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Abstract—Bisimilarity as an equivalence notion of systems
has been central to process theory. Due to the recent rise of
interest in quantitative systems (probabilistic, weighted, hybrid,
etc.), bisimilarity has been extended in various ways: notably,
bisimulation metric between probabilistic systems. An important
feature of bisimilarity is its game-theoretic characterization,
where Spoiler and Duplicator play against each other; extension
of bisimilarity games to quantitative settings has been actively
pursued too.

In this paper, we present a general framework that uniformly
describes game characterizations of bisimilarity-like notions.
Our framework is formalized categorically using fibrations and
coalgebras. In particular, our characterization of bisimilarity
in terms of fibrational predicate transformers allows us to
derive codensity bisimilarity games: a general categorical game
characterization of bisimilarity. Our framework covers known
bisimilarity-like notions (such as bisimulation metric) as well as
new ones (including what we call bisimulation topology).

I. INTRODUCTION

A. Bisimilarity Notions and Games

Since the seminal works by Park and Milner [1], [2], bisim-
ilarity has played a central role in theoretical computer sci-
ence. It is an equivalence notion between branching systems;
it abstracts away internal states and stresses the black-box
observation-oriented view on process semantics. Bisimilarity
is usually defined as the largest bisimulation, which is a binary
relation that satisfies a suitable mimicking condition. In fact,
a bisimulation R can be characterized as a post-fixed point
R ⊆ Φ(R) using a suitable relation transformer Φ; from this
we obtain that bisimilarity is the greatest fixed point of Φ by
the Knaster–Tarski theorem. This order-theoretic foundation
is the basis of a variety of advanced techniques for reasoning
about (or using) bisimilarity, such as bisimulation up-to—see,
e.g., [3].

Bisimilarity is conventionally defined for state-based sys-
tems with nondeterministic branching. However, as the appli-
cations of computer systems become increasingly pervasive
and diverse (such as cyber-physical systems), extension of
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bisimilarity to systems with other branching types has been
energetically sought in the literature. One notable example is
the bisimulation notion for probabilistic systems in [4]: it is
a relation that witnesses that two states are indistinguishable
in their behaviors henceforth. This qualitative notion has
also been made quantitative, as the notion of bisimulation
metric [5]. It replaces a relation with a metric that is induced
by the probabilistic transition structure.

There is a body of literature (including [6]–[12]) that aims
to identify the mathematical essences that are shared by this
variety of bisimilarity, and express the identified essences in a
rigorous manner using category theory. Our particular interest
is in the correspondence between bisimilarity notions and
(safety) games; three examples of which are given below. This
interest in bisimilarity games is shared by the recent work [10],
and the comparison is discussed in §I-D.

1) Bisimilarity Games: It is well-known that the following
game characterizes the conventional notion of bisimilarity
between Kripke frames. Let (X,→) be a Kripke frame where
→ ⊆ X2; the game is played between Duplicator (D) and
Spoiler (S). In a position (x1, x2), Spoiler challenges Dupli-
cator’s claim that x1 and x2 are bisimilar, by choosing one of
the states (say x1) and further choosing a transition x1 → x′1.
Duplicator responds by choosing a transition x2 → x′2 from
the other state, and the game is continued from (x′1, x

′
2).

Duplicator wins if Spoiler gets stuck, or the game continues
infinitely long, and this witnesses that x1 and x2 are bisimilar.

2) Games for Probabilistic Bisimilarity: A recent step
forward in the topic of bisimilarity and games is the char-
acterization of probabilistic bisimulation introduced in [13].
For simplicity, here we describe its discrete version.

Let (X, c) be a Markov chain, where X is a countable set of
states, and c : X → D≤1X is a transition kernel that assigns to
each state x ∈ X a probability subdistribution c(x) ∈ D≤1X .
Here D≤1X = {d : X → [0, 1] |

∑
x∈X d(x) ≤ 1} denotes

the set of probability subdistributions over X . For Z ⊆ X , let
c(x)(Z) denote the probability with which a successor of x
is chosen from Z; that is, c(x)(Z) =

∑
x′∈Z c(x)(x′). Since

c(x) is only a sub-distribution over X , the probability c(x)(X)
is ≤ 1 rather than = 1. The remaining probability 1−c(x)(X)
can be thought of as the probability of x getting stuck.

Recall from [4] that an equivalence relation R ⊆ X2 is a
(probabilistic) bisimulation if, for any (x, y) ∈ R and each
R-closed subset Z ⊆ X , c(x)(Z) = c(y)(Z) holds.

The game introduced in [13] is in Table I. It is shown in [13]978-1-7281-3608-0/19/$31.00 c©2019 IEEE
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TABLE I
THE GAME FOR PROBABILISTIC BISIMILARITY FROM [13]

position player possible moves
(x, y) ∈ X2 S Z ⊆ X s.t. c(x)(Z) 6= c(y)(Z)
Z ⊆ X D (x′, y′) ∈ X2 s.t. x′ ∈ Z ∧ y′ 6∈ Z

that Duplicator is winning in the game at (x, y) if and only
if x and y are bisimilar, in the sense of [4] (recalled above).
It is not hard to find an intuitive correspondence between the
game in Table I and the definition of bisimulation [4]: Spoiler
challenges the bisimilarity claim between x, y by exhibiting Z
such that c(x)(Z) = c(y)(Z) is violated; Duplicator makes a
counterargument by claiming that Z is in fact not bisimilarity-
closed, exhibiting a pair of states (x′, y′) that Duplicator
claims are bisimilar.

3) Games for Probabilistic Bisimulation Metric: Our fol-
lowing observation marked the beginning of the current work:
the game for (qualitative) bisimilarity for probabilistic systems
(from [13], Table I) can be almost literally adapted to (quan-
titative) bisimulation metric for probabilistic systems. This
metric was first introduced in [5].

