Skip to main content
Log in

DNA-based Nanosystems

  • Tutorial on Programming Natural Systems: Part 1. Molecular Systems
  • Published:
New Generation Computing Aims and scope Submit manuscript

Abstract

DNA-based nanosystems have emerged as an interdisciplinary field that draws on computer science, biochemistry, material science, and engineering. Although the field is still in its infancy, fundamental methodologies to build up large-scale complex nanosystems have been already established. In this paper, we review several recent topics in the DNA-based nanosystems, as they were presented on Kavli Japanese-American Frontier of Science meeting by Erik Winfree, Satoshi Murata, and Milan Stojanovic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Chen, J., Jonoska, N. and Rozenberg, G. (Eds.), Nanotechnology: Science and Computation, Springer-Verlag Berlin Heidelberg, 2006.

    MATH  Google Scholar 

  • Seeman, N.C., “Nucleic acid junctions and lattices,” Journal of Theoretical Biology, 99, pp. 237-274, 1982.

    Article  Google Scholar 

  • Winfree, E., Liu, F.R., Wenzler, L.A. and Seeman, N.C., “Design and self-assembly of two-dimensional DNA crystals,” Nature, 394, pp. 539-544, 1998.

    Article  Google Scholar 

  • Winfree E., “Algorithmic self-assembly of DNA: Theoretical motivations and 2D assembly experiments,” Journal of Biomolecular Structure & Dynamics, Special Issue S2, pp. 263-270, 2000.

  • Rothemund, P.W.K., Papadakis, N. and Winfree, E., “Algorithmic Self-Assembly of DNA Sierpinski Triangles,” PLoS Biology, 2(12), e424, 2004.

  • Winfree, E. and Bekbolatov, R., “Proofreading tile sets: Error-correction for algorithmic self-assembly,” DNA Computing 9 (Junghuei, C. and Reif, J. Eds.)LNCS 2943, Springer-Verlag Berlin Heidelberg, pp. 126-144, 2004.

  • Reif, J.H., Sahu, S. and Yin, P. “Compact Error-Resilient Computational DNA Tilings,” Nanotechnology Science and Computation (Chen, J. et al. Eds.), Springer-Verlag, Berlin Heidelberg, pp. 79-103, 2006.

  • Fujibayashi, K., Murata, S. “A method of error suppression for self-assembling DNA tiles,” DNA Computing 10(Ferretti et al. Eds.), LNCS 3384, Springer-Verlag Berlin Heidelberg, pp. 113-127, 2005.

  • Fujibayashi, K. et al., “Error Suppression Mechanisms for DNA Tile Self-Assembly and their Simulations, submitted.

  • Somei, K., Kaneda, S., Fujii, T., and S. Murata, “A microfluidic device for DNA tile self-assembly,” DNA Computing 11 (A. Carbone and N.A. Pierce Eds.), LNCS 3892, Springer-Verlag Berlin Heidelberg, pp. 325-335, 2006.

  • Rothemund, P.W.K., “Folding DNA to create nanoscale shapes and patterns,” Nature, 440, pp. 297-302, 2006.

    Article  Google Scholar 

  • Yan, H., LaBean, T.H., Feng, L. and Reif, J., “Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices,” PNAS, 100(14), pp. 8103-8108, 2003.

    Article  Google Scholar 

  • Shih, W.M., Quispe, J. and Joyce, G., “A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedoron,” Nature, 427, pp. 618-621, 2004.

    Article  Google Scholar 

  • Seelig, G., Soloveichi, D., Zhang, D.Y. and Winfree, E., “Enzyme-Free Nucleic Acid Logic Circuits,” Science, 314, pp. 1585-1588, 2006.

    Article  Google Scholar 

  • Stojanovic, M.N., Mitchell, T.E. and Stefanovic, D., “Deoxyribozyme-based logic gates,” Journal of American Chemical Society, 124(14), pp. 3555-3561, 2002.

    Article  Google Scholar 

  • Stojanovic, M.N., Stefanovic, D. “Doexyribozyme-based molecular automaton,” Nature Biotechnology, 21, pp. 1069-1074, 2003.

    Article  Google Scholar 

  • Macdonald, J., Li, Y., Sutovic, M., Lederman, H., Pendri, K., Lu, W., Andrews, B.L., Stefanovic, D. and Stojanovic, M.N., “Medium Scale Integration of Molecular Logic Gates in an Automaton,” Nano Lett., 6 (11), ACS, pp. 2598 -2603, 2006.

  • Mao, C.D., Sun, W.Q., Shen, Z.Y. and Seeman, N.C., “A DNA nanomechanical device based on the B-Z transition,” Nature, 397, 144, 1999.

    Article  Google Scholar 

  • Yurke, B., Tuberfield, A.J., Mills, A.P., Simmel, F.C. and Neumann, J.L., “A DNA-fuelled molecular machine made of DNA,” Nature, 406, 605, 2000.

    Article  Google Scholar 

  • Tian, Y., He, Y., Chen, Y., Yin, P. and Mao, C.D., “Molecular devices -A DNAzyme that walks possessively and autonomously along a one-dimensional track,” Angewandte Chemie –Int. Edition, 44, pp. 4355-4358, 2005.

    Article  Google Scholar 

  • Pei, R., Taylor, S.K., Stefanovic, D., Rudchenko, S., Mitchell, T.E. and Stojanovic, M.N., “Behavior of Polycatalytic Assemblies in a substrate-displaying matrix,” Journal of American Chemical Society, 128(39), pp. 12693-12699, 2006.

    Article  Google Scholar 

  • URL http://www.isnsce.org/

  • URL http://dna13.memphis.edu/

  • URL http://www.cs.duke.edu/~reif/FNANO/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Murata.

Additional information

Tutorial series of three invited papers

About this article

Cite this article

Murata, S., Stojanovic, M.N. DNA-based Nanosystems. New Gener. Comput. 26, 297–312 (2008). https://doi.org/10.1007/s00354-008-0047-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00354-008-0047-7

Keywords

Navigation