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Abstract

Viral encephalitis is a contagious disease that causes life insecurity and is consid-
ered one of the major health concerns worldwide. It causes inflammation of the
brain and, if left untreated, can have persistent effects on the central nervous system.
Conspicuously, this paper proposes an intelligent cyber-physical healthcare frame-
work based on the IoT—fog—cloud collaborative network, employing soft-computing
technology and information fusion. The proposed framework uses IoT-based sen-
sors, electronic medical records, and user devices for data acquisition. The fog layer,
composed of numerous nodes, processes the most specific encephalitis symptom-
related data to classify possible encephalitis cases in real time to issue an alarm
when a significant health emergency occurs. Furthermore, the cloud layer involves
a multi-step data processing scheme for in-depth data analysis. First, data obtained
across multiple data generation sources are fused to obtain a more consistent, accu-
rate, and reliable feature set. Data preprocessing and feature selection techniques
are applied to the fused data for dimensionality reduction over the cloud computing
platform. An adaptive neuro-fuzzy inference system is applied in the cloud to deter-
mine the risk of a disease and classify the results into one of four categories: no risk,
probable risk, low risk, and acute risk. Moreover, the alerts are generated and sent to
the stakeholders based on the risk factor. Finally, the computed results are stored in
the cloud database for future use. For validation purposes, various experiments are
performed using real-time datasets. The analysis results performed on the fog and
cloud layers show higher performance than the existing models. Future research will
focus on the resource allocation in the cloud layer while considering various secu-
rity aspects to improve the utility of the proposed work.
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Introduction

The progress of Industry 4.0 has introduced a variety of novel technologies, such
as artificial intelligence, cyber-physical systems, cloud computing, and the Internet
of Things [1]. These technologies have enormous potential to revolutionize various
fields such as manufacturing, transportation and agriculture [2]. Due to the grow-
ing demand for healthcare, cyber-physical systems (CPS) have received significant
attention from researchers and industry experts [3]. CPS firmly integrates the physi-
cal world, including sensing, communication, control, and networking, with com-
puting components in cyberspace [4]. The collaboration between CPS and other
technologies such as big data analytics and cloud computing offers a wide range of
possibilities for developing novel and innovative human-centric applications.

The availability of data from electronic medical records and various sources of
IoT-based wireless medical sensors and mobile devices provides a wealth of raw
data. Such a vast amount of data is considered big data [5]. The processing and
analysis of such data require third-party cloud data centers. However, transfer-
ring large amounts of data to cloud servers is time-consuming and requires higher
bandwidth due to their far locality from the users’ device [6]. Additionally, this pre-
sents a massive opportunity for various attackers to access critical patient health
data. Therefore, a new computing paradigm, fog computing, is introduced, which
acts as a bridge between cloud servers and data generation sources [7]. In fog com-
puting, several intermediate nodes are located in the users vicinity for processing
time-sensitive data with improved accuracy. These fog devices include cellular base
stations, intelligent gateways, routers, etc. Therefore, fog computing helps latency-
sensitive applications achieve their quality of service. Moreover, with the advent of
various machine-learning algorithms [8, 9] and soft-computing technologies [10], it
has become viable to offer automated remote healthcare services. In this study, we
mainly focus on leveraging various emerging technologies of Industry 4.0 to provide
new solutions to the growing problem of viral encephalitis.

Research Field

Encephalitis is an infectious disease that causes inflammation of the brain [11].
Several causes of encephalitis identified in the literature include contaminated food
or drink and exposure to viral infection. However, a virus that belongs to a family
of enteroviruses is the leading cause of encephalitis. Acute encephalitic syndrome
(AES) is a severe case of encephalitis that causes permanent damage to the brain
and then death. Encephalitis can be transmitted through respiratory droplets that
infected persons secrete. Other primary modes of transmission include the direct
transfer of the virus into the bloodstream through the bite of an infected insect (tick
or mosquito) [12] or touching an infected person.

Encephalitis is divided into two categories: primary encephalitis and secondary
encephalitis. Viable cases of primary encephalitis occur when the virus directly
attacks the brain. In addition, the latter infection occurs after encephalitis, and
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symptoms usually appear 2-3 weeks after the initial infection. Some signs and
symptoms of encephalitis include fever (over 39.5°C), severe headache, seizures,
hallucinations, irritability, etc [13]. However, in some severe cases of encephalitis,
symptoms such as coma and paralysis may occur in certain parts of the body. Cases
of encephalitis are more common in children under 1 year of age than in adults.
Nevertheless, people over 55 years of age with weakened immune systems are very
likely to develop encephalitis, sometimes leading to life-threatening complications
[14].

According to World Health Statistics, encephalitis infects almost all countries,
with more than 100,000 cases per year [15]. In India alone, 47,509 cases of enceph-
alitis and more than 8373 deaths were reported between 2005 and 2018 [16]. Sta-
tistics on the increase in Indian encephalitis cases in recent years are presented in
a graph, as shown in Fig. 1. The rapid increase in encephalitis cases and mortality
highlights the need for early detection and monitoring of the disease to avoid future
disease-related complications during the neonatal stage. By analyzing the real-time
physiologic parameters of children, the entrancing need for research can be realized.

Objectives

In the presented work, a CPS-fog improvised diagnostic framework for early detec-
tion and monitoring of viral encephalitis has been proposed. Several technologies of
Industry 4.0, such as artificial intelligence, fog cloud computing, and new technolo-
gies for big data analysis, have been used to implement the framework.

