
B. Coecke, I. Hasuo & P. Panangaden (Eds.):
Quantum Physics and Logic 2014 (QPL 2014).
EPTCS 172, 2014, pp. 56–67, doi:10.4204/EPTCS.172.5

c© A. Kissinger & D. Quick
This work is licensed under the
Creative Commons Attribution License.

Tensors, !-graphs, and non-commutative quantum structures

Aleks Kissinger
University of Oxford

aleks.kissinger@cs.ox.ac.uk

David Quick
University of Oxford

david.quick@cs.ox.ac.uk

Categorical quantum mechanics (CQM) and the theory of quantum groups rely heavily on the use
of structures that have both an algebraic and co-algebraic component, making them well-suited for
manipulation using diagrammatic techniques. Diagrams allow us to easily form complex composi-
tions of (co)algebraic structures, and prove their equality via graph rewriting. One of the biggest
challenges in going beyond simple rewriting-based proofs is designing a graphical language that is
expressive enough to prove interesting properties (e.g. normal form results) about not just single di-
agrams, but entire families of diagrams. One candidate is the language of!-graphs, which consist of
graphs with certain subgraphs marked with boxes (called !-boxes) that can be repeated any number of
times. New !-graph equations can then be proved using a powerful technique called!-box induction.
However, previously this technique only applied to commutative (or cocommutative) algebraic struc-
tures, severely limiting its applications in some parts of CQM and (especially) quantum groups. In
this paper, we fix this shortcoming by offering a new semantics for non-commutative!-graphs using
an enriched version of Penrose’s abstract tensor notation.

1 Introduction

Diagrammatic theoriesgive us a way to study a wide variety of algebraic and coalgebraic structures in
monoidal categories. They consist of two parts: asignatureΣ and a set ofdiagram equations E. The
signature consists of a set of objects{A,B, . . .} along with a set of generating morphisms with input and
output arities formed from combining objects with⊗ andI . For example, the signature of a Frobenius
algebra consists of four morphisms:(µ : A⊗A→ A, η : I → A, δ : A→ A⊗A, ε : A→ I), or, written
diagrammatically:

Σ =

{

, ,,

}

Then,E is a set of equations between morphisms built from these generators, which we can picture as
equations between string diagrams. For example, the theoryof commutative Frobenius algebras contains
the (co)associativity, (co)unit, (co)commutativity and Frobenius equations:

= =

==

=

=

=

(1)

A modelof (Σ,E) in a (symmetric, traced, or compact closed) monoidal category C assigns a morphism
to each generator inΣ such that all equations inE hold.

http://dx.doi.org/10.4204/EPTCS.172.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

A. Kissinger & D. Quick 57

Remark 1.1. Many familiar algebraic constructions arise as special cases of this setup. For instance,
any linear ‘term-like’ algebraic theory (i.e. where free variables occur precisely once on the LHS and
RHS of every equation) can be presented this way. Also, if we restrict to equations inE that are directed
acyclic, we obtain presentations of PROPs (or coloured PROPs in the multi-sorted case). In that case,
models of(Σ,E) in C are in 1-to-1 correspondence with strong monoidal functorsfrom the presented
PROP intoC .

This style of algebraic theory works well when generators have fixed, finite arity. However, it is
often possible to find a much more elegant presentation of a theory if we allow the arity of our generators
to vary. For instance, commutative Frobenius algebras can be alternatively presented using a single
variable-arity generator sometimes called a ‘spider’, along with just two equations.

Σ =





 ...

...






E =









 ...

...
...

...
=

......

......
, =











A model of such a theory is no longer just a finite set of morphisms, but rather, a set offamilies of
morphismsf j,k : A⊗ j → A⊗k, indexed by input/output arities, such that the equations in E hold for all
possible arities.