For simplicity we focus on the discrete setting; we also
restrict to pseudometrics bounded by 1. Let (X, c) be a Markov
chain with a countable state space X . The bisimulation metric
d(X,c) : X2 → [0, 1] is defined to be the smallest pseudometric
(with respect to the pointwise order) that makes the transition
kernel

c : (X, d(X,c)) −→
(
D≤1X, K(d(X,c))

)
non-expansive with respect to the specified pseudometrics.
Here K(d(X,c)) is the so-called Kantorovich metric over
D≤1X induced by the pseudometric d(X,c) over X . It is
defined as follows. For µ, ν ∈ D≤1X ,

K(d(X,c))(µ, ν) = sup
f
|Eµ[f ]− Eν [f ]| , (1)

where in the above sup, f ranges over all non-expansive
functions from (X, d(X,c)) to

(
[0, 1], d[0,1]

)
, d[0,1] denotes

the usual Euclidean metric, and Eµ[f ] is the expectation∑
x∈X f(x) · µ(x) of f with respect to µ.
Our observation is that the bisimulation metric d(X,c) is

characterized by the game in Table II: Duplicator is winning
at (x, y, ε) if and only if d(X,c)(x, y) ≤ ε.

The game seems to be new, although its intuition is similar
to the one for Table I. Note that the formula (1) appears
in the condition of Spoiler’s moves. Spoiler challenges by
exhibiting a “predicate” f that suggests violation of the non-
expansiveness of c; and Duplicator makes a counterargument
that f is in fact not non-expansive and thus invalid.

4) Towards a Unifying Framework: The last two games
(Table I from [13] and Table II that seems new) motivate a
general framework that embraces both. There are some clear
analogies: the games are about indistinguishability of states
x, y under a class of observations (Z and f respectively),
and the predicates usable in those observations are subject to

TABLE II
THE GAME FOR (PROBABILISTIC) BISIMULATION METRIC,

ADAPTING [13]

position P possible moves
(x, y, ε) S f : X → [0, 1]
∈ X2 × [0, 1] such that

∣∣Ec(x)[f ]− Ec(y)[f ]
∣∣ > ε

f : X → [0, 1] D (x′, y′, ε′) ∈ X2 × [0, 1]
such that

∣∣ f(x′)− f(y′)
∣∣ > ε′

1© codensity
bisimilarity

game

4©
bisimilarity

game

2© codensity
bisimilarity
νΦΩ,τ ∈ EX

5©
bisimilarity

3© codensity lift-
ing (§III, [14])
FΩ,τ : E → E

categorical concrete

instantiates

instantiates

characterizes
(Cor. IV.4, V.12)

induces (§III, [15])

induces
(§IV–V)

Fig. 1. Our Codensity-Based Framework for Bisimilarity and Games

certain preservation properties (bisimilarity-closedness in the
former, and non-expansiveness in the latter).

B. A Codensity-Based Framework for Bisimilarity and Games

The main contribution of the current paper is a categorical
framework that derives a variety of bisimilarity notions and
corresponding game notions. The correspondence is proved
once and for all on the categorical level of generality. It
covers the three examples introduced earlier in §I-A, much
like the recent categorical framework in [10] does. However,
our fibration-based formalization has another dimension of
generality. For example, besides relations and metrics, our
examples include what we call bisimulation topology.

The overview of our categorical framework is in the left
half of Fig. 1. We build on our previous works [14] and [15].
In [14] a general construction called codensity lifting is intro-
duced: given a fibration p : E → C and parameters (Ω, τ)
that embody the kind of observations we can make, a functor
F : C→ C is lifted to FΩ,τ : E→ E. In [15], codensity lifting
is used to introduce a generic family of bisimulation notions
called codensity bisimilarity—see 2©. In this paper, we extend
these previous results by
• introducing the notion of codensity bisimilarity game

( 1©) that comes in two variants (untrimmed (§IV) and
trimmed (§V)),

• establishing the correspondence between codensity bisim-
ulations ( 2©) and games ( 1©) on a fibrational level of
generality, and

• working out several concrete examples ( 4©, 5©).
In general, devising a game notion ( 4©) directly from a

bisimilarity notion ( 5©) is far from trivial. Indeed, doing so
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for an individual bisimilarity notion has itself been deemed a
scientific novelty [13], [16]. Our codensity-based framework
(in the left half of Fig. 1) can automate part of this process
in the following precise sense.

We derive concrete notions of bisimilarity ( 5©) and bisimi-
larity game ( 4©) as instances; then the correspondence between
the two is guaranteed by the categorical general result between
1© and 2©.

We note, however, that this is no panacea. When one starts
with a given concrete notion of bisimilarity ( 5©), their next task
would be to identify the right choice of the parameters E p−→
C,Ω, τ for the codensity lifting ( 3©). This task is not easy
in general: we needed to get our hands dirty working out the
examples in this paper, [14], and [15]. Nevertheless, we believe
that the required passage from 5© to 3© is much easier than the
direct derivation from 5© to 4©, with our categorical framework
providing templates of bisimilarity games (see Tables VII, IX
and X). After all, our framework identifies which part of the
path from 5© to 4© can be automated, and which part remains
to be done individually. This is much like what many other
categorical frameworks offer, as meta-level theories.

As an additional benefit, our categorical framework can
be used to discover new bisimilarity notions ( 5©), starting
from (choices of parameters for) 3©. We believe those derived
new bisimilarity notions are useful, since our categorical
theory embodies sound intuitions about observation, predicate
transformation, and indistinguishability—see e.g. §II-B.

C. Contributions
Our main technical contributions are as follows.
• We introduce a categorical framework that uniformly

describes various bisimulation notions (including metrics,
preorders and topologies) and the corresponding game
notions (Fig. 1). The framework is based on coalgebras,
fibrations, and codensity liftings in particular [14]. Our
general game notion comes in two variants.

– The first (the untrimmed codensity game: §IV) arises
naturally in a fibration, using its objects and arrows
as possible moves. The untrimmed game is theoret-
ically clean, but it tends to have a huge arena.

– We therefore introduce a method that restricts these
arenas, leading to the (trimmed) codensity bisim-
ilarity game (§V). The reduction method is also
described in general fibrational terms, specifically
using fibered separators and generating sets.

• From the general framework, we derive several concrete
examples of bisimilarity and its related notions ( 4© and 5©
in Fig. 1). They are listed in Table VI. Among them, a few
bisimilarity notions seem new (especially the bisimulation
topology examples), and several game notions also seem
new.

• We discuss the transfer of codensity bisimilarity by
suitable fibered functors (§VII). As an example usage,
we give an abstract proof of the fact that (usual) bisim-
ilarity for Kripke frames is necessarily an equivalence
(Example VII.2).

