Tensors, I-graphs, and non-commutative quantum structure

Aleks Kissinger David Quick
University of Oxford University of Oxford
aleks.kissinger@cs.ox.ac.uk david.quick@cs.ox.ac.uk

Categorical quantum mechanics (CQM) and the theory of gquamroups rely heavily on the use
of structures that have both an algebraic and co-algeboanponent, making them well-suited for
manipulation using diagrammatic techniques. Diagrantaills to easily form complex composi-
tions of (co)algebraic structures, and prove their equai graph rewriting. One of the biggest
challenges in going beyond simple rewriting-based praofieisigning a graphical language that is
expressive enough to prove interesting properties (e.gnaldform results) about not just single di-
agrams, but entire families of diagrams. One candidateeisatiiguage of-graphs which consist of
graphs with certain subgraphs marked with boxes (calleakeb) that can be repeated any number of
times. New !-graph equations can then be proved using a foMechnique called-box induction
However, previously this technique only applied to comriwg(or cocommutative) algebraic struc-
tures, severely limiting its applications in some parts @ and (especially) quantum groups. In
this paper, we fix this shortcoming by offering a new semarftic non-commutativegraphs using
an enriched version of Penrose’s abstract tensor notation.

1 Introduction

Diagrammatic theoriegive us a way to study a wide variety of algebraic and coalgelstructures in
monoidal categories. They consist of two partsignatureZ and a set ofliagram equations EThe
signature consists of a set of obje¢s B, ...} along with a set of generating morphisms with input and
output arities formed from combining objects withandl. For example, the signature of a Frobenius
algebra consists of four morphismgz : AQ A—A n:1 = A 0:A— ARA, £: A—1), or, written

diagrammatically:
_ @
Z‘{ A b Y }

Then,E is a set of equations between morphisms built from thesergems, which we can picture as
equations between string diagrams. For example, the tlid@gmmutative Frobenius algebras contains
the (co)associativity, (co)unit, (co)commutativity anebBenius equations:

AcA AT AR Ly
YA gy TUA

A modelof (%, E) in a (symmetric, traced, or compact closed) monoidal cayegoassigns a morphism
to each generator i such that all equations i hold.

B. Coecke, |. Hasuo & P. Panangaden (Eds.): © A. Kissinger & D. Quick
Quantum Physics and Logic 2014 (QPL 2014). This work is licensed under the
EPTCS 172, 2014, pp. 56367, d0i:10.4204/EPTCS.172.5 Creative Commoris Attribution License.


http://dx.doi.org/10.4204/EPTCS.172.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

A. Kissinger & D. Quick 57

Remark 1.1. Many familiar algebraic constructions arise as speciaésas this setup. For instance,
any linear ‘term-like’ algebraic theory (i.e. where freaighles occur precisely once on the LHS and
RHS of every equation) can be presented this way. Also, ifegtict to equations i& that are directed
acyclic, we obtain presentations of PROPs (or coloured PROEhe multi-sorted case). In that case,
models of(Z,E) in ¢ are in 1-to-1 correspondence with strong monoidal funchans the presented
PROP intoz.

This style of algebraic theory works well when generatorgehiixed, finite arity. However, it is
often possible to find a much more elegant presentation ad@yhf we allow the arity of our generators
to vary. For instance, commutative Frobenius algebras eaalternatively presented using a single
variable-arity generator sometimes called a ‘spidernglwith just two equations.

A model of such a theory is no longer just a finite set of monpisisbut rather, a set damilies of
morphismsf; x : A% — A®K indexed by input/output arities, such that the equation& hold for all
possible arities.

Comparing this to the equations at the beginning of this@ecive seem to have lost some formality.
That is, the ‘concrete’ diagrammatic identities above carfdimalised in such a way that proofs can
be performed (and even machine-checked) via a suitablemaoti diagram rewriting, as formalised
in [2]. One might be tempted to think that this level of rigagrlost when we describe equations in
a mathematical meta-language, making use of ellipses xEmnple, to represent repetition. However,
in [1], the authors introduceldboxes(pronounced ‘bang-boxes’) as a method for reasoning abvaphg
with repeated structure. As !-box rules, the previouslpinfal rules can be formalised as:

) e

Intuitively, marking a subgraph with a I-box means that sabf (along with edges in/out of it) can be
repeated any number of times to obtainimstanceof the graph. Thus we interpret a graph with !-boxes
as a set of all its instances.