The main contributions of the presented work can be enumerated as follows:

1. An intelligent cyber-physical framework for predicting viral encephalitis using
soft-computing techniques and information fusion in an IoT-fog—cloud environ-
ment.

Encephalitis Cases and Deaths in India
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Fig. 1 Encephalitis cases and death statistics. Adapted from [16]
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2. An instant decision-making strategy at the network’s edge using the F-KNN
approach.

3. Information fusion and SVD-based feature selection, followed by ANFIS-based
risk factor determination and alert generation at the cloud layer.

4. Information dissemination for the predicted results to various system stakeholders
for effective management and control.

5. Experimental analysis of the proposed methodology in a simulated environment
to determine the various performance metrics.

Paper Outline

The remainder of this article is divided into the following sections. In the next sec-
tion, the extensive literature on various healthcare systems developed earlier has
been carried out. The following section details the proposed methodology, including
different constituent components. The subsequent section focuses on the experimen-
tal implementation of the proposed work and performance measures. The last sec-
tion concludes the work with important future research directions.

Related Work

This section reviews the recent contributions of various researchers and academi-
cians worldwide. Warda et al. [17] proposed an innovative solution for the detec-
tion of COVID-19 disease. The authors used the potential of preprocessing, feature
ranking, and fuzzy inference system with a deep neural network classification-based
hybrid diagnose strategy (HDS) for early detection of COVID-19 cases. Compared
with other methods, the proposed method achieved better performance in vari-
ous statistical parameters. Yuxin et al. [18] introduced the Internet of Things and
machine learning in the healthcare domain for the diagnosis of Alzheimer’s disease.
The proposed framework was primarily focused on assessing recent memory loss
in human conversations. The simulations showed that the proposed framework was
highly efficient for diagnosing and predicting life-threatening diseases. Fang et al.
[19] presented a medical information fusion-based diagnostic framework for the
treatment of COVID-19 disease. The proposed methodology could improve classifi-
cation accuracy more than the traditional methods and help healthcare professionals
combat COVID-19. Farman et al. [20] presented a sensor data-based smart health
monitoring framework based on IoT and cloud computing. The authors also used
various data mining techniques and proposed ontology-based recommendations.
However, the proposed framework was unable to analyze data in real time. Alireza
et al. [21] addressed the need of tracking students’ behavioral changes and presented
a three-layered IoT-cloud framework. Various classification algorithms such as
SVM, DT, RF, and MLP were used to classify the results. The simulations showed
that the SVM classifier outperformed in comparison to other methods. Moreover, the
authors suggested analyzing the data at the edge of the network to improve the over-
all response time of the system. Gongalo et al. [22] presented an automated method
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for detection of COVID-19 using Efficient-net. The authors claimed their method
to be effective for detecting the disease in the advanced stage. Based on the experi-
mentation carried out by the authors, the results obtained were quite interesting and
useful for implementation in real environment. Ramani et al. [23] presented a modi-
fied artificial neural network (ANN) classifier with a Map-Reduce framework for the
prediction of diabetes. The framework was capable of dealing with large datasets.
Experimental results show that the proposed model has a high level of acceptance
and performance measures compared to earlier developed systems.

A detailed comparative analysis of the presented work with the recently avail-
able literature is summarized in Table 1. Many essential parameters for comparative
analysis include cyber-physical system (CPS), fog computing (FC), cloud comput-
ing (CC), internet of things (IoT), information fusion (IF), fuzzy technology (FT),
deep learning (DL), predictive analytics (PA), and alert generation (AG).

Based on extensive study of the numerous healthcare systems presented in the
literature, the following research gaps were discovered:

1. There are very limited intelligent healthcare frameworks that can effectively col-
lect, process, and analyze healthcare data and provide results in the minimal
possible time.

2. Information fusion from multiple data generation sources along with feature selec-
tion techniques have not been considered in the area of predictive healthcare.

3. In previous studies of the healthcare system, the latent use of advanced fuzzy-
based decision-making techniques have been neglected.

Proposed System

The proposed framework for early diagnosis and monitoring of viral encephalitis
has been presented in Fig. 2. The entire model is conceptually formulated using
two spaces, namely the physical space and cyberspace. The first space, the physical
space, includes various entities responsible for obtaining individual patient, health,
and demographic parameters. On the contrary, cyberspace is responsible for the real-
time processing and analysis of data to predict the risk of encephalitis. Each space
in CPS is composed of different components, each assigned a predefined role nec-
essary to perform a specific task. The two spaces work in collaboration to achieve
the overall objectives of the system. The detailed description of these spaces of the
cyber-physical system is presented in the respective sections “Physical space” and
“Cyber space”.

Physical Space

The reliability of any healthcare system depends on acquiring accurate information
about various influencing factors. Therefore, to accurately predict the risk of viral
encephalitis disease, information about various factors that directly or indirectly
contribute to encephalitis is needed. To achieve the goal of data acquisition, our
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Fig.2 Layered architecture of the proposed framework

proposed model uses multiple sources of information: electronic medical records
(EMR), IoT-based wireless sensors deployed in the user’s proximity, and data
obtained directly from patients through mobile devices.

Electronic medical records: Electronic medical records contain general informa-
tion about the patient, treatment, and medical history of the users, who have already
been registered with the healthcare system.

