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Abstract
Algebraic characterization of logic programs has received increasing attention in 
recent years. Researchers attempt to exploit connections between linear algebraic 
computation and symbolic computation to perform logical inference in large-scale 
knowledge bases. In this paper, we analyze the complexity of the linear algebraic 
methods for logic programs and propose further improvement by using sparse matri-
ces to embed logic programs in vector spaces. We show its great power of computa-
tion in reaching the fixed point of the immediate consequence operator. In particu-
lar, performance for computing the least models of definite programs is dramatically 
improved using the sparse matrix representation. We also apply the method to the 
computation of stable models of normal programs, in which the guesses are asso-
ciated with initial matrices, and verify its effect when there are small numbers of 
negation. These results show good enhancement in terms of performance for com-
puting consequences of programs and depict the potential power of tensorized logic 
programs.
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Introduction

For decades, logic programming (LP) representation has been considered mainly 
in the form of symbolic logic [14], which is useful for declarative problem solv-
ing and symbolic reasoning. Logic programming starts gaining more attention 
recently to build explainable learning models [8, 27], whereas it still has some 
limitations in terms of computation. In other words, symbolic computation is not 
an efficient way when we need to combine it with other numerical learning mod-
els such as artificial neural network (ANN). Recently, several studies have been 
done on embedding logic programs to numerical spaces so that we can exploit 
great computing resources ranging from multi-threaded CPU to GPU. The linear 
algebraic approach is a robust way to manipulate logic programs in numerical 
spaces. Because linear algebra is at the heart of many applications of scientific 
computation, this approach is promising to develop scalable techniques to process 
huge relational knowledge base (KB) [20, 29]. In addition, it enables the ability 
to use efficient parallel algorithms of numerical linear algebra for computing LP.

In [7], Cohen described a probabilistic deductive database system in which 
reasoning is performed by a differentiable process. With this achievement, they 
can enable novel gradient-based learning algorithms. In [23], Sato presented the 
use of first-order logic in vector spaces for Tarskian semantics, which demon-
strates how tensorization realizes efficient computation of Datalog. In [24], Sato 
proposed a linear algebraic approach to datalog evaluation. In this work, the least 
Herbrand model of DB is computed via adjacency matrices. He also provided 
theoretical proofs for translating a program into a system of linear matrix equa-
tions. This approach achieves O(N3) time complexity where N is the number 
of variables in a clause. Continuing to this direction, Sato, Inoue, and Sakama 
developed linear algebraic abduction to abductive inference in Datalog [25]. They 
did empirical experiments on linear and recursive cases and indicated that the 
approach can successfully abduce base relations.

In [13], Hitzler et  al. theoretically proved that first-order normal logic pro-
grams can be approximated by feedforward connectionist networks based on the 
well-known theorem of Funahashi [9] that every feedforward neural network with 
at least 3 layers can uniformly approximate any continuous function. Hitzler et al. 
realized the use of neural networks to compute the immediate consequence opera-
tor TP and further extended it to first-order logic. However, the main open ques-
tion is how to find the appropriate structure of the network (how many layers, 
how many neurons per layer) for a given logic program. In this regard, Serafini 
and Garcez show how real logic can be implemented in deep ANN [26] then pro-
pose logic tensor networks (LTN). The framework is built upon a learning task 
with both knowledge and data being mapped onto real-valued vectors that the 
authors follow an inference-as-learning approach.

Using a linear algebraic method, Sakama, Inoue, and Sato define relations 
between LP and multi-dimensional array (tensor) then propose algorithms for 
computation of LP models [21, 22]. The representation is done by defining a 
series of conversions from logical rules to vectors and then the computation is 
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done by applying matrix multiplication. Later, elimination techniques are applied 
to reduce the matrix size [16] and gain impressive performance. In [3], a similar 
idea using 3D tensor was employed to compute solutions of abductive Horn prop-
ositional tasks. In addition, Aspis built upon previous works on matrix characteri-
zation of Horn propositional logic programs to explore how inference from logic 
programs can be done by linear algebraic algorithms [2]. He also proposed a new 
algorithm for the non-monotonic deduction, based on linear algebraic reducts and 
differentiable deduction. These works show that the linear algebraic methods are 
promising for logic inference on large scales. However, such methods have not 
yet been proved to be really efficient, since they have not yet been done adequate 
experiments, to the best of our knowledge.

In this paper, we continue Sakama et al.’s idea of representing logic programs by 
tensors [16, 21, 22]. Although the method is well-defined, there are some problems, 
which limit the performance of the approach and have not been solved. First, the 
obtained matrix after conversion is sparse but sparsity analysis has never been con-
sidered yet. Second, the experiments were limited to small-size logic programs that 
are not sufficient to prove the robustness of matrix representation. In this research, 
we further raise the bar of computing performance using sparse representation for 
logic programs in order to reach the fixed point of the immediate consequence oper-
ator ( TP-operator). We are able to do experiments on large sizes of logic programs 
to demonstrate the performance for computing least models of definite programs. 
Note that computation of the fixed point of the TP-operator frequently appears in 
logic programming, not only in obtaining the least model of a definite program but 
also in any model construction, e.g., computing the minimal models of the reduct of 
a normal or disjunctive logic program with negation. In this regard, we also conduct 
experiments on the computation of stable models of normal programs with a small 
number of negations.

Accordingly, the rest of this paper is organized as follows:1 Sect. 2 reviews and 
summaries some definitions and computation algorithms for definite and normal 
programs, Sect. 3 discusses sparsity problem in tensorized logic programs and pro-
poses a method to represent LP, Sect. 4 investigates space and time complexity of 
the methods, Sect.  5 demonstrates experimental results with definite and normal 
programs, and Sect. 6 gives final conclusions and future works.

Preliminaries

Definite Programs

We consider a language L  that contains a finite set of propositional variables. A 
definite (logic) program is a finite set of rules of the form:

1 A preliminary version of this paper was presented as a Technical Communication paper at The 36th 
International Conference on Logic Programming (ICLP 2020) [18]. This paper has much extended the 
contents of [18] by considering several sparse methods for logic programs and comparing them both ana-
lytically with complexity results presented and experimentally with more datasets.
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where h and bi are propositional variables (atoms) in L .
Given a logic program P, the set of all propositional variables appearing in P is 

called the Herbrand base of P (written BP ). For each rule r of the form (1), define 
head(r) = h and body(r) = {b1,… , bm} . A rule is called a fact if body(r) = � . A 
definite program P is called an singly-defined (SD) program if there are no two 
rules that have the same head in it, that is head(r1) ≠ head(r2) for any two rules r1 
and r2 ( r1 ≠ r2 ) in P.

