We may determine the leading-order term in the formal power series μ� =
μ0+� μ1+�

2 μ2+. . . usingonly the explicit expressions for�∗
�
and R0 in conjunction

with the general existence theorem (Theorem 4). Recall that the theorem says that the
adiabatic invariant is given by μ� = ιR�

��, where R� is the roto-rate and �� is a
U (1)-invariant primitive for �∗

�
. In particular, the roto-rate must satisfy Hamilton’s

equation ιR�
�∗

�
= dμ� with Hamiltonian μ�. We apply this theorem as follows.

If f : T Q → R is any smooth �-independent function on T Q then it is straight-
forward to verify that X f = �

−4(J ∂v f ) · ∂v + l.o.t.. Therefore, we must have R� =
�

−4(J ∂vμ0) · ∂v + l.o.t.. But since R� = O(1), the last expression implies ∂vμ0 = 0
everywhere onT Q, orμ0 = μ0(q). In factμ0(q)must be constant, for if (q, v�(q)) is a
zero for R� then Hamilton’s equation implies 0 = lim�→0 dμ�(q, v�(q)) = dμ0(q).
And by evaluating the formula μ� = ιR�

�� at (q, v�(q)) we find that the constant
must in fact be 0. In other words μ0 = 0. Essentially, the same argument may now
be applied to conclude μ1 = μ2 = μ3 = 0; the argument for μ1 proceeds as fol-
lows. Since μ0 = 0, Hamilton’s equation implies R0 = �

−3(J ∂vμ1) · ∂v + l.o.t., or
μ1 = μ1(q). Evaluating Hamilton’s equation at (q, v�(q)), dividing by �, and taking
the limit � → 0 then leads to 0 = lim�→0 �

−1dμ�(q, v�(q)) = dμ1(q), implying
μ1 is a constant. Applying the same procedure to the formula μ� = ιR�

�� implies
the constant must be 0.

We have now established that the adiabatic invariant for the nearly periodic map
we aim to construct must have the form μ� = �

4 μ4 +�
5 μ5 + . . . . We can determine

an explicit expression for μ4 as follows. By the above remarks, we must have R� =
(J ∂vμ4) · ∂v + l.o.t., which implies in particular that R0 = (J ∂vμ4) · ∂v . Since the
desired form of R0 is known, we therefore obtain the following partial differential
equation for μ4:

J(v − XH ) = J ∂vμ4.

The general solution of this equation is given by μ4(q, v) = 1
2gq(v − XH (q), v −

XH (q)) + χ(q), where χ(q) is an arbitrary function of q. To determine χ , we
evaluate the formula μ� = ιR�

�� at a fixed point (q, v�(q)) to find 0 =
lim�→0 �

−4μ�(q, v�(q)) = μ4(q, v0(q)) = χ(q). Note that we have used the for-
mula for v0(q) = XH (q) for fixed points of R0. We conclude that the adiabatic
invariant must have the general form

μ�(q, v) = �
4 1

2
gq(v − XH (q), v − XH (q)) + O(�5). (16)

This formula will be useful later when we argue for long-term normal stability.
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To construct the mapping �� : T Q → T Q, we begin by introducing the mixed-
variable generating function

S : Q × Q → R

S(q, q) =
∫ q

q
ϑ + ∗�(q, q), (17)

where (q, q) = (q/2 + q/2, q − q) is a diffeomorphism Q × Q → T Q, and
� : T Q → R is given by

�(x, ξ) = −�H(x) + �
2 〈XH (x), ξ 〉 − 1

12
�
2∂kω j�(x) X

k
H (x) X j

H (x) ξ�

− 1

4

(
sin θ0

1 − cos θ0

)

〈ξ − �XH (x), ξ − �XH (x)〉.

Here, 〈·, ·〉 is shorthand for g(·, ·), the integral is taken along the straight line connecting
q with q, XH = −J∇H is the Hamiltonian vector field associated with H , and
θ0 ∈/{0, π}. The metric tensor, the Hamiltonian, and the Hamiltonian vector field are
evaluated at the midpoint x = (q +q)/2. The variables q and q should be interpreted
as the “old” and “new” points in the symplectic manifold Q. While it is not necessary
to go into the details here, the function S may be understood as an approximation of
Jacobi’s solution of the Hamilton Jacobi equation for the Hamiltonian H∗

ε .

Definition 14 The symplectic Lorentz map is the mapping �� : T Q → T Q :
(q, v) �→ (q, v) defined by the implicit relations

ϑq + �
2 gq(v, dq) = d(2)S, (18)

ϑq + �
2 gq(v, dq) = −d(1)S. (19)

Here gq(v, dq) is the linear map TqQ → R given bywq �→ gq(v,wq), and gq(v, dq)

is defined analogously.

Proposition 5 The symplectic Lorentz map is well-defined and smooth in (q, v, �) for
� in a neighborhood of 0 ∈ R. Moreover, it preserves the �-dependent symplectic form
�∗

�
and satisfies

�0(q, v) = (x, XH (q) + exp(−θ0 J(q))[v − XH (q)]). (20)

Proof First we will construct a convenient moving frame on Q × Q onto which we
will resolve the implicit relations (18) and (19). We will start by building a frame
on T Q and then finish by pulling back along the mapping  : Q × Q → T Q
defined above. Without loss of generality, assume Q = R

n for an even integer n and
let (xi , ξ i ) denote the standard linear coordinate system on T Q. Fix (x, ξ) ∈ T Q
and let γ : [−1, 1] → Q be a smooth curve in Q with γ (0) = x . Relative to
the Riemannian structure defined by the metric g there is a unique horizontal lift
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γ̃ : [−1, 1] → T Q with γ̃ (0) = (x, ξ). In this manner, to each (x, ξ) ∈ T Q and each
tangent vectorw ∈ Tx Qwe assign a lifted tangent vector w̃ ∈ T(x,ξ)T Q. Applying this
construction point-wise to the coordinate vector fields ∂xi on Q, we obtain linearly
independent vector fields ∂̃xi on T Q. The collection of 2n vector fields (∂̃xi , ∂ξ i )

comprise a frame on T Q. A frame on Q × Q is then furnished by the vector fields
(Ui , Ai ), where Ui = ∗∂̃xi and Ai = ∗∂ξ i . Upon introducing the Christoffel

symbols ∇∂xi
∂x j = �k

i j ∂xk , the vector fields ∂̃xi may be written as

∂̃xi = ∂xi − �k
i j (x) ξ j ∂ξ k .