Mobile devices: The other data acquisition mode requires users to register with
the healthcare system through an OTP-based verification scheme. After successful
registration, users are required to enter detailed personal information such as name,
age, gender, address, contact information, and family details, through an application
program interface (API). The information about family and caretakers is collected to
provide real-time health information and alerts in case of the patient’s poor health.
The collected information is also stored in electronic medical records for future use.

IoT sensors: The information about the user’s health, environmental, and demo-
graphic attributes are acquired with the help IoT-based wireless sensors placed in the
user’s proximity. These sensors continuously sense, collect and relay the observed
parameters through the local processing unit (LPU) or smart gateway after a fixed
time interval. Various devices such as smartphones and routers can act as gateways
to achieve data aggregation and enable communication between two independent
spaces. Several communication protocols such as cellular, Wi-Fi, and Zigbee, as
shown in Table 2, are used by gateway devices for communication with cyberspace.
To ensure the security and privacy of data transmission, various security mecha-
nisms, such as elliptic curve cryptography (ECC), transport layer security (TSL),
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and secure socket layer (SSL), may also be implemented in the physical space. The
physical space involves data communication among different stakeholders, namely
healthcare professionals, healthcare providers, and patients. Healthcare profession-
als include nurses, doctors, and paramedic staff who are entrusted with the responsi-
bility of providing treatment to the patients. Likewise, healthcare providers comprise
hospitals, health clinics, and government agencies directly related to administering
the clinical resources. Healthcare providers may access the information about patient
health to provide instant services in the form of arrangement of medical equipment
and dispatch of ambulance according to patient’s specific location, etc.

IoT-based wireless sensors placed in the users’ proximity, EMR, and mobile
devices provide a heterogeneous collection of huge user data. Table 3 provides the
description of various features critical to identify the risk of viral encephalitis. The
collected information about the user’s health, environment, and other related attrib-
utes is transmitted to cyberspace for further processing and analysis.

Cyber Space

Cyberspace collects data from multiple data generation sources in the physical space
and facilitates various data processing and analytics operations through its two lay-
ers: the fog layer and the cloud layer. The fog layer aims at real-time local data ana-
lytics using multiple fog nodes in the users’ vicinity. On the contrary, the cloud layer
possesses high storage and data analytics capabilities, hence responsible for detailed
data analysis. The following sections provide a detailed description of each layer and
the different components employed in each layer.

Fog Layer

To provide a better user experience and time-critical information to the stakeholders
of the system, a fog layer was introduced between the data generation sources and
highly constrained third-party cloud data centers. The fog layer aims at local data
analytics by performing real-time data classification and alert generation at the edge
of the networks rather than processing at the cloud data centers.

(A) F-KNN-based instant encephalitis classification: In the proposed framework,
the users are broadly classified into two classes based on their health data, i.e.,
normal class and infected class. A normal class enumerates that the user’s health
condition is normal and does not require any supervision. However, the infected
class determines the patient’s abnormality and, hence, requires immediate action
from caretakers and doctors. Several techniques for decision-making have been
realized in the literature that classifies the users based on their health attributes.
The proposed framework utilizes the fuzzy k-nearest neighbor algorithm (F-KNN)
to serve the purpose. The F-KNN is one of the most efficient supervised learning
algorithms that is used for classification and prediction purposes, and the wide-
spread applications of the F-KNN can be realized in the literature [30, 31]. The
algorithm incorporates the theory of fuzzy sets into the traditional k-nearest neigh-
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bor algorithm to propose a novel version of the algorithm. In the F-KNN approach,
the fuzzy memberships of the data instances are computed and assigned to labeled
samples rather than individual classes as in the KNN algorithm. Several techniques
are available for the computation of fuzzy membership values [32]. However, in
our case, all the membership values, for instance, are computed using the Eq. 1 and
are assigned to a class with which the highest value is obtained using the Eq. 2.

s (/=)
Zf:1 (1/”x—xj“2/(m_l)> M

i=12...,N,and j=1,2....K

u,(x) =

C(x) = max (u;(x)) i=12...,N, )

where N and K denotes the number of classes and neighbors, respectively. ”x - x”

calculates the Euclidean distance between x and its nearest neighbor x;. u; specifies
fuzzy membership degree of the pattern x; from the training set to the class 1. u;(x)
denotes the assigned fuzzy membership of x; in class i. m is the fuzzy strength
parameter and measures how significantly the dlstance is weighted when computing
each neighbor’s contribution to the membership value and its value is chosen
between 1 and oo.

Algorithm 1: Working of F-KNN classification algorithm

Input: A dataset DS consisting of N data instances and two class labels.
Output: Class label as normal or infected.
1: for i=1toNdo

: for c=1toC do
compute u;(x) using equation 1

2:  Compute distance from x; to y using Euclidean distance.

3: ifi <=Kthen

4: Include x; in the set of K neighbors.

5:  elseif x;is closer to y than previous nearest neighbor then
6: Delete the farthest of K neighbors.

7:  endif

8: end for

9.

10:

11: end for
12: Assign crisp label of y to the class with which it has obtained the highest value using the equation 2.
13: return Class label as normal or infected.

The working of the F-KNN-based classification component is presented in
Algorithm 1. If the results of the F-KNN are classified as infected, warning alerts
are generated and sent to the system’s stakeholders for immediate action. Moreo-
ver, the classification results are further transmitted to the cloud layer for detailed
analysis by determining the risk factor and severity of viral encephalitis.