• Additionally, we conduct investigations of the game no-
tion in [13] (Table I) in concrete, non-categorical terms.
For one, we obtain its variation for bisimulation metric
(as we showed in Table II). We also give a direct proof of
the equivalence to another game notion for probabilistic
bisimilarity, previously introduced in [16], by exhibiting
a mutual translation of winning strategies (Appendix A).

D. Related Work

Besides the one in [13], another game characterization
of probabilistic bisimulation has been given in [16]. It is
described later in §II (Table III). The latter game has a bigger
arena than the one in [13]: in [16] both players have to play
a subset Z ⊆ X , while in [13] only Spoiler does so.

The work that is the closest to ours is the recent work [10]
that studies bisimilarity games in a categorical setting. Their
formalization uses (co)algebras (following the (co)algebraic
generalization of the Kantorovich metric introduced in [8]),
and therefore embraces a variety of different branching types.
The major differences between the two works are as follows.

• Our current work is fibration-based (in particular CLatu-
fibrations), while [10] is not. As a consequence, ours
accommodates an additional dimension of generality
by changing fibrations, which correspond to different
indistinguishability notions (relation, metric, topology,
preorder, measurable structures, etc.). In contrast, the
works [10] and [8] deal exclusively with two settings:
binary relations and pseudometrics.

• A relationship to modal logic is beautifully established
in [10], while it is not done in this work. We expect
our fibrational framework can accommodate modal logic
too: fibrations have been used for categorical modeling
of logics [17]. We leave this aspect to future work.

• The categorical generalization [10] is based on the game
notion in [16], while ours is based on that in [13].
Therefore, for some bisimulation notions (including the
bisimulation metric), we obtain a game notion with a
smaller arena. Compare Table II (an instance of ours)
and Table IV (an instance of [10]).

There are a number of categorical studies of bisimilar-
ity notions; notable mentions include open map-based ap-
proaches [18] and coalgebraic ones [19], [20]. The fibrational
approach we adopt also uses coalgebras; it was initiated in [6]
and pursued, e.g., in [7], [9], [11], and [15]. For example,
in the recent work [11], fibrational generality is exploited to
study up-to techniques for bisimilarity metric. They use the
Wasserstein lifting of functors introduced in [8] instead of the
codensity lifting that we use (it generalizes the Kantorovich
lifting in [8], see Example III.4). It is known [8] that the
Wasserstein and Kantorovich liftings can differ in general,
while they coincide for some specific functors such as the
distribution functor.

Some of our new examples are topological: we derive
what we call bisimulation topology and a game notion that
characterizes it. The relation between these notions and the
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existing works on bisimulation and topology (including [21],
[22]) is left as future work.

E. Organization

In §II, we present preliminaries on a general theory of
games (we can restrict to safety games), and on fibrations. For
the latter, we focus on a class called CLatu-fibrations, and
argue that they offer an appropriate categorical abstraction of
sets equipped with indistinguishability structures. In §III, we
present codensity lifting and codensity bisimilarity ( 2©, 3© in
Fig. 1). The material is based on [15], but we introduce some
auxiliary notions needed for the correspondence with games.
Our first game notion (the untrimmed one) is introduced
in §IV; in §V, we cut down the arenas and obtain trimmed
codensity bisimilarity game. The theory is further extended
in §VI–VII: in §VI we accommodate multiple observation
domains, and in §VII we discuss the transfer of codensity
bisimilarities by full-faithful fibered functors preserving meets.
These categorical observations give rise to the concrete exam-
ples in §VIII.

Some proofs and details are deferred to Appendix A.

II. PRELIMINARIES

We write P : Set→ Set for the covariant powerset functor,
and 2 for the two-point set 2 = {⊥,>}. We define the function
� : P2 → 2 called may-modality by �S = > if and only if
> ∈ S. We write EqI for the diagonal (equality) relation over
a set I .

A. Safety Games

Here we recall some standard game-theoretic notions and
results. In capturing bisimilarity-like notions, we can restrict
ourselves to safety games—they have a simple winning con-
dition where every infinite play is won by the same player
(namely Duplicator). This winning condition reflects the char-
acterization of bisimilarity-like notions by suitable greatest
fixed points; the correspondence generalizes, for example, to
the one between parity games and nested alternating fixed
points—see [23]. The term “safety game” occurs, e.g., in [24],
[25].

Safety games are played between two players; in this paper,
they are called Duplicator (D) and Spoiler (S). We restrict to
those games in which Duplicator and Spoiler alternate turns.

Definition II.1 (safety game). A (safety game) arena is a
triple G = (QD, QS, E) of a set QD of Duplicator’s positions,
a set QS of Spoiler’s positions, and a transition relation E ⊆
(QD × QS) ∪ (QS × QD). Hence G is a bipartite graph. We
require that QD and QS are disjoint, and that QD ∪ QS 6= ∅.
We write Q = QD ∪QS.

For a position q ∈ Q, the elements of the set {q′ ∈ Q |
(q, q′) ∈ E} are called the possible moves at q. Unlike some
works, we allow positions that have no possible moves at them.

A play in an arena G = (QD, QS, E) is a (finite or infinite)
sequence of positions q0q1 . . . , such that (qi−1, qi) ∈ E so
long as qi belongs to the sequence.

A play in G is won by either player, according to the fol-
lowing conditions: 1) a finite play q0 . . . qn is won by Spoiler
(or by Duplicator) if qn ∈ QD (or qn ∈ QS respectively); and
2) every infinite play q0q1 . . . is won by Duplicator.

Definition II.2 (strategy, winning position). In an arena G =
(QD, QS, E), a strategy of Duplicator is a partial function
σD : Q∗ × QD ⇀ QS; we require that σD(~qq) = q′ implies
(q, q′) ∈ E. A strategy of Spoiler is defined similarly, as a
partial function σS : Q∗ × QS ⇀ QD that returns a possible
move at the last position in the history.

Given an initial position q ∈ Q and two strategies σD and
σS for Duplicator and Spoiler respectively, the play from q
induced by (σD, σS) is defined in a natural inductive manner.
The induced play is denoted by πσD,σS(q).

A position q ∈ Q is said to be winning for Duplicator if
there exists a strategy σD of Duplicator such that, for any
strategy σS of Spoiler, the induced play πσD,σS(q) is won by
Duplicator.

In what follows, for simplicity, we restrict the initial position
q of a play πσD,σS(q) to be in QS. (Note that Spoiler’s position
can be winning for Duplicator.)