N O VA 5. %Y

Similarly, for rules with !-boxes, matched pairs of !-boxam be repeated in the LHS and RHS to obtain
instances of that rule. Thus, for our example of the comnwat&robenius algebra, we have reduced our
theory of 7 equations to just 2.

I-boxes were given a formal semantics in [7], making use dfead/e categories [8]. They also
come with a simple and powerful induction principle intredd by one of the authors inl[5] and proven
correct in[10]. But there’s a catch: note how we were cargfghy thacommutativéd-robenius algebras

A



58 Tensors and !-graphs

have an elegant presentation as above. A major drawbacle @ixikting !-box notation is that it is only
unambiguous if all of the nodes in the diagram are invariamten permuting inputs/outputs. This is
severely limiting in two ways. The first and most obvious fiation is that we are forced to consider
only commutative algebraic structures. The second, mdrdeslimitation is that we have no freedom
to definitionallyextend our theory, i.e. introduce new nodes defined as diegod other nodes, without
making implicit assumptions about those diagrams (nantiedy,they are symmetric on inputs/outputs).

In order to overcome these shortcomings, we extend theghgratation with some extra information
about how newly-created edges should be ordered when aistmopanded. This turns out to be fairly
straightforward as soon as one shifts from a graph-basedrgers for diagrams, as employed lin [2], to
a tensor-basedgemantics, where morphisms in the free compact closedargtege represented using
a version of Penrose’s abstract tensor notafion [11]. Tiwsaach, recently formalised ihl[6], has the
property that non-commutativity comes ‘for free’, where thdges connected to a single element are
represented as a list of edge names. Contrast this with #phdrased semantics for string diagrams or
Joyal and Street’'s geometric constructioh [3], where oregleado add some extra structure (e.g. a total
ordering or typing on adjacent edges) to break symmetries.

So, without further ado, we introduce tensor expressiongdmpact closed categories and extend
them to accommodate !-boxes.

2 Tensors

Assume we are working in a compact closed categdryeely generated by a set of obje&tsY, Z, ...
and morphisms of the formp: 1 — X1 ® ... ® X,, i.e. morphisms with only non-trivial outputs. Singé
is compact closed, this yields no loss of generality, sinegepresent an input of typeas an output of
type A*. For simplicity, we'll assume every ‘input’ is of fixed typ€* and every ‘output’ is of type.

Since we want to distinguish inputs/outputs we label themguewer case letters. They will have
a hat to illustrate being an ‘output{a,b,...}, or a check to illustrate being an ‘input{4,b,...}.
Translating a morphisnp into tensor notation yields:

Pl > XXX @X @ X" == Ospeds

We introduce a special graphical notation for morphismg b c d e
with only outputs. We write them as circles with a tick, tak-: l
ing the convention that inputs/outputs are ordered clos&wi
from the tick.
Writing two tensors side-by-side yields a new tensor forrhgdaking the monoidal product and
‘contracting’ any repeated names using the compact steictoX. .
@)

e
| — bx® )

e-/A .d\'C

We say repeated edge names (e.gndb above) ardooundin a tensor expression, and all other edge
names ardree In the graph we have labelled the bound edges, though thisredy for demonstrating
which edges are bound. The names of bound edges can be changiid provided they are replaced
with new, fresh names. Henagy,; @.peqe and YeyyBoegs represent the same graph. As a result, we
typically will not write down bound names in the graphicatat@n.

[ T\“\
Yy

f ab d
]

Ui Piveds =

<
-84—.0



A. Kissinger & D. Quick 59

Definition 2.1. The set oftensor expression®r a signature¥ consists of (i) the trivial tensor 1, (ii)

the identity tensor £, (iii) atomic tensors; with the appropriate names for eaghec ., (iv) GH

for G,H tensor expressions, and (@ obtained by changing some of the names of a tensor expression
G—subiject to the condition thatanda occur at most once for each name

Definition 2.2. Two tensor expressior@, G’ are equivalent, writtes = G’ if G can be made intG&’ by
replacing bound names or by applying one or more of the foligvdentities:

(GHK=G(HK) GH=HG Gl=G

Gl;=Glb—4& Hlz=Hb— 4

Assume for the last two identities thagndb are free inG andH, respectively. Ar=-equivalence class
of tensor expressions is calledemsor

Note that we use=s for syntactic equivalence of tensor expressions (and latrsor expressions).
We reserve the normal equals sign for equality by the rulesgifen theory. As such, we always assume
(G=H) = (G=H), but not the converse.