Therefore, we may write the following explicit formulas for the frame (Ui , Ai ):

Ui =
(

∂qi + 1

2
�k

i j (x) ξ j ∂qk

)

+
(

∂qi − 1

2
�k

i j (x) ξ j ∂qk

)

Ai = −1

2
∂qi + 1

2
∂qi ,

where we remind the reader that x = (q + q)/2 and ξ = q − q.
Next, we rewrite (18) and (19) as a single equation on Q × Q,

ϑq(dq) − ϑq(dq) + �
2 gq(v, dq) − �

2 gq(v, dq) = dS, (21)

and then take components along the frame (Ui , Ai ) to obtain

�
2 g� i (q) v� − �

2 g� i (q) v� − 1

2
�
2 �k

i j (x) ξ j
(

g� k(q) v� + g� k(q) v�

)

=
∫ 1

0
ξ jω j i (λ) dλ −

∫ 1

0

[

λ − 1

2

]

ξ j ω jk(λ)�k
i�(x)ξ

� dλ

− � ∂i H(x) + �

2

(
sin θ0

1 − cos θ0

)

g� j (x) X
�
H ;i (x) (ξ j − � X j

H (x))

− 1

12
�
2 ∂i (∂kω j� X

k
H X j

H ) ξ� + 1

12
�
2 ∂kω j� X

k
H X j

H ��
im ξm,

and

1

2
�
2 g� i (q) v� + 1

2
�
2 g� i (q) v�

=
∫ 1

0

[

λ − 1

2

]

ξ jω j i (λ) dλ − 1

12
�
2 ∂kω j i X

k
H X j

H

+ �
2 gi j (x) X

j
H (x) − 1

2

(
sin θ0

1 − cos θ0

)

gi j (x)(ξ
j − � X j

H (x)).
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Here, we have applied the useful formulas

d
∫ q

q
ϑ = ϑq(dq) − ϑq(dq) +

∫ 1

0
ωλ(ξ, [1 − λ]dq + λ dq) dλ

and

L
∂̃xi

� = −� ∂i H + �

2

(
sin θ0

1 − cos θ0

)

g(∇∂i XH , ξ − � XH )

− 1

12
�
2 ∂i (∂kω j� X

k
H X j

H ) ξ� + 1

12
�
2 ∂kω j� X

k
H X j

H ��
im ξm

L∂
ξ i

� = �
2 g(XH , ∂xi ) − 1

12
�
2 ∂kω j i X

k
H X j

H − 1

2

(
sin θ0

1 − cos θ0

)

g(ξ − � XH , ∂xi ),

where ωλ = ωq(λ) with q(λ) = [1 − λ] q + λ q .
To show that these implicit equations define a smooth �-dependent mapping ��,

we first introduce the new variable � = �
−2(ξ − � XH (x)) and then observe that

when expressed in terms of � the implicit equations above may be written in the form

�
2 g� i (x) (v� − v�) = �

2� jω j i (x) + O(�3)

and

1

2
�
2 g� i (x) (v� + v�) = �

2 gi j (x) X
j
H (x) − �

2 1

2

(
sin θ0

1 − cos θ0

)

gi j (x)�
j + O(�3).

Note in particular that the term 1
12�

2 ∂kω j i Xk
H X j

H exactly cancels the second-order

part of
∫ 1
0

[
λ − 1

2

]
ξ jω j i (λ) dλ. Dividing these expressions by �

2 implies that there
are smooth functions Z1, Z2 : R

n × R
n × R

n × R
n × R → R

n given by

Z1i (x, v,�, v, �) = g� i (x) (v� − v�) − � jω j i (x) + O(�),

Z2i (x, v,�, v, �) = 1

2
g� i (x) (v� + v�) − gi j (x) X

j
H (x)

+ 1

2

(
sin θ0

1 − cos θ0

)

gi j (x)�
j + O(�),

such that the implicit equations defining the symplectic Lorentz map are satisfied if
and only if

Z1(x, v,�, v, �) = Z2(x, v,�, v, �) = 0.

When � = 0, the unique solution of these equations for � and v is

�0 = (1 − exp(−θ0 J))J (v − XH (x)),

v0 = XH (x) − exp(−θ0 J)[v − XH (x)].
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Moreover, for each (x, v), the (�, v) derivative of (Z1, Z2)
T at (x, v,�0, v0, 0) is

given by

(
D�Z1(x, v,�0, v0) DvZ1(x, v,�0, v0)

D�Z2(x, v,�0, v0) DvZ2(x, v,�0, v0)

)

=
( −J(x) 1

1
2

(
sin θ0

1−cos θ0

)
1
2

)

,

which is invertible. The implicit function theorem therefore implies there is a unique
pair of smooth functions �(x, v, �), v(x, v, �) defined in an open neighborhood of
{(x, v, �) | � = 0} ⊂ R

n × R
n × R that satisfy the equations

Z1(x, v,�(x, v, �), v(x, v, �)) = Z2(x, v,�(x, v, �), v(x, v, �)) = 0.

Since � is related to q by

q = x + 1

2
� XH (x) + 1

2
�
2 �(x, v, �),

another simple application of the implicit function theorem establishes existence and
smoothness of the symplectic Lorentz map �� : (q, v) �→ (q, v). We have also
shown that �0 has the desired form (q, v) �→ (q, v0). Symplecticity of �� now
follows immediately from applying the exterior derivative to (21). 	

Corollary 2 The symplectic Lorentz map is a presymplectic nearly periodic map. It is
non-resonant provided θ0/2π ∈/Q.

We have thus constructed a nearly periodic map with the desired roto-rate and
integral invariant. Now we must establish the precise sense in which the symplectic
Lorentz map ��, which is a priori a mapping T Q → T Q, functions as a consistent
numerical integrator for the Hamiltonian system XH on Q. The first hint as to how
this might work is that the limit map �0 admits a manifold of fixed points given by
�0 = {(x, v) ∈ T Q | v = XH (q)}. This limiting invariant manifold, being the graph
of XH , is manifestly diffeomorphic to Q. Thus, if �0 can be continued to an invariant
manifold �� for �� with � �= 0, we would automatically obtain dynamics on Q that
could be compared with those of XH by restricting �� to ��.

Unfortunately, �0 is unlikely to continue as a true invariant manifold since each
fixed point on�0 is of elliptic type. Instead, we can obtain the following weaker result.
Roughly speaking, it says that there is a unique invariant continuation of�0 at the level
of formal power series in �.

Proposition 6 Denote the components of the symplectic Lorentz map as �� =
(�

q
�
, �v

�
) : (q, v) �→ (q, v). Assume θ0 �= 0 mod 2π . There exists a formal power

series

v∗
�
(q) = XH (q) + � v∗

1(q) + �
2 v∗

2(q) + . . .

with vector field coefficients such that

�v
�
(q, v∗

�
(q)) = v∗

�
(ψ�(q)), (22)
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where

ψ�(q) = �
q
�
(q, v∗

�
(q)).

Proof Expanding the condition (22) in powers of � leads to an infinite sequence of
constraints that the formal power series v∗

�
must obey. Simultaneous satisfaction of

each constraint in the sequence is equivalent to (22). The first two constraints are given
explicitly by

�v
0 (q, XH (q)) = XH (q),

�v
1 (q, XH (q)) + Dv�

v
0 (q, XH (q))[v∗

1(q)] = v∗
1(q) + DXH (q)[�q

1 (q, XH (q))],

where we have introduced the formal series expansions

�
q
�

= �
q
0 + � �

q
1 + . . . , �v

�
= �v

0 + � �v
1 + . . .

and used �
q
0 (q, v) = q. Glancing at (20) reveals that the first of these equations

is automatically satisfied. The second equation can be interpreted as an algebraic
equation constraining the form of v∗

1 . In fact, since the linear map

L(q) = Dv�
v
0 (q, XH (q)) − id,

δv �→ exp(−θ0 J(q))[δv] − δv,

is invertible whenever θ0 �= 0 mod 2π , v∗
1 is determined uniquely by the formula

v∗
1(q) = L(q)−1[DXH (q)[�q

1 (q, XH (q))] − �v
1 (q, XH (q))].