Winning positions of safety games are witnessed by invari-
ants (Prop. II.4), which is a well-known fact.

Definition II.3 (invariant). Let G = (QD, QS, E) be an arena.
A subset P ⊆ QS is called an invariant for Duplicator if, for
each q ∈ P and any possible move q′ ∈ QD at q, there exists
a possible move q′′ at q′ that is in P . That is, ∀q ∈ P.∀q′ ∈
QD.

(
(q, q′) ∈ E ⇒ ∃q′′ ∈ QS. (q′, q′′) ∈ E ∧ q′′ ∈ P

)
.

Proposition II.4. 1) Any position q ∈ P in an invariant P
for Duplicator is winning for Duplicator.

2) Invariants are closed under arbitrary union. Therefore,
there exists a largest invariant for Duplicator.

3) The largest invariant for Duplicator coincides with the
set of winning positions for Duplicator in QS.

Examples of safety games have been given in Tables I–II.
We present two other examples (Tables III–IV).

Example II.5 (alternative games for probabilistic bisimilarity
and bisimulation metric). In [16], a game notion that charac-
terizes (qualitative) probabilistic bisimilarity is presented. It is
in Table III, presented in a slightly adapted form.

This game notion is categorically generalized in [10]; the
generalization has freedom in the choice of coalgebra functors
(i.e. branching types), as well as in the choice between
relations and metrics. The instance of this general game notion
for bisimulation metric is shown in Table IV.

The two games (Tables III–IV) characterize the same
bisimilarity-like notions as the games in Tables I–II, respec-
tively; so they are equivalent. We can go further and give
a direct equivalence proof by mutually translating winning
strategies. Such a proof is not totally trivial; we do so for
the pair for probabilistic bisimilarity. See Appendix A.

We note that the game in Table II (an instance of our current
framework) is simpler than Table IV (an instance of [10]).
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Table II is not only structurally simpler (it has fewer rows),
but its set of moves are smaller too, asking for functions X →
[0, 1] only at one place.

TABLE III
THE GAME FOR PROBABILISTIC BISIMILARITY, FROM [16]

We omit labels that are needed to distinguish (x, y) ∈ X2 (an S-position)
from (s, t) ∈ X2 (a D-position).

position pl. possible moves

(x, y) ∈ X2 S (s, t) ∈ X2 s.t. {s, t} = {x, y}
(s, t) ∈ X2 D (Z,Z′) s.t. Z ⊆ Z′ ⊆ X

and c(s)(Z) ≤ c(t)(Z′)
(Z,Z′) ∈ (PX)2 S (Z, y′) ∈ PX ×X s.t. y′ ∈ Z′ \ Z
(Z, y′) ∈ PX ×X D (x′, y′) ∈ X2 s.t. x′ ∈ Z

TABLE IV
THE GAME FOR BISIMULATION METRIC, FROM [10]

position pl. possible moves
(x, y, ε) ∈ X2 × [0, 1] S (s, t) ∈ X2 s.t. {s, t} = {x, y},

and f : X → [0, 1]
(s, t, f, ε) ∈ D g : X → [0, 1] such that

X2 × [0, 1]X × [0, 1] max{0, Ec(s)[f ]− Ec(t)[g]} ≤ ε

(f, g, ε) ∈ ([0, 1]X)2 S (i, j) ∈
(

[0, 1]X
)2

such that
{i, j} = {f, g}, and x′ ∈ X

(x′, i, j, ε) ∈ D (x′, y′, ε′) ∈ X2 × [0, 1] such that
X × ([0, 1]X)2 × [0, 1] i(x′) ≤ j(y′), and

ε′ = j(y′)− i(x′)

Our categorical framework based on codensity liftings (pre-
sented in later sections) covers Tables I–II but not Tables III–
IV. Accommodation of the latter two is future work.

B. CLatu-fibrations

1) Definition and Properties: Here we sketch a basic theory
of fibrations—see, e.g., [17] for a comprehensive account.
In particular, we focus on a class of poset fibrations called
CLatu-fibrations. We observe that the simple axiomatics of
the class adequately capture all the examples of interest—and
hence the mathematical essences of the logical phenomena that
we wish to model.

Our exposition here is largely based on that in [15]. How-
ever, in this paper we introduce new notation and terminol-
ogy (such as indistinguishability order and decent map)—
see §II-B2. They help to further clarify the intuitions.

A formal definition is as follows. (See Appendix B for a
rather gentle introduction to CLatu-fibration.)

Definition II.6 (CLatu-fibration). A CLatu-fibration is a
fibration p : E→ C such that each fiber EX (for each X ∈ C)
is a complete lattice, and each pullback functor f∗ : EY → EX
(for each f : X → Y in C) preserves all meets

d
.

Via the Grothendieck construction, a CLatu-fibration is
in a bijective correspondence with a functor FE : Cop →
CLatu, where CLatu is the category of complete lattices
and functions preserving all meets—see [17] and [7], as well
as Appendix B. The functor FE assigns

• a complete lattice EX (called the fiber over X) to each
X ∈ C, and

• a function f∗ : EY → EX preserving all meets to each
f : X → Y in C. The map f∗ is called a pullback; it is
also called a pullback functor since, in the general theory
of fibrations, a fiber EX is a category rather than a poset.

Although the indexed category presentation FE : Cop →
CLatu may be more intuitive at first, we shall stick to the
fibration presentation p : E→ C since we will eventually need
some global structures in the total category E. It turns out that
CLatu-fibrations are special kinds of topological functor [26]
such that each fiber category is a poset. Topological functors
are a well-studied topic, and many examples and results are
available; a good summary is found in [27].

The use of poset fibrations is common in categorical mod-
eling of logics [7], [9]. CLatu-fibrations additionally require
fibered small meets; this simple assumption turns out to be a
mathematically powerful one.

Proposition II.7. Let p : E→ C be a CLatu-fibration.
1) p is split, and faithful as a functor.
2) Each arrow f : X → Y has its pushforward f∗ : EX →

EY , so that an adjunction f∗ a f∗ is formed. This is
a consequence of Freyd’s adjoint functor theorem; it
makes p a bifibration [17].

3) pop : Eop → Cop is also a CLatu-fibration.
4) The change-of-base [17, Lemma 1.5.1] of p along any

functor H : D→ C is also a CLatu-fibration.
5) If C is (co)complete, then the total category E is also

(co)complete. This follows from [17, Prop. 9.2.1].