Comparing this to the equations at the beginning of this section, we seem to have lost some formality.
That is, the ‘concrete’ diagrammatic identities above can be formalised in such a way that proofs can
be performed (and even machine-checked) via a suitable notion of diagram rewriting, as formalised
in [2]. One might be tempted to think that this level of rigouris lost when we describe equations in
a mathematical meta-language, making use of ellipses, for example, to represent repetition. However,
in [1], the authors introduced!-boxes(pronounced ‘bang-boxes’) as a method for reasoning about graphs
with repeated structure. As !-box rules, the previously informal rules can be formalised as:

Σ =

















 B

A


















E =



















=

A C

B D B

C

D

A

, =



















Intuitively, marking a subgraph with a !-box means that subgraph (along with edges in/out of it) can be
repeated any number of times to obtain aninstanceof the graph. Thus we interpret a graph with !-boxes
as a set of all its instances.

u
wwwv

B

A
}
���~ :=







, , · · ·, , · · ·, ,,







Similarly, for rules with !-boxes, matched pairs of !-boxescan be repeated in the LHS and RHS to obtain
instances of that rule. Thus, for our example of the commutative Frobenius algebra, we have reduced our
theory of 7 equations to just 2.

!-boxes were given a formal semantics in [7], making use of adhesive categories [8]. They also
come with a simple and powerful induction principle introduced by one of the authors in [5] and proven
correct in [10]. But there’s a catch: note how we were carefulto say thatcommutativeFrobenius algebras

58 Tensors and !-graphs

have an elegant presentation as above. A major drawback of the existing !-box notation is that it is only
unambiguous if all of the nodes in the diagram are invariant under permuting inputs/outputs. This is
severely limiting in two ways. The first and most obvious limitation is that we are forced to consider
only commutative algebraic structures. The second, more subtle limitation is that we have no freedom
to definitionallyextend our theory, i.e. introduce new nodes defined as diagrams of other nodes, without
making implicit assumptions about those diagrams (namely,that they are symmetric on inputs/outputs).

In order to overcome these shortcomings, we extend the !-graph notation with some extra information
about how newly-created edges should be ordered when a !-boxis expanded. This turns out to be fairly
straightforward as soon as one shifts from a graph-based semantics for diagrams, as employed in [2], to
a tensor-basedsemantics, where morphisms in the free compact closed category are represented using
a version of Penrose’s abstract tensor notation [11]. This approach, recently formalised in [6], has the
property that non-commutativity comes ‘for free’, where the edges connected to a single element are
represented as a list of edge names. Contrast this with the graph-based semantics for string diagrams or
Joyal and Street’s geometric construction [3], where one needs to add some extra structure (e.g. a total
ordering or typing on adjacent edges) to break symmetries.

So, without further ado, we introduce tensor expressions for compact closed categories and extend
them to accommodate !-boxes.

2 Tensors

Assume we are working in a compact closed categoryC freely generated by a set of objectsX,Y,Z, . . .
and morphisms of the formφ : I → X1⊗ . . .⊗Xn, i.e. morphisms with only non-trivial outputs. SinceC

is compact closed, this yields no loss of generality, since we represent an input of typeA as an output of
typeA∗. For simplicity, we’ll assume every ‘input’ is of fixed typeX∗ and every ‘output’ is of typeX.

Since we want to distinguish inputs/outputs we label them using lower case letters. They will have
a hat to illustrate being an ‘output’:{â, b̂, . . .}, or a check to illustrate being an ‘input’:{ǎ, b̌, . . .}.
Translating a morphismφ into tensor notation yields:

φ : I → X⊗X⊗X∗⊗X∗⊗X∗ =⇒ φâb̂čďě

φ

a b c d e

=⇒ φ

a b

c
d

e

We introduce a special graphical notation for morphisms
with only outputs. We write them as circles with a tick, tak-
ing the convention that inputs/outputs are ordered clockwise
from the tick.

Writing two tensors side-by-side yields a new tensor formedby taking the monoidal product and
‘contracting’ any repeated names using the compact structure onX.

ψ f̂ ǎb̌φâb̂čďě :=
ψ

f d e

φ

ca b

=⇒ b a

φ
cde

ψ
f

(2)

We say repeated edge names (e.g.a andb above) areboundin a tensor expression, and all other edge
names arefree. In the graph we have labelled the bound edges, though this ispurely for demonstrating
which edges are bound. The names of bound edges can be changedat will, provided they are replaced
with new, fresh names. Henceψ f̂ ǎb̌φâb̂čďě and ψ f̂ x̌y̌φx̂ŷčďě represent the same graph. As a result, we
typically will not write down bound names in the graphical notation.