Ohmsha

@ Springer



1104 New Generation Computing (2022) 40:1093-1123

Cloud Layer

Although the fog layer possesses immense processing capabilities using multiple
fog nodes in the user’s vicinity, several advanced tasks involving the deep analy-
sis and huge storage requirements cannot be performed at the fog layer. There-
fore, the cloud layer is introduced as a countermeasure to perform such tasks. In
the presented framework, the cloud layer performs multiple tasks:

(1) information fusion,

(2) data preprocessing,

(3) feature selection,

(4) risk factor determination,
(5) alert generation, and

(6) cloud storage.

(A) Information fusion: This section discusses the fusion of data obtained from
multiple sources such as IoT-based wireless sensors or mobile applications with
previously-stored electronic medical records. Data fusion aims to generate a more
consistent, accurate, and reliable dataset for classification and prediction purposes.
The existence of various fusion strategies involves merging data at the feature
level or the decision level [33]. In the feature-level fusion, features from multiple
heterogeneous data sources are merged. In contrast, decision-level fusion methods
involve fusing decisions based upon individual sensor data [34]. In the presented
framework, a feature-level data fusion strategy has been employed as the decision-
level fusion provides highly redundant data and is not desirable for real-world
health-critical applications.

To achieve the purpose of data fusion in our proposed framework, first data
from multiple wireless medical sensors placed in patients’ proximity is collected.
These sensors collect information related to viral encephalitis parameters, such
as body temperature, blood pressure, glucose level, etc. The collected data is fur-
ther merged with the previously stored electronic medical records that contain
complete information related to the patient’s previous medical history, treatment,
etc. Finally, the features obtained through the fusion of EMR and viral enceph-
alitis-sensitive data are stored in a comma-separated value (.csv) file for further
processing and analysis. Therefore, a new dataset with the best combination of
features is obtained due to data fusion. This dataset is utilized for the training and
validation of the proposed model.

(B) Data preprocessing: Data preprocessing is one of the most crucial steps before
performing any data analysis. The raw data collected across multiple heterogeneous
sources is highly unstructured and may contain noise and missing values. If directly
fed to the machine learning algorithms, such data may affect the predictive accuracy.
Therefore, in our proposed framework, several data preprocessing techniques such as
data cleaning, missing data filtering, and normalization are applied that improve the
quality of raw data and, hence, the accuracy of encephalitis prediction.
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The first step in data preprocessing is concerned with removing the redundant
data values and replacing the missing values with the values obtained by using vari-
ous imputation methods, such as mean, median, and mode. An unsupervised filter,
namely RemoveUseless filter [22], was employed and removed the high variance
values from the dataset. The dataset considered for performing the analysis may con-
tain numerical and categorical attributes. The missing values for numerical attrib-
utes are replaced with the mean value calculated for each attribute. Instead, missing
values for categorical attributes are replaced with frequently occurring values of the
respective attribute in a structured dataset. Moreover, EMR for patients may also be
used for dealing with the missing values by replacing missing data values with the
current attribute value.

In the next step of data preprocessing, the data is normalized in the range between
0 and 1 using the min—max approach, as given in the Eq. 3. The goal of normaliza-
tion is to change the values of numeric attributes in the dataset to use a common
scale without distorting differences in the ranges of values or losing information.
Moreover, this also reduces the complexity and computational cost of machine
learning algorithms.

D—-D, .
Dtrans = w X [Nmax - Nmin] + Nmin’ (3)
(Dvmax - Dvmin)

where D is the original dataset. D, is normalized dataset, containing data values
in the range [0-1].

D, nin and D, . represent the minimum and maximum data values in the dataset.
N, and N, represent the value 0 and 1, respectively.
The data obtained after applying data preprocessing techniques is clean, consist-

ent, free from noise, and is suitable for performing the feature selection.

(C) Feature selection: The feature fusion from multiple heterogeneous data sources
provides the best features for training and prediction. However, this newly formed
feature set may contain many redundant and irrelevant features that certainly reduce
the quality of training data and increase the model’s complexity and computational
cost. Hence, various feature selection techniques are applied prior to using them for
modeling. The feature selection aims to obtain an optimal subset of relevant features
from the extensive feature set without any difference in the predictive accuracy. This
reduces the redundant features in the dataset and reduces the variance, thus avoiding
the problem of overfitting.

A singular value decomposition (SVD) technique for feature selection was
employed in the proposed framework. SVD is a mathematical approach that is based
on matrix factorization [35]. Algorithm 2 illustrates the working of SVD-based fea-
ture selection. A data matrix D of order m % n is factorized into three sub-matrices,
namely left singular matrix L , right singular matrix R, and diagonal matrix ), each
of order m * m, n * n and m * n, respectively. The decomposition task is performed
to obtain the useful and interesting features of the original data matrix D. The output
of the SVD-based feature selection technique provides a transformed data matrix, D
of order m * (n — k), comprising a fewer number of features.

Ohmsh.
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The transformed data matrix D, With a limited and crucial feature set, is
fed to the adaptive neuro-fuzzy inference system for further processing and analysis.

Algorithm 2: SVD based feature selection
Input: A high-dimensional data matrix, D of order mxn
Output: A transformed data matrix, D of order m =+ (n—k)

: Split the input data matrix D of order m + into three unique sub-matrices L , R and Y such that: D = LY RT

2: Compute a left orthogonal matrix, L of order m+m such that L« LT =1 and the columns of L represent the eigen vectors of
D+DT.