2) Notation, Terminology and Intuitions: Our view of a
CLatu-fibration p : E → C is that it equips objects of C
with what we call indistinguishability structures. This suits
our purpose, since various bisimilarity-like notions are all
about degrees of indistinguishability between (the behaviors
of) states of a system. We present examples later in §II-B3.

Notation II.8 (indistinguishability predicate/order). Let p :
E → C be a CLatu-fibration. An object P ∈ EX in the
fiber category EX (i.e. an element of the complete lattice
EX ) is called an indistinguishability predicate over X . Our
view is that P is an additional structure on X; therefore, as
a convention, an object P ∈ EX shall also be denoted by
(X,P ) ∈ EX .

Each fiber EX is a complete lattice; its order is denoted by
v and called the indistinguishability order over X . Intuitively,
P v Q means that Q has a greater degree of indistinguisha-
bility than P—that is, Q is coarser than P , and P is more
discriminating than Q.

The supremum and infimum with respect to the indistin-
guishability order v are denoted by

⊔
and

d
respectively.

Definition II.9 (decent map). Let p : E → C be a CLatu-
fibration, f : X → Y be an arrow in C, (X,P ) ∈ EX and
(Y,Q) ∈ EY be objects in the fibers. We say that f is
decent (from P to Q) if there exists a necessarily unique
arrow ḟ : P → Q in E such that pḟ = f . We write
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f : (X,P ) →̇ (Y,Q) in this case. The following equivalences
follow.

f : (X,P ) →̇ (Y,Q) ⇐⇒ P v f∗Q ⇐⇒ f∗P v Q

We write f : (X,P ) 9̇ (Y,Q) if f is not decent.

The notion of decency is a fibered generalization of con-
tinuity, non-expansiveness, relation-preservation, etc. Decency
f : (X,P ) →̇ (Y,Q) means f respects indistinguishability,
carrying P -indistinguishable elements to Q-indistinguishable
ones.

3) Examples: As shown in Table V, various well-known
categories can be seen as categories that equip sets with certain
indistinguishability structures. The evident forgetful functors
from the total categories (Top, Meas, etc.) to Set in Table V
are all CLatu-fibrations.

Specifically, Top is the category of topological spaces and
continuous maps; Meas is that of measurable spaces and
measurable maps; PMet1 is that of 1-bounded pseudometric
spaces (where a pseudo-metric is a metric without the condi-
tion d(x, y) = 0 ⇒ x = y) and non-expansive maps; ERel
is that of sets with endorelations (X,R ⊆ X2) and relation-
preserving maps; Pre is that of preordered sets and monotone
maps; and EqRel is that of sets with equivalence relations and
relation-preserving maps—see [15] for details.

Note that, in Top and Meas, the indistinguishability order
is the opposite of the inclusion order. Therefore the meet of a
family of indistinguishability structures computed as the one
generated from the union of the family.

Another class of examples is given as follows: for any well-
powered category B admitting small limits, the subobject fi-
bration of B is a CLatu-fibration. All the algebraic categories
over Set and Grothendieck topoi fall into this class. On the
other hand, the forgetful functors from algebraic categories
over Set are rarely (CLatu-)fibrations.

III. CODENSITY BISIMILARITY

We introduce codensity lifting ( 3© in Fig. 1) and codensity
bisimilarity ( 2©) based on [15]. These turn out to subsume
many bisimilarity-like notions in the literature. The material
in §III-A–III-B is largely from [15]; §III-C is new, paving the
way to codensity bisimilarity games presented in later sections.

A. Codensity Lifting

Definition III.1 (codensity lifting FΩ,τ [15]). Let p : E →
C be a CLatu-fibration, and F : C → C be a functor. A
parameter of codensity lifting of F along p is a pair of
• a C-arrow τ : FΩ → Ω (i.e. an F -algebra) called

modality [29], [30] and
• an E-object Ω above Ω called observation domain.

The codensity lifting of F : C → C with parameter (Ω, τ) is
the endofunctor FΩ,τ : E→ E defined as follows. On objects,

FΩ,τP =
l

k∈E(P,Ω)

(
τ ◦ F

(
p(k)

))∗
Ω.

Its action on arrows is as follows. It is not hard to see that, for
each arrow l : P → Q in E, the arrow F (p(l)) is decent from

FΩ,τP to FΩ,τQ. Then we define FΩ,τ l : FΩ,τP → FΩ,τQ
to be the unique arrow in E above F (p(l)).

An alternative description is possible. When E has powers t
and p preserves them, FΩ,τ is characterized as the following
pullback in the fibration [E, p] : [E,E]→ [E,C]:

[E,E]
[E,p]
��

FΩ,τ // E(−,Ω) t Ω

[E,C] F ◦ p
α
// E(−,Ω) t Ω

where αP = 〈τ ◦ F (p(k))〉k∈E(P,Ω) is the tupling. A similar
characterization of codensity liftings of monads is in [14].

Table VI lists concrete examples of codensity liftings,
with various fibrations p, functors F , and parameters (Ω, τ).
Some of them coincide with known notions. For example,
the entry 5 of the table says that the functor (D≤1)Ω,τ , with
the designated Ω and τ , carries a metric space (X, d) to the
set D≤1X equipped with the well-known Kantorovich metric
K(d) induced by d—see (1).

Besides the functors listed in the table, there are some
natural ways to systematically lift polynomial functors, by
defining τ : FΩ→ Ω in an inductive manner—see, e.g., [11].

Example III.2. Let us closely look at the entry 4 of Table VI.
There we codensity-lift the covariant powerset functor P along
the CLatu-fibration EqRel → Set. We use the parameter
((2,Eq2), �), where � : P2→ 2 is the modality given in §II.

We shall abbreviate (2,Eq2) by Eq2—a notational conven-
tion that is used throughout the paper.

Then PEq2,�(X,R) relates S, T ∈ PX if and only if

∀k : X → 2.
(

(∀(x, y) ∈ R. k(x) = k(y))
=⇒

(
(∃x ∈ S. k(x) = >) ⇐⇒ (∃x ∈ T. k(x) = >)

) )
.

Straightforward calculation shows that this is equivalent to

(∀x ∈ S. ∃y ∈ T. (x, y) ∈ R) ∧ (∀y ∈ T. ∃x ∈ S. (x, y) ∈ R).