More generally, the nth equation in the sequence has the form

L(q)[v∗
n(q)] = sn(q),

where sn(q) depends only on coefficients of the power series expansion for �� and
coefficients v∗

k with k < n. Invertibility of L(q) therefore implies that there is a unique
formula for v∗

n for each n. The formal power series v∗
�
defined in this manner satisfies

(22) by construction. 	

So while we do not obtain a genuine invariant manifold diffeomorphic to Q, we

do obtain a family of approximate invariant manifolds diffeomorphic to Q given
by truncations of the formal power series v∗

�
. Using arguments comparable to those

presented in Burby and Hirvijoki (2021), it is possible to show that truncations of
v∗

�
may be constructed so their graphs agree with the zero level set of the adiabatic

invariant μ� for �� to any desired order in �. Adiabatic invariance of μ� can then be
used to prove the existence of manifolds �

(n)
�

close to �0 with the following schematic
normal stability property:
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• For each N > 0 and (q, v) within �
α(n) of �

(n)
�

the point �k
�
(q, v) remains within

�
β(n) of �

(n)
�

for k = O(ε−N ). Here α and β are monotone increasing functions
of n.

We will not attempt to prove such a result in full generality here. However, since we
have already determined the form of the leading term in the adiabatic invariant series
(in this case μ� = �

4 μ4 + O(�5)), we can prove a special case of the general result
without much effort. First we establish the timescale over whichμ4 is well-conserved.

Definition 15 Given a compact set C ⊂ T Q, a point (q, v) is positively contained if
�k

�
(q, v) ∈ C for all nonnegative integers k and all � in a neighborhood of 0.

Proposition 7 For each N > 0 and compact set C ⊂ T Q there is a positive, �-
independent constant M such that

|μ4(�
k
�
(q, v)) − μ4(q, v)| ≤ M �, k ∈ [0, k∗(�, N )],

whenever (q, v) is positively contained in C. Here k∗(�, N ) = O(�−N ).

Proof First we will obtain a useful estimate for the degree of conservation of an
arbitrary truncation of the adiabatic invariant series. Let μ� = �

−4μ� = μ4 +� μ5 +
. . . denote the reduced adiabatic invariant for the symplectic Lorentz map. Define
μi = μi+4 and let μ

(N )
�

= ∑N
i=0 μi �

i . Since μ
(N )
�

= μ� + O(�N+1) and μ� is
��-invariant to all orders in �, there is a constant MN , depending on both C and N ,
such that

∀(q, v) ∈ C, |μ(N )
�

(��(q, v)) − μ
(N )
�

(q, v)| ≤ MN �
N+1.

For positively contained (q, v), we may apply this formula repeatedly to obtain an
estimate for the change in μ

(N )
�

after k positive timesteps,

|μ(N )
�

(�k
�
(q, v)) − μ

(N )
�

(q, v)| ≤ MN �
N+1 + |μ(N )

�
(�k−1

�
(q, v)) − μ

(N )
�

(q, v)|
≤ (1 + k)MN �

N+1. (23)

Next, we draw implications from the previous inequality together with a bound on
the difference between μ

(0)
�

= μ4 and μ
(N )
�

. There must be another positive constant
M′

N , depending on both C and N , such that

∀(q, v) ∈ C, |μ(0)
�

(q, v) − μ
(N )
�

(q, v)| ≤ M′
N �.

In light of the inequality (23), this implies that for each positively contained (q, v) the
change in μ

(0)
�

after k positive timesteps is at most

|μ(0)
�

(�k
�
(q, v)) − μ

(0)
�

(q, v)|
≤ |μ(0)

�
(�k

�
(q, v)) − μ

(N )
�

(�k
�
(q, v))| + |μ(N )

�
(�k

�
(q, v)) − μ

(0)
�

(q, v)|
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≤ M′
N � + |μ(N )

�
(�k

�
(q, v)) − μ

(0)
�

(q, v)|
≤ M′

N � + |μ(N )
�

(�k
�
(q, v)) − μ

(N )
�

(q, v)|
+ |μ(N )

�
(q, v) − μ

(0)
�

(q, v)|
≤ 2M′

N � + (1 + k)MN �
N+1.

Apparently, the change in μ4 = μ
(0)
�

is at most O(�) as long as k �
N+1 = O(�). We

therefore obtain the desired inequality with k∗(�, N ) = ��−N � − 1.
	


Remark 7 If “positively contained” fails, then the next best thing would be having
uniform bounds (in T Q and �) on the derivatives of ��. The precise form of these
boundswould depend on the details of the underlyingHamiltonian system on Q. Then,
the proof of the previous proposition would go through practically unchanged. In the
absence of both positively containment and uniform boundedness, things get trickier,
and we have no general answer as to the validity of Proposition 7.

Using this result together with the explicit form of μ4, we now easily obtain the
following normal stability result for the almost invariant set given by the graph of XH .

Proposition 8 Let C ⊂ T Q be a compact set and set (qk, vk) = �k
�
(q, v) for any

(q, v) ∈ T Q. Let | · | denote the velocity norm provided by the metric tensor g. For
each N > 0, V0 > 0, and positively contained (q, v) ∈ C that satisfies

|v − XH (q)|q < V0
√

�,

there is a positive constant V1 such that

|vk − XH (qk)|qk ≤ V1
√

�

for all k ∈ [0, k∗(�, N )]. Here, k∗(�, N ) = O(�−N ).

Proof Let (q, v) ∈ C be positively contained and suppose |v − XH (q)|q < V0 �. By
Proposition 7, we have

|μ4(�
k
�
(q, v)) − μ4(q, v)| ≤ M �,

for some N -dependent constant M and k ∈ [0, k∗(�, N )]. But since μ4(q, v) =
1
2 |v − XH (q)|2q we can apply this inequality to obtain

|vk − XH (qk)|2qk ≤ ||vk − XH (qk)|2qk − |v − XH (q)|2q | + |v − XH (q)|2q
≤ 2|μ4(�

k
�
(q, v)) − μ4(q, v)| + V 2

0 �

≤ 2M � + V 2
0 �.

Taking a square root gives the desired result. 	
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In the above sense, the graph of XH behaves much like a true invariant set over
very large time intervals. Of course, the invariance need not be exact, but may include
oscillations around the graph of amplitude

√
�. The amplitude of these oscillations

can be reduced by considering manifolds that better approximate the zero level set of
μ�, but, as mentioned earlier, we will not pursue this matter further in this article.

To complete the picture of how the symplectic Lorentz map may be used as an
integrator for XH on Q, we will now describe the precise sense in which the map’s
dynamics approximate the H -flow. We start with a simple estimate that says the q-
component of the symplectic Lorentz map approximates the time-� flow of XH on Q
with an O(�5/2) error, provided the map is applied in an O(�1/2) neighborhood of the
graph {v = XH (q)}.
Proposition 9 Let (q, v�) be a smooth �-dependent point in T Q with v� = XH (q) +
O(�1/2). The mapped point (q, v) = ��(q, v�) satisfies

q = q + � XH (q) + 1

2
�
2 DXH (q)[XH (q)] + O(�5/2),

v = XH (q) + O(�1/2).

Proof In the proof of Proposition 5, we already established

q = x + 1

2
� XH (x) + 1

2
�
2 �(x, v�, �),

v = XH (x) − exp(−θ0 Jx )[v� − XH (x)] + O(�),

and

�(x, v�, 0) = (1 − exp(−θ0 J))J (v� − XH (x)),

where x = q/2+q/2. Implicit differentiation of these formulas together with Taylor’s
theorem with remainder therefore implies

q = q + � XH (q) + 1

2
�
2 DXH (q)[XH (q)] + �

2 (1 − exp(−θ0 Jq))Jq

(v� − XH (q)) + O(�3),

v = XH (q) − exp(−θ0 Jq)[v� − XH (q)] + O(�)

The desired result now follows immediately from v� − XH (q) = O(�1/2). 	