When a definite program P contains more than one rule (of the form (1)) hav-
ing the same head:

where ℬ
i
, (1 ≤ i ≤ 1) is a conjunction (possibly empty) of atoms, we can replace 

them with a set of new rules:

where bi (i = 1,… , n) are newly introduced atoms ( bi ∉ BP ) such that bi ≠ bj if 
i ≠ j . Then the set of rules of (3) is an SD program. Each rule of form (2) is called 
an OR-rule. Every definite program P is transformed to a program P� = Q ∪ D such 
that Q is an SD program and D is a set of OR-rules. The resulting program P′ is 
called a standardized program. A definite program P coincides with its standardized 
form P′ iff P is an SD program. By introducing the OR-rule (2) which is a shorthand 
of n rules: h ← b1,… , h ← bn including new atoms, the Herbrand base of P′ (writ-
ten BP′ ) is usually larger that BP . In this paper, a program means a standardized pro-
gram unless stated otherwise.

A set I ⊆ BP is an interpretation of P. An interpretation I is a model of a stand-
ardized program P if {b1,… , bm} ⊆ I implies h ∈ I for every rule  (1) in P, and 
{b1,… , bm} ∩ I ≠ � implies h ∈ I for every rule  (2) in P. A model I is the least 
model of P if I ⊆ J for any model J of P. A mapping TP ∶ 2BP → 2BP (called a 
TP-operator) is defined as: T

P
(I) = { h ∣ h ← b1 ∧⋯ ∧ b

m
∈ P and {b1,… , b

m
}

⊆ I } ∪ { h ∣ h ← b1 ∨⋯ ∨ b
n
∈ P and {b1,… , b

n
} ∩ I ≠ � }.

The powers of TP are defined as: Tk+1
P

(I) = TP(T
k
P
(I)) (k ≥ 0) and T0

P
(I) = I . Given 

I ⊆ BP , there is a fixed-point Tn+1
P

(I) = Tn
P
(I) (n ≥ 0) . For a definite program P, the 

fixed-point Tn
P
(�) coincides with the least model of P [28].

Definition 1 (Matrix representation of standardized programs [21])
Let P be a standardized program and BP = {p1 , … , pn} . Then, P is represented by 

a matrix MP ∈ ℝ
n×n such that for each element aij (1 ≤ i, j ≤ n) in MP,

(1)h ← b1 ∧⋯ ∧ bm (m ≥ 0),

h ← ℬ1

…

h ← ℬ
n
,

(2)h ← b1 ∨⋯ ∨ bn (n ≥ 0),

(3)b
i
← ℬ

i
(i = 1,… , n),
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1. aijk =
1

m
(1 ≤ k ≤ m; 1 ≤ i, jk ≤ n) if  pi ← pj1 ∧⋯ ∧ pjm is in P;

2. aijk = 1 (1 ≤ k ≤ l; 1 ≤ i, jk ≤ n) if  pi ← pj1 ∨⋯ ∨ pjl is in P;
3. aii = 1 if pi ← is in P;
4. aij = 0 , otherwise.

MP is called a program matrix. We write ���i(MP) = pi and ���j(MP) = pj 
(1 ≤ i, j ≤ n).

To better understand Definition 1, let us consider a concrete example.

Example 1 Consider the definite program P = {p ← q ∧ r, p ← s ∧ t, r ← s, q ← t, s ←, t ←}.
P is not an SD program because there are two rules p ← q ∧ r and 

p ← s ∧ t having the same head, then P is transformed to the stand-
ardized program P′ by introducing new atoms u and v as follows: 
P� = {u ← q ∧ r, v ← s ∧ t, p ← u ∨ v, r ← s, q ← t, s ←, t ←} . Then by apply-
ing Definition 1, we obtain:

Sakama et al. further define representation of interpretation using interpretation 
vectors (Definition 2). This vector is used to store the truth value of all propositions 
in P. The starting point of interpretation vector is defined as the initial vector (Defi-
nition 3).

Definition 2 (Interpretation vector [21])
Let P be a program and BP = {p1,… , pn} . Then an interpretation I ⊆ BP is rep-

resented by a vector v = (a1,… , an)
� , where each element ai (1 ≤ i ≤ n) represents 

the truth value of the proposition pi such that ai = 1 if pi ∈ I ; otherwise, ai = 0 . We 
write ���i(v) = pi.

Definition 3 (Initial vector) Let P be a program and BP = {p1,… , pn} . Then, the 
initial vector of P is an interpretation vector v0 = (a1,… , an)

� such that ai = 1 
(1 ≤ i ≤ n) if ���i(v0) = pi and a fact pi ← is in P; otherwise, ai = 0.

To compute the least model in vector space, Sakama et al. proposed an algorithm 
that is equivalent to the result of computing least models by the TP-operator. This 
algorithm is presented in Algorithm 1.

Definition 4 (�-thresholding) Given a value x, define �(x) = x� , where x� = 1 if 
x ≥ 1 ; otherwise, x� = 0.
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Similarly, the �-thresholding is extended in an element-wise way to vectors and 
matrices.

Normal Programs

Normal programs can be transformed to definite programs as introduced in [1]. 
Therefore, we transform normal programs to definite programs before encoding 
them in matrices.

Definition 5 (Normal program) A normal program is a finite set of normal rules:

where h and bi(1 ≤ i ≤ m) are propositional variables (atoms) in ℒ.

P is transformed to a definite program by rewriting the above rule into the follow-
ing form:

where bi is a new proposition associated with bi.
In this part, we denote P as a normal program with an interpretation I ⊆ BP . The 

positive form P+ of P is obtained by applying the above transformation. Since a 
definite program P+ is transformed to its standardized program, then we can apply 
Algorithm 1 to compute the least model. [1] proved that if P is a normal program, I 
is a stable model of P iff I+ is the least model of P+ ∪ Ī , where Ī = {p̄ | p ∈ BP⧵I} , 
then I+ = I ∪ Ī . We should note that I+ is an interpretation of P+ which is a definite 
program. We can obtain I+ by applying Algorithm 1 to the transformed program P+.