This lifting is the restriction of the standard relational lifting
of P along ERel → Set, which is used for the usual
bisimulation notion for Kripke frames, to EqRel.

Example III.3. In the entry 3 of Table VI, we codensity-
lift P along the CLatu-fibration ERel → Set (instead of
EqRel→ Set) with the parameter

(
(2,Eq2), �

)
.

The characterization of PEq2,�(X,R) is slightly involved.
Its relation part relates S, T ∈ PX if and only if

(∀x ∈ S. ∃y ∈ T. (x, y) ∈ Req) ∧
(∀y ∈ T. ∃x ∈ S. (x, y) ∈ Req),

where Req denotes the equivalence closure of R.

It is not clear at this stage whether the codensity bisimilari-
ties induced by the above liftings (Examples III.2–III.3, i.e. the
entries 4 & 3 of Table VI) coincide with the usual bisimilarity
notion for Kripke frames. This is because of the involvement
of mandatory equivalence closures—specifically by the use of
EqRel in Example III.2, and by the occurrence of ( )eq in
Example III.3. Later, in Example VII.2, we prove that both
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TABLE V
CLatu-FIBRATIONS

fibration indistinguishability structure decent map P v Q
d
Pi

Top→ Set topology continuous func. P ⊇ Q generated from
⋃
Pi

Meas→ Set σ-field measurable func. P ⊇ Q generated from
⋃
Pi

PMet1 → Set pseudometric non-expansive func. ∀x, y. P (x, y) ≥ Q(x, y) (x, y) 7→ supi Pi(x, y)
ERel→ Set endorelation relation preserving func. P ⊆ Q

⋂
Pi

Pre→ Set preorder monotone func. P ⊆ Q
⋂
Pi

EqRel→ Set equivalence relation relation preserving func. P ⊆ Q
⋂
Pi

TABLE VI
CODENSITY LIFTING OF FUNCTORS

fibration p : E→ C functor F : C→ C obs. dom. Ω modality τ lifting FΩ,τ of F
1 Pre→ Set powerset P (2,≤) � : P2→ 2 lower preorder [14]
2 Pre→ Set powerset P (2,≥) � : P2→ 2 upper preorder [14]
3 ERel→ Set powerset P (2,Eq2) � : P2→ 2 (for bisimulation, see Ex. III.3 & VII.2)
4 EqRel→ Set powerset P (2,Eq2) � : P2→ 2 (for bisimulation, see Ex. III.2 & VII.2)
5 PMet1 → Set subdistrib. D≤1 ([0, 1], d[0,1]) e : D≤1[0, 1]→ [0, 1] Kantorovich metric
6 PMet1 → Set powerset P ([0, 1], d[0,1]) inf : P[0, 1]→ [0, 1] Hausdorff pseudometric (cf. Appendix C)
7 U∗(PMet1)→Meas sub-Giry G≤1 ([0, 1], d[0,1]) e : G≤1[0, 1]→ [0, 1] Kantorovich metric

8† Pre→ Set powerset P (2,≤), (2,≥) � : P2→ 2 convex preorder [14]
9† EqRel→ Set subdistrib. D≤1 (2,Eq2) (τr : D≤12→ 2)r∈[0,1] (for prob. bisim., see §VIII-G)

10† Top→ Set 2× ( )Σ Sierpinski space (see Ex. VI.5) (for bisim. topology, see Ex. VI.5)
The fibration U∗(PMet1)→Meas is obtained as a change-of-base, pulling back PMet1 → Set along U : Meas→ Set. d[0,1] denotes the Euclidean
metric on the unit interval [0, 1]. The modality � is introduced in the beginning of §II. The functions e : D≤1[0, 1] → [0, 1] and e : G≤1[0, 1] → [0, 1]
both return expected values. The lower, upper and convex preorders are known for powerdomains; see e.g. [28]. The function τr : D≤12→ 2 is defined by
τr(p) = > if p(>) ≥ r, and τr(p) = ⊥ otherwise.
The examples marked with † involve multiple modalities and observation domains. The extension that allows such is described later in §VI.

of the codensity bisimilarities indeed coincide with the usual
bisimilarity notion. The proof relies crucially on transfer of
codensity liftings via fibered functors.

Example III.4. Here we follow [15, Example 3] and show
that codensity lifting generalizes the Kantorovich lifting of
functors introduced in [8]. Take PMet1 → Set as the
CLatu-fibration p in Def. III.1. As Ω, we take Ω = [0, 1]
with the usual Euclidean metric d[0,1]. There is freedom in the
choice of a modality τ : FΩ → Ω—this corresponds to what
is called an evaluation function in [8]. This way we recover
the Kantorovich lifting in [8] as FΩ,τ .

B. Codensity Bisimilarity

In [15], codensity bisimulation and bisimilarity are intro-
duced. Recall that a coalgebra c : X → FX is a cate-
gorical presentation of state-based transition systems, such
as automata, Markov chains, etc.—see, e.g., [19], [20], and
also §VIII.

Definition III.5 (codensity bisimulation). Assume the setting
of Def. III.1. Let c : X → FX be an F -coalgebra. An object
P ∈ EX is a ((Ω, τ)-)codensity bisimulation over c if c :
(X,P ) →̇ (FX,FΩ,τP ); that is, c is decent with respect to
the designated indistinguishability structures on X and FX .

We move on to the characterization of codensity bisimula-
tions as (post-)fixed points of suitable predicate transformers.

Definition III.6 (predicate transformer ΦΩ,τ ). Assume the
setting of Def. III.5. We define a predicate transformer ΦΩ,τ

c :

EX → EX with respect to c and FΩ,τ by:

ΦΩ,τ
c P = c∗(FΩ,τP ), that is,

l

k∈E(P,Ω)

(
τ ◦ F (p(k)) ◦ c

)∗
Ω.

(2)

Theorem III.7. Assume the setting of Def. III.5. For any P ∈
EX , the following are equivalent.

1) c : (X,P ) →̇ (FX,FΩ,τP ); that is, P is a codensity
bisimulation over c (Def. III.5).

2) P v ΦΩ,τ
c P .

3) For each k ∈ C(X,Ω), k : (X,P ) →̇ (Ω,Ω) implies
τ ◦ Fk ◦ c : (X,P ) →̇ (Ω,Ω).