Combining this result with our earlier estimate of the normal stability timescale for

{v = XH (q)} in Proposition 8 finally allows us to conclude that the q-component of
the symplectic Lorentz map provides a persistent approximation of the H -flow over
very large time intervals provided initial conditions are chosen close enough to the
graph {v = XH (q)}.
Corollary 3 (Persistent approximation property) Let C be a compact set and let
(q, v�) ∈ C be a smooth �-dependent point in C that is positively contained for

123



Journal of Nonlinear Science (2023) 33 :38 Page 27 of 43 38

each �. Also assume v� = XH (q) + O(�1/2). For each N > 0 there is an integer
k∗(�, N ) = O(�−N ) such that

qk+1 = qk + � XH (qk) + 1

2
�
2 DXH (qk)[XH (qk)] + O(�5/2),

vk+1 = XH (qk+1) + O(�1/2),

for each k ∈ [0, k∗(�, N )]. Here, (qk, vk) = �k
�
(q, v�).

Proof Proposition 8 ensures that the iterates (qk, vk) remain within O(�1/2) of
{v = XH (q)} for k in the desired range. Thus, Proposition 9 applies to each iter-
ate individually, which is precisely the desired result. 	


In summary, we have established the following remarkable properties of the sym-
plectic Lorentz map ��.

1. It is symplectic on T Q, when T Q is endowed with the magnetic symplectic form
�∗

�
= π∗ω + �

2 �.
2. Its q-component provides an approximation of the time-�flowof XH with O(�5/2)

local truncation error when applied to points in T Q within O(�1/2) of {v =
XH (q)}.

3. If an initial condition is chosen to lie within �
1/2 of {v = XH (q)} then it will

remain within �
1/2 of the same set for a number of iterations that scales like �

−N

for any N .

5 Examples

5.1 Hidden-Variable Newtonian Gravity

In this section, we will use nearly periodic maps to construct a discrete-time model
of Newtonian gravitation where the gravitational constant has a dynamical origin. Let
M = R × R × R

d × R
d � (q, p, Q, P) and set �γ = dq ∧ dp + ∑d

i=1 dQ
i ∧ dPi .

Let V ,W : R
d → R be smooth functions. The Hamiltonian

Hε(q, p, Q, P) = 1

2
(p2 + q2) + ε

(
1

2
|P |2 + V (Q) + q2 W (Q)

)

(24)

defines a continuous-time nearly periodic Hamiltonian system with equations of
motion

ṗ = −q − ε 2 q W (Q) (25)

q̇ = p (26)

Ṗ = −ε ∂QV − ε q2 ∂QW (27)

Q̇ = ε P . (28)
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The angular frequency function isω0 = 1, the limiting roto-rate is R0 = −q ∂p+ p ∂q ,
and the correspondingU (1)-action isθ(q, p, Q, P) = (cos θ q+ sin θ p, cos θ p−
sin θ q, Q, P). When ε = 0, the system’s flow is Ft (q, p, Q, P) = t (q, p, Q, P).
Intuitively, the (q, p) variables correspond to a fast oscillator that couples nonlinearly
to a mechanical system parameterized by (Q, P). The averaged Hamiltonian for the
coupled system is

1

2π

∫ 2π

0
∗

θ Hε dθ = μ0 + ε

(
1

2
|P |2 + V (Q) + μ0 W (Q)

)

, (29)

where μ0 = 1
2 (p

2 + q2) is the leading-order adiabatic invariant. We therefore expect
the slow variables (Q, P) to behave like a particle in d-dimensional space subject to
the effective potential V (Q) + μ0 W (Q).

We will construct a Hamiltonian non-resonant nearly periodic map that accurately
simulates the slow dynamics for this system while “stepping over” the shortest scale
2π/ω0 ∼ 1. If h ∈ R denotes the temporal step size, these requirements translate into
symbols as 1 � h � ε−1. Upon introducing the parameters δ = 1/h, � = ε h, and
γ = (�, δ), we may state our requirement equivalently as |γ | � 1. Our construction
will now proceed using the method of mixed-variable generating functions.

The exact Type I generating function for this problem can be characterized by
Jacobi’s solution of the Hamilton–Jacobi equation, which is given by

S(q, Q, q, Q) =
∫ h

0

[
p(t)q̇(t) + P(t) Q̇(t) − H(q(t), Q(t), p(t), P(t))

]
dt,

(30)

where (q(t), Q(t), p(t), P(t)) satisfies Hamilton’s equations, and the boundary
conditions q(0) = q, Q(0) = Q, q(h) = q , Q(h) = Q. In the setting of varia-
tional integrators (Marsden and West 2001), this is referred to as the exact discrete
Lagrangian, and there are also exact discrete Hamiltonians (Leok and Zhang 2011)
corresponding to Type II and Type III generating functions. One possible way to con-
struct a computable approximation of the exact Type I generating function is to observe
that it can also be expressed as

S(q, Q, q, Q) = ext(q,p,Q,P)∈C2([0,h],M)
q(0)=q,q(h)=q,

Q(0)=Q,Q(h)=Q
∫ h

0

[
p(t)q̇(t) + P(t) Q̇(t) − H(q(t), Q(t), p(t), P(t))

]
dt, (31)

Then, one can construct a computable approximation by replacing the infinite-
dimensional function space C2([0, h], M) with a finite-dimensional subspace, and
replacing the integral with a numerical quadrature formula, which yields a Galerkin
discrete Lagrangian. Under a number of technical assumptions, the resulting varia-
tional integrators �-converge to the exact flow map (Müller and Ortiz 2004), and a
quasi-optimality result (Hall and Leok 2015) implies that the rate of convergence is
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related to the best approximation properties of the finite-dimensional function space
used to construct the Galerkin discrete Lagrangian. In general, this means that a good
integrator can be constructed by choosing a finite-dimensional function space that is
rich enough to approximate the exact solutions well, and using a quadrature rule that
is accurate for that choice of function space.

Thismight entail augmenting the function spacewith the solution of the fast dynam-
ics when the slow variables are frozen, and then using a quadrature rule that is well
adapted to highly oscillatory integrals, like Filon quadrature (Iserles andNørsett 2004).
In this case, the problem exhibits a fast–slow structure that lends itself to a hybrid
approximation. We exploit the timescale separation to approximate the fast variables
of the dynamics (q(t), p(t)) by the exact solution of the ε = 0 limiting system,

ṗ = −q, q̇ = p, Ṗ = 0, Q̇ = 0.

where the slow variables (Q(t), P(t)) are frozen, which leads to a sinusoidal solution
for (q, p). Furthermore, because the timestep h is assumed to be large enough that the
fast variables performmany revolutions in that time, we anti-alias the fast dynamics by
replacing the revolutions by just the fractional part of the revolutions, which we denote
by θ0, and which is assumed to be some irrational multiple of 2π , so that the invariant
distribution remains the same. The component of the action integral associated with
the fast variables can be evaluated analytically in this case. As for the slow variables,
we adopt an approach that can be used to derive the implicit midpoint rule, which
is a symplectic integrator for Hamiltonian systems. This involves approximating the
solution space by linear functions, so Q(t) is uniquely determined by the boundary
conditions, and approximating the integral by the midpoint rule. The use of mixed
quadrature approximations of the action integral was the basis for implicit–explicit
variational integrators for fast–slow systems (Stern and Grinspun 2009).

