
Vol.:(0123456789)

New Generation Computing (2022) 40:225–254
https://doi.org/10.1007/s00354-021-00142-2

123

Enhancing Linear Algebraic Computation of Logic
Programs Using Sparse Representation

Nguyen Tuan Quoc1,2 · Katsumi Inoue1,2 · Chiaki Sakama3

Received: 9 February 2021 / Accepted: 29 October 2021 / Published online: 2 December 2021
© The Author(s) 2021

Abstract
Algebraic characterization of logic programs has received increasing attention in
recent years. Researchers attempt to exploit connections between linear algebraic
computation and symbolic computation to perform logical inference in large-scale
knowledge bases. In this paper, we analyze the complexity of the linear algebraic
methods for logic programs and propose further improvement by using sparse matri-
ces to embed logic programs in vector spaces. We show its great power of computa-
tion in reaching the fixed point of the immediate consequence operator. In particu-
lar, performance for computing the least models of definite programs is dramatically
improved using the sparse matrix representation. We also apply the method to the
computation of stable models of normal programs, in which the guesses are asso-
ciated with initial matrices, and verify its effect when there are small numbers of
negation. These results show good enhancement in terms of performance for com-
puting consequences of programs and depict the potential power of tensorized logic
programs.

Keywords Logic program · Fixed-point computation · Linear algebra · Sparse
representation

 * Nguyen Tuan Quoc
 tuannq@nii.ac.jp

 Katsumi Inoue
 inoue@nii.ac.jp

 Chiaki Sakama
 sakama@wakayama-u.ac.jp

1 National Institute of Informatics, 2 Chome-1-2 Hitotsubashi, Chiyoda City, Tokyo, Japan
2 Department of Informatics, The Graduate University for Advanced Studies, Sokendai, Tokyo,

Japan
3 Wakayama University, 930 Sakaedani, Wakayama, Japan

https://orcid.org/0000-0002-1754-9329
https://orcid.org/0000-0002-2717-9122
https://orcid.org/0000-0002-9966-3722
http://crossmark.crossref.org/dialog/?doi=10.1007/s00354-021-00142-2&domain=pdf

226 New Generation Computing (2022) 40:225–254

123

Introduction

For decades, logic programming (LP) representation has been considered mainly
in the form of symbolic logic [14], which is useful for declarative problem solv-
ing and symbolic reasoning. Logic programming starts gaining more attention
recently to build explainable learning models [8, 27], whereas it still has some
limitations in terms of computation. In other words, symbolic computation is not
an efficient way when we need to combine it with other numerical learning mod-
els such as artificial neural network (ANN). Recently, several studies have been
done on embedding logic programs to numerical spaces so that we can exploit
great computing resources ranging from multi-threaded CPU to GPU. The linear
algebraic approach is a robust way to manipulate logic programs in numerical
spaces. Because linear algebra is at the heart of many applications of scientific
computation, this approach is promising to develop scalable techniques to process
huge relational knowledge base (KB) [20, 29]. In addition, it enables the ability
to use efficient parallel algorithms of numerical linear algebra for computing LP.

In [7], Cohen described a probabilistic deductive database system in which
reasoning is performed by a differentiable process. With this achievement, they
can enable novel gradient-based learning algorithms. In [23], Sato presented the
use of first-order logic in vector spaces for Tarskian semantics, which demon-
strates how tensorization realizes efficient computation of Datalog. In [24], Sato
proposed a linear algebraic approach to datalog evaluation. In this work, the least
Herbrand model of DB is computed via adjacency matrices. He also provided
theoretical proofs for translating a program into a system of linear matrix equa-
tions. This approach achieves O(N3) time complexity where N is the number
of variables in a clause. Continuing to this direction, Sato, Inoue, and Sakama
developed linear algebraic abduction to abductive inference in Datalog [25]. They
did empirical experiments on linear and recursive cases and indicated that the
approach can successfully abduce base relations.

In [13], Hitzler et al. theoretically proved that first-order normal logic pro-
grams can be approximated by feedforward connectionist networks based on the
well-known theorem of Funahashi [9] that every feedforward neural network with
at least 3 layers can uniformly approximate any continuous function. Hitzler et al.
realized the use of neural networks to compute the immediate consequence opera-
tor TP and further extended it to first-order logic. However, the main open ques-
tion is how to find the appropriate structure of the network (how many layers,
how many neurons per layer) for a given logic program. In this regard, Serafini
and Garcez show how real logic can be implemented in deep ANN [26] then pro-
pose logic tensor networks (LTN). The framework is built upon a learning task
with both knowledge and data being mapped onto real-valued vectors that the
authors follow an inference-as-learning approach.

Using a linear algebraic method, Sakama, Inoue, and Sato define relations
between LP and multi-dimensional array (tensor) then propose algorithms for
computation of LP models [21, 22]. The representation is done by defining a
series of conversions from logical rules to vectors and then the computation is

227New Generation Computing (2022) 40:225–254

123

done by applying matrix multiplication. Later, elimination techniques are applied
to reduce the matrix size [16] and gain impressive performance. In [3], a similar
idea using 3D tensor was employed to compute solutions of abductive Horn prop-
ositional tasks. In addition, Aspis built upon previous works on matrix characteri-
zation of Horn propositional logic programs to explore how inference from logic
programs can be done by linear algebraic algorithms [2]. He also proposed a new
algorithm for the non-monotonic deduction, based on linear algebraic reducts and
differentiable deduction. These works show that the linear algebraic methods are
promising for logic inference on large scales. However, such methods have not
yet been proved to be really efficient, since they have not yet been done adequate
experiments, to the best of our knowledge.

In this paper, we continue Sakama et al.’s idea of representing logic programs by
tensors [16, 21, 22]. Although the method is well-defined, there are some problems,
which limit the performance of the approach and have not been solved. First, the
obtained matrix after conversion is sparse but sparsity analysis has never been con-
sidered yet. Second, the experiments were limited to small-size logic programs that
are not sufficient to prove the robustness of matrix representation. In this research,
we further raise the bar of computing performance using sparse representation for
logic programs in order to reach the fixed point of the immediate consequence oper-
ator (TP-operator). We are able to do experiments on large sizes of logic programs
to demonstrate the performance for computing least models of definite programs.
Note that computation of the fixed point of the TP-operator frequently appears in
logic programming, not only in obtaining the least model of a definite program but
also in any model construction, e.g., computing the minimal models of the reduct of
a normal or disjunctive logic program with negation. In this regard, we also conduct
experiments on the computation of stable models of normal programs with a small
number of negations.

Accordingly, the rest of this paper is organized as follows:1 Sect. 2 reviews and
summaries some definitions and computation algorithms for definite and normal
programs, Sect. 3 discusses sparsity problem in tensorized logic programs and pro-
poses a method to represent LP, Sect. 4 investigates space and time complexity of
the methods, Sect. 5 demonstrates experimental results with definite and normal
programs, and Sect. 6 gives final conclusions and future works.

Preliminaries

Definite Programs

We consider a language L that contains a finite set of propositional variables. A
definite (logic) program is a finite set of rules of the form:

1 A preliminary version of this paper was presented as a Technical Communication paper at The 36th
International Conference on Logic Programming (ICLP 2020) [18]. This paper has much extended the
contents of [18] by considering several sparse methods for logic programs and comparing them both ana-
lytically with complexity results presented and experimentally with more datasets.

228 New Generation Computing (2022) 40:225–254

123

where h and bi are propositional variables (atoms) in L .
Given a logic program P, the set of all propositional variables appearing in P is

called the Herbrand base of P (written BP). For each rule r of the form (1), define
head(r) = h and body(r) = {b1,… , bm} . A rule is called a fact if body(r) = � . A
definite program P is called an singly-defined (SD) program if there are no two
rules that have the same head in it, that is head(r1) ≠ head(r2) for any two rules r1
and r2 (r1 ≠ r2) in P.

When a definite program P contains more than one rule (of the form (1)) hav-
ing the same head:

where ℬ
i
, (1 ≤ i ≤ 1) is a conjunction (possibly empty) of atoms, we can replace

them with a set of new rules:

where bi (i = 1,… , n) are newly introduced atoms (bi ∉ BP) such that bi ≠ bj if
i ≠ j . Then the set of rules of (3) is an SD program. Each rule of form (2) is called
an OR-rule. Every definite program P is transformed to a program P� = Q ∪ D such
that Q is an SD program and D is a set of OR-rules. The resulting program P′ is
called a standardized program. A definite program P coincides with its standardized
form P′ iff P is an SD program. By introducing the OR-rule (2) which is a shorthand
of n rules: h ← b1,… , h ← bn including new atoms, the Herbrand base of P′ (writ-
ten BP′) is usually larger that BP . In this paper, a program means a standardized pro-
gram unless stated otherwise.

A set I ⊆ BP is an interpretation of P. An interpretation I is a model of a stand-
ardized program P if {b1,… , bm} ⊆ I implies h ∈ I for every rule (1) in P, and
{b1,… , bm} ∩ I ≠ � implies h ∈ I for every rule (2) in P. A model I is the least
model of P if I ⊆ J for any model J of P. A mapping TP ∶ 2BP → 2BP (called a
TP-operator) is defined as: T

P
(I) = { h ∣ h ← b1 ∧⋯ ∧ b

m
∈ P and {b1,… , b

m
}

⊆ I } ∪ { h ∣ h ← b1 ∨⋯ ∨ b
n
∈ P and {b1,… , b

n
} ∩ I ≠ � }.