The predicate transformer ΦΩ,τ
c is a monotone map from

the complete lattice EX to itself. Therefore, by the Knaster–
Tarski theorem, the greatest post-fixed point of ΦΩ,τ

c exists
and it is the greatest fixed point of ΦΩ,τ

c .

Definition III.8 (codensity bisimilarity νΦΩ,τ
c ). Assume the

setting of Def. III.5. The greatest codensity bisimulation,
whose existence is guaranteed by the above arguments, is
called the codensity bisimilarity. It is denoted by νΦΩ,τ

c .

Some bisimilarity notions, including bisimilarity of deter-
ministic automata (§VIII-B), are accommodated in the general-
ized framework with multiple observation domains—see §VI.

Example III.9 (bisimulation metric). Consider the CLatu-
fibration PMet1 → Set and the subdistribution functor
D≤1 : Set → Set. Recall that D≤1(X) = {p : X → [0, 1] |∑
x∈X p(x) ≤ 1}. As a parameter of codensity lifting, we

take (Ω, τ) =
( (

[0, 1], d[0,1]

)
, e : D≤1[0, 1] → [0, 1]

)
, where
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TABLE VII
UNTRIMMED CODENSITY BISIMILARITY GAME

position pl. possible moves
P ∈ EX S k ∈ C(X,Ω) s.t.

τ ◦ Fk ◦ c : (X,P ) 9̇ (Ω,Ω)
k ∈ C(X,Ω) D P ′ ∈ EX s.t. k : (X,P ′) 9̇ (Ω,Ω)

TABLE VIII
UNTRIMMED CODENSITY GAME FOR BISIMULATION METRIC

position pl. possible moves
d ∈ (PMet1)X S k ∈ Set(X, [0, 1]) s.t.

e ◦ Fk ◦ c 6∈ PMet1(d, d[0,1])
k ∈ Set(X, [0, 1]]) D d′ ∈ (PMet1)X s.t.

k 6∈ PMet1(d′, d[0,1])

e is the expectation function e(p) =
∑
r∈[0,1] r ·p(r) and d[0,1]

is the Euclidean metric. Let c : X → D≤1X be a coalgebra,
identified with a Markov chain.

The codensity bisimilarity in this setting coincides with
bisimulation metric from [5] (see also §I-A3). This fact is not
hard to check directly; one can also derive the coincidence via
Example III.4 and the observations in [8].

C. Joint Codensity Bisimulation

We introduce a notion of joint codensity bisimulation. This
minor variation of codensity bisimulation becomes useful in
the proof of soundness and completeness of our game notion
(§IV).

Definition III.10 (joint codensity bisimulation). Assume the
setting of Def. III.5. Let V ⊆ |EX |; joins in EX are denoted
by
⊔

. We say that V is a joint codensity bisimulation over c
if
⊔
P∈V P is a codensity bisimulation over c.

For instance, the set of all codensity bisimulations is a joint
codensity bisimulation, because the join νΦΩ,τ

c is the largest
bisimulation (a consequence of the Knaster–Tarski theorem).

Lemma III.11. In the setting of Def. III.5, the downset
↓(νΦΩ,τ

c ) is the largest joint codensity bisimulation (with
respect to the inclusion order).

IV. UNTRIMMED GAMES FOR CODENSITY BISIMILARITY

As the first main technical contribution, we introduce what
we call the untrimmed version of codensity bisimilarity game.
It is mathematically simple but its game arenas can become
much bigger than necessary. The trimmed version of games—
with smaller arenas—will be introduced later in §V, after
developing necessary categorical infrastructure.

Assume the setting of Def. III.5 for the rest of the section.

Definition IV.1 (untrimmed codensity bisimilarity game). The
untrimmed codensity bisimilarity game is the safety game
played by two players D and S, shown in Table VII.

Lemma IV.2. Let V ⊆ |EX |. The following are equivalent.
1) V is an invariant for Duplicator (Def. II.3) in the safety

game in Table VII.
2) V is a joint codensity bisimulation over c.

Theorem IV.3. The following coincide.
1) The set of all winning positions for D.
2) The downset ↓(νΦΩ,τ

c ) of the codensity bisimilarity.

Proof. On the one hand, the set of all winning positions for D
is the largest invariant for D, by Prop. II.4. On the other hand,
the downset ↓(νΦΩ,τ

c ) is the largest joint codensity bisimula-
tion over c. Thus, the statement follows from Lem. IV.2.

We conclude that our game characterizes the codensity
bisimilarity νΦΩ,τ

c (Def. III.8).

Corollary IV.4 (soundness and completeness of untrimmed
codensity games). P ∈ EX is a winning position for D if and
only if P v νΦΩ,τ

c .

Example IV.5. Recall Example III.9. Using the untrimmed co-
density bisimilarity game, we can characterize the bisimulation
metric from [5]. Our general definition (Def. IV.1) instantiates
to the one in Table VIII, which is however more complicated
than the game we exhibited in the introduction (Table II). For
example, in Table VIII, Duplicator’s move is a pseudometric
d : X2 → [0, 1] rather than a triple (x, y, ε).

V. TRIMMED CODENSITY GAMES FOR BISIMILARITY

Our previous untrimmed game (Table VII) is pleasantly
simple from a theoretical point of view. However, as we saw in
Example IV.5, its instances tend to have a much bigger arena
than some known game notions.

Here we push our theory a step further, and present a
fibrational construction that allows us to trim our games. We
note that our construction still remains on the fibrational level
of abstraction.

A. Generating Sets and Fibered Separators in a Fibration

We start by building some fibrational infrastructure. The
following notion is a natural extension of the corresponding
lattice-theoretic one. Unlike in the case of algebraic lattices,
we do not assume the compactness of elements in G.

Definition V.1 (generating set). Let p : E→ C be a CLatu-
fibration and X ∈ C be an object. We say that a set G ⊆ |EX |
is a generating set of the fiber EX if, for any P ∈ EX , there
exists A ⊆ G such that

⊔
A = P .

Example V.2. Consider the CLatu-fibration EqRel→ Set
and X ∈ Set. For any x, y ∈ X , we define the equivalence
relation Ex,y to be the least one equating x, y, that is, (z, w) ∈
Ex,y if and only if (z = w ∨ {z, w} = {x, y}). Then the set
G = {Ex,y | x, y ∈ X} of elements of the fiber EqRelX is
a generating set.