A. Kissinger & D. Quick 59

Definition 2.1. The set oftensor expressionsfor a signatureS consists of (i) the trivial tensor 1, (ii)
the identity tensor 1̂ab̌, (iii) atomic tensorsψâb̌... with the appropriate names for eachψ ∈S , (iv) GH
for G,H tensor expressions, and (v)G′ obtained by changing some of the names of a tensor expression
G—subject to the condition that ˆa andǎ occur at most once for each namea.

Definition 2.2. Two tensor expressionsG,G′ are equivalent, writtenG≡G′ if G can be made intoG′ by
replacing bound names or by applying one or more of the following identities:

(GH)K ≡G(HK) GH ≡ HG G1≡G

G1b̂ǎ≡G[b̌ 7→ ǎ] H1âb̌≡ H[b̂ 7→ â]

Assume for the last two identities thatb̌ andb̂ are free inG andH, respectively. An≡-equivalence class
of tensor expressions is called atensor.

Note that we use≡ for syntactic equivalence of tensor expressions (and later!-tensor expressions).
We reserve the normal equals sign for equality by the rules ofa given theory. As such, we always assume
(G≡ H) =⇒ (G= H), but not the converse.

Tensors are related to morphisms in the free compact closed category as follows. Suppose we fix a
set ofcanonical names{x̌1, x̌2, . . .} and{x̂1, x̂2, . . .}. A tensorG is said to becanonically namedif for
someN it has as a free name precisely one of ˇxi or x̂i for 1≤ i ≤ N.

Theorem 2.3. Canonically-named tensors are in 1-to-1 correspondence tomorphisms in the free com-
pact closed category generated by a signatureS .

Proof. First note that adding ‘hats’ and ‘checks’ to edge names is essentially applying the Int construc-
tion (c.f. [4]) to free traced symmetric monoidal category,in the tensorial presentation given in [6]. The
free compact closure of the free traced monoidal category then satisfies the appropriate universal property
to make it the free compact closed category.

To summarise, we can interpret a tensor in a compact closed category as follows. First, we swap its
free names for ‘canonical names’ (or otherwise order the outputs somehow), then interpret each atomic
expression as a morphism (or one of a family of morphisms, parametrised by its arity). Finally, we
construct the composed morphism by composing each of the components and contracting repeated edge
names, as in (2).

Alternatively, one can study models in an existing abstracttensor system (in the sense of Penrose),
in which case interpretation is trivial. These two points ofview (categorical vs. ATS) are roughly
equivalent, as was shown in [6].

3 Adding !-boxes to tensor expressions

We now extend the existing tensor notation with !-boxes. Graphically !-boxes are blue boxes surrounding
a subgraph, labelled with a name (A,B, . . .). We can denote this with square brackets around a subterm in
a tensor expression, labelled with a superscript. Intuitively a !-box represents a portion of the graph that
can be copied multiple times. For this to be well-defined in the non-commutative case we need to clarify
where each new copy of the subgraph gets attached to surrounding nodes.

This is done by assigning an expansion direction (clockwisevs anticlockwise) to any group of edges
from a node to a !-box. We draw these as arrows over edge groupsin our !-graphs and for our tensors we

60 Tensors and !-graphs

denote clockwise edge groups as[. . .〉A and anticlockwise edge groups as〈. . .]A. For example:

φ〈â]B
[

ψǎ
]B

:=

ψ

φ

B

vs. φ[â〉B
[

ψǎ
]B

:=

ψ

φ

B

In the next section, we will see how the arrows clarify not only which direction edges should expand,
but also whether they should expand in groups or individually. For example, the following notation
gives anti-clockwise expansion of ˆab̌ as a group, clockwise expansion of ˆab̌ as a group, and clockwise
expansion of ˆa andb̌ as individual edges, respectively:

ψâ′b̌′〈âb̌]A
[]A ψ[âb̌〉Aâ′b̌′

[]A ψ[â〉Aâ′[b̌〉Ab̌′
[]A

ψ

a bA

a’
b’ vs.

aA

b’ψ
a’

b

vs.