The powers of TP are defined as: Tk+1
P

(I) = TP(T
k
P
(I)) (k ≥ 0) and T0

P
(I) = I . Given

I ⊆ BP , there is a fixed-point Tn+1
P

(I) = Tn
P
(I) (n ≥ 0) . For a definite program P, the

fixed-point Tn
P
(�) coincides with the least model of P [28].

Definition 1 (Matrix representation of standardized programs [21])
Let P be a standardized program and BP = {p1 , … , pn} . Then, P is represented by

a matrix MP ∈ ℝ
n×n such that for each element aij (1 ≤ i, j ≤ n) in MP,

(1)h ← b1 ∧⋯ ∧ bm (m ≥ 0),

h ← ℬ1

…

h ← ℬ
n
,

(2)h ← b1 ∨⋯ ∨ bn (n ≥ 0),

(3)b
i
← ℬ

i
(i = 1,… , n),

229New Generation Computing (2022) 40:225–254

123

1. aijk =
1

m
(1 ≤ k ≤ m; 1 ≤ i, jk ≤ n) if pi ← pj1 ∧⋯ ∧ pjm is in P;

2. aijk = 1 (1 ≤ k ≤ l; 1 ≤ i, jk ≤ n) if pi ← pj1 ∨⋯ ∨ pjl is in P;
3. aii = 1 if pi ← is in P;
4. aij = 0 , otherwise.

MP is called a program matrix. We write ���i(MP) = pi and ���j(MP) = pj
(1 ≤ i, j ≤ n).

To better understand Definition 1, let us consider a concrete example.

Example 1 Consider the definite program P = {p ← q ∧ r, p ← s ∧ t, r ← s, q ← t, s ←, t ←}.
P is not an SD program because there are two rules p ← q ∧ r and

p ← s ∧ t having the same head, then P is transformed to the stand-
ardized program P′ by introducing new atoms u and v as follows:
P� = {u ← q ∧ r, v ← s ∧ t, p ← u ∨ v, r ← s, q ← t, s ←, t ←} . Then by apply-
ing Definition 1, we obtain:

Sakama et al. further define representation of interpretation using interpretation
vectors (Definition 2). This vector is used to store the truth value of all propositions
in P. The starting point of interpretation vector is defined as the initial vector (Defi-
nition 3).

Definition 2 (Interpretation vector [21])
Let P be a program and BP = {p1,… , pn} . Then an interpretation I ⊆ BP is rep-

resented by a vector v = (a1,… , an)
� , where each element ai (1 ≤ i ≤ n) represents

the truth value of the proposition pi such that ai = 1 if pi ∈ I ; otherwise, ai = 0 . We
write ���i(v) = pi.

Definition 3 (Initial vector) Let P be a program and BP = {p1,… , pn} . Then, the
initial vector of P is an interpretation vector v0 = (a1,… , an)

� such that ai = 1
(1 ≤ i ≤ n) if ���i(v0) = pi and a fact pi ← is in P; otherwise, ai = 0.

To compute the least model in vector space, Sakama et al. proposed an algorithm
that is equivalent to the result of computing least models by the TP-operator. This
algorithm is presented in Algorithm 1.

Definition 4 (�-thresholding) Given a value x, define �(x) = x� , where x� = 1 if
x ≥ 1 ; otherwise, x� = 0.

230 New Generation Computing (2022) 40:225–254

123

Similarly, the �-thresholding is extended in an element-wise way to vectors and
matrices.

Normal Programs

Normal programs can be transformed to definite programs as introduced in [1].
Therefore, we transform normal programs to definite programs before encoding
them in matrices.

Definition 5 (Normal program) A normal program is a finite set of normal rules:

where h and bi(1 ≤ i ≤ m) are propositional variables (atoms) in ℒ.

P is transformed to a definite program by rewriting the above rule into the follow-
ing form:

where bi is a new proposition associated with bi.
In this part, we denote P as a normal program with an interpretation I ⊆ BP . The

positive form P+ of P is obtained by applying the above transformation. Since a
definite program P+ is transformed to its standardized program, then we can apply
Algorithm 1 to compute the least model. [1] proved that if P is a normal program, I
is a stable model of P iff I+ is the least model of P+ ∪ Ī , where Ī = {p̄ | p ∈ BP⧵I} ,
then I+ = I ∪ Ī . We should note that I+ is an interpretation of P+ which is a definite
program. We can obtain I+ by applying Algorithm 1 to the transformed program P+.

Definition 6 (Matrix representation of normal programs [16])
Let P be a normal program with BP = {p1,… , pn} and its positive form P+ with

BP+ = {p1,… , pn, qn+1,… , qm}.
Then, P+ is represented by a matrix MP ∈ ℝ

m×m such that for each element aij
(1 ≤ i, j ≤ m):

(4)h ← b1 ∧ b2 ∧⋯ ∧ bl ∧ ¬bl+1 ∧⋯ ∧ ¬bm (m ≥ l ≥ 0),

(5)h ← b1 ∧ b2 ∧⋯ ∧ bl ∧ bl+1 ∧⋯ ∧ bm (m ≥ l ≥ 0),

231New Generation Computing (2022) 40:225–254

123

1. aii = 1 for n + 1 ≤ i ≤ m;
2. aij = 0 for n + 1 ≤ i ≤ m and 1 ≤ j ≤ m such that i ≠ j;
3. Otherwise, aij (1 ≤ i ≤ n ; 1 ≤ j ≤ m) is encoded as in Definition 1.

MP is called a program matrix. We write ���i(MP) = pi and ���j(MP) = pj
(1 ≤ i, j ≤ n).

Example 2 Consider a program P = {p ← q ∧ s, q ← p ∧ t, s ← ¬t, t ←, u ← v}.
First, transform P to P+ such that

P+ = {p ← q ∧ s, q ← p ∧ t, s ← t, t ←, u ← v} . Then applying Definition 6, we
obtain:

Instead of the initial vector in the case of definite programs, the notion of an ini-
tial matrix is introduced to encode multiple interpretations containing positive and
negative facts in a program.

Definition 7 (Initial matrix [16])
Let P be a normal program and BP = {p1,… , pn} and its positive form P+ with

BP+ = {p1,… , pn, qn+1,… , qm} . The initial matrix M0 ∈ ℝ
m×h(1 ≤ h ≤ 2m−n) is

defined as follows:

1. each row of M0 corresponds to each element of BP in a way that rowi(M0) = pi for
1 ≤ i ≤ n and rowi(M0) = qi for n + 1 ≤ i ≤ m;

2. aij = 1 (1 ≤ i ≤ n , 1 ≤ j ≤ h) iff a fact qi ← is in P; otherwise aij = 0;
3. aij = 0 (n + 1 ≤ i ≤ m , 1 ≤ j ≤ h) iff a fact pk ← (with 1 ≤ k ≤ n) is in P and

qi = pk ; otherwise, aij takes the value 0 or 1 in a way that every combination in
2m−n (except the deterministic case of aij = 0) is enumerated.

Each column of M0 is a potential stable model in the first stage. We update M0 by
applying matrix multiplication with the matrix representation obtained by Definition
6 as Mk+1 = �(MPMk) . The resulting matrices are called interpretation matrices that
each of which includes multiple interpretations of the corresponding program. Then,
the algorithm for computing the stable models is presented in Algorithm 2.

232 New Generation Computing (2022) 40:225–254

123

This method requires extra steps on transforming and finding stable models of
a program that is represented in Algorithm 3. As we can see, Algorithm 3 loops
over each interpretation vector of the fixed point of M which we obtain by applying
matrix multiplication and thresholding. The main idea behinds this algorithm is to
verify the consistency of each interpretation I+(= I ∪ Ī) that does not contain 1s for
both positive and negative forms of an atom. This is done by the condition in line 8
of Algorithm 3 that tests whether the sum of values (corresponding to positive and
negative forms of an atom in P) is 1 or not.

In addition, the initial matrix size grows exponentially by the number of nega-
tions m − n . Therefore, this representation requires a lot of memory and the algo-
rithm performs considerably slower than the method for definite programs if there
are many negations appearing in the program. Nevertheless, we will later show that
this method still has the advantage when there are a small number of negations.

Sparse Representation of Logic Programs

The idea of representing logic programs in vector spaces could minimize the work
with symbolic computation and utilize better computing performance. Besides that,
this method copes with the curse of dimension when a matrix representing logic
programs becomes very large. Previous works on this topic only consider dense

233New Generation Computing (2022) 40:225–254

123

matrices for their implementation and it seems not very impressive in terms of per-
formance even on small datasets [16]. To solve this problem, this paper focuses on
analyzing the sparsity of logic programs in vector spaces and proposes improvement
using sparse representation for logic programs. Additionally, we analyze and verify
different sparse representations to conclude which format is efficient for logic pro-
grams in terms of memory cost.