Definition 6 (Matrix representation of normal programs [16])
Let P be a normal program with BP = {p1,… , pn} and its positive form P+ with 

BP+ = {p1,… , pn, qn+1,… , qm}.
Then, P+ is represented by a matrix MP ∈ ℝ

m×m such that for each element aij 
(1 ≤ i, j ≤ m):

(4)h ← b1 ∧ b2 ∧⋯ ∧ bl ∧ ¬bl+1 ∧⋯ ∧ ¬bm (m ≥ l ≥ 0),

(5)h ← b1 ∧ b2 ∧⋯ ∧ bl ∧ bl+1 ∧⋯ ∧ bm (m ≥ l ≥ 0),
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1. aii = 1 for n + 1 ≤ i ≤ m;
2. aij = 0 for n + 1 ≤ i ≤ m and 1 ≤ j ≤ m such that i ≠ j;
3. Otherwise, aij ( 1 ≤ i ≤ n ; 1 ≤ j ≤ m ) is encoded as in Definition 1.

MP is called a program matrix. We write ���i(MP) = pi and ���j(MP) = pj 
(1 ≤ i, j ≤ n).

Example 2 Consider a program P = {p ← q ∧ s, q ← p ∧ t, s ← ¬t, t ←, u ← v}.
First, transform P to P+ such that 

P+ = {p ← q ∧ s, q ← p ∧ t, s ← t, t ←, u ← v} . Then applying Definition 6, we 
obtain:

Instead of the initial vector in the case of definite programs, the notion of an ini-
tial matrix is introduced to encode multiple interpretations containing positive and 
negative facts in a program.

Definition 7 (Initial matrix [16])
Let P be a normal program and BP = {p1,… , pn} and its positive form P+ with 

BP+ = {p1,… , pn, qn+1,… , qm} . The initial matrix M0 ∈ ℝ
m×h(1 ≤ h ≤ 2m−n) is 

defined as follows:

1. each row of M0 corresponds to each element of BP in a way that rowi(M0) = pi for 
1 ≤ i ≤ n and rowi(M0) = qi for n + 1 ≤ i ≤ m;

2. aij = 1 ( 1 ≤ i ≤ n , 1 ≤ j ≤ h ) iff a fact qi ← is in P; otherwise aij = 0;
3. aij = 0 ( n + 1 ≤ i ≤ m , 1 ≤ j ≤ h ) iff a fact pk ← (with 1 ≤ k ≤ n ) is in P and 

qi = pk ; otherwise, aij takes the value 0 or 1 in a way that every combination in 
2m−n (except the deterministic case of aij = 0 ) is enumerated.

Each column of M0 is a potential stable model in the first stage. We update M0 by 
applying matrix multiplication with the matrix representation obtained by Definition 
6 as Mk+1 = �(MPMk) . The resulting matrices are called interpretation matrices that 
each of which includes multiple interpretations of the corresponding program. Then, 
the algorithm for computing the stable models is presented in Algorithm 2.
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This method requires extra steps on transforming and finding stable models of 
a program that is represented in Algorithm  3. As we can see, Algorithm  3 loops 
over each interpretation vector of the fixed point of M which we obtain by applying 
matrix multiplication and thresholding. The main idea behinds this algorithm is to 
verify the consistency of each interpretation I+(= I ∪ Ī) that does not contain 1s for 
both positive and negative forms of an atom. This is done by the condition in line 8 
of Algorithm 3 that tests whether the sum of values (corresponding to positive and 
negative forms of an atom in P) is 1 or not.

In addition, the initial matrix size grows exponentially by the number of nega-
tions m − n . Therefore, this representation requires a lot of memory and the algo-
rithm performs considerably slower than the method for definite programs if there 
are many negations appearing in the program. Nevertheless, we will later show that 
this method still has the advantage when there are a small number of negations.

Sparse Representation of Logic Programs

The idea of representing logic programs in vector spaces could minimize the work 
with symbolic computation and utilize better computing performance. Besides that, 
this method copes with the curse of dimension when a matrix representing logic 
programs becomes very large. Previous works on this topic only consider dense 
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matrices for their implementation and it seems not very impressive in terms of per-
formance even on small datasets [16]. To solve this problem, this paper focuses on 
analyzing the sparsity of logic programs in vector spaces and proposes improvement 
using sparse representation for logic programs. Additionally, we analyze and verify 
different sparse representations to conclude which format is efficient for logic pro-
grams in terms of memory cost.

Sparsity of Logic Programs in Vector Spaces

A sparse matrix is a matrix in which most of the elements are zero. The level of 
sparseness is measured by sparsity which equals the number of zero-valued ele-
ments divided by the total number of elements [6]. Because there are a large number 
of zero elements in sparse matrices, we can save the computation by ignoring these 
zero values [12]. According to the conversion method of linear algebraic approach, 
we can calculate the sparsity of a program P.2 This calculation is done by counting 
the number of non-zero-valued elements of each rule in P, then let 1 minus the frac-
tion of the number of non-zero-valued elements and the matrix size.

By definition, the sparsity of a program P is computed by the following equation:

where n is the number of elements in BP and |body(r)| is the length of body of rule r.
Accordingly, the representation matrix becomes a high level of sparsity if 

the matrix size becomes larger, while the length of the body rule is insignificant. 
In fact, a rule r in a logic program rarely has a body length approx n, therefore, 
|body(r)| ≪ n . In short, we can say that the matrix representation of a logic program 
according to the linear algebraic approach is sparse in most cases.

Converting Logic Programs to Sparse Matrices

Sparse matrix computation is very important due to the large number of zero ele-
ments in real-world matrix data; therefore, compaction techniques are used to reduce 
the amount of storage, memory accesses, and computation [6]. Among several 
sparse storage formats, we select the three formats coordinate, compressed sparse 
row (CSR) and block compressed sparse row (BSR) [5] which are the most general, 
efficient, robust, and widely adopted by many programming libraries.

Because the matrix representation of a logic program P is sparse, applying Algo-
rithm 1 and Algorithm 2 on sparse representation is remarkably faster than the dense 
matrix. Moreover, sparse representation saves the memory space as well, therefore 
enabling the ability to deal with a large scale KBs.

(6)sparsity(P) = 1 −

∑
r∈P �body(r)�

n2
,

2 We only consider the programs in Definitions 1 and 6.
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The Coordinate Format

The COO format is the most simple idea of sparse matrix format which represents 
each non-zero element by a tuple of a row index, a column index, and the value of 
the element. That means the COO format uses 2 arrays of coordinates and 1 array of 
values. The length of these arrays is equal to the number of non-zero elements. The 
first array stores the row index of each value, and the second array stores the row 
and column indices of each value, while the third array stores the values in the origi-
nal matrix. We can imagine that the ith non-zero element in a matrix is represented 
by a 3-tuple extracted from these 3 arrays at index i.