Tensors are related to morphisms in the free compact cleaegary as follows. Suppose we fix a
set ofcanonical namegX;, Xz, ...} and{X;,%,...}. A tensorG is said to becanonically namedf for
someN it has as a free nhame precisely oneobrX for 1 <i <N.

Theorem 2.3. Canonically-named tensors are in 1-to-1 correspondenamdgphisms in the free com-
pact closed category generated by a signattfe

Proof. First note that adding ‘hats’ and ‘checks’ to edge namesssrgglly applying the Int construc-
tion (c.f. [4]) to free traced symmetric monoidal categomthe tensorial presentation given in [6]. The
free compact closure of the free traced monoidal categery shtisfies the appropriate universal property
to make it the free compact closed category. O

To summarise, we can interpret a tensor in a compact clogdedarg as follows. First, we swap its
free names for ‘canonical names’ (or otherwise order thpuaatsomehow), then interpret each atomic
expression as a morphism (or one of a family of morphismsarpatrised by its arity). Finally, we
construct the composed morphism by composing each of thea@oemts and contracting repeated edge
names, as in{2).

Alternatively, one can study models in an existing abstragsor system (in the sense of Penrose),
in which case interpretation is trivial. These two pointsva#w (categorical vs. ATS) are roughly
equivalent, as was shown in [6].

3 Adding !-boxes to tensor expressions

We now extend the existing tensor notation with !-boxes.pBigally !-boxes are blue boxes surrounding
a subgraph, labelled with a nam& B, ...). We can denote this with square brackets around a subterm in
a tensor expression, labelled with a superscript. Intligia !-box represents a portion of the graph that
can be copied multiple times. For this to be well-defined ertbn-commutative case we need to clarify
where each new copy of the subgraph gets attached to sumngumaides.

This is done by assigning an expansion direction (clockwssanticlockwise) to any group of edges
from a node to a I-box. We draw these as arrows over edge gnowps !-graphs and for our tensors we



60 Tensors and !-graphs

denote clockwise edge groups|as)” and anticlockwise edge groups @s.]*. For example:

Pap[Ya]” = Vs, Qae(Ws) =
@ Q

In the next section, we will see how the arrows clarify notyawhich direction edges should expand,
but also whether they should expand in groups or indivigualtor example, the following notation

gives anti-clockwise expansion abas a group, clockwise expansionaB as a group, and clockwise

expansion ohandb as individual edges, respectively:

Waiy aipn [ A

VS. pa
. b

It is also possible for !-boxes to be nested inside otherxeso This means expansion of the par-
ent box makes a new copy of the child with a new !-box name. Eglgeps can correspondingly
be nested if the edges enter more than one box. In the diagrdhe tleft we have
the I-graph with !-tensor expressiomé[<5]B>A[[%é] B]A. We have labelled which arrow
corresponds to which !-box. This is not necessary if we adloptconvention that a
parent box’s arrow must be drawn closer to the node thantitld box’s arrow. Note
that the labels inside nodes are to assign a type to the nogigpased to naming the
node. This means since we often have multiple nodes withaime gype, we will have
nodes with the same label.

We can now imagine more general generators allowing arpiaangements of input and output
edges. Any such node, say of type then needs to be assigned a morphism in our category for each
possible arrangement of edges. We represent an arrangsanvard ove{ A, V} whereA represents

outputs and/ represents inputs. For example the n{%o has edge arrangmentv A A and needs to

be assigned a morphisiin: | — X @ X* ® X ® X. Hence we neeg: {A,V}* = Mor(%) to model the

node typep.
I-tensors replace lists of edges on individual morphismih widgetermsof which we now give a

recursive definition.