A b

ψ
a’

b’

a

It is also possible for !-boxes to be nested inside other !-boxes. This means expansion of the par-
ent box makes a new copy of the child with a new !-box name. Edgegroups can correspondingly

B
A

φ

φ
B

A

a

c

be nested if the edges enter more than one box. In the diagram to the left we have
the !-graph with !-tensor expression:φâ[〈b̌]B〉A

[[

φb̂č

]B]A
. We have labelled which arrow

corresponds to which !-box. This is not necessary if we adoptthe convention that a
parent box’s arrow must be drawn closer to the node than it’s child box’s arrow. Note
that the labels inside nodes are to assign a type to the node asapposed to naming the
node. This means since we often have multiple nodes with the same type, we will have
nodes with the same label.

We can now imagine more general generators allowing arbitrary arrangements of input and output
edges. Any such node, say of typeφ , then needs to be assigned a morphism in our category for each
possible arrangement of edges. We represent an arrangment as a word over{∧,∨} where∧ represents

outputs and∨ represents inputs. For example the nodeφ has edge arrangment∧∨∧∧ and needs to

be assigned a morphismf : I → X⊗X∗⊗X⊗X. Hence we needφ : {∧,∨}∗→Mor(C) to model the
node typeφ .

!-tensors replace lists of edges on individual morphisms with edgetermsof which we now give a
recursive definition.

Definition 3.1. Fix a disjoint, infinite setsE andB of edge names and !-box names, respectively. We
denote the set ofdirected edgesasĒ := {ǎ, â : a∈ E }. The set ofedgetermsTe is defined recursively as
follows:

• ε ∈ Te (i.e empty)

• ǎ, â∈Te a∈ E

• [e〉A,〈e]A ∈ Te e∈ Te, A∈B

• e f ∈ Te e, f ∈Te

A. Kissinger & D. Quick 61

Two edgeterms are equivalent if one can be transformed into the other by:

εe≡ e≡ eε e(f g)≡ (e f)g [ε〉A≡ ε ≡ 〈ε]A

Since the well-formedness conditions for !-tensor expressions are a bit more complicated than for
tensor expressions, we first define the set of all !-pretensorexpressions, including those that may be
ill-formed.

Definition 3.2. The set of all !-pretensor expressionsT ′
Σ for a signatureΣ is defined recursively as:

• 1,1âb̌ ∈ T
′

Σ a,b∈ E

• φe∈ T
′

Σ e∈ Te,φ ∈ Σ

•
[

G
]A
∈ T

′
Σ G∈ T

′
Σ , A∈B

•GH ∈ T
′

Σ G,H ∈T
′

Σ

We introduce the notion of acontext, which lists the !-boxes in which a certain edge name occurs,
from the inside-out. These come in two flavours,edge contextsandnode contexts.

Definition 3.3. Given a directed edgea∈ Ē in a !-tensorG nested as
[[

φ
...〈〈a〉E1...〉En ...

]N1
. . .

]Nm.
We define theedge context, node context, andcontextof a respectively as:

ectxG(a) := [E1, . . . ,En] (edge context)

nctxG(a) := [N1, . . . ,Nm] (node context)

ctxG(a) := ectxG(a).nctxG(a) (context)

That is, ectxG(a) lists the !-boxes containinga that occur as part ofa’s edgeterm, and nctxG(a) lists the
rest.

Finally, a !-tensor expression is a !-pretensor expressionwhere !-box/edge names must be suitably
unique and occur in compatible contexts.

Definition 3.4. A !-tensor expression is a !-pretensor expression satisfying the following conditions:

F1. ǎ andâ occur at most once for each edge namea

F2.
[

. . .
]A

must occur at most once for each !-box nameA

C1. ectxG(a)∩nctxG(a) =∅ for all edgesa∈ E in G

C2. If ectxG(a) = [B1, . . . ,Bn] then allBi ∈ Boxes(G) and B1≺G B2≺G . . .≺G Bn

C3. For all bound pairs ˇa, â of edge names inG, there exist listses,bsof !-box names such that:

es.nctxG(ǎ) = ectxG(â).bs and es.nctxG(â) = ectxG(ǎ).bs

whereA≺G B means that the !-boxA is nested insideB in G (without other boxes nested between). We
write TΣ for the set of all !-tensor expressions for a signatureΣ.