Example 3 illustrates sparse representation in the COO format for the program P 
in Example 1. We should note that in Example 3, zero-based indexing3 is used and 
we follow row-major order.4

Example 3 The COO representation for P in Example 1 becomes:

Row index 0 0 1 2 3 4 5 5 6 6
Col index 5 6 4 3 3 4 1 2 3 4
Value 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5

This format is the most simple and flexible for general-purpose usage. The stor-
age requirement for this format is O(3 × �z) where �z is the number of non-zero ele-
ments. Because of the generality, we often use the COO format as the baseline to 
evaluate other sparse representations.

The Compressed Sparse Row Format

The CSR format is an improvement of the COO format. Noticeably, in the row index 
array of the COO format, a value can be repeated consecutively because the non-
zero elements may appear in the same row many times. We may reduce the size of 
the row index array by considering the CSR format. In this format, while the col-
umn index and the value arrays remain the same, we compress the row index array 
by storing the index of the row only where non-zero elements appear. That means 
we do not need to store two consecutive 0s and two consecutive 5s as in Example 
3. Instead, we store the index of the next row, then finally point the last index to 
the end of the row (which equals the number of non-zero elements). Concretely in 
the row index array, the first element is the starting index which is 0. The last ele-
ment is an extra element to indicate the end of this array which is equal to the num-
ber of non-zero elements. We need two consecutive values in the row index array 
to extract the non-zero elements in this row. To be specific, we need to interpret 

3 The initial element of a sequence is assigned the index 0.
4 In row-major order, the consecutive elements of a row reside next to each other.
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row_start and row_end of the ith row from the compressed value in row_index array: 
row_starti = row_index[i], row_endi = row_index[i + 1].

Example 4 The CSR representation for P in Example 1 becomes:

Row index 0 2 3 4 5 6 8 10
Col index 5 6 4 3 3 4 1 2 3 4
Value 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5

Example 4 illustrates this method. For the first row ( i = 0 ), we have 
row_start0 = 0, row_endi = 2 , then we extract two values 0 and 1 for the non-
zero element in the first row. These start and end will be used to extract col-
umn index and value of non-zero elements. Similarly, the second row ( i = 1 ), we 
have row_start1 = 2, row_end1 = 3 then we have only one non-zero element at 
index 2. Continue this interpretation until we reach the final row ( i = 6 ), we have 
row_start6 = 8, row_end6 = 10 then we extract last two non-zero elements at index 
8 and 9 for the final row.

For a sparse matrix of the size m × n , the CSR format saves on memory com-
pared to the dense format only when 𝜂z < (m(n − 1) − 1)∕2 (where �z is number of 
non-zero elements). Compared to the COO format, the CSR format uses less num-
bers in the row index array only when m + 1 < 𝜂z . This is because the actual size of 
the row index array is m + 1 . Therefore, the space complexity of the CSR format is 
O(2 × �z + m + 1).

There is another format compressed sparse column (CSC) which is similar to the 
CSR. The only difference is that the CSC enumerates non-zero elements following 
the column-major order5 and compress the column index array. Hence, the space 
complexity of the CSC is O(2 × �z + n + 1) . In the case of logic programs, the matri-
ces are square so that these two formats are identical.

The Block Compressed Sparse Row Format

There is another sparse representation BSR which stores a two-dimensional square 
block of primitive data types instead of storing a single value. The dimension of the 
square block is db then the matrix is divided into multiple blocks of the size db × db . 
In case that the dimension of the matrix is not a multiple of the db , we need to add 
a zero column or row to the matrix. For example, the matrix program in Example 1 
has the dimension 7 × 7 and the db is 2, we need to pad the matrix to the dimension 
8 × 8 . Then, we divide the padded matrix into 16 blocks of the dimension db × db . 
In the BSR, the format only stores non-zero blocks and uses the same way to index 
each block as in the CSR. Let us consider the BSR format for the logic program P in 

5 In the column-major order, the consecutive elements of a column reside next to each other, in contrast 
to row-major order.
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Example 1, we can identify 8 non-zero blocks in the matrix. The illustration of these 
steps and the BSR representation of P are presented in Example 5.

Example 5 Illustration of block representation and the BSR representation for P in 
Example 1 are following:

Row index 0 2 3 6 8
Col index 2 3 1 0 1 2 1 2
Block B13 B14 B22 B31 B32 B33 B42 B43

Block value 0 1 1 0 1 0 0 0 0 1 0 1 0 0 0 1/2 0 0 0 1/2 1 0 0 0 0 1/2 0 0 1/2 0 0 0

Note that in each block, we store all the numbers following an exact order, row-
major order in this example. If we follow the column-major order, the block value vec-
tor may be different, for example, the block B22 in the column-major order is 0 0 1 1.

Noticeably, this format is not efficient in this example because it stores many 
blocks with only 1 or 2 non-zero elements. In fact, this format only shows its advan-
tages in case the matrix is highly concentrated in a few blocks. In other words, if the 
matrix has �z non-zero elements and �b non-zero blocks of the size db × db then the 
BSR performs the best in case �z ≈ �b × db

2.
Assume we have a sparse matrix of the size m × n . In the matrix, there are �z 

non-zero elements and �b non-zero blocks of the size db × db . Note that in the BSR 
format, we only need to store the indices of non-zero blocks and all values in those 
blocks. So, we can consider it as a CSR matrix where each non-zero block (in the 
BSR format) is a single non-zero element (in the CSR format) that the matrix size is 

 , where  is the ceiling function. Accordingly, the space complexity of 

the BSR format is .
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Which Format is the Best for Logic Programs?

As we can see in Example 4, the row index array now has only 8 indices rather 
than 10 in Example 3. We save storing repeatedly indices in the row index array by 
storing only the position where it starts and ends. Accordingly, the CSR can be con-
sidered more economical than the COO but it comes with the cost that non-zero ele-
ments must follow row-major order while a strict order is not necessary for the COO 
format. Fortunately, in the case of linear algebraic methods for fixed-point computa-
tion, we do not need to update the program matrix frequently. Then the CSR format 
will be a better choice over the COO format. In fact, we can save up to 25% of the 
size of the row index array using the CSR format as will be illustrated in the experi-
ments. The BSR format takes advantage over the CSR format when the program 
matrix is concentrated in a few non-zero blocks. Unfortunately, it is not very often 
in the case of program matrices. The experiments section will reveal which kind of 
logic programs will be beneficial from this sparse format. Accordingly, we propose 
the CSR format is the ideal sparse representation for linear algebraic computation 
methods.

Complexity Analysis

In this section, we analyze the time and space complexity of the linear algebraic 
methods for computing fixed points as defined in Algorithm 1 and Algorithm 2.

