Skip to main content
Log in

On the Evolution of an Angle in a Vortex Patch

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Summary.

The inviscid incompressible two-dimensional motion of some initially convex singular vortex patches is examined. The angles evolution of a tangent-slope discontinuity on a singular contour is studied from a numerical and theoretical point of view. Different numerical examples show that the angle shrinks for initial angle less than 90o, and the angle widens when the initial angle is greater than 90o or is “approximately” preserved for initial angle 90o for small time evolution. An asymptotic expansion of the initial velocity field near a singularity for a class of singular vortex patches is performed to reinforce this result analytically. Some initially nonconvex singular patches in which the evolution does not follow this rule are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Baker, G. R., and Shelley, M. J., On the connection between thin vortex layers and vortex sheets, J. Fluid Mech., 215 (1990), 161–194.

  2. Berk, H. L., and Roberts, K. V., The water-bag model, Method Comput. Phys. (B. Alder, S. Fernbach, and M. Rotenberg, Eds.), 9, 88–97, Academic Press, New York, 1970.

  3. Bertozzi, A. L., and Constantin, P., Global regularity for vortex patches, Commun. Math. Phys., 152 (1993), 19–28.

  4. Buttke, T. F., The observation of singularities in the boundary of patches of constant vorticity, Phys. Fluids A, 1 (1989), 1283–1285.

  5. Chemin, J. Y., Persistence de structures geometriques dans les fluides incompressibles bidimensionels, Ann. Sci. Ec. Norm. Sup., 26 (1993), 1–26.

    Article  Google Scholar 

  6. Chemin, J. Y., Fluides Parfaits Incompressibles, Astérisque 230 (1995), 1–177.

    MathSciNet  MATH  Google Scholar 

  7. Constantin, P., and Titi, E., On the evolution of nearly circular vortex patches, Commun. Math. Phys., 119 (1988), 177–198.

    Article  MathSciNet  Google Scholar 

  8. Deem, G. S., and Zabusky, N. J., Vortexwaves: Stationary “V-states,” interactions, recurrence and breaking, Phys. Rev. Lett., 40 (1978), 859–862.

    Article  Google Scholar 

  9. Dritschel, D. G., The repeated filamentation of two-dimensional vorticity interfaces. J. Fluid Mech., 194 (1988), 511–547.

    Article  MathSciNet  Google Scholar 

  10. Dritschel, D. G., and McIntyre, M. E., Does contour dynamics go singular? Phys. Fluids A, 2 (1990), 748–753.

    Article  MathSciNet  Google Scholar 

  11. Leonard, A., Vortex methods for flow simulation, J. Comp. Phys., 37 (1980), 289–335.

    Article  MathSciNet  Google Scholar 

  12. Lopes Filho, M. C., and Nussenzveig Lopes, H. J., An extension of C. Marchioros bound on the growth of a vortex patch to flows with L p vorticity, SIAM J. Math. Anal., 29 (1998), 596–599.

    Article  MathSciNet  Google Scholar 

  13. Majda, A., Vorticity and the mathematical theory of incompressible fluid flow, Commun. Pure Appl. Math., 39 (1986), 5187–5220.

    Article  MathSciNet  Google Scholar 

  14. Marchioro, C., Bounds on the growth of the support of a vortex patch, Comun. Math. Phys., 164 (1994]), 507–524

    Article  MathSciNet  Google Scholar 

  15. Marchioro, C., and Pulvirenti, M., The Mathematical Theory of Incompressible Nonviscous Fluids, Springer Series in Applied Mathematical Sciences 96, Springer-Verlag, New York, 1994.

  16. Meyer, K.R., Counterexamples in dynamical systems via normal form theory, SIAM Rev., 28 (1986), 41–51.

    Article  MathSciNet  Google Scholar 

  17. Overman, E. A., Steady-state solutions for the Euler equation in two dimensions II. Local analysis of the the limiting V-states, SIAM J. Appl. Math., 46 (1986), 765–800.

    Article  MathSciNet  Google Scholar 

  18. Pullin, D., and Moore, D. W., Remark on a result of D. Dritschel, Phys. Fluids A, 2 (1990), 1039–1041.

    Article  MathSciNet  Google Scholar 

  19. Pullin, D. I., Contour dynamics methods. Ann. Rev. Fluid Mech., 24 (1992), 89–115.

    Article  MathSciNet  Google Scholar 

  20. Roberts, K. V., and Christiansen, J. P., Topics in computational fluid mechanics, Comput. Phys. Commun. Suppl., 3 (1972), 14–32.

    Article  Google Scholar 

  21. Saffman, P. G., Vortex Dynamics, Cambridge monograph on mechanics and applied mathematics, Cambridge University Press, New York, 1992.

    Google Scholar 

  22. Schochet, S., The point-vortex method for periodic weak solutions of the 2-D Euler equations, Commun. Pure Appl. Math., 49 (1996), 911–965.

    Article  MathSciNet  Google Scholar 

  23. Shub, M., Global Stability and Dynamical Systems, Springer-Verlag, New York, 1987.

    Book  Google Scholar 

  24. Soler, J., Convergence of the contour dynamics method, Num. Meth.PDE, 7 (1991), 261–276.

    Article  MathSciNet  Google Scholar 

  25. Wan, Y. H., and Pulvirenti, M., Nonlinear stability of circular vortex patches, Commun. Math. Phys., 99 (1985), 435–450.

    Article  MathSciNet  Google Scholar 

  26. Welington de Melo, J. P.., Geometric Theory of Dynamical Systems. An Introduction, Springer-Verlag, New York, 1982.

    MATH  Google Scholar 

  27. Yudovitch, V. I., Non-stationary flow of an ideal incompressible liquid, Zh. Vych. Mat., 3 (1963), 1032–1066.

    Google Scholar 

  28. Zabusky, N. J., Hughes, M. H., and Roberts, K. V., Contour dynamics for the Euler equations in two dimensions, J. Comp. Phys., 30 (1979), 96–106.

    Article  MathSciNet  Google Scholar 

  29. Zou, Q., Overman, E. A., Wu, H. M., and Zabusky, N. J., Contour dynamics for the Euler equations: Curvature controlled initial node placement and accuracy, J. Comp. Phys., 78 (1988), 350–368.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrillo, J., Soler, S. On the Evolution of an Angle in a Vortex Patch. J. Nonlinear Sci. 10, 23–47 (2000). https://doi.org/10.1007/s003329910002

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003329910002

Keywords

Navigation