3: Compute a diagonal singular matrix, }_ that contains positive singular values and are sorted in decreasing order as:

01 > 01 =201 >... >0, >0; where r denotes the rank of data matrix D. Also find Z]lm(nik) by ignoring last k rows and k

—

columns of }_.
4: Compute a right orthogonal matrix, R of order n+n such that RT «R =T and columns of R represents the eigen vectors of

DT «D. Also find R(lnfk)xmfk) by ignoring last k columns of R.

o

T
: Compute the final matrix as: Dyy(u—k) = meZ}m(mm (R(ln—k)*(n—k)) .

(D) ANFIS-based risk factor determination: It is the most crucial component in the
cloud layer and is responsible for identifying possible risks associated with enceph-
alitis cases based on efficacious predictive data analysis. An adaptive neuro-fuzzy
inference system (ANFIS) approach was utilized to perform predictive data analysis.
ANFIS is a hybrid soft-computing technique that integrates the powerful features of
artificial neural networks (ANN) and fuzzy inference systems (FIS). ANFIS is char-
acterized by the knowledge representation and reasoning capabilities of ANN with
the quick and efficient learning capabilities of fuzzy systems. In the proposed frame-
work, ANFIS has been trained using the different number of most essential features
from different datasets. ANFIS takes the necessary feature set as input and classifies
the users into one of four categories, namely

(1) norisk,

(2) low risk,

(3) moderate risk, and
(4) acute risk,

based on the associated risk factor. The structure of ANFIS is presented in Fig. 3. It
comprises five layers, each of which performs a specific computational task as

(1) fuzzification,

(2) product,

(3) normalization,

(4) normalized product, and
(5) summation.

Each layer in the ANFIS structure comprises various adaptive nodes and fixed
nodes. The circle represents the fixed nodes, and the square depicts the adaptable
nodes in the ANFIS architecture. The detailed description of each layer is as follows:
Layer 1: This layer consists of input nodes, each of which is associated with a mem-
bership function y, . Table 4 provides the summary of commonly used membership

Ohmsha @ Springer
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Layer 2 Layer 3 Layer 4

Layer 1

Body
Temerature

Blood

Pressure
Layer 5

Changes in
personality

Paralysis

NN AN AN AN TN

Input Features

Fig.3 Structure of ANFIS

functions. The output of this layer is the fuzzy membership grade of the inputs and
is given in Eq. 4.

Op1 = Hy, (%), 4)

where x denotes the input feature passed to a node k, A, specifies the linguistic
labels associated with each node function, Ha, denotes the membership function of
A, and represents the degree to which x satisfies A,

The scenario considered for the determination of risk factor associated with
encephalitis cases consists of eight inputs, in the layer 1 that can be fuzzified as:

1. Body temperature (BT): Specifies the user’s body temperature(in degree celsius)
and is split into four fuzzy sets.
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Or.1 = Ha, (BT)

fork=1234{A, =low,A, = normal,A; = mild, and A, = high }.
2. Blood pressure (BP): Specifies the blood pressure of the user (in mmHg) and is
split into three fuzzy sets.

O, = up (BP)

fork =1,2,3{B, =low, B, = normal, and B; = high }.
3. Oxygen level (OL): Specifies the percentage of oxygen in user’s body and is split
into three fuzzy sets.

Or1 = He,(OL)

fork =123 {C, = Risky ,C, = Low, and C; = Normal }.
4. Glucose level (GL): Specifies the glucose level of users (in mg/dl) and is split into
three fuzzy sets.

Or1 = Hp, (GL)

fork =123 { D, =low, D, = normal, and D; = high }.
5. Eye redness (ER): Specifies the presence or absence of redness in eyes. This input
is split into two fuzzy sets.

Oy = mg, (ER)

fork=12{E, =yes,and E, = no}.
6. Confusion (C): Specifies whether the user experiences confusion. This input is
split into two fuzzy sets.

01<,1 = MFk(C)

fork =12 {F, = yes,and F, = no}.
7. Exposure to insects (EI): Specifies whether the user are exposed to infectious
insects. This input is split into two fuzzy sets.

Oy = g, (ED)

fork =12 { G, = yes, and G, = no}.
8. Paralysis (P): Specifies whether the user experiences paralysis in any part of the
body. This input is split into two fuzzy sets.

Oy = mp,(P)

fork=12{H, = yes,and H, = no}.
Layer 2: This layer is composed of fixed nodes, represented as circles and is
responsible for calculating the trigger strength of the rule through the product
operation, given as:
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Opn = Wi = iy, (BT) X g (BP) X pc, (OL) X pip, (GL) X pi, (ER)X
5
1 (C) X g (CPY Xy (P) k=1,2... ®

Layer 3: This layer is composed of fixed nodes, marked as N, and is responsible for
calculating the normalized firing strength , W,” of a rule from layer 2. The output of
this layer is given as:

Wi

n
Zk=1 Wk
where n denotes the total number of rules.