Note that ω0 = 1, then for the (q, p) dynamics to have a θ0 rotation in time h, the
solution is given by

[
q(t)
p(t)

]

=
[
cos(t) sin(t)

− sin(t) cos(t)

] [
q
p

]

,

where θ0/h = 1. Since q(t) = sin(t)p + cos(t)q, then q = q(h) = sin(θ0)p +
cos(θ0)q, and hence, p = q−cos(θ0)q

sin(θ0)
. Therefore, the (q, p) dynamics, expressed in

terms of the boundary data, is given by

[
q(t)
p(t)

]

=
[
cos(t) sin(t)

− sin(t) cos(t)

] [
q

q−cos(θ0)q
sin(θ0)

]

=
⎡

⎣
cos(t)q + sin(t) q−cos(θ0)q

sin(θ0)

− sin(t)q + cos(t) q−cos(θ0)q
sin(θ0)

⎤

⎦ .

For the slow degrees of freedom, we consider a linear interpolant in time, Q(t) =
Q+ Q−Q

h t , fromwhich themomentumbecomes P(t) = 1
ε
Q̇(t) = 1

ε
Q−Q
h . Collecting
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all of these, we have

q(t) = cos(t)q + sin(t)
q − cos(θ0)q

sin(θ0)
, Q(t) = Q + Q − Q

h
t,

q̇(t) = − sin(t)q + cos(t)
q − cos(θ0)q

sin(θ0)
, Q̇(t) = Q − Q

h
,

p(t) = − sin(t)q + cos(t)
q − cos(θ0)q

sin(θ0)
, P(t) = 1

ε

Q − Q
h

.

With these, we are now ready to approximate the exact Type I generating function,

S(q, Q, q, Q) =
∫ h

0

[
p(t)q̇(t) + P(t) Q̇(t) − H(q(t), Q(t), p(t), P(t))

]
dt

=
∫ h

0

[

p(t)q̇(t) − 1

2
(p(t)2 + q(t)2)

+ P(t) Q̇(t)−ε

(
1

2
|P(t)|2+V (Q(t))+q(t)2 W (Q(t))

)]

dt,

where we observe that the integral involving the (q, p) terms has the form of an
trigonometric integral, which can be evaluated analytically,

∫ h

0

[

p(t)q̇(t) − 1

2
(p2 + q2)

]

=
∫ h

0

[

(p2 cos2(t) − 2pq cos(t) sin(t) + q2 sin2(t)) − 1

2
(p2 + q2)

]

dt

=
∫ h

0

[(

p2
(
1 + cos(2t)

2

)

− pq sin(2t) + q2
(
1 − cos(2t)

2

))

− 1

2
(p2 + q2)

]

dt

=
∫ h

0

[(
1

2
(p2 − q2) cos(2t) − pq sin(2t)

)]

dt

= 1

4
(p2 − q2) sin(2t) + 1

2
pq cos(2t)

∣
∣
∣
∣

θ0

0

= cos(θ0) 12q
2 + cos(θ0) 12q

2 − qq

sin(θ0)

where we made use of the trigonometric double angle formulas, p = q−cos(θ0)q
sin(θ0)

, and
h = θ0. It is easy to verify that this generating function generates a θ0 rotation in the
(q, p) variables.

We approximate the integral involving the (Q, P) terms with the midpoint rule,

∫ h

0

[

P(t) Q̇(t) − ε

(
1

2
|P(t)|2 + V (Q(t)) + q(t)2 W (Q(t))

)]

dt
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≈ h

⎡

⎣1

ε

(
Q − Q

h

)2

− ε

⎛

⎝1

2

1

ε2

(
Q − Q

h

)2

+ V

(
Q + Q

2

)

+q

(
h

2

)2

W

(
Q + Q

2

))]

= h

⎡

⎣ 1

2ε

(
Q − Q

h

)2

− ε

(

V

(
Q + Q

2

)

+ q

(
h

2

)2

W

(
Q + Q

2

))⎤

⎦ .

By using � = εh, replacing q
( h
2

)
with q(0) = q, and combining it with the first term

coming from the fast dynamics, we obtain the following Type I generating function:

Sγ (q, Q, q, Q) = cos θ0
1
2q

2 + cos θ0
1
2q

2 − qq

sin θ0
+ 1

2

|Q − Q|2
�

− � V

(
Q + Q

2

)

− � q2W

(
Q + Q

2

)

, (32)

where θ0 is some irrational multiple of 2π . The implicit relations

p = ∂q Sγ , p = −∂q Sγ , P = ∂QSγ , P = −∂QSγ , (33)

define a γ -dependent symplectic map Fγ : (q, p, Q, P) �→ (q, p, Q, P). For small
γ , we claim this map accurately captures the averaged dynamics of the slow variables
in the system (25)–(28) and preserves the adiabatic invariant μ0 over very large time
intervals. To show this, we first compute the derivatives in (33) to explicitly write the
defining equations for Fγ as

p = cos θ0

sin θ0
q − 1

sin θ0
q,

p = −cos θ0

sin θ0
q + 1

sin θ0
q + � 2q W

(
Q + Q

2

)

,

P = Q − Q
�

− 1

2
� V ′

(
Q + Q

2

)

− 1

2
� q2 W ′

(
Q + Q

2

)

,

P = Q − Q
�

+ 1

2
� V ′

(
Q + Q

2

)

+ 1

2
� q2 W ′

(
Q + Q

2

)

.

The first pair of equations can be solved explicitly for p and q , giving

p = cos θ0 p − sin θ0 q − cos θ0 � 2q W

(
Q + Q

2

)

, (34)
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q = cos θ0 q + sin θ0 p − sin θ0 � 2q W

(
Q + Q

2

)

. (35)

Adding and subtracting the last P and P equations then gives

P − P = −� V ′
(
Q + Q

2

)

− � q2 W ′
(
Q + Q

2

)

, (36)

Q − Q = �
P + P

2
. (37)

These formulas show that F0 = θ0 , which implies that Fγ comprises a non-resonant,
Hamiltonian, nearly periodicmap. In particular, thismap admits an all-orders adiabatic
invariant μ = μ0 + � μ1 + O(�2), where

μ0 = 1
2 (q

2 + p2)

μ1 = −1

2
W (Q)

(

2 p q + (p − q)(p + q) cot θ0

)

.

Moreover, Eqs. (36) and (37) provide a consistent numerical scheme for the averaged
dynamics of the slow variables. To see this, observe that the average of q2 in (36) after
many iterations tends to μ0, which implies that, on average, (36) and (37) comprise
the implicit midpoint scheme applied to the continuous system’s averaged dynamics.
Note that the relationship between the physical timestep h and � is h = �/ε. Also note
that the approximation q(h/2) ≈ q(0) used when approximating the action integral
is not systematic due to the rapid oscillations in q(t). This was done merely for the
sake of obtaining an especially simple time advance. A more systematic approach
would adopt Filon-type quadrature for the part of the integrand involving both slowly
and rapidly varying terms, but the resulting nearly periodic map would have the same
qualitative properties as the one introduced here.