Sparsity of Logic Programs in Vector Spaces

A sparse matrix is a matrix in which most of the elements are zero. The level of
sparseness is measured by sparsity which equals the number of zero-valued ele-
ments divided by the total number of elements [6]. Because there are a large number
of zero elements in sparse matrices, we can save the computation by ignoring these
zero values [12]. According to the conversion method of linear algebraic approach,
we can calculate the sparsity of a program P.2 This calculation is done by counting
the number of non-zero-valued elements of each rule in P, then let 1 minus the frac-
tion of the number of non-zero-valued elements and the matrix size.

By definition, the sparsity of a program P is computed by the following equation:

where n is the number of elements in BP and |body(r)| is the length of body of rule r.
Accordingly, the representation matrix becomes a high level of sparsity if

the matrix size becomes larger, while the length of the body rule is insignificant.
In fact, a rule r in a logic program rarely has a body length approx n, therefore,
|body(r)| ≪ n . In short, we can say that the matrix representation of a logic program
according to the linear algebraic approach is sparse in most cases.

Converting Logic Programs to Sparse Matrices

Sparse matrix computation is very important due to the large number of zero ele-
ments in real-world matrix data; therefore, compaction techniques are used to reduce
the amount of storage, memory accesses, and computation [6]. Among several
sparse storage formats, we select the three formats coordinate, compressed sparse
row (CSR) and block compressed sparse row (BSR) [5] which are the most general,
efficient, robust, and widely adopted by many programming libraries.

Because the matrix representation of a logic program P is sparse, applying Algo-
rithm 1 and Algorithm 2 on sparse representation is remarkably faster than the dense
matrix. Moreover, sparse representation saves the memory space as well, therefore
enabling the ability to deal with a large scale KBs.

(6)sparsity(P) = 1 −

∑
r∈P �body(r)�

n2
,

2 We only consider the programs in Definitions 1 and 6.

234 New Generation Computing (2022) 40:225–254

123

The Coordinate Format

The COO format is the most simple idea of sparse matrix format which represents
each non-zero element by a tuple of a row index, a column index, and the value of
the element. That means the COO format uses 2 arrays of coordinates and 1 array of
values. The length of these arrays is equal to the number of non-zero elements. The
first array stores the row index of each value, and the second array stores the row
and column indices of each value, while the third array stores the values in the origi-
nal matrix. We can imagine that the ith non-zero element in a matrix is represented
by a 3-tuple extracted from these 3 arrays at index i.

Example 3 illustrates sparse representation in the COO format for the program P
in Example 1. We should note that in Example 3, zero-based indexing3 is used and
we follow row-major order.4

Example 3 The COO representation for P in Example 1 becomes:

Row index 0 0 1 2 3 4 5 5 6 6
Col index 5 6 4 3 3 4 1 2 3 4
Value 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5

This format is the most simple and flexible for general-purpose usage. The stor-
age requirement for this format is O(3 × �z) where �z is the number of non-zero ele-
ments. Because of the generality, we often use the COO format as the baseline to
evaluate other sparse representations.

The Compressed Sparse Row Format

The CSR format is an improvement of the COO format. Noticeably, in the row index
array of the COO format, a value can be repeated consecutively because the non-
zero elements may appear in the same row many times. We may reduce the size of
the row index array by considering the CSR format. In this format, while the col-
umn index and the value arrays remain the same, we compress the row index array
by storing the index of the row only where non-zero elements appear. That means
we do not need to store two consecutive 0s and two consecutive 5s as in Example
3. Instead, we store the index of the next row, then finally point the last index to
the end of the row (which equals the number of non-zero elements). Concretely in
the row index array, the first element is the starting index which is 0. The last ele-
ment is an extra element to indicate the end of this array which is equal to the num-
ber of non-zero elements. We need two consecutive values in the row index array
to extract the non-zero elements in this row. To be specific, we need to interpret

3 The initial element of a sequence is assigned the index 0.
4 In row-major order, the consecutive elements of a row reside next to each other.

235New Generation Computing (2022) 40:225–254

123

row_start and row_end of the ith row from the compressed value in row_index array:
row_starti = row_index[i], row_endi = row_index[i + 1].

Example 4 The CSR representation for P in Example 1 becomes:

Row index 0 2 3 4 5 6 8 10
Col index 5 6 4 3 3 4 1 2 3 4
Value 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5

Example 4 illustrates this method. For the first row (i = 0), we have
row_start0 = 0, row_endi = 2 , then we extract two values 0 and 1 for the non-
zero element in the first row. These start and end will be used to extract col-
umn index and value of non-zero elements. Similarly, the second row (i = 1), we
have row_start1 = 2, row_end1 = 3 then we have only one non-zero element at
index 2. Continue this interpretation until we reach the final row (i = 6), we have
row_start6 = 8, row_end6 = 10 then we extract last two non-zero elements at index
8 and 9 for the final row.

For a sparse matrix of the size m × n , the CSR format saves on memory com-
pared to the dense format only when 𝜂z < (m(n − 1) − 1)∕2 (where �z is number of
non-zero elements). Compared to the COO format, the CSR format uses less num-
bers in the row index array only when m + 1 < 𝜂z . This is because the actual size of
the row index array is m + 1 . Therefore, the space complexity of the CSR format is
O(2 × �z + m + 1).

There is another format compressed sparse column (CSC) which is similar to the
CSR. The only difference is that the CSC enumerates non-zero elements following
the column-major order5 and compress the column index array. Hence, the space
complexity of the CSC is O(2 × �z + n + 1) . In the case of logic programs, the matri-
ces are square so that these two formats are identical.

The Block Compressed Sparse Row Format

There is another sparse representation BSR which stores a two-dimensional square
block of primitive data types instead of storing a single value. The dimension of the
square block is db then the matrix is divided into multiple blocks of the size db × db .
In case that the dimension of the matrix is not a multiple of the db , we need to add
a zero column or row to the matrix. For example, the matrix program in Example 1
has the dimension 7 × 7 and the db is 2, we need to pad the matrix to the dimension
8 × 8 . Then, we divide the padded matrix into 16 blocks of the dimension db × db .
In the BSR, the format only stores non-zero blocks and uses the same way to index
each block as in the CSR. Let us consider the BSR format for the logic program P in

5 In the column-major order, the consecutive elements of a column reside next to each other, in contrast
to row-major order.

236 New Generation Computing (2022) 40:225–254

123

Example 1, we can identify 8 non-zero blocks in the matrix. The illustration of these
steps and the BSR representation of P are presented in Example 5.

Example 5 Illustration of block representation and the BSR representation for P in
Example 1 are following:

Row index 0 2 3 6 8
Col index 2 3 1 0 1 2 1 2
Block B13 B14 B22 B31 B32 B33 B42 B43

Block value 0 1 1 0 1 0 0 0 0 1 0 1 0 0 0 1/2 0 0 0 1/2 1 0 0 0 0 1/2 0 0 1/2 0 0 0

Note that in each block, we store all the numbers following an exact order, row-
major order in this example. If we follow the column-major order, the block value vec-
tor may be different, for example, the block B22 in the column-major order is 0 0 1 1.

Noticeably, this format is not efficient in this example because it stores many
blocks with only 1 or 2 non-zero elements. In fact, this format only shows its advan-
tages in case the matrix is highly concentrated in a few blocks. In other words, if the
matrix has �z non-zero elements and �b non-zero blocks of the size db × db then the
BSR performs the best in case �z ≈ �b × db

2.
Assume we have a sparse matrix of the size m × n . In the matrix, there are �z

non-zero elements and �b non-zero blocks of the size db × db . Note that in the BSR
format, we only need to store the indices of non-zero blocks and all values in those
blocks. So, we can consider it as a CSR matrix where each non-zero block (in the
BSR format) is a single non-zero element (in the CSR format) that the matrix size is

 , where is the ceiling function. Accordingly, the space complexity of

the BSR format is .

237New Generation Computing (2022) 40:225–254

123

Which Format is the Best for Logic Programs?

As we can see in Example 4, the row index array now has only 8 indices rather
than 10 in Example 3. We save storing repeatedly indices in the row index array by
storing only the position where it starts and ends. Accordingly, the CSR can be con-
sidered more economical than the COO but it comes with the cost that non-zero ele-
ments must follow row-major order while a strict order is not necessary for the COO
format. Fortunately, in the case of linear algebraic methods for fixed-point computa-
tion, we do not need to update the program matrix frequently. Then the CSR format
will be a better choice over the COO format. In fact, we can save up to 25% of the
size of the row index array using the CSR format as will be illustrated in the experi-
ments. The BSR format takes advantage over the CSR format when the program
matrix is concentrated in a few non-zero blocks. Unfortunately, it is not very often
in the case of program matrices. The experiments section will reveal which kind of
logic programs will be beneficial from this sparse format. Accordingly, we propose
the CSR format is the ideal sparse representation for linear algebraic computation
methods.

Complexity Analysis

In this section, we analyze the time and space complexity of the linear algebraic
methods for computing fixed points as defined in Algorithm 1 and Algorithm 2.