Layer 4: This layer consists of various adaptive nodes where the output of each

node is given as a product of the normalized file strength , W,” and a first-order poly-
nomial, given as:

O3 =W, = k=12... 6)

0k,4=V_kak=W_k(pkx+qky+rk)’ k=1,2,... @)

where p,, q,, and r; represent the modifiable consequent parameters.
Layer 5: This layer contains only one node, i.e., fixed node, marked as S and pro-
vides the final output by computing sum of all the incoming inputs.
- ZZ wifi
n

Os= ) Wfi=—— k=12,.... 8)
; ¢ 2k W

An adaptive neuro-fuzzy inference system for the early risk determination uses
eight input nodes (body temperature, blood pressure, oxygen level, glucose level,
eye redness, confusion, exposure to insects, paralysis) in layer 1. All of these nodes
specify the crucial encephalitis symptoms experienced by the users. The fuzzy set
for each of these inputs and predicted outputs is presented in Table 5. A triangu-
lar membership function is used for conversion of crisp values to fuzzy sets. Adap-
tive nodes presented in layers 1 and 4 are concerned with adjusting the premises
and consequent parameters, and a hybrid learning technique is used for the training
purpose. The training continues until the minimum error rate is achieved. Once the
model is trained, ANFIS predicts the associated risk of encephalitis and is catego-
rized into one of the four classes: no risk, possible risk, low risk, and acute risk.

(E) Alert generation: The utility of the alert generation component in cyberspace is
to inform the caretakers, doctors, and hospitals about the patients’ current state under
supervision. Algorithm 3 demonstrates how the alarm generation component works.
The risk factor for determining the severity of encephalitis is computed using ANFIS.
The four different categories of risks are no risk, possible risk, low risk, and acute
risk. An alert message is sent to caregivers, nearby doctors, and hospitals if there is
an acute risk. In addition, the patient’s location is also transmitted for the immediate
dispatch of the ambulance to the patient’s current location for early pickup. In the
event of low or possibly low risk, only caretakers are informed about the patients’
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mm

Table 5 Fuzzy sets for input and output

S. no. Attributes Range Fuzzy sets
Body temperature (degree celsius) <35 Low
36.5-37.5 Normal
37.6-38.3 Mild
>39.5 High
Blood pressure (mmHg) <80 Low
80-120 Normal
>120 High
Oxygen level <67 Risky
80-95 Low
>95 Normal
Glucose level (mg/dl) 85-100 Normal
100-125 Mild
>125 High
Redness in eyes 1 Yes
0 No
Confusion 1 Yes
0 No
Changes in personality 1 Yes
0 No
Paralysis 1 Yes
0 No
Output
Risk factor < 0.1 Normal case/no risk
0.1-0.4 Possibility of encephalitis
0.5-0.7 Low risk of encephalitis
0.8-1.0 Acute encephalitis

current state. Various medication practices and home remedies may also be suggested
for the patients’ quick recovery. However, in the absence of any encephalitis risk, no
alert message will be generated to any stakeholder of the system, and the information
about the patient is stored in the cloud for future usage.
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Algorithm 3: Working of an alert generation component

Input: Event results of F-KNN and location dataset.
Output: Alert messages to the stakeholders.
: Compute the Risk Factor of the patient using ANFIS.
: if Risk factor = Acute or Infected then
Notify nearby caretakers, and doctors.
Send patient’s location to nearby hospitals.
: else if Risk Factor = low or possible risk then
Notify nearby caretakers.
Suggest medications for early recovery at home.
end if
: Save health record of patient to the cloud storage.
: Exit.

SV XNQUI RN T

(F) Cloud storage: Cloud storage is a vital component in cyberspace. This compo-
nent aims to store information about the patient’s health condition, treatment, and
medical records. The information about the number of encephalitis cases, mor-
bidity, and mortality rates is stored in the public cloud for broad access across
the globe. The availability of information on the cloud enables policymakers and
government agencies to take precautionary measures and control the alarmingly
rising encephalitis cases.

Experimental Setup and Performance Analysis

In this section, various experiments were carried out to evaluate the performance
of the proposed framework. The experimentation was conducted on a system with
the following specifications: Intel(R) Core(TM) i7 processor, a memory capacity of
8 GB, a clock frequency of 2.10 GHz, and a 64-bit Windows-10 operating system.
This section is composed of multiple sub-sections, and a description of each sub-
section is given ahead.

Data Acquisition and Integration

To evaluate the performance of the proposed framework, a dataset with a large num-
ber of instances is required. Despite rigorous search across various data reposito-
ries, a multi-dimensional dataset comprising important attributes (physiological,
symptoms, environmental, and personal) is not found in a single dataset. Therefore,
a dataset consisting of multi-dimensional features is systematically created by inte-
grating various real-time datasets using Algorithm 4. The real dataset consisting of
personal and environmental attributes is obtained using [36]. Moreover, the enceph-
alitis symptoms-based dataset and a dataset containing physiological attributes are
collected using [37]. Table 3 provides the description of various features considered
for dataset formulation. The structured dataset consisting of 4000 instances is uti-
lized for evaluating the performance of the proposed model using various evaluation
metrics. The entire dataset is randomly split into training data and test data. Out of
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the total number of instances available, 80% (3200) instances are used for training,
and the rest 20% of the instances are utilized for testing and validation.

Algorithm 4: Dataset generation for viral encephalitis

Input: User details { personal data, symptoms data, physiological data, environmental data}, number of instances
required.
Output: A dataset with the most crucial features.
1: Initialize i = 1.
2: for i=1toN do
3:  Create a new instance by integrating symptoms dataset with the other important datasets.
4 if instance[i] with same data values for feature-set is already present then
5: Discard entry of instanceli]
6: else
7 Add the instanceli] to the dataset.
8 end if
9:  increment i by 1.
10: end for
11: Exit.