A planar N -body problem in Cartesian (x, y)-coordinates provides a convenient
sandbox for testing the novel scheme (34)–(37). Assume two bodies, labeled by the
position vectors Q1 = (Q1,x , Q1,y) and Q2 = (Q2,x , Q2,y) and the respective
momentum vectors P1 = (P1,x , P1,y) and P2 = (P2,x , P2,y), to orbit an infinitely
massive body at the origin. The potential V (Q) is therefore

V (Q1, Q2) = − 1

|Q1| − 1

|Q2| . (38)

Also assume the two bodies to interact via the additional central potential

W (Q1, Q2) = − 1

|Q1 − Q2| . (39)

The instantaneous value of q2 therefore indicates the strength of the coupling of the
two bodies via the temporal evolution of the ε-perturbed (q, p) oscillator.
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Fig. 1 Numerical solutions of the hidden-variable Newtonian gravity example for ε = 0.001 and maximum
integration time T = 10000. The green trajectories on the top row denote the fast variable pair (q, p). The
blue and red trajectories on the mid row refer to the positions (Qx , Qy) of the particles one and two in
Cartesian coordinates, and to their respective momentums (Px , Py) on the bottom row. The columns (a),
(b), and (c) correspond to implicit midpoint scheme with time steps h = 0.1, h = 4.0, and h = 100.0,
respectively. The columns (d) and (e) correspond to the fast–slow scheme with a time step of h = 100.0
and the angle variable being (d) non-resonant θ0 = 2.0 and (e) resonant θ0 = π . The large panel (f) at
the bottom displays the time trace of the adiabatic invariant, corresponding to the fast–slow trajectory of
column (d). The column (a) can be considered as the reference solution which the non-resonant fast–slow
scheme reproduces quite well in the column (d)

The behavior of the scheme (34)–(37) is illustrated in Fig. 1 together with the
numerical solution from thewell-known implicitmidpoint schemewhich is symplectic
for canonical Hamiltonian systems and generally considered a good scheme for stiff
problems. For both integrators, we set the system parameter to ε = 0.001. In Fig. 1,
the columns (a), (b), and (c) correspond to implicit midpoint scheme with time steps
h = 0.1, h = 4.0, and h = 100.0, respectively. The columns (d) and (e) correspond
to the fast–slow scheme with a time step of h = 100.0 and the angle variable being
(d) non-resonant θ0 = 2.0 and (e) resonant θ0 = π . The column (a) can be considered
as the reference solution, which the non-resonant fast–slow integrator in column (d)
closely matches.
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Certain peculiar behavior is evident in the columns (b), (c), and (e). By increasing
the time step and “stepping over” the fastest stiff time scale, the implicit midpoint
method decouples the fast and slow variables but in an incorrect manner: through the
columns (a), (b), and (c), the blue and red orbits gradually transit into co-centric circles,
indicating the dependence of the adiabatic invariantμ0 on the step size h. Explanation
for this behavior is rooted in the asymptotic behavior of the scheme, which is made
transparent by writing the implicit midpoint scheme in the form

q + q = −2
p − p

h
− ε 4

q + q

2
W

(
Q + Q

2

)

, (40)

p + p = 2
q − q

h
, (41)

P − P = −hε V ′
(
Q + Q

2

)

− hε
(q + q)2

4
W ′

(
Q + Q

2

)

, (42)

Q − Q = hε
P + P

2
. (43)

When ε is small and the time step h becomes large, the limiting behavior of the fast
variables is constant flipping of their signs. Most importantly, the term q +q becomes
successively smaller with increasing h. Consequently, the force from the coupling
potentialW effectively drops out from the equation for the slow variables P , resulting
in nearly co-centric slow orbits.

Also in column (e), some strange behavior occurs. Via (34) and (35), the resonant
value of θ0 = π results in the following map for the fast variables

p = −p + � 2q W

(
Q + Q

2

)

, (44)

q = −q, (45)

displaying a constant flipping of q, which translates to amplifying flipping in p. This
behavior is straightforward to verify for the initial condition (q, p) = (1.0, 0.0). The
behavior of the slow variables in the column (e) in Fig. 1 is off from the reference
solution and the non-resonant case but, because the dependence of (36) is only on q
and not on the midpoint (q + q)/2, the solution still exhibits some effect from the
coupling potential. Specifically, as the q2 remains constant and does not average to
(q2 + p2)/2, the effect is actually double that of the one in the reference solution,
resulting in the slow orbits being further apart from each other than what they should
be.

This example serves to illustrate that even the decorated implicit midpoint scheme
is not guaranteed to result in correct asymptotic behavior and that care should be taken
in trying to “step over” the stiff time scales. On the other hand, the example also
illustrates that an integrator with the correct asymptotic behavior may be constructed,
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although care is needed in choosing the saturation value for phase angle for the limit
of the nearly periodic map.

5.2 Reduced Guiding-Center Motion

We now apply the general theory developed in Sect. 4.2 to motion of a charged particle
in a strong magnetic field of the special form B(x, y, z) = B(x, y) ez , where (x, y, z)
denotes the usual Cartesian coordinates on R

3 and B is a positive function. Let q =
(x, y) ∈ Q = R

2 and introduce a symplectic form ω on Q using the formula

ω = −dα = −B(x, y) dx ∧ dy, α = Ax (x, y) dx + Ay(x, y) dy.

Here, the components of the 1-form α may be interpreted as the physicist’s vector
potential for B. Also define the Hamiltonian function H : Q → R according to

H(q) = μB(x, y),

where μ is a positive constant parameter. The corresponding Hamiltonian vector field
is given by

XH = Rπ/2 μ∇ ln B,

where Rπ/2 is the rotation matrixRθ evaluated at π/2,

Rθ =
(
cos θ − sin θ

sin θ cos θ

)

.

Physically, this Hamiltonian vector field describes the motion of a charged particle’s
guiding center (Northrop 1963) (x, y). The parameter μ is the magnetic moment,
and XH is also known as the ∇B-drift velocity. We remark that readers familiar with
the Hamiltonian formulation of guiding center motion (Littlejohn 1981; Cary and
Brizard 2009) may be used to seeing these equations derived from the Lagrangian
L : T Q → R given by

L(q, q̇) = αq(q̇) − H(q).

We also remark that in this formulation of guiding center dynamics we have used
translation invariance along z to eliminate the (constant) velocity along the magnetic
field and the corresponding ignorable coordinate z.

In order to construct the symplectic Lorentz map for this system, we begin by
observing that the complex structure

J

(
ẋ
ẏ

)

=
(

0 1
−1 0

) (
ẋ
ẏ

)
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is compatible with ω since

ω(q̇1, Jq̇2) = B(x, y) q̇1 · q̇2,

where · denotes the usual inner product on R
2. We may therefore use the metric

gq(v,w) = B(x, y)v · w to build a new Hamiltonian system on T Q, compatible with
the Lorentz-embedding idea from Burby and Hirvijoki (2021),

�∗
ε = π∗ω − ε d(gq(v, dq)), H∗

ε (q, v) = 1

2
ε2 gq(v, v) + ε τH(q),

where we have also introduced a constant factor τ for scaling time of the original
system. This scaling will help us later to assign the fastest motion in the guiding
center system to occur at order one and help in nonlinear solve of the coordinate
update map in our numerical example. Essentially, the true time of the original system
now evolves at rate that is τ times the rate of the embedded system. The equations of
motion for this larger system are given by

q̇ = εv,

v̇ = −(1 + εv · Rπ/2 · ∇ ln B)Rπ/2v −
(

τμ + ε
1

2
|v|2

)

∇ ln B.