Linear Algebraic Method for Definite Programs

Assume that a definite program P has a matrix representation MP ∈ ℝ
n×n and the

matrix has �z non-zero elements.6

Proposition 1 The space complexity of linear algebraic method for definite pro-
grams is

1. O(n2 + n) for dense format,
2. O(�z + n) for sparse format.

Proof Obviously, we have to store the program matrix and the interpretation vec-
tor. As defined, the program matrix size is n × n and the interpretation vector size is
n × 1 . Note that only the program matrix can be stored in the sparse format while the
interpretation vector must be stored in dense format. ◻

Proposition 2 The time complexity of linear algebraic method for definite programs
is

6 The matrix size depends on the number of literals linearly.

238 New Generation Computing (2022) 40:225–254

123

1. O(n3) for dense format,
2. O(�z × n) for sparse format.

Proof Similar to the TP-operator the main loop of Algorithm 1 repeats n times in the
worst case. In addition, the complexity of each loop depends on the matrix multipli-
cation between a matrix of the size n × n and a vector of the size n × 1 , so the multi-
plication takes O(n2) for dense format and O(�z) for sparse format.

Theoretically, if the program matrix is sparse, methods using sparse format out-
perform methods using the dense format in both time and space complexity. ◻

Linear Algebraic Method for Normal Programs

Let us consider a normal program P which has k negations. Assume that P has a
matrix representation MP ∈ ℝ

n×n and the matrix has �z non-zero elements.7

Proposition 3 The space complexity of the linear algebraic method for normal pro-
grams is

1. O(n2 + n × 2k) for dense format,
2. O(�z + n × 2k) for sparse format.

Proof Similar to the methods for definite programs, the size of the program matrices
is the same. The cost for storing the interpretation matrix exponentially depends on
the number of negations because we have to consider all the combinations according
to the Algorithm 2. Therefore, it is the limitation of the method that we can handle
programs with a limited number of negations. ◻

Proposition 4 The time complexity of linear algebraic method for normal programs
is

1. O(n3 × 2k + n2 × (2k − 1)) for dense format,
2. O(�z × n × 2k + n2 × (2k − 1)) for sparse format.

Proof Similar to previous proof, the main loop of Algorithm 2 repeats n times in the
worst case. Each loop involves the multiplication between a matrix of the size n × n
and a matrix of the size n × 2k . Hence, the complexity of Algorithm 2 is O(n3 × 2k)
if we use dense format and O(�z × n × 2k) if we use sparse format. Then, we have
to apply the Algorithm 3 to find the stable model. This algorithm loops over all 2k
combinations to verify the model in case k > 0 . If k = 0 the loop is not executed.
Each verification takes 2 nested loops over n times. Therefore, the complexity of this
algorithm is O(n2 × (2k − 1)) . ◻

7 Usually n is larger than the number of literals in P because we have to do several standardized steps.
To simplify, we can assume that n linearly depends on the number of literals in P.

239New Generation Computing (2022) 40:225–254

123

Obviously, if k is small, then we obtain the same complexity as the method for
definite programs. If k is considerably large, then both the space and time complex-
ity are infeasible, so that is the limitation of the method. Although both formats are
exponential in terms of time and space complexity, sparse representation improves a
lot in general cases.

Experimental Results

In this section, we report the results of two experiments on finding the least models
of definite programs and computing stable models of normal programs.To evaluate
the performance of linear algebraic methods, we compared the implementations of
Algorithm 1 and Algorithm 2 with (i) the TP-operator and (ii) Clasp (Clingo v5.4.1
running with flag –mode=clasp). Our implementations are done with (iii) dense
matrices and (iv) sparse matrices. Except Clasp, all implementations (i), (iii) and
(iv) are implemented on C++ with CPU x64 as a targeted device. In (i), we imple-
ment the operator using hashset instead of list for better set operations performance.
To avoid ambiguity with the original definition of the TP-operator, we will call (i)
as Hashset method from now on in this section. (ii) is the solver of Clingo which
is a powerful Answer Set Programming (ASP) solver developed at the University
of Potsdam [10]. In terms of matrix representations and operators for (iii) and (iv),
we use Eigen 3 library [11] with the default backend. The computer running experi-
ments has the following configurations: CPU: Intel Core i7-4770 (4 cores, 8 threads)
@3.4 GHz; RAM: 16 GB DDR3 @1333 MHz; GPU: NVIDIA GTX 1080; Operat-
ing system: Ubuntu 18.04 LTS 64 bit.

Focusing on analyzing the performance of sparse representation, we first evaluate
our method by conducting experiments on randomized logic programs. We use the
same method of LP generation conducted in [16] that the size of a logic program is
defined by the size n = |BP| of the Herband base BP and the number of rules m = |P|
in P. The number of facts (rules with the body length is 0) of the logic program is
limited by n/3. The other rules are uniformly generated based on the length of their
rule body (maximum length is 8) according to Table 1.

According to Algorithms 1 and 2, we have to transform logic programs to stand-
ardized programs to encode them as matrices. Hence, in the experiments, we also
track the size of the Herbrand base of a standardized program which is equal to the
actual square matrix size and denote it by n′.

We further generate denser matrices in order to analyze the efficacy of the sparse
method. While keeping the same proportion of facts and rules with the body length
of 1 and 2, we generate the rest 70 ∼ 80% rules such that their body length is around

Table 1 Proportion of rules in P based on the number of propositional variables in their bodies

Body length 0 1 2 3 4 5 6 7 8

Allocated proportion < n∕3 4% 4% 10% 40% 35% 4% 2% 1%

240 New Generation Computing (2022) 40:225–254

123

5% of the number of propositions. This method leads to the lower sparsity level of
generated matrices with approximate 0.95.

Also based on the generation method for definite programs, we generate normal
programs by randomly changing literals to negations and limit the number of nega-
tions, denoted by k, such that 4 ≤ k ≤ 8 . The important difference from [16] is that we
do experiments on much larger n and m, because our method, which is implemented
on C++, is dramatically more efficient than Nguyen et al.’s implementation using
Maple. The largest size of the logic program in this experiment reaches thousands of
propositions and hundreds of thousands of rules. Further, we also compare our method
with one of the best ASP solvers—Clasp [10] running in the same environment. All
methods are conducted 30 times on each LP to obtain mean values of execution time.

In addition, we also conduct a further experiment using non-random problems
with definite programs using the transitive closure problem. The graph we use is
selected from the Koblenz network collection [15]. This dataset contains binary
tuples and we compute the transitive closure of them using the following rules:

– path(X, Y) ← edge(X, Y)

– path(X, Y) ← edge(X, Z) ∧ path(Z, Y)

Definite programs

The final results on definite programs are illustrated in Table 2 and Fig. 1.
We can see in the results that the dense matrix method is slowest and being una-

ble to run with very large programs that is why the data for this method is not dis-
played if the number of rules is larger or equal to 120,000. We should mention that

Table 2 Details of experimental results on definite programs of Hashset method, Clasp and linear alge-
braic methods (with dense and sparse representation)

n
′ is the actual matrix size after transformation. Time unit is second

The best results are shown in bold

n m n
′ Sparsity Hashset method Clasp Dense matrix Sparse matrix

1000 5000 5788 0.99 0.04 0.17 2.06 0.01
1000 10,000 10,799 0.99 0.12 0.29 17.99 0.01
1600 24,000 25,198 0.99 0.39 1.85 73.35 0.04
1600 30,000 31,285 0.99 0.48 2.54 116.12 0.06
2000 36,000 37,596 0.99 0.75 3.17 155.43 0.07
2000 40,000 41,936 0.99 0.98 5.16 187.65 0.07
10,000 120,000 127,119 0.99 18.56 9.07 – 0.38
10,000 160,000 167,504 0.99 25.65 15.77 – 0.48
16,000 200,000 211,039 0.99 57.02 19.97 – 0.86
16,000 220,000 231,439 0.99 60.44 24.78 – 0.94
20,000 280,000 297,293 0.99 104.99 30.57 – 0.90
20,000 320,000 337,056 0.99 108.59 34.40 – 1.06

241New Generation Computing (2022) 40:225–254

123

the number of rules m is used as horizontal axis in the Fig. 1 similar to the experi-
ments in [16]. The reason for choosing n and m is to generate actual matrix size n′
increasing linearly with two different levels: smaller scale (n < 10, 000) and larger
scale (n > 10, 000). The same parameters are used for other experiments using the

Fig. 1 Comparison of execution time between Hashset method, Clasp and linear algebraic methods (with
dense and sparse representation) on definite programs

Fig. 2 Comparison of execution time between Hashset method, Clasp and linear algebraic methods (with
dense and sparse representation) on definite programs with lower sparsity level

Table 3 Details of experimental results on definite programs (with lower sparsity level) of Hashset
method, Clasp and linear algebraic methods (with dense and sparse representation)

n
′ is the actual matrix size after transformation. Time unit is second

The best results are shown in bold

n m n
′ Sparsity Hashset method Clasp Dense matrix Sparse matrix

1000 5000 5876 0.95 0.10 0.39 2.31 0.04
1000 10,000 10,243 0.95 0.36 0.92 17.59 0.05
1600 24,000 25,712 0.95 0.95 2.25 70.09 0.16
1600 30,000 31,430 0.95 1.18 3.01 120.52 0.38
2000 36,000 36,612 0.95 1.73 4.78 152.91 0.55
2000 40,000 41,509 0.95 2.04 6.33 192.36 0.63
10,000 120,000 125,692 0.95 27.80 10.89 – 1.08
10,000 160,000 166,741 0.95 47.24 18.60 – 2.29
16,000 200,000 210,526 0.95 89.55 21.71 – 3.79
16,000 220,000 230,178 0.95 108.13 28.54 – 4.86
20,000 280,000 298,582 0.95 144.80 35.09 – 5.34
20,000 320,000 335,918 0.95 183.53 42.84 – 5.92