Performance Metrics

The performance of the proposed framework is evaluated based on four essential
components of the confusion matrix, namely true positive (TP), true negative (TN),
false positive (FP), and false negative (FN). Where TP specifies the number of true
instances and classified as true instances. TN specifies the number of instances that
are false and classified as false. FP specifies the number of instances that are false
and classified as true. FN specifies the number of instances that are true and classi-
fied as false. Different evaluation criterion used for the current study is discussed in
Table 6.

Classification Efficiency Analysis at the Fog Layer

A fuzzy-based k-nearest neighbor classifier was employed at the fog layer that
classifies the user into one of the two classes: infected class or normal class. The
algorithm was implemented using MATLAB R2021a. The sample dataset used for
instant classification at the fog layer is shown in Table 7. As the dataset contains
many categorical attributes, therefore first, the dataset is normalized in the range
from O to 1. Moreover, since the performance of F-KNN is dependent on the fuzzy
strength parameter, m, and the K values. Therefore, results are computed by varying
the values of k as 3, 5, and 7 with a constant value of fuzzy strength parameter as
2. The computed results are then compared with the other classification algorithms,
such as a K-NN, M-KNN, decision trees, random forest and logistic regression.
Results show that F-KNN performs better withm = 2 and k = 5.

Various statistical metrics such as accuracy, specificity, precision, and recall
were utilized for evaluating the performance of the proposed F-KNN. Figure 4
presents the analysis results of F-KNN with our classifiers, and the correspond-
ing values are enlisted in Table 8. From the results, it is evident that F-KNN out-
performs other classification algorithms with an average classification accuracy of
85.7%. Besides, the F-KNN results of sensitivity (85.5%), specificity (84.8%), and
precision (83.93%) also prove the superiority of F-KNN over other classification
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Fig.4 Analysis of F-KNN with other classifiers

Table 8 Statistical comparison of F-KNN with other classifiers over different performance metrics

Classifier model Accuracy (%) Sensitivity (%) Specificity (%) Precision(%)
F-KNN 85.7 85.5 84.8 83.93
M-KNN 83.9 81.9 80.7 78.9

K-NN 71.7 75.4 74.21 69.5
Decision tree 75.3 75.6 75.7 75.5
Random forest 74.4 72.8 73.1 71.4
Logistic regression 72.5 723 72.3 71.9

methods. Furthermore, the performance of the algorithms was compared in terms of
classification time. The F-KNN records the least classification time in comparison
with different K-NN versions.

Feature Selection Analysis

The proposed framework utilizes the fusion of data generated across multiple
data sources, thus resulting in multiple input features. The accuracy of the pro-
posed framework is affected by the number of features taken under considera-
tion. Therefore, to select the most optimal features from a large feature set, the
potential of the singular value decomposition technique (SVD) was utilized.
SVD selects the most crucial features for encephalitis prediction, thereby ignor-
ing the irrelevant features. SVD-based feature selection technique has been
implemented in python, and the results of the implementations are reported in
Table 9. From the results, it is evident that the first five singular vectors with the
cumulative variance of 91.93% and eigenvalues greater than 1 represent utmost
information over the remaining singular vectors, and hence these are further
used for training the proposed ANFIS model. Table 10 summarizes the perfor-
mance of SVD with other baseline feature selection method and principal com-
ponent analysis (PCA) [38]. The analytical results are presented in Table 10. It
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Table 9 SVD-based feature

selection SVs Eigen values Variance C'umula'—
tive vari-
ance
SVl 4.567 33.49 33.49
Sv2 4.192 18.44 51.93
SV3 3.768 16.95 68.89
Sv4 2.457 12.49 91.37
SVs 1.056 10.56 91.93
SVé 0.897 5.41 97.34
Sv7 0.545 1.95 99.24
Sv8 0.106 0.27 99.49
SV9 0.059 0.25 99.76
SV10 0.024 0.24 100

Table 10 Comparison of SVD and PCA computational complexity

Feature selection tech- Number of selected Epochs required for minimum % of classification
niques features error rate accuracy achieved
SVD 8 (50th) 90.54%
PCA 10 (60th) 86.43%

Table 11 Sample dataset instances for ANFIS

S.No. Body Blood Oxygen  Glucose Redness Confu- Change in Paralysis Risk

tempera- pressure  level level sion personal-

ture ity
1 34 85 90 101 0 1 0 0 0.2
2 37.2 110 87 110 1 0 0 0 0.6
3 374 140 89 126 1 0 0 0 0.7
4 34 82 72 96 0 0 1 1 0.9
5 37.1 95 98 97 0 0 0 0 0
6 37.6 100 97 105 1 0 0 0 0.3
7 36.1 130 95 114 1 0 1 0 0.5
8 38.2 125 96 119 0 1 0 0 0.55
9 36.8 94 98 97 0 0 0 0 0
10 37.1 108 99 130 1 0 0 0 0.6
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Table 12 ANFIS structural

parameters ANFIS parameters Description
Number of ANFIS layers 5
Number of inputs in layer 1 8
Number of rules 1728
Number of output layers 1
Learning approach Hybrid
Input membership function Triangular

is clear that the proposed SVD selects the eight most promising features and
provides the best computational complexity with higher accuracy performance
in comparison to PCA (Table 10).