Proceeding now with the general construction of the symplectic Lorentz map, we
introduce a Type I generating function

S(q, q) =
∫ q

q
α + �(q/2 + q/2, q − q),

where � : T Q → R is given by

�(η, ξ) = −�μB(η) + �
2 B(η) XH (η) · ξ

− 1

4

(
sin θ0

1 − cos θ0

)

B(η) (ξ − �XH (η)) · (ξ − �XH (η)).

Note we are using the symbol η instead of x , in contrast to Sect. 4.2, in order to
avoid confusion with the standard Cartesian coordinate system. The term involving
derivatives ofω, present in the previous section, vanishes identically for XH ·∇B = 0.
The symplectic Lorentz map then provides the equations

�
2B(q)v = −

∫ 1

0
λB(q + λξ)dλRπ/2ξ + 1

2
∂η�(η, ξ) + ∂ξ�(η, ξ),

�
2B(q)v =

∫ 1

0
(1 − λ)B(q + λξ)dλRπ/2ξ − 1

2
∂η�(η, ξ) + ∂ξ�(η, ξ),
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where the derivatives are

∂η�(η, ξ) = −�μ∇B(η) + �
2 ∇B(η) XH (η) · ξ + �

2 B(η)∇XH (η) · ξ

− 1

4

(
sin θ0

1 − cos θ0

)

∇B(η) (ξ − �XH (η)) · (ξ − �XH (η))

+ 1

2

(
sin θ0

1 − cos θ0

)

B(η) �∇XH (η) · (ξ − �XH (η)),

∂ξ�(η, ξ) = �
2 B(η) XH (η) − 1

2

(
sin θ0

1 − cos θ0

)

B(η) (ξ − �XH (η)),

and everything is understood to be evaluated at (η, ξ) = ((q + q)/2, q − q).
Next, we rearrange the implicit equation for q into

[
1

2

(
sin θ0

1 − cos θ0

)

B(η) 1 −
∫ 1

0
(1 − λ)B(q + λξ)dλRπ/2

]

ξ

=
[
1

2

(
sin θ0

1 − cos θ0

)

B(η) 1 − 1

2
B(η)Rπ/2

]

�XH (η)

+ �
2 B(η) XH (η) − �

2B(q)v − 1

2
�
2 ∇B(η) XH (η) · ξ − 1

2
�
2 B(η)∇XH (η) · ξ

+ 1

8

(
sin θ0

1 − cos θ0

)

∇B(η) (ξ − �XH (η)) · (ξ − �XH (η))

− 1

4

(
sin θ0

1 − cos θ0

)

B(η) �∇XH (η) · (ξ − �XH (η)),

which can be iterated for η and ξ . After that, one solves for v by evaluating, for
example, the expression

�
2B(q)v + �

2B(q)v = −
∫ 1

0
λB(q + λξ)dλRπ/2ξ +

∫ 1

0
(1 − λ)B(q + λξ)dλRπ/2ξ

+ 2�
2 B(η) XH (η) −

(
sin θ0

1 − cos θ0

)

B(η) (ξ − �XH (η)).

Next, we perform some numerical tests. First, we choose a magnetic field

B = B0(1 + α|q|2),

where α introduces a small perturbation to the otherwise constant magnetic field. For
the original system q̇ = XH (q), this field results in circular orbits for q. We then
investigate the solutions of the symplectic Lorentz map and compare them with the
classic RK4 integrator and the implicit midpoint applied to the original system. For the
scaling of time, we choose τ = α−1. Choosing an initial point q = (1, 1), parameters
B0 = 1, μ = 1.0, α = 0.001, and initializing the Lorentz map with v = XH (q), we
run the simulation for 60’000 steps of size � = 0.1. This is enough to demonstrate the
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Fig. 2 Comparison of the guiding-center RK4 integrator, implicit midpoint, and the symplectic Lorentz
map in the simple magnetic field case. The orbit radius |q| of the RK4 integrator deteriorates clearly while
the symplectic Lorentz map and the implicit midpoint manage to retain the radius within stable limits

Table 1 Cost performance of different integrators

RK4 Implicit midpoint Symplectic Lorentz

Average # of iterations 1 16 22

Average execution time 1.4 21 128

deterioration of the RK4 method while the symplectic Lorentz map and the implicit
midpoint preserve the orbit in place, as seen in Fig. 2. The average number of iterations
for solving the discrete system of equations and the average total execution times
for the different algorithms are recorded in Table 1. Solving the nonlinear equations
to machine precision results on average 16 iterations for the implicit midpoint and
22 iterations for the symplectic Lorentz map during every time step. The execution
time of the Lorentz map is approximately six times that of the implicit midpoint
method, credited to the larger number of iterations required and the need for additional
quantities to be evaluated, such as the line integrals present in the generating function.
This limited comparison with other methods should not be construed as the last word
on the subject. The important takeaways include (a) the number of implicit iterations
needed for one step of the symplectic Lorentz map is comparable to the number of
iterations required for implicit midpoint applied to the original problem, even though
the number of function evaluations is higher for symplectic Lorentz, (b) the symplectic
Lorentz map achieves similar long-time solution quality as a popular scheme for
integrating non-dissipative systems, and (c) the symplectic Lorentz map has provable
structure-preserving properties, while implicit midpoint does not in this case. (Implicit
midpoint is known to be symplectic for canonical Hamiltonian systems, but not in
general for non-canonical systems like the one considered here.)

Next, we consider the magnetic field

B(x, y) = 2 + y2 − x2 + 1

4
x4,
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Fig. 3 Phase-space orbits (left) and the adiabatic invariant (right). For the “figure-eight” magnetic field.
The values of the adiabatic invariant have been shifted by the integers {0, ..., 6} for illustrative purposes. A
lesser number of steps (6000) have been chosen to illustrate the non-trivial beating structure of the adiabatic
invariant

whose level sets have a “figure-eight” structure. By energy conservation, the guiding-
center orbits should reflect this pattern. Choosing a time step of � = 0.05 and τ = 1.0,
we run the symplectic Lorentz map for 6’000 steps and illustrate both the orbits and
the evolution of the postulated adiabatic invariant gq(v − XH , v − XH ) in Fig. 3. The
orbits appear stable andwell-confined to their respective phase-space domains, and the
adiabatic invariant remains within bounds while oscillating with a non-trivial beating
structure.