Definition 3.1. Fix a disjoint, infinite sets” and % of edge names and !-box names, respectively. We
denote the set afirected edgeasé := {&,a4: ac &}. The set okedgeterms is defined recursively as
follows:

ecc T (i.e empty)
ed dc I acs&
e[©" (e % ec o, AC B

eefec efe%



A. Kissinger & D. Quick 61

Two edgeterms are equivalent if one can be transformedlietather by:
ce=e=es e(fg)=(efl)g [ =e=(g?

Since the well-formedness conditions for I-tensor expoessare a bit more complicated than for
tensor expressions, we first define the set of all !-preteagpressions, including those that may be
ill-formed.

Definition 3.2. The set of all I-pretensor expressiofg for a signaturex is defined recursively as:

el1;€9 abeé&
o7 €€ Jo, X
e G e A GeJ5,Ac R
eGHc H GHe%H

We introduce the notion of eontext which lists the !-boxes in which a certain edge name occurs,
from the inside-out. These come in two flavowrdge contextandnode contexts

Definition 3.3. Given a directed edgec & in a !-tensorG nested as[¢ (@F1..)En. ] N .]N”‘.
We define theedge contextnode contextandcontextof a respectlvely as:

ectx(a) := [Ea,...,En] (edge context)
nctxg(a) := [Ni,...,Npy] (node context)
CtXg(a) := ectxs(a). nctxg(a) (context)
That is, ectg(a) lists the !-boxes containing that occur as part af's edgeterm, and ncg(a) lists the
rest.

Finally, a !-tensor expression is a !-pretensor expresgibare !-box/edge names must be suitably
unique and occur in compatible contexts.

Definition 3.4. A I-tensor expression is a !-pretensor expression satigfthie following conditions:
F1. dandd occur at most once for each edge namne
F2. [.. .]A must occur at most once for each !-box nafne
Cl. ectg(a)Nnctxg(a) =@ foralledgesac &inG
C2. Ifectxs(a) = [B1,...,Bn] then allB; € BoxegG) and B; <g B2 <g ... <g Bn
C3. For all bound paira, & of edge names ifs, there exist listes bs of !-box names such that:

esnctxg(d) = ectxs(8).bs and esnctxg(8) = ectxs(a).bs

whereA < B means that the !-bo& is nested insid® in G (without other boxes nested between). We
write 5 for the set of all I-tensor expressions for a signafure

The freshness conditions F1 and F2 ensure that we have nbthessame name for more than one
edge/box. If a node is in !-boR then any edges attached to it are alreads 8o it wouldn’t make sense
to haveB in both the ectka) and nctXa) for ac &, this is enforced by C1. C2 ensures that edge contexts
are compatible with the !-boxes in the rest of the !-tensor.@xampleg; s requiresA to be nested in



62 Tensors and !-graphs

B so does not result in a valid I-tensor when composed with ;| BE<5]B]A. C3 ensures that edges
into !-boxes from the outside are decorated correctly byr #dge terms. For instance, this is allowed:

Wiz [%]A but this is not:wé[qg]A. The freedom to picks esallows bound pairs of edges to share some
common context, e.g.[:wé(pa]A (both nodes are inside) or Yz a@ . []A (only the edge is insidd). In
the second exampl@ occurs in an edge term, so C2 requires the presendée .(])f\ somewhere in the

I-tensor, hence we append the ‘empty’ !-bﬁ)@.

In this paper when we write a compositi@H, unless stated otherwise, we will assume this forms a
well defined !-tensor.

Naturally, we say two !-tensor expressions are equivaleritten G = H, if one can be obtained
from the other by using the usual tensor equivalences frofimiflen 2.2 or by using the edgeterm
equivalences from Definitidn 3.1.

We call the graphical notation for !-tensors then-commutative !-graph notatipor simply (non-
commutative) !-graphs.

Theorem 3.5. Any !-tensor can be represented unambiguously using nomragative !-graph notation.

Proof. We show this by providing a general procedure for interpeti I-graph as a !-tensor expression,
and vice-versa. For the sake of clarity, we demonstrate si@ghon a worked example. Given a non-
commutative !-graph, we wish to obtain a unique equivaletiass of !-tensor expressions under
Begin by choosing fresh names to write on all the interioresdg

Then, write the !-boxes with nesting as depicted in the diagr

U P A

Write each node in the diagram on the location it occurstW:boxes):

. [w.][[w.]""