242 New Generation Computing (2022) 40:225–254

123

Table 4 Details of experimental results on the transitive closure problem of Hashset method, Clasp and
sparse representation approach

n
′ is the actual matrix size after transformation. Time unit is second

The best results are shown in bold

Data name (|V|, |E|) n m n
′ Sparsity Hashset

method
Clasp Sparse

matrix

Club membership (65, 95) 1200 14,492 15,600 0.99 0.84 0.34 0.02
Cattle (28, 217) 1512 20,629 21,924 0.99 0.95 0.51 0.04
Windsurfers (43, 336) 4324 99,788 103,776 0.99 3.65 3.37 0.18
Contiguous USA (49, 107) 4704 113,003 117,600 0.99 4.29 3.88 0.18
Dolphins (62, 159) 7564 230,861 238,266 0.99 12.31 9.38 0.40
Train bombing (64, 243) 8064 254,259 262,080 0.99 15.23 10.63 0.45
Highschool (70, 366) 9660 333,636 342,930 0.99 19.96 15.80 0.66
Les Miserables (77, 254) 11,704 445,006 456,456 0.99 27.79 21.96 0.83

Fig. 3 Comparison of execution time between Hashset method, Clasp and linear algebraic methods (with
dense and sparse representation) on definite programs with Transitive closure problem using Koblenz
network datasets

random generated method. Overall, the sparse matrix method is very efficient which
is 10–15 times faster than Clasp.

The benchmark results on denser matrix are presented in Table 3 and Fig. 2. As
can be seen in the results, denser matrices require more computation for the sparse
matrix method, while they do not affect the same scale on other competitors. Despite
that fact, the sparse matrix method still holds first place in this benchmark. In terms
of analyzing the sparseness level of logic programs, we hardly find a program in
which the sparsity is less than 0.97. This observation strongly encourages the use of
sparse representation for logic programs.

In the next experiment, we show the comparison for computing transitive closure.
We assume that a dataset contains edges (tuples of nodes), then first perform ground-
ing two rules of defining path. The obtained results are demonstrated in Table 4 and
Fig. 3. In this non-randomized problem, we can see that the matrix representations
are very sparse. Therefore, it is no doubt that the sparse matrix method outperforms

243New Generation Computing (2022) 40:225–254

123

the dense matrix method. Accordingly, we only highlight the efficiency of sparse
representation and omit the dense matrix approach. Surprisingly, the sparse matrix
method surpasses Clasp once again in this experiment by a large margin.

As can be witnessed in the results, the dense matrix method is the slowest, even
slower than the hashset method, in terms of computation time due to wasting com-
putation on a huge amount of zero elements. This could be explained by the high
level of sparsity of logic programs provided in Tables 2, 3 and 4. Moreover, large
dense matrices consume a huge amount of memory, therefore the method is unable
to run with a large scale matrix size. Overall, the sparse matrix method is effective in
computing the fixed points of definite programs. On the other hand, the performance
would be improved if we use GPU accelerated code and exploit parallel computing
power. The results indicate that using sparse representation for logic programs opens
the gate to deal with large-scale logic programs.

Normal Programs

The goal of this experiment is to highlight the enhancement of the sparse representa-
tion in terms of computing the stable models in normal logic programs. To generate
normal programs for this benchmark, we use the same method to generate definite
programs, then randomly select some rules and set some atoms in the rule body to
negations. In our current method, since the number of columns in the initial matrix
(Definition 7) grows exponentially by the number of negations, we limit the number

Table 5 Details of experimental results on normal programs of Hashset method, Clasp and linear alge-
braic methods (with dense and sparse representation)

n
′ is the actual matrix size after transformation. k is the number of negations. Time unit is second

The best results are shown in bold

n m n
′ k Sparsity Hashset method Clasp Dense matrix Sparse matrix

1000 5000 6379 8 0.99 0.07 0.31 3.96 0.01
1000 10,000 12,745 8 0.99 0.18 1.09 28.18 0.02
1600 24,000 30,061 8 0.99 0.55 3.27 105.49 0.05
1600 30,000 36,402 7 0.99 0.68 4.31 168.80 0.08
2000 36,000 42,039 5 0.99 1.24 6.72 203.27 0.09
2000 40,000 48,187 8 0.99 1.54 7.18 256.97 0.10
10,000 120,000 171,967 6 0.99 27.31 7.68 – 0.71
10,000 160,000 207,432 7 0.99 32.55 24.70 – 0.84
16,000 200,000 250,194 5 0.99 70.31 30.72 – 1.56
16,000 220,000 278,190 6 0.99 86.52 35.40 – 1.83
20,000 280,000 357,001 4 0.99 133.79 50.19 – 1.92
20,000 320,000 396,128 4 0.99 150.34 58.61 – 2.11

244 New Generation Computing (2022) 40:225–254

123

of negations in this benchmark by 88 as specified in the experiment setup. The
experiment results show that the sparse method can be applied to normal logic pro-
grams with a small number of negations. The performance gain from this improve-
ment is potential for further developing more efficient algorithms.

First, we perform benchmarks on normal programs which has 0.99 sparsity level.
Table 5 and Fig. 4 illustrate the execution time in detail. As can be witnessed in the
results, the sparse matrix method is still faster than Clasp but with a smaller scale
than it did in definite programs. It is needed to mention that the initial matrix size is
remarkably larger due to the occurrence of negations. We have to initialize all pos-
sible combinations of atoms that appear with their negation form in the program.
There is no doubt that with a larger number of negations, the space complexity of the

Fig. 4 Comparison of execution time between Hashset method, Clasp and linear algebraic methods (with
dense and sparse representation) on normal programs

Table 6 Details of experimental results on normal programs (with lower sparsity level) of Hashset
method, Clasp and linear algebraic methods (with dense and sparse representation)

n
′ is the actual matrix size after transformation. k is the number of negations. Time unit is second

The best results are shown in bold

n m n
′ k Sparsity Hashset method Clasp Dense matrix Sparse matrix

1000 5000 6385 7 0.95 0.17 0.37 3.78 0.11
1000 10,000 12,294 8 0.95 0.24 1.49 30.06 0.19
1600 24,000 33,172 7 0.95 0.68 3.78 102.54 0.22
1600 30,000 35,091 8 0.95 0.77 5.91 174.52 0.35
2000 36,000 44,145 8 0.95 2.32 7.10 197.30 0.41
2000 40,000 49,080 7 0.95 3.27 8.67 250.09 0.49
10,000 120,000 181,550 8 0.95 36.95 10.45 – 3.25
10,000 160,000 203,576 6 0.95 54.11 33.19 – 4.02
16,000 200,000 246,159 4 0.95 86.36 48.19 – 7.22
16,000 220,000 282,734 5 0.95 106.03 56.91 – 8.31
20,000 280,000 365,190 4 0.95 163.06 78.18 – 9.02
20,000 320,000 387,094 4 0.95 202.55 84.33 – 11.52

8 The dimension of the initial matrix depends on k and grows exponentially if k increases. At this
moment, we are able to handle k up to 16 and in some specific cases depending on the matrix size and
memory capacity, k could be larger (up to 24).

245New Generation Computing (2022) 40:225–254

123

linear algebraic method is exponential. Accordingly, the performance of the sparse
matrix method is better than Clasp when there are a small number of negations.

In the next experiments, we compare different methods on denser matrices.
Table 6 and Fig. 5 present the data for this benchmark. Once again, with a limited
number of negations, the sparse matrix method holds the winner position.

Noticeably, execution time on normal programs is generally greater than that on
definite programs. This is obvious because we have a larger size of initial matrices
as well as the need for extra computation on transforming and finding the least mod-
els as described in Algorithm 2. Then, the weakness of the linear algebraic method
is that we have to deal with all combinations of truth assignments to compute the
stable model. Accordingly, the column size of the initial matrix exponentially
increases by the number of negations. Thus, in the benchmark on randomized pro-
grams, we limit the number of negations for all benchmarks so that the matrix can fit
in memory. This limitation will become clearer in real problems which have many
negations. This is a major problem that we are investigating to do further research.

Sparse Representations Comparison

In this experiment, we focus on space complexity of different sparse representations
for logic programs. The benchmark is done on the same datasets in the previous
results. To highlight the efficiency of sparse formats, we compare the memory space
in Bytes to store the program matrices using the three mentioned methods in Sect. 3
including: COO, CSR and BSR. The BSR will be analyzed with two different db :
2 × 2 and 4 × 4 . The figures for the COO format will be considered as the baseline to
compare these other spare formats (Fig. 6).

The experimental results for definite programs, definite programs for the tran-
sitive closure problem and normal programs are illustrated in Tables 7, 8 and 9
respectively. As can be witnessed in the data, the CSR format is better than the base-
line COO 20–30% in terms of storage usage. It is a remarkable saving because we
only need to store fewer numbers in the row index array as explained in Sect. 3. On
the other hand, the data for the BSR format show an increase in memory usage by a
large margin. This is due to the program matrices are not concentrated and we have
to store many blocks with zero included (Figs. 7, 8).