The freshness conditions F1 and F2 ensure that we have not used the same name for more than one
edge/box. If a node is in !-boxB then any edges attached to it are already inB so it wouldn’t make sense
to haveB in both the ectx(a) and nctx(a) for a∈ Ē , this is enforced by C1. C2 ensures that edge contexts
are compatible with the !-boxes in the rest of the !-tensor. For exampleφ[[ǎ〉A〉B requiresA to be nested in

62 Tensors and !-graphs

B so does not result in a valid !-tensor when composed with e.g.
[[

ψb̌

]Bξ〈b̂]B
]A

. C3 ensures that edges
into !-boxes from the outside are decorated correctly by their edge terms. For instance, this is allowed:
ψ[â〉A

[

φǎ
]A

but this is not:ψâ
[

φǎ
]A

. The freedom to pickbs,esallows bound pairs of edges to share some

common context, e.g.:
[

ψâφǎ
]A

(both nodes are insideA) or ψ[â〉Aφ〈ǎ]A
[]A

(only the edge is insideA). In

the second example,A occurs in an edge term, so C2 requires the presence of
[

. . .
]A

somewhere in the

!-tensor, hence we append the ‘empty’ !-box
[]A

.
In this paper when we write a compositionGH, unless stated otherwise, we will assume this forms a

well defined !-tensor.
Naturally, we say two !-tensor expressions are equivalent,written G≡ H, if one can be obtained

from the other by using the usual tensor equivalences from Definition 2.2 or by using the edgeterm
equivalences from Definition 3.1.

We call the graphical notation for !-tensors thenon-commutative !-graph notation, or simply (non-
commutative) !-graphs.

Theorem 3.5. Any !-tensor can be represented unambiguously using non-commutative !-graph notation.

Proof. We show this by providing a general procedure for interpreting a !-graph as a !-tensor expression,
and vice-versa. For the sake of clarity, we demonstrate eachstep on a worked example. Given a non-
commutative !-graph, we wish to obtain a unique equivalenceclass of !-tensor expressions under≡.
Begin by choosing fresh names to write on all the interior edges.

B
A

C

φ

ψ
B

A

ψ
C

a

c b

=⇒

A
B

C

φ

ψ
B

A

ψ
C

a

c b

d e

Then, write the !-boxes with nesting as depicted in the diagram:

. . .
[

. . .
]C[

. . .
[

. . .
]B]A

Write each node in the diagram on the location it occurs (w.r.t. !-boxes):

φ...
[

ψ...

]C[[ψ...

]B]A

Finally, add the edges of each node, reading clockwise from the tick. Edges occurring under a clockwise
arrow markedAshould be enclosed in[. . .〉A, and edges under an anti-clockwise arrow should be enclosed
in 〈. . .]A, where the outermost groups are the ones closest to the node in the picture.

φâ[〈ě]B〉A〈ď]C
[

ψd̂č

]C[[ψêb̌

]B]A

The only choices we made in this process were the choice of interior edge names and the order in which
to write the individual tensors. However, up to≡, these are irrelevant. To show that any !-tensor can be
represented this way, we simply run the above procedure in reverse.

Because of this theorem, we use the terms !-tensor and !-graph interchangeably, depending on
whether we wish to refer to the syntactic vs. graphical notation.

A. Kissinger & D. Quick 63

4 Instantiating tensor expressions with !-boxes

The following diagram demonstrates two !-box operations wecan apply to a graph: killing a !-box is the
operation deleting the boxB and all contents (including edges to/fromB), and expanding is the operation
creating a new concrete instance of the subgraph insideB (attached appropriately). We can represent the
original graph in this diagram with the tensor expression

[

φâčb̂ψĉď

]Bξ[ǎ〉Bζ〈b̌d̂]Bě.

ξ

ζ

e

← Kill B−
φ

ψ

ξ

ζ

e

B

− ExpB→
φ

ξ

ψ

ζ

φ
ψ

B

e

We can define both of these operations formally. Since expansion involves copying various edge/!-
box names, we need a means of obtaining fresh names. Let Edges(G) ⊂ E and Boxes(G) ⊂B be the
edge names and !-box names occurring in a !-tensorG, respectively.