Finally, add the edges of each node, reading clockwise flentitk. Edges occurring under a clockwise
arrow markedA should be enclosed [n..)*, and edges under an anti-clockwise arrow should be enclosed
in {...]*, where the outermost groups are the ones closest to the meioke picture.

Py [ Y “uis)"”

The only choices we made in this process were the choiceaidntedge names and the order in which
to write the individual tensors. However, up#g these are irrelevant. To show that any !-tensor can be
represented this way, we simply run the above procedurevarse. O

Because of this theorem, we use the terms !-tensor and hgraprchangeably, depending on
whether we wish to refer to the syntactic vs. graphical naat



A. Kissinger & D. Quick 63

4 Instantiating tensor expressions with !-boxes

The following diagram demonstrates two !-box operationae apply to a graph: killing a !-box is the
operation deleting the bd& and all contents (including edges to/fr@) and expanding is the operation
creating a new concrete instance of the subgraph irsi@tached appropriately). We can represent the
original graph in this diagram with the tensor expressigps Ws4| BE[é>BZ (b

We can define both of these operations formally. Since exparisvolves copying various edge/!-
box names, we need a means of obtaining fresh names. Let@&jgess’ and Boxe$G) C % be the
edge names and !-box names occurring in a !-tefBaespectively.

Definition 4.1. A freshness functiofor a !-tensorG is a pair of bijectiondr : & — & andfr : 8 — %A
such that

EdgesG)Nfr (EdgesG)) =@ and BoxeéG)Nfr(BoxegG)) =<

For I-tensor expressiors or edgetermg, we will write fr (G) or fr (e) to designate the new expres-
sion with names substituted according to the given bijestio

Definition 4.2. We define Op € {Expg,Kill g} recursively over !-tensor expressions. For most cases,
both operations act trivially:

Opg(GH) := Opg(G) Opg(H) Opg(ef) := Opg(€) Opg(f)
Ops([6]") = [Opa(G)]* Ops(&)*) = [Opg(e))*
Ops (@) = Popy(e) Ops((e]*) := (Opg(e)]*
Opg(X) :=x
whereA # B andx € {1,14,4,4,£}. Then, for the final three cases:
Exps([G]°) := [G]°fr (G) Kill g([G]®) := 1
Exps([€)B) := [e)Bfr () Kill g([6)B) := ¢
Exps((€®) :=fr (e)(¢]® Kill g((e]®) := ¢

Note that Exg(G) implicitly takes a freshness function as input. If we wishmake this explicit,
we will write Expgy,. The above operations can be lifted from !-tensor expressio !-tensors, i.e.
=-classes of expressions, because of the following theorem.

Theorem 4.3. Let fr be a freshness function for two !-tensor expressionsl GThen G= H implies
Expg (G) = Expg g (H) andKill g(G) = Kill g(H).



64 Tensors and !-graphs

Proof. (Sketch) This can be shown by induction over the structuretefisor expressions. It is crucial
that we use theamefreshness functiofr for the expansions d& andH, otherwiseG andH could end
up with distinct free edges or !-boxes. O

These two !-box operations give us a means to define the sdit(@bacrete) tensors that a single
I-tensor represents.

Definition 4.4. A tensorG' is aconcrete instancef a !-tensorG if it is obtained fromG by repeatedly
applying the two !-box operations Exp and Kill un®l contains no !-boxes. This sequence of operations
is called thanstantiationof G'. We write [G] for the set of all concrete instances®f

When we fix a model in some categd#y, concrete tensors can then be interpreted as morphisf#is in
just as before. We therefore interpret each !-tensor egjmesas a family of morphisms i#, namely
the interpretations of each of its concrete instances.

5 Reasoning with !-boxes

The real power of !-boxes comes from the ability to do equetideasoning using infinite families of
rules. Just as it makes sense to instantiate a single !ffeihgnakes sense to instantiate aguation
G = H between two !-tensors, provided they have compatible bariesl

Definition 5.1. A !-tensor equatioiG = H’ consists of a pair of !-tensorss,H ) that havecompatible
boundaries That is, they have identical free edge names and !-bdxes; B < A <y B for all !-boxes
in G andH, and ctx(a) = ctxy (a) for all free edge names.