Fig. 5 Comparison of execution time between Hashset method, Clasp and linear algebraic methods (with
dense and sparse representation) on normal programs with lower sparsity level

246 New Generation Computing (2022) 40:225–254

123

Ta
bl

e
7

 C
om

pa
ris

on
 o

f d
iff

er
en

t s
pa

rs
e

re
pr

es
en

ta
tio

ns
 in

 te
rm

s o
f t

he
 m

em
or

y
si

ze
 o

n
de

fin
ite

 p
ro

gr
am

s i
n

Ta
bl

e
2

�
z
 is

 th
e

nu
m

be
r o

f n
on

-z
er

o
el

em
en

ts
 in

 th
e

pr
og

ra
m

 m
at

rix
. M

em
or

y
un

it
is

 B
yt

es

n
m

n
′

�
z

CO
O

C
SR

/C
SC

B
SR

 2
×
2

B
SR

 4
×
4

10
00

50
00

 5
78

8
 2

4,
84

8
 2

98
,1

76
 (1

00
.0

0%
)

 2
21

,9
40

 (7
4.

43
%

)
 4

5,
98

76
 (1

54
.2

3%
)

 1
,4

14
,9

52
 (4

74
.5

4%
)

 1
00

0
 1

0,
00

0
 1

0,
79

9
 5

0,
80

5
 6

09
,6

60
 (1

00
.0

0%
)

 4
49

,6
40

 (7
3.

75
%

)
 9

35
,7

20
 (1

53
.4

8%
)

 2
,8

79
,9

24
 (4

72
.3

8%
)

 1
60

0
 2

4,
00

0
 2

5,
19

8
 1

22
,4

66
 1

,4
69

,5
92

 (1
00

.0
0%

)
 1

,0
80

,5
24

 (7
3.

53
%

)
 2

,2
58

,7
96

 (1
53

.7
0%

)
 7

,0
23

,9
64

 (4
77

.9
5%

)
 1

60
0

 3
0,

00
0

 3
1,

28
5

 1
54

,3
95

 1
,8

52
,7

40
 (1

00
.0

0%
)

 1
,3

60
,3

04
 (7

3.
42

%
)

 2
,8

50
,9

12
 (1

53
.8

8%
)

 8
,8

70
,2

00
 (4

78
.7

6%
)

 2
00

0
 3

6,
00

0
 3

7,
59

6
 1

85
,0

92
 2

,2
21

,1
04

 (1
00

.0
0%

)
 1

,6
31

,1
24

 (7
3.

44
%

)
 3

,4
18

,4
12

 (1
53

.9
1%

)
 1

0,
66

8,
64

8
(4

80
.3

3%
)

 2
00

0
 4

0,
00

0
 4

1,
93

6
 2

08
,3

52
 2

,5
00

,2
24

 (1
00

.0
0%

)
 1

,8
34

,5
64

 (7
3.

38
%

)
 3

,8
51

,6
12

 (1
54

.0
5%

)
 1

2,
01

9,
04

8
(4

80
.7

2%
)

 1
0,

00
0

 1
20

,0
00

 1
27

,1
19

 6
06

,2
33

 7
,2

74
,7

96
 (1

00
.0

0%
)

 5
,3

58
,3

44
 (7

3.
66

%
)

 1
1,

20
1,

12
0

(1
53

.9
7%

)
 3

5,
23

3,
88

8
(4

84
.3

3%
)

 1
0,

00
0

 1
60

,0
00

 1
67

,5
04

 8
17

,7
28

 9
,8

12
,7

36
 (1

00
.0

0%
)

 7
,2

11
,8

44
 (7

3.
49

%
)

 1
5,

13
0,

22
8

(1
54

.1
9%

)
 4

7,
64

6,
46

4
(4

85
.5

6%
)

 1
6,

00
0

 2
00

,0
00

 2
11

,0
39

 1
,0

09
,2

79
 1

2,
11

1,
34

8
(1

00
.0

0%
)

 8
,9

18
,3

92
 (7

3.
64

%
)

 1
8,

64
7,

66
0

(1
53

.9
7%

)
 5

8,
71

2,
05

2
(4

84
.7

7%
)

 1
6,

00
0

 2
20

,0
00

 2
31

,4
39

 1
,1

16
,4

73
 1

3,
39

7,
67

6
(1

00
.0

0%
)

 9
,8

57
,5

44
 (7

3.
58

%
)

 2
0,

64
5,

48
0

(1
54

.1
0%

)
 6

5,
03

4,
08

0
(4

85
.4

1%
)

 2
0,

00
0

 2
80

,0
00

 2
97

,2
93

 1
,4

42
,6

51
 1

7,
31

1,
81

2
(1

00
.0

0%
)

 1
2,

73
0,

38
4

(7
3.

54
%

)
 2

6,
73

0,
64

8
(1

54
.4

1%
)

 8
4,

26
2,

60
8

(4
86

.7
3%

)
 2

0,
00

0
 3

20
,0

00
 3

37
,0

56
 1

,6
49

,7
92

 1
9,

79
7,

50
4

(1
00

.0
0%

)
 1

4,
54

6,
56

4
(7

3.
48

%
)

 3
0,

56
3,

43
2

(1
54

.3
8%

)
 9

6,
37

0,
46

4
(4

86
.7

8%
)

247New Generation Computing (2022) 40:225–254

123

Accordingly, in general cases, the CSR format is the best option in terms of space
efficiency. We also understand that the BSR format is efficient when the matrix is
highly concentrated in a way that non-zero elements are stored in as small number
of blocks as possible. In this experiment, we also conduct the comparison on special
logic programs. For example, consider the program P and its matrix representation
that contains the following rules:

We can easily see that in this case, the program matrix contains only 2 × 2 blocks
that will be ideal for the BSR 2 × 2 format. In this case, the block value matrix does
not need to store zero elements while the indexing arrays for non-zero blocks are
much less than the indexing arrays for non-zero elements. The data for this experi-
ment is illustrated in Table 10. In the perfect case, the BSR can save up to 50% com-
pared to the baseline COO format and is much more efficient than the CSR format
(Fig. 9).

Scalability of Sparse Matrix on GPU

In this experiment, we compare the execution time of the sparse matrix implementa-
tion on CPU and GPU using definite programs. We use the same method for gener-
ating definite programs as presented. Additionally, we increase the body length of
generated rules to obtain large-scale programs. The implementation on GPU is done
using cuSPARSE.9

Fig. 6 Comparison of execution time between different sparse representations on definite programs

9 CUDA version 10.0.130.

248 New Generation Computing (2022) 40:225–254

123

Ta
bl

e
8

 C
om

pa
ris

on
 o

f d
iff

er
en

t s
pa

rs
e

re
pr

es
en

ta
tio

ns
 in

 te
rm

s o
f t

he
 m

em
or

y
si

ze
 o

n
de

fin
ite

 p
ro

gr
am

s f
or

 th
e

tra
ns

iti
ve

 c
lo

su
re

 p
ro

bl
em

 in
 T

ab
le

 4

�
z
 is

 th
e

nu
m

be
r o

f n
on

-z
er

o
el

em
en

ts
 in

 th
e

pr
og

ra
m

 m
at

rix
. M

em
or

y
un

it
is

 B
yt

es

D
at

a
na

m
e

(|V
|,

|E
|)

n
m

n
′

�
z

CO
O

C
SR

/C
SC

B
SR

 2
×
2

B
SR

 4
×
4

C
lu

b
m

em
be

rs
hi

p
(6

5,
 9

5)
12

00
14

,4
92

15
,6

00
42

,6
92

51
2,

30
4

(1
00

.0
0%

)
40

3,
94

0
(7

8.
85

%
)

67
3,

84
0

(1
31

.5
3%

)
1,

58
4,

02
0

(3
09

.2
0%

)
C

at
tle

 (2
8,

 2
17

)
15

12
20

,6
29

21
,9

24
60

,6
97

72
8,

36
4

(1
00

.0
0%

)
57

3,
27

6
(7

8.
71

%
)

96
0,

92
8

(1
31

.9
3%

)
2,

37
6,

56
0

(3
26

.2
9%

)
W

in
ds

ur
fe

rs
 (4

3,
 3

36
)

43
24

99
,7

88
10

3,
77

6
29

6,
53

0
3,

55
8,

36
0

(1
00

.0
0%

)
2,

78
7,

34
8

(7
8.

33
%

)
4,

66
4,

21
2

(1
31

.0
8%

)
11

,5
27

,5
04

 (3
23

.9
6%

)
C

on
tig

uo
us

 U
SA

 (4
9,

 1
07

)
47

04
11

3,
00

3
11

7,
60

0
33

6,
44

3
4,

03
7,

31
6

(1
00

.0
0%

)
3,

16
1,

94
8

(7
8.