Definition 4.1. A freshness functionfor a !-tensorG is a pair of bijectionsfr : E → E andfr : B→B

such that
Edges(G)∩ fr (Edges(G)) =∅ and Boxes(G)∩ fr (Boxes(G)) =∅

For !-tensor expressionsG or edgetermse, we will write fr (G) or fr (e) to designate the new expres-
sion with names substituted according to the given bijections.

Definition 4.2. We define OpB ∈ {ExpB,Kill B} recursively over !-tensor expressions. For most cases,
both operations act trivially:

OpB(GH) := OpB(G)OpB(H) OpB(e f) := OpB(e)OpB(f)

OpB(
[

G
]A
) :=

[

OpB(G)
]A

OpB([e〉
A) := [OpB(e)〉

A

OpB(φe) := φOpB(e) OpB(〈e]
A) := 〈OpB(e)]

A

OpB(x) := x

whereA 6= B andx∈ {1,1âb̌, ǎ, â,ε}. Then, for the final three cases:

ExpB(
[

G
]B
) :=

[

G
]B fr (G) Kill B(

[

G
]B
) := 1

ExpB([e〉
B) := [e〉B fr (e) Kill B([e〉

B) := ε
ExpB(〈e]

B) := fr (e)〈e]B Kill B(〈e]
B) := ε

Note that ExpB(G) implicitly takes a freshness function as input. If we wish tomake this explicit,
we will write ExpB,fr . The above operations can be lifted from !-tensor expressions to !-tensors, i.e.
≡-classes of expressions, because of the following theorem.

Theorem 4.3. Let fr be a freshness function for two !-tensor expressions G,H. Then G≡ H implies
ExpB,fr (G)≡ ExpB,fr (H) andKill B(G)≡ Kill B(H).

64 Tensors and !-graphs

Proof. (Sketch) This can be shown by induction over the structure of!-tensor expressions. It is crucial
that we use thesamefreshness functionfr for the expansions ofG andH, otherwiseG andH could end
up with distinct free edges or !-boxes.

These two !-box operations give us a means to define the set of all (concrete) tensors that a single
!-tensor represents.

Definition 4.4. A tensorG′ is aconcrete instanceof a !-tensorG if it is obtained fromG by repeatedly
applying the two !-box operations Exp and Kill untilG′ contains no !-boxes. This sequence of operations
is called theinstantiationof G′. We writeJGK for the set of all concrete instances ofG.

When we fix a model in some categoryC , concrete tensors can then be interpreted as morphisms inC ,
just as before. We therefore interpret each !-tensor expression as a family of morphisms inC , namely
the interpretations of each of its concrete instances.

5 Reasoning with !-boxes

The real power of !-boxes comes from the ability to do equational reasoning using infinite families of
rules. Just as it makes sense to instantiate a single !-tensor, it makes sense to instantiate anequation
G= H between two !-tensors, provided they have compatible boundaries.

Definition 5.1. A !-tensor equation‘G= H ’ consists of a pair of !-tensors(G,H) that havecompatible
boundaries. That is, they have identical free edge names and !-boxes,A≺G B⇔ A≺H B for all !-boxes
in G andH, and ctxG(a) = ctxH(a) for all free edge names.

Intuitively, we require that the LHS and RHS of a !-tensor equation have the same interface to attach
to other graphs (same free variables and same box structure). These consistency conditions guarantee
that (i) applying !-box operations to valid equations yields valid equations, and (ii) whenG occurs as a
sub-expression of some other !-tensorK, it can be substituted forH to yield another valid !-tensorK′.

Theorem 5.2. Let fr be a freshness function for !-tensors G,H. Then, if G= H is a !-tensor equation,
then so too are:

Kill B(G= H) := (Kill B(G) = Kill B(H))

ExpB(G= H) := (ExpB,fr (G) = ExpB,fr (H))

Proof. (Sketch) It is straightforward to show that killing/expanding B affects the free variables and the
!-boxes in the same way on the LHS/RHS. To check the contexts,split a single free edge name into 3
cases, depending on whether the !-boxB occurs in the node-context ofa, the edge context ofa, or neither.
In all cases,a and/orfr (a) will have identical contexts on the LHS/RHS.