Linear Algebraic Method for Definite Programs

Assume that a definite program P has a matrix representation MP ∈ ℝ
n×n and the 

matrix has �z non-zero elements.6

Proposition 1 The space complexity of linear algebraic method for definite pro-
grams is 

1. O(n2 + n) for dense format,
2. O(�z + n) for sparse format.

Proof Obviously, we have to store the program matrix and the interpretation vec-
tor. As defined, the program matrix size is n × n and the interpretation vector size is 
n × 1 . Note that only the program matrix can be stored in the sparse format while the 
interpretation vector must be stored in dense format.   ◻

Proposition 2 The time complexity of linear algebraic method for definite programs 
is 

6 The matrix size depends on the number of literals linearly.
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1. O(n3) for dense format,
2. O(�z × n) for sparse format.

Proof Similar to the TP-operator the main loop of Algorithm 1 repeats n times in the 
worst case. In addition, the complexity of each loop depends on the matrix multipli-
cation between a matrix of the size n × n and a vector of the size n × 1 , so the multi-
plication takes O(n2) for dense format and O(�z) for sparse format.

Theoretically, if the program matrix is sparse, methods using sparse format out-
perform methods using the dense format in both time and space complexity.   ◻

Linear Algebraic Method for Normal Programs

Let us consider a normal program P which has k negations. Assume that P has a 
matrix representation MP ∈ ℝ

n×n and the matrix has �z non-zero elements.7

Proposition 3 The space complexity of the linear algebraic method for normal pro-
grams is 

1. O(n2 + n × 2k) for dense format,
2. O(�z + n × 2k) for sparse format.

Proof Similar to the methods for definite programs, the size of the program matrices 
is the same. The cost for storing the interpretation matrix exponentially depends on 
the number of negations because we have to consider all the combinations according 
to the Algorithm 2. Therefore, it is the limitation of the method that we can handle 
programs with a limited number of negations.   ◻

Proposition 4 The time complexity of linear algebraic method for normal programs 
is 

1. O(n3 × 2k + n2 × (2k − 1)) for dense format,
2. O(�z × n × 2k + n2 × (2k − 1)) for sparse format.

Proof Similar to previous proof, the main loop of Algorithm 2 repeats n times in the 
worst case. Each loop involves the multiplication between a matrix of the size n × n 
and a matrix of the size n × 2k . Hence, the complexity of Algorithm 2 is O(n3 × 2k) 
if we use dense format and O(�z × n × 2k) if we use sparse format. Then, we have 
to apply the Algorithm 3 to find the stable model. This algorithm loops over all 2k 
combinations to verify the model in case k > 0 . If k = 0 the loop is not executed. 
Each verification takes 2 nested loops over n times. Therefore, the complexity of this 
algorithm is O(n2 × (2k − 1)) .   ◻

7 Usually n is larger than the number of literals in P because we have to do several standardized steps. 
To simplify, we can assume that n linearly depends on the number of literals in P.
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Obviously, if k is small, then we obtain the same complexity as the method for 
definite programs. If k is considerably large, then both the space and time complex-
ity are infeasible, so that is the limitation of the method. Although both formats are 
exponential in terms of time and space complexity, sparse representation improves a 
lot in general cases.

Experimental Results

In this section, we report the results of two experiments on finding the least models 
of definite programs and computing stable models of normal programs.To evaluate 
the performance of linear algebraic methods, we compared the implementations of 
Algorithm 1 and Algorithm 2 with (i) the TP-operator and (ii) Clasp (Clingo v5.4.1 
running with flag –mode=clasp). Our implementations are done with (iii) dense 
matrices and (iv) sparse matrices. Except Clasp, all implementations (i), (iii) and 
(iv) are implemented on C++ with CPU x64 as a targeted device. In (i), we imple-
ment the operator using hashset instead of list for better set operations performance. 
To avoid ambiguity with the original definition of the TP-operator, we will call (i) 
as Hashset method from now on in this section. (ii) is the solver of Clingo which 
is a powerful Answer Set Programming (ASP) solver developed at the University 
of Potsdam [10]. In terms of matrix representations and operators for (iii) and (iv), 
we use Eigen 3 library [11] with the default backend. The computer running experi-
ments has the following configurations: CPU: Intel Core i7-4770 (4 cores, 8 threads) 
@3.4 GHz; RAM: 16 GB DDR3 @1333 MHz; GPU: NVIDIA GTX 1080; Operat-
ing system: Ubuntu 18.04 LTS 64 bit.

Focusing on analyzing the performance of sparse representation, we first evaluate 
our method by conducting experiments on randomized logic programs. We use the 
same method of LP generation conducted in [16] that the size of a logic program is 
defined by the size n = |BP| of the Herband base BP and the number of rules m = |P| 
in P. The number of facts (rules with the body length is 0) of the logic program is 
limited by n/3. The other rules are uniformly generated based on the length of their 
rule body (maximum length is 8) according to Table 1.

According to Algorithms 1 and 2, we have to transform logic programs to stand-
ardized programs to encode them as matrices. Hence, in the experiments, we also 
track the size of the Herbrand base of a standardized program which is equal to the 
actual square matrix size and denote it by n′.

We further generate denser matrices in order to analyze the efficacy of the sparse 
method. While keeping the same proportion of facts and rules with the body length 
of 1 and 2, we generate the rest 70 ∼ 80% rules such that their body length is around 

Table 1  Proportion of rules in P based on the number of propositional variables in their bodies

Body length 0 1 2 3 4 5 6 7 8

Allocated proportion < n∕3 4% 4% 10% 40% 35% 4% 2% 1%
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5% of the number of propositions. This method leads to the lower sparsity level of 
generated matrices with approximate 0.95.

Also based on the generation method for definite programs, we generate normal 
programs by randomly changing literals to negations and limit the number of nega-
tions, denoted by k, such that 4 ≤ k ≤ 8 . The important difference from [16] is that we 
do experiments on much larger n and m, because our method, which is implemented 
on C++, is dramatically more efficient than Nguyen et  al.’s implementation using 
Maple. The largest size of the logic program in this experiment reaches thousands of 
propositions and hundreds of thousands of rules. Further, we also compare our method 
with one of the best ASP solvers—Clasp [10] running in the same environment. All 
methods are conducted 30 times on each LP to obtain mean values of execution time.