Training and Validation of ANFIS

ANFIS integrates ANN and FIS to model and predicts the occurrence of many
uncertain encephalitis events. Table 11 demonstrates the sample dataset instances
used for training and validation of ANFIS. Various structural parameters used for
ANFIS are given in Table 12. The proposed ANFIS for the prediction of enceph-
alitis has been trained using the fuzzy logic toolbox, available in MATLAB'’s lat-
est version, R2021a. An optimal set of features obtained using the feature selection
technique is used as input features. The entire dataset is randomly split into training
data and test data. Out of the total number of instances available in the dataset, 80%
of instances are used for training, and the rest are utilized for testing and validation.
The training process is repeated with varying epochs until the training error rate is

ANFIS-Error and Correction rate
l- Correcl [ Error |

100
%
80 |
70+
60 |
50
40t
30t
20
10 £

Number of Epochs

Error and Correction Rate (in %)

Fig.5 Errors observed in different epochs
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Fig.7 Statistical analysis of ANFIS

reduced. The errors reported in different epochs are presented in Fig. 5. The train-
ing is stopped when the minimum error rate of 6.98% is achieved in the 50th epoch.
After successful training, the ANFIS model can classify the users into one of the
four classes: no risk, possible risk, low risk, and acute risk.
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Table 13 ANFIS classwise accuracy evaluation

Class Accuracy Specificity Precision Recall F-measure
No risk 0.9125 0.9042 0.9156 0.9049 0.9102
Possible risk 0.9042 0.8672 0.8949 0.9142 0.9044
Low risk 0.8916 0.9067 0.9025 0.9158 0.9091
Acute risk 0.9134 0.8838 0.9362 0.9216 0.9288
Weighted average 0.9054 0.8905 0.9123 0.9141 0.9132

ANFIS Efficiency Analysis

One of the most imperative tasks of determining the proposed model’s efficiency
and performance is to compare its results with the other advanced classification
algorithms. To achieve this, the results of ANFIS are compared with the other clas-
sifiers, namely, artificial neural networks (ANN), support vector machines (SVM),
fuzzy inference systems (FIS), and naive Bayes (NB). Various metrics used for
performance analysis are depicted in Table 6. The confusion matrix for ANFIS is
presented in Fig. 6, and detailed class-wise results are reported in Table 13. The
results of the statistical analysis of the proposed ANFIS, utilizing fusion and feature
selection techniques, can also be visualized as reported in Fig. 7. Therefore, it is
evident from the results that the overall predictive accuracy of the proposed ANFIS
model has improved using feature selection. Moreover, the results of specificity, pre-
cision, recall, and f-measure also prove the ANFIS approach’s superiority over other
approaches.

Alert Generation Efficiency Analysis

In cyberspace, alert generation works by providing real-time warning alerts to dif-
ferent stakeholders based on their health state. The warning alerts are provided so
that timely action can be taken to save a patient’s life. The alerts are generated in the
presented framework at the fog and cloud layers. The efficiency of alerts is measured
due to latency or the delay involved in their delivery to the different stakeholders of

Fig.8 Latency analysis of alerts 10 T T
I Fog layer
g || I Cloud layer |

Latency (in mins.)

20 40 60 80 100 120

Number of users (in hundred)
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the system. Latency or delay in the delivery of real-time alerts can be defined as the
difference between the delay involved in event prediction and the delay in alerts gen-
eration. This can be mathematically formalized as:

Latency = TAlert Generation TEvent Prediction - (9)

The results obtained using the mathematical formalization are depicted in Fig. 8.
The results prove the improved performance of alert generation at the fog layer com-
pared to the cloud layer.

Conclusion and Future Work

Viral encephalitis is a globally recognized viral infection that causes inflamma-
tion of the brain and is contemplated a public health problem worldwide. Limited
medical facilities and slight delays in the diagnosis can exacerbate the severity of
a patients’ illness. Consequently, this work presents an IoT-fog—cloud improvised
intelligent healthcare cyber-physical framework for early prediction and monitor-
ing of the infection. The proposed framework utilizes multiple data sources for data
acquisition. The data is analyzed in real-time using a fuzzy-based k-nearest neighbor
classifier for instant decision-making in the fog layer. Consequently, the alerts are
disseminated in the event of patients’ adversity to the nearby caretakers. The other
layer, namely the cloud layer, employs an information fusion mechanism that inte-
grates data from multiple sources to give an information-rich dataset. The obtained
data is preprocessed, and the SVD-based feature selection technique is applied to
obtain the set of most prominent features for severity analysis using ANFIS. The
proposed framework is implemented in a simulated environment, and the results are
compared with state-of-the-art prediction models. At the fog layer, F-KNN high-
lights excellent performance and achieves a higher classification accuracy of 85.70%
with a lower classification time. However, at the cloud layer, ANFIS shows notable
performance and attains higher accuracy, specificity, precision, and f-score averag-
ing 90.54%, 89.05%, 91.23%, and 91.32% respectively, in assessing the specific risk
factor of encephalitis. Besides, the results are compared with other baseline algo-
rithms for validation purposes. Based on the results, it is concluded that the adopted
methodology is competent and highly efficient for early prediction and risk mon-
itoring of viral encephalitis. Besides, the limitation of the proposed framework is
that there is no security mechanism to ensure the privacy and security of patient
information.

Furthermore, there exist some critical challenges for real-time implementation of
the proposed model in a cloud environment, such as resource provisioning and load
balancing. In this context, the future work will focus on overcoming the aforemen-
tioned challenges and considering security aspects to ensure security and privacy of
patient data.
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