32
%

)
5,

29
1,

84
0

(1
31

.0
7%

)
12

,5
04

,3
44

 (3
09

.7
2%

)
D

ol
ph

in
s (

62
, 1

59
)

75
64

23
0,

86
1

23
8,

26
6

68
8,

48
3

8,
26

1,
79

6
(1

00
.0

0%
)

6,
46

0,
93

2
(7

8.
20

%
)

10
,8

40
,2

92
 (1

31
.2

1%
)

26
,8

12
,0

56
 (3

24
.5

3%
)

Tr
ai

n
bo

m
bi

ng
 (6

4,
 2

43
)

80
64

25
4,

25
9

26
2,

08
0

75
8,

25
9

9,
09

9,
10

8
(1

00
.0

0%
)

7,
11

4,
39

6
(7

8.
19

%
)

11
,9

36
,1

20
 (1

31
.1

8%
)

29
,4

79
,5

72
 (3

23
.9

8%
)

H
ig

hs
ch

oo
l (

70
, 3

66
)

96
60

33
3,

63
6

34
2,

93
0

99
5,

34
6

11
,9

44
,1

52
 (1

00
.0

0%
)

9,
33

4,
49

2
(7

8.
15

%
)

15
,6

62
,8

80
 (1

31
.1

3%
)

38
,7

23
,8

32
 (3

24
.2

1%
)

Le
s M

is
er

ab
le

s (
77

, 2
54

)
11

,7
04

44
5,

00
6

45
6,

45
6

1,
32

8,
65

8
15

,9
43

,8
96

 (1
00

.0
0%

)
12

,4
55

,0
92

 (7
8.

12
%

)
20

,8
68

,7
72

 (1
30

.8
9%

)
49

,3
90

,8
20

 (3
09

.7
8%

)

249New Generation Computing (2022) 40:225–254

123

As we can see in Fig. 10, the implementation on GPU is faster than that on CPU
approximately 3–4 times. That is because sparse matrix computation usually does not
reach maximum throughput on GPU. Thus, it is less scalable than dense computa-
tion. However, the sparse matrix computation is faster than the dense counterpart. We
should note that we generate very large matrices which can not be fit in GPU memory
if we store them in dense format. Accordingly, although sparse matrix computation is
more difficult to scale up, using the sparse matrix is the ideal solution for large-scale
logic programs in terms of both time and space complexity (Tables 11, 12).

Conclusion

In this paper, we analyze the sparsity of matrix representation for LP and then pro-
pose an improved implementation for logic programming in vector space using
sparse matrix representation. The experimental results on computing the least mod-
els of definite programs demonstrate a very significant enhancement in terms of
computation performance even when compared to Clasp. This improvement remark-
ably reduced the burden of computation in previous linear algebraic approaches for
representing LP. The TP-operator plays an important role in model construction for
computation of definite and normal logic programs. Thus, improving the efficiency
of fixed-point computation is the key to develop algorithms dealing with large-scale
datasets. Although the current method requires a huge amount of memory to store
all possible combinations of negated atoms, we witnessed considerable improve-
ment when there are small numbers of negations. Moreover, matrix computation
could be more accelerated using GPU. We have tested our implementation in this
way, and obtained expected results too.

In addition to the improvement using sparse representation, we conducted experi-
ments on different general-purpose sparse matrix representations and demonstrated
the merits and demerits of each format. Accordingly, we propose to use the CSR in
the linear algebraic methods of logic programs for both efficiency and generality.

Fig. 7 Comparison of execution time between different sparse representations on definite programs for
the transitive closure problem

250 New Generation Computing (2022) 40:225–254

123

Ta
bl

e
9

 C
om

pa
ris

on
 o

f d
iff

er
en

t s
pa

rs
e

re
pr

es
en

ta
tio

ns
 in

 te
rm

s o
f t

he
 m

em
or

y
si

ze
 o

n
no

rm
al

 p
ro

gr
am

s i
n

Ta
bl

e
5

�
z
 is

 th
e

nu
m

be
r o

f n
on

-z
er

o
el

em
en

ts
 in

 th
e

pr
og

ra
m

 m
at

rix
. M

em
or

y
un

it
is

 B
yt

es

n
m

n
′

k
�
z

CO
O

C
SR

/C
SC

B
SR

 2
×
2

B
SR

 4
×
4

 1
00

0
 5

00
0

 6
37

9
 8

 2
6,

14
7

31
3,

76
4

(1
00

.0
0%

)
24

9,
17

6
(7

9.
42

%
)

48
7,

33
6

(1
55

.3
2%

)
15

14
,8

52
 (4

82
.8

0%
)

 1
00

0
 1

0,
00

0
 1

2,
74

5
 8

 5
4,

81
4

65
7,

76
8

(1
00

.0
0%

)
47

8,
51

2
(7

2.
75

%
)

1,
01

9,
43

2
(1

54
.9

8%
)

3,
16

3,
48

8
(4

80
.9

4%
)

 1
60

0
 2

4,
00

0
 3

0,
06

1
 8

 1
35

,6
61

1,
62

7,
93

2
(1

00
.0

0%
)

1,
14

9,
28

8
(7

0.
60

%
)

2,
52

8,
41

2
(1

55
.3

1%
)

7,
84

0,
12

4
(4

81
.6

0%
)

 1
60

0
 3

0,
00

0
 3

6,
40

2
 7

 1
83

,7
03

2,
20

4,
43

6
(1

00
.0

0%
)

1,
53

3,
62

4
(6

9.
57

%
)

3,
40

2,
46

0
(1

54
.3

5%
)

10
,5

28
,3

48
 (4

77
.6

0%
)

 2
00

0
 3

6,
00

0
 4

2,
03

9
 5

 2
05

,8
00

2,
46

9,
60

0
(1

00
.0

0%
)

1,
72

6,
40

0
(6

9.
91

%
)

3,
82

4,
71

2
(1

54
.8

7%
)

11
,8

29
,3

48
 (4

79
.0

0%
)

 2
00

0
 4

0,
00

0
 4

8,
18

7
 8

 2
38

,5
97

2,
86

3,
16

4
(1

00
.0

0%
)

1,
98

8,
77

6
(6

9.
46

%
)

4,
43

7,
18

4
(1

54
.9

7%
)

13
,7

64
,9

20
 (4

80
.7

6%
)

 1
0,

00
0

 1
20

,0
00

 1
71

,9
67

 6
 7

16
,1

15
8,

59
3,

38
0

(1
00

.0
0%

)
6,

12
8,

92
0

(7
1.

32
%

)
13

,5
23

,4
96

 (1
57

.3
7%

)
42

,8
51

,3
00

 (4
98

.6
5%

)
 1

0,
00

0
 1

60
,0

00
 2

07
,4

32
 7

 9
17

,7
46

11
,0

12
,9

52
 (1

00
.0

0%
)

7,
74

1,
96

8
(7

0.
30

%
)

17
,0

43
,4

84
 (1

54
.7

6%
)

52
,6

33
,9

48
 (4

77
.9

3%
)

 1
6,

00
0

 2
00

,0
00

 2
50

,1
94

 5
 1

,1
29

,3
48

13
,5

52
,1

76
 (1

00
.0

0%
)

9,
67

4,
78

4
(7

1.
39

%
)

21
,2

03
,9

60
 (1

56
.4

6%
)

66
,0

35
,6

84
 (4

87
.2

7%
)

 1
6,

00
0

 2
20

,0
00

 2
78

,1
90

 6
 1

,5
47

,3
60

18
,5

68
,3

20
 (1

00
.0

0%
)

13
,0

18
,8

80
 (7

0.
11

%
)

29
,0

28
,4

48
 (1

56
.3

3%
)

90
,0

12
,9

32
 (4

84
.7

7%
)

 2
0,

00
0

 2
80

,0
00

 3
57

,0
01

 4
 1

,8
41

,7
49

22
,1

00
,9

88
 (1

00
.0

0%
)

15
,5

33
,9

92
 (7

0.
29

%
)

34
,2

19
,3

56
 (1

54
.8

3%
)

10
6,

03
9,

48
4

(4
79

.8
0%

)
 2

0,
00

0
 3

20
,0

00
 3

96
,1

28
 4

 2
,0

92
,3

10
25

,1
07

,7
20

 (1
00

.0
0%

)
17

,5
38

,4
80

 (6
9.

85
%

)
39

,0
12

,9
40

 (1
55

.3
8%

)
12

0,
35

9,
68

8
(4

79
.3

7%
)

251New Generation Computing (2022) 40:225–254

123

If we need a flexible way to access and modify non-zero elements individually, we
strongly recommend using the COO format. On the other hand, if we deal with spe-
cial types of logic programs as demonstrated in Sect. 5, we can consider applying
the BSR format or maybe other methods that meet the need.