Intuitively, we require that the LHS and RHS of a !-tensor &ipn have the same interface to attach
to other graphs (same free variables and same box strucflingse consistency conditions guarantee
that (i) applying !-box operations to valid equations ygldilid equations, and (ii) whe@ occurs as a
sub-expression of some other !-ten&qrit can be substituted fdi to yield another valid !-tensdf’.

Theorem 5.2. Letfr be a freshness function for !-tensorsia Then, if G=H is a !-tensor equation,
then so too are:

Killg(G=H) = (Kill g(G) = Kill g(H))
Exps(G=H) = (Expgs (G) =Expgs (H))

Proof. (Sketch) It is straightforward to show that killing/expamgl B affects the free variables and the
I-boxes in the same way on the LHS/RHS. To check the contegti,a single free edge name into 3
cases, depending on whether the !-IBuxccurs in the node-context af the edge context @, or neither.
In all casesa and/orfr (a) will have identical contexts on the LHS/RHS. O

As in the case of !-tensors, we can deffi@= H] to be the set of all concrete rules derivable from
G = H using the !-box operations. A valid model of a graphical tiyeis then one where all of the
equations in[G = H] hold for each equatio® = H. Proving that a rule holds fall of its instances
could be a daunting task in general, however in many casashaitgie called-box inductior—which
we will meet shortly—comes to the rescue.

We obtain a notion of substitution of sub-expressions cansvely, via inference rules. The first
few should look familiar as congruence- and substitutika-fules for !-tensors.

G=H (Prod) G=H A (Box) G=H (Rename)

GK = HK [G]" = [H] Gla— b =H[a— b




A. Kissinger & D. Quick 65

WhereG[a — b] andH[a — b] areG andH with the free edge/!-box nameereplaced byb. We require
thatK andA are chosen such th@K, HK, [G]*, and [H]" are well-defined. These rules provide the
conditions under which some equatiGn= H can be unified, given some context, with a bigger equation
G’ = H’. The final inference rule (Weaken) is less intuitive from gwént of view of terms, and is best
understood graphically. Consider the following embeddifiggraphs:

= [L/—’aﬁga] AfP(B]A

The LHS does not embed as a sub-term of the RHS, because theA-bontains more stuff on the
RHS. However, semantically, this is perfectly fine, as allhef concrete instances of the LHS will have
(uniquely-determined) embeddings into all of the concreséances of the RHS. So, we also need a rule
that allows us to ‘weaken’ !-boxes by adding more nodes tmthe

G=G ; (Weaken)
Waok (G) = Wask (G)
Where Wa .k (G) is defined recursively as:
Wa-k ([G]") = [GK]"
Wak ([G ]B) [Wa—k (G) ] if A#B
Wak (GH) := Wak (G)Wa—k (H)
Wak (X) =X Xe {17 1357 %}

These four rules give us everything we need to apply equatiari-tensors to obtain new equations. For
example, the equation on the left below can be applied tdelaleof they-nodes occurring as input to
a @. An example application of this rule is shown on the right.

@

We can also add inference rules for each of our !-box opersiie.

__G=H gy __C=H
Expsg(G=H) Killg(G=H)
Perhaps most interestingly, we can introduce new !-boxégrevpreviously there were none, Vhox
induction
KilaA(G=H) G=H=Exp\(G=H)
G=H

(Induction)



66 Tensors and !-graphs

As mentioned in Sectidn 1, non-commutative nodes give ualiligy to make recursive definitions
of variable-arity generators in terms of fixed-arity geters of our theory. This induction principle in
turn gives us the means to lift rules about fixed arity gemesaip to more powerful !-tensor rules.

We conclude by showing a simple example. Suppose we takédioeytof a monoid, i.e. the pair of

generatorf{ é , Q ) satisfying the commutativity and unit laws frold (1). Thenees recursively define,
as a new generator, arfold tree of multiplications.

Remark 5.3. Note how non-commutative !-boxes make such recursive defiisi possible in the first
place, without assuming priori that the family of graphs generated by the definition are sgirim
on their inputs/outputs. This need not be true, even in tise gehere all of the concrete generators
are commutative. This limitation in the case of commutatiomxes was highlighted ir_[10], where
only a partial proof of the spider theorem for commutativeli&nius algebras could be done using
(commutative) !-box induction.

