Skip to main content
Log in

Cascading DNA Generation Reaction for Controlling DNA Nanomachines at a Physiological Temperature

  • Published:
New Generation Computing Aims and scope Submit manuscript

Abstract

We developed a reaction system to generate multiple single-stranded DNA species at a physiological temperature for controlling the operation of DNA nanomachines. In this reaction system, cascading DNA generation is arbitrarily programmed by permutation and altering the combinations of template DNA sequences in a modular fashion. Because the dissociation of generated DNA strands from their templates is fully dependent on the strand displacement activity of DNA polymerase, generation and subsequent hybridization of DNA strands can be implemented in a one-pot reaction at the reaction temperature. We experimentally confirmed the generation and hybridization of DNA strands at a temperature remarkably lower than the melting temperature by monitoring the fluorescence change caused by the structural transition of molecular beacons as a simple DNA nanomachine operation. Then, we demonstrated the versatility and programmability of the cascading DNA generation up to three layers. By integrating the proposed DNA generation reaction with various types of DNA nanomachines, an intelligent molecular robotic system is expected to be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Seeman N.C.: “DNA in a material world,”. Nature 421, 427–431 (2003)

    Article  MathSciNet  Google Scholar 

  2. Rothemund P.W.K.: “Folding DNA to create nanoscale shapes and patterns,”. Nature 440, 297–302 (2006)

    Article  Google Scholar 

  3. He Y., Ye T., Su M., Zhang C., Ribbe A.E., Jiang W., Mao C.: “Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra,”. Nature 452, 198–202 (2008)

    Article  Google Scholar 

  4. Wei B., Dai M., Yin P.: “Complex shapes self-assembled from single-stranded DNA tiles,”. Nature 485, 623–626 (2012)

    Article  Google Scholar 

  5. Bath J., Turberfield A.J.: “DNA nanomachines,”. Nature Nanotech. 2, 275–284 (2007)

    Article  Google Scholar 

  6. Yurke B., Turberfield A.J., Mills A.P. Jr, Simmel F.C., Neumann J.L.: “A DNA-fuelled molecular machine made of DNA,”. Nature 406, 605–608 (2000)

    Article  Google Scholar 

  7. Shin J.-S., Pierce N.A.: “A synthetic DNA walker for molecular transport,”. J. Am. Chem. Soc. 126, 10834–10835 (2004)

    Article  Google Scholar 

  8. Gu H., Chao J., Xiao S.-J, Seeman N.C.: “A proximity-based programmable DNA nanoscale assembly line,”. Nature 465, 202–205 (2010)

    Article  Google Scholar 

  9. Murata S., Konagaya A., Kobayashi S., Saito H., Hagiya M.: “Molecular robotics: a new paradigm for artifacts,”. New Gener. Comput. 31, 27–45 (2013)

    Article  Google Scholar 

  10. Hagiya M., Konagaya A., Kobayashi S., Saito H., Murata S.: “Molecular robots with sensors and intelligence,”. Acc. Chem. Res. 47, 1681–1690 (2014)

    Article  Google Scholar 

  11. Tyagi S., Kramer F.R.: “Molecular beacons: probes that fluoresce upon hybridization,”. Nature Biotechnol. 14, 303–308 (1996)

    Article  Google Scholar 

  12. Seelig G., Soloveichik D., Zhang D.Y., Winfree E.: “Enzyme-free nucleic acid logic circuits,”. Science 314, 1585–1588 (2006)

    Article  Google Scholar 

  13. Walker G.T., Little M.C., Nadeau J.G., Shank D.D.: “Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system,”. Proc. Natl. Acad. Sci. USA 89, 392–396 (1992)

    Article  Google Scholar 

  14. Matsuda D., Yamamura M.: “Cascading whiplash PCR with a nicking enzyme,”. Lect. Notes in Comp. Sci. 2568, 38–46 (2003)

    Article  Google Scholar 

  15. Van Ness J., Van Ness L.K., Galas D.J.: “Isothermal reactions for the amplification of oligonucleotides,”. Proc. Natl. Acad. Sci. USA 100, 4504–4509 (2003)

    Article  Google Scholar 

  16. Weizmann Y., Beissenhirtz M.K., Cheglakov Z., Nowarski R., Kotler M., Willner I.: “A virus spotlighted by an autonomous DNA machine,”. Angew. Chem., Int. Ed. 45, 7384–7388 (2006)

    Article  Google Scholar 

  17. Montagne, K., Plasson, R., Sakai, Y., Fujii, T. and Rondelez, Y., “Programming an in vitro DNA oscillator using a molecular networking strategy,” Mol. Sys. Biol., 7, Article Number 466, 2011

  18. Markham N.R., Zuker M.: “DINAMelt web server for nucleic acid melting prediction,”. Nucleic Acids Res. 33, W577–W581 (2005)

    Article  Google Scholar 

  19. Tsourkas A., Behlke M.A., Rose S.D., Bao G.: “Hybridization kinetics and thermodynamics of molecular beacons,”. Nucleic Acids Res. 31, 1319–1330 (2003)

    Article  Google Scholar 

  20. Yurke B., Millis A.P. Jr.: “Using DNA to power nanostructures,”. Genetic Programming and Evolvable Machines 4, 111–122 (2003)

    Article  Google Scholar 

  21. Zhang D.Y., Winfree E.: “Control of DNA strand displacement kinetics using toehold exchange,”. J. Am. Chem. Soc. 131, 17303–17314 (2009)

    Article  Google Scholar 

  22. Komiya K., Yamamura M., Rose J.A.: “Experimental validation and optimization of signal dependent operation in whiplash PCR,”. Natural Computing 9, 207–218 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Komiya.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komiya, K., Yamamura, M. Cascading DNA Generation Reaction for Controlling DNA Nanomachines at a Physiological Temperature. New Gener. Comput. 33, 213–229 (2015). https://doi.org/10.1007/s00354-015-0304-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00354-015-0304-5

Keywords

Navigation