In addition, we also conduct a further experiment using non-random problems 
with definite programs using the transitive closure problem. The graph we use is 
selected from the Koblenz network collection [15]. This dataset contains binary 
tuples and we compute the transitive closure of them using the following rules:

– path(X, Y) ← edge(X, Y)

– path(X, Y) ← edge(X, Z) ∧ path(Z, Y)

Definite programs

The final results on definite programs are illustrated in Table 2 and Fig. 1.
We can see in the results that the dense matrix method is slowest and being una-

ble to run with very large programs that is why the data for this method is not dis-
played if the number of rules is larger or equal to 120,000. We should mention that 

Table 2  Details of experimental results on definite programs of Hashset method, Clasp and linear alge-
braic methods (with dense and sparse representation)

n
′ is the actual matrix size after transformation. Time unit is second

The best results are shown in bold

n m n
′ Sparsity Hashset method Clasp Dense matrix Sparse matrix

1000 5000 5788 0.99 0.04 0.17 2.06 0.01
1000 10,000 10,799 0.99 0.12 0.29 17.99 0.01
1600 24,000 25,198 0.99 0.39 1.85 73.35 0.04
1600 30,000 31,285 0.99 0.48 2.54 116.12 0.06
2000 36,000 37,596 0.99 0.75 3.17 155.43 0.07
2000 40,000 41,936 0.99 0.98 5.16 187.65 0.07
10,000 120,000 127,119 0.99 18.56 9.07 – 0.38
10,000 160,000 167,504 0.99 25.65 15.77 – 0.48
16,000 200,000 211,039 0.99 57.02 19.97 – 0.86
16,000 220,000 231,439 0.99 60.44 24.78 – 0.94
20,000 280,000 297,293 0.99 104.99 30.57 – 0.90
20,000 320,000 337,056 0.99 108.59 34.40 – 1.06
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the number of rules m is used as horizontal axis in the Fig. 1 similar to the experi-
ments in [16]. The reason for choosing n and m is to generate actual matrix size n′ 
increasing linearly with two different levels: smaller scale ( n < 10, 000 ) and larger 
scale ( n > 10, 000 ). The same parameters are used for other experiments using the 

Fig. 1  Comparison of execution time between Hashset method, Clasp and linear algebraic methods (with 
dense and sparse representation) on definite programs

Fig. 2  Comparison of execution time between Hashset method, Clasp and linear algebraic methods (with 
dense and sparse representation) on definite programs with lower sparsity level

Table 3  Details of experimental results on definite programs (with lower sparsity level) of Hashset 
method, Clasp and linear algebraic methods (with dense and sparse representation)

n
′ is the actual matrix size after transformation. Time unit is second

The best results are shown in bold

n m n
′ Sparsity Hashset method Clasp Dense matrix Sparse matrix

1000 5000 5876 0.95 0.10 0.39 2.31 0.04
1000 10,000 10,243 0.95 0.36 0.92 17.59 0.05
1600 24,000 25,712 0.95 0.95 2.25 70.09 0.16
1600 30,000 31,430 0.95 1.18 3.01 120.52 0.38
2000 36,000 36,612 0.95 1.73 4.78 152.91 0.55
2000 40,000 41,509 0.95 2.04 6.33 192.36 0.63
10,000 120,000 125,692 0.95 27.80 10.89 – 1.08
10,000 160,000 166,741 0.95 47.24 18.60 – 2.29
16,000 200,000 210,526 0.95 89.55 21.71 – 3.79
16,000 220,000 230,178 0.95 108.13 28.54 – 4.86
20,000 280,000 298,582 0.95 144.80 35.09 – 5.34
20,000 320,000 335,918 0.95 183.53 42.84 – 5.92
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Table 4  Details of experimental results on the transitive closure problem of Hashset method, Clasp and 
sparse representation approach

n
′ is the actual matrix size after transformation. Time unit is second

The best results are shown in bold

Data name (|V|, |E|) n m n
′ Sparsity Hashset 

method
Clasp Sparse 

matrix

Club membership (65, 95) 1200 14,492 15,600 0.99 0.84 0.34 0.02
Cattle (28, 217) 1512 20,629 21,924 0.99 0.95 0.51 0.04
Windsurfers (43, 336) 4324 99,788 103,776 0.99 3.65 3.37 0.18
Contiguous USA (49, 107) 4704 113,003 117,600 0.99 4.29 3.88 0.18
Dolphins (62, 159) 7564 230,861 238,266 0.99 12.31 9.38 0.40
Train bombing (64, 243) 8064 254,259 262,080 0.99 15.23 10.63 0.45
Highschool (70, 366) 9660 333,636 342,930 0.99 19.96 15.80 0.66
Les Miserables (77, 254) 11,704 445,006 456,456 0.99 27.79 21.96 0.83

Fig. 3  Comparison of execution time between Hashset method, Clasp and linear algebraic methods (with 
dense and sparse representation) on definite programs with Transitive closure problem using Koblenz 
network datasets

random generated method. Overall, the sparse matrix method is very efficient which 
is 10–15 times faster than Clasp.

The benchmark results on denser matrix are presented in Table 3 and Fig. 2. As 
can be seen in the results, denser matrices require more computation for the sparse 
matrix method, while they do not affect the same scale on other competitors. Despite 
that fact, the sparse matrix method still holds first place in this benchmark. In terms 
of analyzing the sparseness level of logic programs, we hardly find a program in 
which the sparsity is less than 0.97. This observation strongly encourages the use of 
sparse representation for logic programs.

In the next experiment, we show the comparison for computing transitive closure. 
We assume that a dataset contains edges (tuples of nodes), then first perform ground-
ing two rules of defining path. The obtained results are demonstrated in Table 4 and 
Fig. 3. In this non-randomized problem, we can see that the matrix representations 
are very sparse. Therefore, it is no doubt that the sparse matrix method outperforms 
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the dense matrix method. Accordingly, we only highlight the efficiency of sparse 
representation and omit the dense matrix approach. Surprisingly, the sparse matrix 
method surpasses Clasp once again in this experiment by a large margin.

As can be witnessed in the results, the dense matrix method is the slowest, even 
slower than the hashset method, in terms of computation time due to wasting com-
putation on a huge amount of zero elements. This could be explained by the high 
level of sparsity of logic programs provided in Tables 2, 3 and 4. Moreover, large 
dense matrices consume a huge amount of memory, therefore the method is unable 
to run with a large scale matrix size. Overall, the sparse matrix method is effective in 
computing the fixed points of definite programs. On the other hand, the performance 
would be improved if we use GPU accelerated code and exploit parallel computing 
power. The results indicate that using sparse representation for logic programs opens 
the gate to deal with large-scale logic programs.