Fig. 8 Comparison of execution time between different sparse representations on normal programs

Fig. 9 Comparison of execution time between different sparse representations on special programs

Table 10 Comparison of different sparse representations in terms of the memory size on special pro-
grams as defined above

�
z
 is the number of non-zero elements in the program matrix. Memory unit is Bytes

n m n
′ �

z
COO CSR/CSC BSR 2 × 2 BSR 4 × 4

 1000 1000 1000 2000 24,000
(100.00%)

 20,004
(83.35%)

 12,004
(50.02%)

 18,004
(75.02%)

 1600 1600 1600 3200 38,400
(100.00%)

 32,004
(83.34%)

 19,204
(50.01%)

 28,804
(75.01%)

 2000 2000 2000 4000 48,000
(100.00%)

 40,004
(83.34%)

 24,004
(50.01%)

 36,004
(75.01%)

 10,000 10,000 10,000 20,000 240,000
(100.00%)

 200,004
(83.34%)

 120,004
(50.00%)

 180,004
(75.00%)

 16,000 16,000 16,000 32,000 384,000
(100.00%)

 320,004
(83.33%)

 192,004
(50.00%)

 288,004
(75.00%)

 20,000 20,000 20,000 40,000 480,000
(100.00%)

 400,004
(83.33%)

 240,004
(50.00%)

 360,004
(75.00%)

252 New Generation Computing (2022) 40:225–254

123

(a) Definite programs with higher sparsity level (0.99) (b) Definite programs with lower sparsity level (0.95)

Fig. 10 Comparison of execution time between sparse matrix implementations on CPU and GPU

Table 11 Details of
experimental results of sparse
matrix implementations on CPU
and GPU (higher sparsity level)

Time unit is second

n m Sparsity Sparse matrix
on CPU

Sparse
matrix on
GPU

100,000 500,000 0.99 5.12 1.26
110,000 600,000 0.99 5.69 1.40
120,000 700,000 0.99 6.63 1.58
130,000 800,000 0.99 7.57 1.75
140,000 900,000 0.99 9.12 2.04
150,000 1,000,000 0.99 11.39 2.29

Table 12 Details of
experimental results of sparse
matrix implementations on CPU
and GPU (lower sparsity level)

Time unit is second

n m Sparsity Sparse matrix
on CPU

Sparse
matrix on
GPU

100,000 500,000 0.95 20.23 4.43
110,000 600,000 0.95 29.12 6.35
120,000 700,000 0.95 37.28 9.39
130,000 800,000 0.95 48.23 11.33
140,000 900,000 0.95 57.24 13.46
150,000 1,000,000 0.95 66.23 15.89

Sato’s linear algebraic method is based on a completely different idea to represent
logic programs, where each predicate is represented in one matrix and an approxi-
mation method is used to compute the extension of a target predicate of a recursive
program [24]. We should note that this approximation method is limited to a matrix
size of 10,000, while our exact method is comfortable with 320,000. Further com-
parison is a future research topic, yet we could expect that Sato’s method can also be
enhanced by sparse representation.

The encouraging results open up room for improvement and optimization. Poten-
tial future work is to apply a sampling method to reduce the number of guesses in

253New Generation Computing (2022) 40:225–254

123

the initial matrix for normal programs. An algorithm would be to prepare some
manageable size of the initial matrix, and if all guesses fail then we do some local
search and replace column vectors with new assignments and repeat it until a sta-
ble model is found. Using a gradient-based search algorithm in continuous vector
spaces could be another potential approach [4], this method could also be benefi-
cial from using sparse representation. In addition, the sparse method also can com-
bine with the partial evaluation that has been introduced in [17]. Further research
directions on implementing disjunctive LP and abductive LP should be considered
to reveal the applicability of tensor-based approaches for LP. In our recent work, we
have extended the use of program matrix transpose to realize abduction in vector
spaces [19]. Additionally, more complex types of the program should be taken into
account to be represented in vector space, for instance, 3-valued logic programs and
answer set programs with aggregates and constraints.

Acknowledgements We would like to thank Prof. Taisuke Sato for his valuable comments and useful
critiques of this research. This work has been supported in part by JSPS KAKENHI Grant Numbers
17H00763 and 18H03288. Tuan Nguyen Quoc has also been supported by Japan International Coopera-
tive Agency “Innovative Asia”.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. Alferes, J.J., Leite, J.A., Pereira, L.M., Przymusinska, H., Przymusinski, T.C.: Dynamic updates of
non-monotonic knowledge bases. J. Logic Progr. 45(1–3), 43–70 (2000)

 2. Aspis, Y.: A Linear Algebraic Approach to Logic Programming. Master thesis at Imperial College
London (2018)

 3. Aspis, Y., Broda, K., Russo, A.: Tensor-based abduction in horn propositional programs. In: CEUR
Workshop Proceedings, vol. 2206, pp. 68–75 (2018)

 4. Aspis, Y., Broda, K., Russo, A., Lobo, J.: Stable and supported semantics in continuous vector
spaces. In: Proceedings of the 17th International Conference on Principles of Knowledge Represen-
tation and Reasoning, KR 2020, Rhodes, Greece, pp. 59–68 (2020)

 5. Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on cuda. Technical report, Cit-
eseer (2008)

 6. Bunch, J.R., Rose, D.J.: Sparse Matrix Computations. Academic Press (2014)
 7. Cohen, W.W.: Tensorlog: A differentiable deductive database (2016). arXiv: 1605. 06523
 8. D’Asaro, F.A., Spezialetti, M., Raggioli, L., Rossi, S.: Towards an inductive logic programming

approach for explaining black-box preference learning systems. In: Proceedings of the 17th Interna-
tional Conference on Principles of Knowledge Representation and Reasoning, pp. 855–859 (2020)

 9. Funahashi, K.-I.: On the approximate realization of continuous mappings by neural networks. Neu-
ral Netw. 2(3), 183–192 (1989)

 10. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.: Theory solving
made easy with clingo 5. In: OASIcs-OpenAccess Series in Informatics, vol. 52. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2016)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1605.06523

254 New Generation Computing (2022) 40:225–254

123

 11. Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010). http:// eigen. tuxfa mily. org
 12. Gustavson, F.G.: Two fast algorithms for sparse matrices: multiplication and permuted transposi-

tion. ACM Trans. Math. Softw. (TOMS) 4(3), 250–269 (1978)
 13. Hitzler, P., Hölldobler, S., Seda, A.K.: Logic programs and connectionist networks. J. Appl. Logic

2(3), 245–272 (2004)
 14. Kowalski, R.: Logic for Problem Solving. Elsevier, North Holland (1979)
 15. Kunegis, J.: Konect: the Koblenz network collection. In: Proceedings of the 22nd International Con-

ference on World Wide Web, pp. 1343–1350 (2013)
 16. Nguyen, H.D., Sakama, C., Sato, T., Inoue, K.: Computing logic programming semantics in linear

algebra. In: Proceedings of the 12th International Conference on Multi-disciplinary Trends in Arti-
ficial Intelligence (MIWAI 2018), Lecture Notes in Artificial Intelligence, vol. 11248, pp. 32–48.
Springer, Heidelberg (2018)

 17. Nguyen, H.D., Sakama, C., Sato, T., Inoue, K.: An efficient reasoning method on logic program-
ming using partial evaluation in vector spaces. J. Log. Comput. 31(5), 1298–1316 (2021)

 18. Nguyen, T.Q., Inoue, K., Sakama, C.: Enhancing linear algebraic computation of logic programs
using sparse representation. In: EPTCS Online Proceedings of ICLP (2020), vol. 325, pp. 192–205
(2020)

 19. Nguyen, T.Q., Inoue, K., Sakama, C.: Linear algebraic computation of propositional horn abduc-
tion. In: 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI)
(2021)

 20. Rocktäschel, T., Bosnjak, M., Singh, S., Riedel, S.: Low-dimensional embeddings of logic. In: Pro-
ceedings of the ACL 2014 Workshop on Semantic Parsing, pp. 45–49 (2014)

 21. Sakama, C., Inoue, K., Sato, T.: Linear algebraic characterization of logic programs. In: Proceed-
ings of the 10th International Conference on Knowledge Science, Engineering and Management
(KSEM 2017), Lecture Notes in Artificial Intelligence, vol. 10412, pp. 520–533. Springer, Heidel-
berg (2017)

 22. Sakama, C., Inoue, K., Sato, T.: Logic programming in tensor spaces. Ann. Math. Artif. Intell.
(2021). https:// doi. org/ 10. 1007/ s10472- 021- 09767-x

 23. Sato, T.: Embedding Tarskian semantics in vector spaces. In: AAAI-17 Workshop on Symbolic
Inference and Optimization (2017)

 24. Sato, T.: A linear algebraic approach to datalog evaluation. Theory Pract. Logic Program. 17(3),
244–265 (2017)

 25. Sato, T., Inoue, K., Sakama, C.: Abducing relations in continuous spaces. In: Proceedings of IJCAI-
18, pp. 1956–1962 (2018)

 26. Serafini, L., Garcez, A.D.: Logic tensor networks: deep learning and logical reasoning from data
and knowledge (2016). arXiv: 1606. 04422

 27. Shakerin, F., Gupta, G.: White-box induction from SVM models: explainable AI with logic pro-
gramming. Theory Pract. Logic Progr. 20(5), 656–670 (2020)

 28. Van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a programming language. J.
ACM (JACM) 23(4), 733–742 (1976)

 29. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and
inference in knowledge bases. In: 3rd International Conference on Learning Representations, ICLR
2015, Conference Track Proceedings (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://eigen.tuxfamily.org
https://doi.org/10.1007/s10472-021-09767-x
http://arxiv.org/abs/1606.04422

	Enhancing Linear Algebraic Computation of Logic Programs Using Sparse Representation
	Abstract
	Introduction
	Preliminaries
	Definite Programs
	Normal Programs

	Sparse Representation of Logic Programs
	Sparsity of Logic Programs in Vector Spaces
	Converting Logic Programs to Sparse Matrices
	The Coordinate Format
	The Compressed Sparse Row Format
	The Block Compressed Sparse Row Format
	Which Format is the Best for Logic Programs?

	Complexity Analysis
	Linear Algebraic Method for Definite Programs
	Linear Algebraic Method for Normal Programs

	Experimental Results
	Definite programs
	Normal Programs
	Sparse Representations Comparison
	Scalability of Sparse Matrix on GPU

	Conclusion
	Acknowledgements
	References