As in the case of !-tensors, we can defineJG= HK to be the set of all concrete rules derivable from
G = H using the !-box operations. A valid model of a graphical theory is then one where all of the
equations inJG = HK hold for each equationG = H. Proving that a rule holds forall of its instances
could be a daunting task in general, however in many cases a technique called!-box induction—which
we will meet shortly—comes to the rescue.

We obtain a notion of substitution of sub-expressions constructively, via inference rules. The first
few should look familiar as congruence- and substitution-like rules for !-tensors.

G= H (Prod)
GK = HK

G= H (Box)
[

G
]A

=
[

H
]A

G= H (Rename)
G[a→ b] = H[a→ b]

A. Kissinger & D. Quick 65

WhereG[a→ b] andH[a→ b] areG andH with the free edge/!-box namea replaced byb. We require

that K andA are chosen such thatGK, HK,
[

G
]A

, and
[

H
]A

are well-defined. These rules provide the
conditions under which some equationG= H can be unified, given some context, with a bigger equation
G′ = H ′. The final inference rule (Weaken) is less intuitive from thepoint of view of terms, and is best
understood graphically. Consider the following embeddingof !-graphs:

[

ψǎb̂

]Aφ〈b̌]A :=

φ

ψ
A

a
→֒ ψ

φ

A

ξ

=:
[

ψǎb̂ξâ
]Aφ〈b̌]A

The LHS does not embed as a sub-term of the RHS, because the !-box A contains more stuff on the
RHS. However, semantically, this is perfectly fine, as all ofthe concrete instances of the LHS will have
(uniquely-determined) embeddings into all of the concreteinstances of the RHS. So, we also need a rule
that allows us to ‘weaken’ !-boxes by adding more nodes to them.

G= G′ (Weaken)
WA7→K(G) = WA7→K(G′)

Where WA7→K(G) is defined recursively as:

WA7→K(
[

G
]A
) :=

[

GK
]A

WA7→K(
[

G
]B
) :=

[

WA7→K(G)
]B

if A 6= B

WA7→K(GH) := WA7→K(G)WA7→K(H)

WA7→K(x) := x x∈ {1,1âb̌,φe}

These four rules give us everything we need to apply equations on !-tensors to obtain new equations. For
example, the equation on the left below can be applied to delete all of theψ-nodes occurring as input to
a φ . An example application of this rule is shown on the right.

φ

ψ
A

a

=

φ

A
a

→֒ ψ

φ

A

ξ
ξ

φ

A=

We can also add inference rules for each of our !-box operations i.e.

G= H (Exp)
ExpB(G= H)

G= H (Kill)
Kill B(G= H)

Perhaps most interestingly, we can introduce new !-boxes, where previously there were none, via!-box
induction.

Kill A(G= H) G= H⇒ ExpA(G= H)
(Induction)

G= H

66 Tensors and !-graphs

As mentioned in Section 1, non-commutative nodes give us theability to make recursive definitions
of variable-arity generators in terms of fixed-arity generators of our theory. This induction principle in
turn gives us the means to lift rules about fixed arity generators up to more powerful !-tensor rules.

We conclude by showing a simple example. Suppose we take the theory of a monoid, i.e. the pair of

generators
(

,
)

satisfying the commutativity and unit laws from (1).Then wecan recursively define,

as a new generator, ann-fold tree of multiplications.

:= := (3)

Remark 5.3. Note how non-commutative !-boxes make such recursive definitions possible in the first
place, without assuminga priori that the family of graphs generated by the definition are symmetric
on their inputs/outputs. This need not be true, even in the case where all of the concrete generators
are commutative. This limitation in the case of commutative!-boxes was highlighted in [10], where
only a partial proof of the spider theorem for commutative Frobenius algebras could be done using
(commutative) !-box induction.