Normal Programs

The goal of this experiment is to highlight the enhancement of the sparse representa-
tion in terms of computing the stable models in normal logic programs. To generate 
normal programs for this benchmark, we use the same method to generate definite 
programs, then randomly select some rules and set some atoms in the rule body to 
negations. In our current method, since the number of columns in the initial matrix 
(Definition 7) grows exponentially by the number of negations, we limit the number 

Table 5  Details of experimental results on normal programs of Hashset method, Clasp and linear alge-
braic methods (with dense and sparse representation)

n
′ is the actual matrix size after transformation. k is the number of negations. Time unit is second

The best results are shown in bold

n m n
′ k Sparsity Hashset method Clasp Dense matrix Sparse matrix

1000 5000 6379 8 0.99 0.07 0.31 3.96 0.01
1000 10,000 12,745 8 0.99 0.18 1.09 28.18 0.02
1600 24,000 30,061 8 0.99 0.55 3.27 105.49 0.05
1600 30,000 36,402 7 0.99 0.68 4.31 168.80 0.08
2000 36,000 42,039 5 0.99 1.24 6.72 203.27 0.09
2000 40,000 48,187 8 0.99 1.54 7.18 256.97 0.10
10,000 120,000 171,967 6 0.99 27.31 7.68 – 0.71
10,000 160,000 207,432 7 0.99 32.55 24.70 – 0.84
16,000 200,000 250,194 5 0.99 70.31 30.72 – 1.56
16,000 220,000 278,190 6 0.99 86.52 35.40 – 1.83
20,000 280,000 357,001 4 0.99 133.79 50.19 – 1.92
20,000 320,000 396,128 4 0.99 150.34 58.61 – 2.11



244 New Generation Computing (2022) 40:225–254

123

of negations in this benchmark by 88 as specified in the experiment setup. The 
experiment results show that the sparse method can be applied to normal logic pro-
grams with a small number of negations. The performance gain from this improve-
ment is potential for further developing more efficient algorithms.

First, we perform benchmarks on normal programs which has 0.99 sparsity level. 
Table 5 and Fig. 4 illustrate the execution time in detail. As can be witnessed in the 
results, the sparse matrix method is still faster than Clasp but with a smaller scale 
than it did in definite programs. It is needed to mention that the initial matrix size is 
remarkably larger due to the occurrence of negations. We have to initialize all pos-
sible combinations of atoms that appear with their negation form in the program. 
There is no doubt that with a larger number of negations, the space complexity of the 

Fig. 4  Comparison of execution time between Hashset method, Clasp and linear algebraic methods (with 
dense and sparse representation) on normal programs

Table 6  Details of experimental results on normal programs (with lower sparsity level) of Hashset 
method, Clasp and linear algebraic methods (with dense and sparse representation)

n
′ is the actual matrix size after transformation. k is the number of negations. Time unit is second

The best results are shown in bold

n m n
′ k Sparsity Hashset method Clasp Dense matrix Sparse matrix

1000 5000 6385 7 0.95 0.17 0.37 3.78 0.11
1000 10,000 12,294 8 0.95 0.24 1.49 30.06 0.19
1600 24,000 33,172 7 0.95 0.68 3.78 102.54 0.22
1600 30,000 35,091 8 0.95 0.77 5.91 174.52 0.35
2000 36,000 44,145 8 0.95 2.32 7.10 197.30 0.41
2000 40,000 49,080 7 0.95 3.27 8.67 250.09 0.49
10,000 120,000 181,550 8 0.95 36.95 10.45 – 3.25
10,000 160,000 203,576 6 0.95 54.11 33.19 – 4.02
16,000 200,000 246,159 4 0.95 86.36 48.19 – 7.22
16,000 220,000 282,734 5 0.95 106.03 56.91 – 8.31
20,000 280,000 365,190 4 0.95 163.06 78.18 – 9.02
20,000 320,000 387,094 4 0.95 202.55 84.33 – 11.52

8 The dimension of the initial matrix depends on k and grows exponentially if k increases. At this 
moment, we are able to handle k up to 16 and in some specific cases depending on the matrix size and 
memory capacity, k could be larger (up to 24).
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linear algebraic method is exponential. Accordingly, the performance of the sparse 
matrix method is better than Clasp when there are a small number of negations.

In the next experiments, we compare different methods on denser matrices. 
Table 6 and Fig. 5 present the data for this benchmark. Once again, with a limited 
number of negations, the sparse matrix method holds the winner position.

Noticeably, execution time on normal programs is generally greater than that on 
definite programs. This is obvious because we have a larger size of initial matrices 
as well as the need for extra computation on transforming and finding the least mod-
els as described in Algorithm 2. Then, the weakness of the linear algebraic method 
is that we have to deal with all combinations of truth assignments to compute the 
stable model. Accordingly, the column size of the initial matrix exponentially 
increases by the number of negations. Thus, in the benchmark on randomized pro-
grams, we limit the number of negations for all benchmarks so that the matrix can fit 
in memory. This limitation will become clearer in real problems which have many 
negations. This is a major problem that we are investigating to do further research.

Sparse Representations Comparison

In this experiment, we focus on space complexity of different sparse representations 
for logic programs. The benchmark is done on the same datasets in the previous 
results. To highlight the efficiency of sparse formats, we compare the memory space 
in Bytes to store the program matrices using the three mentioned methods in Sect. 3 
including: COO, CSR and BSR. The BSR will be analyzed with two different db : 
2 × 2 and 4 × 4 . The figures for the COO format will be considered as the baseline to 
compare these other spare formats (Fig. 6).

The experimental results for definite programs, definite programs for the tran-
sitive closure problem and normal programs are illustrated in Tables  7, 8 and 9 
respectively. As can be witnessed in the data, the CSR format is better than the base-
line COO 20–30% in terms of storage usage. It is a remarkable saving because we 
only need to store fewer numbers in the row index array as explained in Sect. 3. On 
the other hand, the data for the BSR format show an increase in memory usage by a 
large margin. This is due to the program matrices are not concentrated and we have 
to store many blocks with zero included (Figs. 7, 8).

Fig. 5  Comparison of execution time between Hashset method, Clasp and linear algebraic methods (with 
dense and sparse representation) on normal programs with lower sparsity level
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Accordingly, in general cases, the CSR format is the best option in terms of space 
efficiency. We also understand that the BSR format is efficient when the matrix is 
highly concentrated in a way that non-zero elements are stored in as small number 
of blocks as possible. In this experiment, we also conduct the comparison on special 
logic programs. For example, consider the program P and its matrix representation 
that contains the following rules:

We can easily see that in this case, the program matrix contains only 2 × 2 blocks 
that will be ideal for the BSR 2 × 2 format. In this case, the block value matrix does 
not need to store zero elements while the indexing arrays for non-zero blocks are 
much less than the indexing arrays for non-zero elements. The data for this experi-
ment is illustrated in Table 10. In the perfect case, the BSR can save up to 50% com-
pared to the baseline COO format and is much more efficient than the CSR format 
(Fig. 9).