The first property we would like to prove about such treesas #ljacent trees merge to form bigger
trees. As a !-box rule, it looks like this:

£57eF

We can then hit this rule with the induction &to break it into cases:

ﬁE&Q = ﬁgg (base)
R R e N

...each of which have simple rewriting proofs:

Fomef vt

One caveat is that when we apply the induction hypothesiseim 4, the !-boxB must be ‘fixed’ (i.e.
we're not allowed to do any instantiation Bfvia Exp, Kill, etc.). This is becaud® occurs free on both
sides of the implicatiols = H = Expg(G = H). See[[10] for details.

T



A. Kissinger & D. Quick 67

This style of proof is the main workhorse of soundness probfsiles like the merging rule (a.k.a.
‘spider rule’) for commutative Frobenius algebras desatilin Sectiorill, and can be extended to the
non-commutative case, proving a similar rule for esymmetricFrobenius algebras, giving a purely
diagrammatic characterisation of the normal forms deedrib [9].

References

[1] Lucas Dixon & Ross Duncan (2009%Graphical Reasoning in Compact Closed Categories for Quant
Computation AMAI 56(1), p. 20, d0i:10.1017/S0305004100074338.

[2] Lucas Dixon & Aleks Kissinger (2013)Open-graphs and monoidal theorieMathematical Structures in
Computer Science3, pp. 308—-359, d0i:10.1017/S0960129512000138. arB@713794v1 [cs.LO].

[3] Andre Joyal & Ross Street (1991The geometry of tensor calculus Advances in Mathematic38, pp.
55-113, doi:10.1016/0001-8708(91)90003-P.

[4] Andre Joyal, Ross Street & Dominic Verity (1996lraced Monoidal CategoriesMath. Proc. Camb. Phil.
So0c.119(3), pp. 447-468, d0i:10.1017/S0305004100074338.

[5] Aleks Kissinger (2011)Pictures of Processes: Automated Graph Rewriting for MdabCategories and
Applications to Quantum Computingh.D. thesis, University of Oxford. arXiv:1203.0202 [imaZT].

[6] Aleks Kissinger (2014): Abstract Tensor Systems as Monoidal Categoridga C Casadio, B Coecke,
M Moortgat & P Scott, editors: Categories and Types in Logic, Language, and Physics: dfe#ts
on the occasion of Jim Lambek’s 90th birthddyecture Notes in Computer Scien8222, Springer,
doi{10.1007/978-3-642-54789-8 | 13. arXiv:1308.3586tm@AT].

[7] Aleks Kissinger, Alex Merry & Matvey Soloviev (2012Pattern Graph Rewrite Systemb: Proceedings
of DCM 2012 EPTCS143, doi:10.4204/EPTCS.143.5. arXiv:1204.6695 [math.CT

[8] Stephen Lack & Pawel Sobocinski (2008)dhesive and quasiadhesive categariébeoretical Informatics
and Application89(2), pp. 522-546, d0i:10.1051/ita:2005028.

[9] Aaron D. Lauda & Hendryk Pfeiffer (2008Y0pen-closed strings: Two-dimensional extended TQFTs and
Frobenius algebrasTopology Appl.155(7), pp. 623—-666, d0i:10.1016/j.topol.2007.11.005.

[10] Alexander Merry (2014)Reasoning with I-Graph$Ph.D. thesis, University of Oxford.

[11] R. Penrose (1971)Applications of negative dimensional tensois: Combinatorial Mathematics and its
Applications Academic Press, pp. 221-244.


http://dx.doi.org/10.1017/S0305004100074338
http://dx.doi.org/10.1017/S0960129512000138
http://dx.doi.org/10.1016/0001-8708(91)90003-P
http://dx.doi.org/10.1017/S0305004100074338
http://dx.doi.org/10.1007/978-3-642-54789-8_13
http://dx.doi.org/10.4204/EPTCS.143.5
http://dx.doi.org/10.1051/ita:2005028
http://dx.doi.org/10.1016/j.topol.2007.11.005

	1 Introduction
	2 Tensors
	3 Adding !-boxes to tensor expressions
	4 Instantiating tensor expressions with !-boxes
	5 Reasoning with !-boxes