The first property we would like to prove about such trees is that adjacent trees merge to form bigger
trees. As a !-box rule, it looks like this:

BA
B

A

=

We can then hit this rule with the induction onB to break it into cases:

AA

= (base)

BA
B

A

= ⇒
B

A
B

A = (step)

...each of which have simple rewriting proofs:

AA

= =
A

B
A

=

B

A =

B

A

A B

=

B

A

=
A B

=
IH

One caveat is that when we apply the induction hypothesis in step 4, the !-boxB must be ‘fixed’ (i.e.
we’re not allowed to do any instantiation ofB via Exp, Kill, etc.). This is becauseB occurs free on both
sides of the implicationG= H⇒ ExpB(G= H). See [10] for details.

A. Kissinger & D. Quick 67

This style of proof is the main workhorse of soundness proofsof rules like the merging rule (a.k.a.
‘spider rule’) for commutative Frobenius algebras described in Section 1, and can be extended to the
non-commutative case, proving a similar rule for e.g.symmetricFrobenius algebras, giving a purely
diagrammatic characterisation of the normal forms described in [9].

References

[1] Lucas Dixon & Ross Duncan (2009):Graphical Reasoning in Compact Closed Categories for Quantum
Computation. AMAI 56(1), p. 20, doi:10.1017/S0305004100074338.

[2] Lucas Dixon & Aleks Kissinger (2013):Open-graphs and monoidal theories. Mathematical Structures in
Computer Science23, pp. 308–359, doi:10.1017/S0960129512000138. arXiv:1007.3794v1 [cs.LO].

[3] Andre Joyal & Ross Street (1991):The geometry of tensor calculus I. Advances in Mathematics88, pp.
55–113, doi:10.1016/0001-8708(91)90003-P.

[4] Andre Joyal, Ross Street & Dominic Verity (1996):Traced Monoidal Categories. Math. Proc. Camb. Phil.
Soc.119(3), pp. 447–468, doi:10.1017/S0305004100074338.

[5] Aleks Kissinger (2011):Pictures of Processes: Automated Graph Rewriting for Monoidal Categories and
Applications to Quantum Computing. Ph.D. thesis, University of Oxford. arXiv:1203.0202 [math.CT].

[6] Aleks Kissinger (2014):Abstract Tensor Systems as Monoidal Categories. In C Casadio, B Coecke,
M Moortgat & P Scott, editors:Categories and Types in Logic, Language, and Physics: Festschrift
on the occasion of Jim Lambek’s 90th birthday, Lecture Notes in Computer Science8222, Springer,
doi:10.1007/978-3-642-54789-8_13. arXiv:1308.3586 [math.CT].

[7] Aleks Kissinger, Alex Merry & Matvey Soloviev (2012):Pattern Graph Rewrite Systems. In: Proceedings
of DCM 2012, EPTCS143, doi:10.4204/EPTCS.143.5. arXiv:1204.6695 [math.CT].

[8] Stephen Lack & Pawel Sobocinski (2005):Adhesive and quasiadhesive categories. Theoretical Informatics
and Applications39(2), pp. 522–546, doi:10.1051/ita:2005028.

[9] Aaron D. Lauda & Hendryk Pfeiffer (2008):Open-closed strings: Two-dimensional extended TQFTs and
Frobenius algebras. Topology Appl.155(7), pp. 623–666, doi:10.1016/j.topol.2007.11.005.

[10] Alexander Merry (2014):Reasoning with !-Graphs. Ph.D. thesis, University of Oxford.

[11] R. Penrose (1971):Applications of negative dimensional tensors. In: Combinatorial Mathematics and its
Applications, Academic Press, pp. 221–244.

http://dx.doi.org/10.1017/S0305004100074338
http://dx.doi.org/10.1017/S0960129512000138
http://dx.doi.org/10.1016/0001-8708(91)90003-P
http://dx.doi.org/10.1017/S0305004100074338
http://dx.doi.org/10.1007/978-3-642-54789-8_13
http://dx.doi.org/10.4204/EPTCS.143.5
http://dx.doi.org/10.1051/ita:2005028
http://dx.doi.org/10.1016/j.topol.2007.11.005

	1 Introduction
	2 Tensors
	3 Adding !-boxes to tensor expressions
	4 Instantiating tensor expressions with !-boxes
	5 Reasoning with !-boxes