Scalability of Sparse Matrix on GPU

In this experiment, we compare the execution time of the sparse matrix implementa-
tion on CPU and GPU using definite programs. We use the same method for gener-
ating definite programs as presented. Additionally, we increase the body length of 
generated rules to obtain large-scale programs. The implementation on GPU is done 
using cuSPARSE.9

Fig. 6  Comparison of execution time between different sparse representations on definite programs

9 CUDA version 10.0.130.
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As we can see in Fig. 10, the implementation on GPU is faster than that on CPU 
approximately 3–4 times. That is because sparse matrix computation usually does not 
reach maximum throughput on GPU. Thus, it is less scalable than dense computa-
tion. However, the sparse matrix computation is faster than the dense counterpart. We 
should note that we generate very large matrices which can not be fit in GPU memory 
if we store them in dense format. Accordingly, although sparse matrix computation is 
more difficult to scale up, using the sparse matrix is the ideal solution for large-scale 
logic programs in terms of both time and space complexity (Tables 11, 12).

Conclusion

In this paper, we analyze the sparsity of matrix representation for LP and then pro-
pose an improved implementation for logic programming in vector space using 
sparse matrix representation. The experimental results on computing the least mod-
els of definite programs demonstrate a very significant enhancement in terms of 
computation performance even when compared to Clasp. This improvement remark-
ably reduced the burden of computation in previous linear algebraic approaches for 
representing LP. The TP-operator plays an important role in model construction for 
computation of definite and normal logic programs. Thus, improving the efficiency 
of fixed-point computation is the key to develop algorithms dealing with large-scale 
datasets. Although the current method requires a huge amount of memory to store 
all possible combinations of negated atoms, we witnessed considerable improve-
ment when there are small numbers of negations. Moreover, matrix computation 
could be more accelerated using GPU. We have tested our implementation in this 
way, and obtained expected results too.

In addition to the improvement using sparse representation, we conducted experi-
ments on different general-purpose sparse matrix representations and demonstrated 
the merits and demerits of each format. Accordingly, we propose to use the CSR in 
the linear algebraic methods of logic programs for both efficiency and generality. 

Fig. 7  Comparison of execution time between different sparse representations on definite programs for 
the transitive closure problem
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If we need a flexible way to access and modify non-zero elements individually, we 
strongly recommend using the COO format. On the other hand, if we deal with spe-
cial types of logic programs as demonstrated in Sect. 5, we can consider applying 
the BSR format or maybe other methods that meet the need.

Fig. 8  Comparison of execution time between different sparse representations on normal programs

Fig. 9  Comparison of execution time between different sparse representations on special programs

Table 10  Comparison of different sparse representations in terms of the memory size on special pro-
grams as defined above

�
z
 is the number of non-zero elements in the program matrix. Memory unit is Bytes

n m n
′ �

z
COO CSR/CSC BSR 2 × 2 BSR 4 × 4

 1000  1000  1000  2000 24,000 
(100.00%)

 20,004 
(83.35%)

 12,004 
(50.02%)

 18,004 
(75.02%)

 1600  1600  1600  3200  38,400 
(100.00%)

 32,004 
(83.34%)

 19,204 
(50.01%)

 28,804 
(75.01%)

 2000  2000  2000  4000  48,000 
(100.00%)

 40,004 
(83.34%)

 24,004 
(50.01%)

 36,004 
(75.01%)

 10,000  10,000  10,000  20,000  240,000 
(100.00%)

 200,004 
(83.34%)

 120,004 
(50.00%)

 180,004 
(75.00%)

 16,000  16,000  16,000  32,000  384,000 
(100.00%)

 320,004 
(83.33%)

 192,004 
(50.00%)

 288,004 
(75.00%)

 20,000  20,000  20,000  40,000  480,000 
(100.00%)

 400,004 
(83.33%)

 240,004 
(50.00%)

 360,004 
(75.00%)
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(a) Definite programs with higher sparsity level (0.99) (b) Definite programs with lower sparsity level (0.95)

Fig. 10  Comparison of execution time between sparse matrix implementations on CPU and GPU

Table 11  Details of 
experimental results of sparse 
matrix implementations on CPU 
and GPU (higher sparsity level)

Time unit is second

n m Sparsity Sparse matrix 
on CPU

Sparse 
matrix on 
GPU

100,000 500,000 0.99 5.12 1.26
110,000 600,000 0.99 5.69 1.40
120,000 700,000 0.99 6.63 1.58
130,000 800,000 0.99 7.57 1.75
140,000 900,000 0.99 9.12 2.04
150,000 1,000,000 0.99 11.39 2.29

Table 12  Details of 
experimental results of sparse 
matrix implementations on CPU 
and GPU (lower sparsity level)

Time unit is second

n m Sparsity Sparse matrix 
on CPU

Sparse 
matrix on 
GPU

100,000 500,000 0.95 20.23 4.43
110,000 600,000 0.95 29.12 6.35
120,000 700,000 0.95 37.28 9.39
130,000 800,000 0.95 48.23 11.33
140,000 900,000 0.95 57.24 13.46
150,000 1,000,000 0.95 66.23 15.89

Sato’s linear algebraic method is based on a completely different idea to represent 
logic programs, where each predicate is represented in one matrix and an approxi-
mation method is used to compute the extension of a target predicate of a recursive 
program [24]. We should note that this approximation method is limited to a matrix 
size of 10,000, while our exact method is comfortable with 320,000. Further com-
parison is a future research topic, yet we could expect that Sato’s method can also be 
enhanced by sparse representation.

The encouraging results open up room for improvement and optimization. Poten-
tial future work is to apply a sampling method to reduce the number of guesses in 
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the initial matrix for normal programs. An algorithm would be to prepare some 
manageable size of the initial matrix, and if all guesses fail then we do some local 
search and replace column vectors with new assignments and repeat it until a sta-
ble model is found. Using a gradient-based search algorithm in continuous vector 
spaces could be another potential approach [4], this method could also be benefi-
cial from using sparse representation. In addition, the sparse method also can com-
bine with the partial evaluation that has been introduced in [17]. Further research 
directions on implementing disjunctive LP and abductive LP should be considered 
to reveal the applicability of tensor-based approaches for LP. In our recent work, we 
have extended the use of program matrix transpose to realize abduction in vector 
spaces [19]. Additionally, more complex types of the program should be taken into 
account to be represented in vector space, for instance, 3-valued logic programs and 
answer set programs with aggregates and constraints.
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