For the same magnetic field, we performed a pair of tests that probe the robust-
ness of the discrete-time adiabatic invariant μ. We introduce an empirical estimate of
the breakdown time for μ conservation and compute how that estimate varies with
the parameters θ0 and �. Our estimate is based on the observation that μ typically
oscillates about a time-varying mean value μ with an approximately constant oscil-
lation amplitude μ̃. We estimate that breakdown has occurred after n iterations when
μ(n �)−μ(0) > μ̃.We thendefine the breakdown time estimate to beTbreakdown = n �.
Results from our sensitivity studies are displayed in Fig. 4. While the general theory
predicts that the breakdown time should scale as fast as �

−N for any nonnegative
integer N , the observable asymptote in Tbreakdown(�) appears well-approximated by
�

−3.5. We presently lack understanding of the origin of the scaling exponent −3.5.
The theory also predicts that adiabatic invariance should be less robust when θ0/2π
is rational. This prediction is consistent with the plot of Tbreakdown(θ0), which shows
intermittent depressions in the breakdown time superposed on a strong upward trend
as θ0 approaches π . We hypothesize that these depressions occur at small denominator
rational values of θ0/2π that produce nonlinear self-resonance in the integrator. As
with the scaling exponent, we presently lack detailed understanding for the dramatic
increase in observed breakdown time as θ0 approaches π .
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Fig. 4 Left panel: Breakdown time for the adiabatic invariant versus θ0. Timestep is fixed at � = 0.05565.
Initial condition is x = 2.0, y = 0.0. Right panel: Breakdown time for the adiabatic invariant versus �.
Colorscale indicates value of θ0, ranging from θ0 = π/4 (purple) to θ0 = 3π/4 (red). Initial condition is
x = 2.0, y = 0.0. Central dark green line is �

−3.5, for reference. Theory predicts that the breakdown time
should scale like �

−N for any positive N when � is small enough. While superpolynomial scaling of the
breakdown time as a function of � is not apparent in these computations, it cannot be ruled out given the
limited range of � values considered. Computing the breakdown time for appreciably smaller values of �

rapidly becomes prohibitively expensive because the adiabatic invariant is so well conserved

6 Discussion

In this article, we have introduced and developed the theoretical foundations of
nearly periodic maps. These maps provide a discrete-time analog of Kruskal (1962)
continuous-time nearly periodic systems. The limiting dynamics of both nearly peri-
odic systems and nearly periodic maps translate points along the orbits of a principal
circle bundle. In the continuous-time case, each limiting trajectory ergodically sam-
ples an orbit. In discrete time, non-resonance appears as an additional requirement
for ergodic sampling. As a first major application of nearly periodic maps, we used
them to construct a class of geometric integrators for Hamiltonian systems on arbitrary
exact symplectic manifolds.

Kruskal’s principal interest in continuous-time nearly periodic systems came from
their relationship to the theory of adiabatic invariants. In the paper (Kruskal 1962),
Kruskal showed that nearly periodic systems necessarily admit approximate U (1)-
symmetries. He then went on to deduce that this approximate symmetry implies the
existence of an adiabatic invariantwhen the underlying nearly periodic systemhappens
to beHamiltonian. The theory of nearly periodicmaps is satisfying in this respect since
it establishes the existence of a discrete-time adiabatic invariant for nearly periodic
maps with an appropriate Hamiltonian structure. Moreover, the arguments used in the
existence proof parallel those originally used by Kruskal. (See Thm. 4.)

It is useful to place the integrators developed in this article in the context of previous
attempts at geometric integration of non-canonical Hamiltonian systems. Based on the
observation (Arnold 1989) that Hamiltonian systems on exact symplectic manifolds
admit degenerate “phase spaceLagrangians” (Cary andLittlejohn1983),Qin andGuan
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(2008) proposed direct application of the theory of variational integration (Marsden
and West 2001) to phase space Lagrangians for non-canonical systems. While initial
results looked promising, further investigations by Leland Ellison (2016); Ellison
et al. (2017) revealed that the most intuitive variational discretizations of phase space
Lagrangians typically suffer from unphysical instabilities known as “parasitic modes”
(Hairer et al. 2006). As noticed first in Rowley andMarsden (2002), the origin of these
parasitic modes is related to a mismatch between the differing levels of degeneracy in
the phase space Lagrangian and its discretization. Our integrators may be understood
as modifications of those studied by Qin and Ellison that stabilize the parasitic modes
over very large time intervals by way of a discrete-time adiabatic invariant. This
“adiabatic stabilization” mechanism is conceptually interesting since it suppresses
numerical instabilities without resorting to the addition of artificial dissipation. Also
of note, adiabatic stabilization differs from the stabilization mechanism proposed by
Ellison in Ellison et al. (2017), wherein the phase space Lagrangian is discretized
so that it has the same level of degeneracy as its continuous-time counterpart. While
Ellison’s “properly degenerate” discretizations apply to a very limited class of non-
canonical Hamiltonian systems, (see Ellison et al. 2017 for the precise limitations) the
adiabatic stabilization method discussed here applies to any Hamiltonian system on
an exact symplectic manifold.

In the preprint (Kraus 2017), Kraus has developed an alternative approach to
structure-preserving integration of non-canonical Hamiltonian systems based on pro-
jection methods. In contrast to our approach, this technique is designed to produce
integrators that preserve the original system’s symplectic form, rather than a symplec-
tic form on a larger space. However, there is no geometric picture for why Kraus’
method ought to have this property. In fact, Kraus finds that geometrically reasonable
variants of his method are not symplectic. The structure-preserving properties of our
method are easier to understand in this respect, since they follow from the standard
theory of mixed-variable generating functions for symplectic maps. Both techniques
warrant further investigation.

As a final remark concerning relationships between the theory developed here and
previous work, it is worthwhile highlighting the technique introduced by Tao in Tao
(2016) for constructing explicit symplectic integrators for non-separable Hamilto-
nians. The latter technique applies to canonical Hamiltonian systems with general
Hamiltonian H(q, p). It proceeds by constructing a canonical Hamiltonian system in
a space with double the dimension of the original (q, p) space, and then applying split-
tingmethods to the larger system.Much like the symplectic Lorentz system introduced
in Burby and Hirvijoki (2021), and exploited in Sect. 4.2, Tao’s larger system contains
a copy of the original system as a normally elliptic invariant manifold. This suggests
that Tao’s construction might be interpreted as an application of nearly periodic maps.
It is a curious fact, however, that Tao’s error analysis suggests the oscillation frequency
around the invariant manifold cannot be made to be arbitrarily large. This indicates
nearly periodic map theory is not an appropriate tool for understanding Tao’s results.
It would be interesting to investigate whether or not nearly periodic map theory can
be used to sharpen Tao’s estimates.
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More work is required to develop nearly periodic map machinery, in both theory
and practice. The following is a list of just a few of the open theoretical questions in
this area.

1. Non-resonant nearly periodic maps and nearly periodic systems admit formal
U (1)-symmetries, and therefore formal reductions to the space of U (1)-orbits.
Given an arbitrary continuous-time nearly periodic system, are there systematic
strategies for constructing nearly periodic maps whose U (1)-reduction approx-
imates the flow of the nearly periodic system’s U (1)-reduction? (We provide a
simple example where this can be done in Sect. 5.1.) Such maps would provide a
good approximation of the original system’s dynamics “on average.”

2. For a Hamiltonian system on an exact symplectic manifold M , the geometric
integrators constructed in this article comprise symplectic mappings on T M that
admit approximate invariant manifolds diffeomorphic to M . In light of this diffeo-
morphism, is there some sense in which our integrators possess an adiabatically
invariant symplectic form on M? (Note that this does not obviously follow from
the symplectic property on T M .)

3. A commonly touted benefit of symplectic integration is the long-time approximate
preservation of energy. Proofs of this result rely on backward error analysis. Can
similar techniques be used to prove that our geometric integrators approximately
preserve the original Hamiltonian system’s energy, at least over large time inter-
vals? Our initial numerical experiments suggest such a result is satisfied for as
long as the discrete-time adiabatic invariant is well-conserved.

4. Our geometric integrators enjoy local O(�5/2) accuracy. Are there extensions of
these integrators with arbitrarily high-order accuracy?
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