Example V.3. Recall Example III.9. For x, y ∈ X (x 6= y)
and r ∈ [0, 1], the pseudometric dx,y,r over X is defined by

dx,y,r(z, w) =

0 z = w

r {z, w} = {x, y}
1 otherwise.

Then the set of pseudometrics {dx,y,r | x, y ∈ X,x 6= y, r ∈
[0, 1]} is a generating set of the fiber (PMet1)X .
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One natural question is how to find such a generating set in
the fiber over the state space. Below we show that a generating
set of the fiber of a special object (called fibered separator)
induces a generating set of each fiber by push-forward.

Definition V.4 (fibered separator). Let p : E → C be a
CLatu-fibration. We say that S ∈ C is a fibered separator if,
for any X ∈ C and P,Q ∈ EX , we have

(∀f ∈ C(S,X). f∗P = f∗Q) =⇒ P = Q.

Theorem V.5. Let S ∈ C be a fibered separator of a CLatu-
fibration p : E→ C, and G ⊆ |ES | be a generating set of ES .
For any X ∈ C, the following set is a generating set of EX :

{f∗P | P ∈ G, f ∈ C(S,X)}.

Here f∗ denotes the pushforward along f (§II-B).

In fact, it was Thm. V.5 behind Examples V.2–V.3: in both
cases, 2 ∈ Set turns out to be a fibered separator for the
fibrations in question (EqRel → Set and PMet1 → Set),
and the presented generating sets are obtained via push-
forward.

The following result is useful in finding fibered separators—
see §VIII-F.

Proposition V.6 (change-of-base and fibered separators). Let
p : E → C be a CLatu-fibration, R : D → C be a functor
with a left adjoint L : C → D, and S ∈ C be a fibered
separator for p. Then LS ∈ D is a fibered separator of the
change-of-base fibration R∗p.

B. G-Joint Codensity Bisimulation

We use generating sets to restrict moves in codensity games.

Definition V.7. In the setting of Def. III.5, let G be a
generating set of EX . A G-joint codensity bisimulation over
c : X → FX is a joint codensity bisimulation V over c such
that V ⊆ G.

Lemma V.8 (key lemma). Assume the setting of Def. III.5, and
let G be a generating set of EX . The intersection

(
↓(νΦΩ,τ

c )
)
∩

G of the downset ↓(νΦΩ,τ
c ) and the generating set G is the

largest G-joint codensity bisimulation.

Proof. Since G is a generating set, the union of all elements
of ↓(νΦΩ,τ

c ) ∩ G is equal to νΦΩ,τ
c . Thus, ↓(νΦΩ,τ

c ) ∩ G is a
G-joint codensity bisimulation.

For any G-joint codensity bisimulation V , we have already
shown V ⊆ ↓(νΦΩ,τ

c ). We also have V ⊆ G by definition.
These imply V ⊆ ↓(νΦΩ,τ

c ) ∩ G.

C. Trimmed Codensity Bisimilarity Games

The above structural results lead to our second game notion.

Definition V.9 (trimmed codensity bisimilarity game). As-
sume the setting of Def. III.5, and that G ⊆ EX is a generating
set. The codensity bisimilarity game is the safety game played
by two players D and S, shown in Table IX.

Assume the setting of Def. V.9 for the rest of the section.

TABLE IX
TRIMMED CODENSITY BISIMILARITY GAME

position pl. possible moves
P ∈ G S k ∈ C(X,Ω) s.t.

τ ◦ Fk ◦ c : (X,P ) 9̇ (Ω,Ω)
k ∈ C(X,Ω) D P ′ ∈ G s.t.

k : (X,P ′) 9̇ (Ω,Ω)

Lemma V.10. Let V ⊆ |EX |. The following are equivalent:
1) V is an invariant for D (Def. II.3) in the game in

Table IX.
2) V is a G-joint codensity bisimulation over c.

Theorem V.11. The following sets coincide.
1) The set of D-winning positions in the game in Table IX.
2) The intersection

(
↓(νΦΩ,τ

c )
)
∩ G of the downset of the

codensity bisimilarity over c and the generating set G.

We conclude that our second game characterizes the coden-
sity bisimilarity νΦΩ,τ

c (Def. III.8) too.

Corollary V.12 (soundness and completeness of trimmed
codensity games). In Def. V.9, P ∈ G is a winning position
for Duplicator if and only if P v νΦΩ,τ

c .

VI. MULTIPLE OBSERVATION DOMAINS

We extend the theory so far and accommodate multiple
observation domains and modalities. This extension is needed
for some examples, such as those marked with † in Table VI.

We consider the class Lift(F, p) of liftings of an endofunc-
tor F : C→ C along a CLatu-fibration p : E→ C. It comes
with a natural pointwise partial order:

G v H ⇐⇒ ∀X ∈ E. GX v HX (G,H ∈ Lift(F, p)),
(3)

and the partially ordered class Lift(F, p) admits meets of
arbitrary size. As done in the original codensity lifting of
endofunctors in [15] (and monads in [14]), we extend the
codensity lifting so that it takes a family of parameters
{(ΩA, τA)}A∈A, and returns the intersection of the codensity
liftings of F with these parameters.

Definition VI.1 (codensity lifting of a functor with multiple
parameters [15]). Let F : C → C be a functor, p : E → C
be a CLatu-fibration, A be a class, and {(ΩA, τA)}A∈A be
an A-indexed family of parameters (of the codensity lifting
of F along p), which is denoted simply by (Ω, τ). The
(multiple-parameter) codensity lifting of F with (Ω, τ) is the
endofunctor FΩ,τ : E→ E defined by the intersection of the
codensity liftings:

FΩ,τP =
l

A∈A
FΩA,τAP,

that is,
l

A∈A,k∈E(P,ΩA)

(
τA ◦ F (p(k))

)∗
(ΩA).

The rest of the theoretical development is completely par-
allel to the one in the previous sections. Therefore we only
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TABLE X
TRIMMED CODENSITY BISIMILARITY GAME WITH MULTIPLE

OBSERVATIONS

position pl. possible moves
P ∈ G S A ∈ A and k ∈ C(X,ΩA) s.t.

τA ◦ Fk ◦ c : (X,P ) 9̇ (ΩA,ΩA)
A ∈ A and D P ′ ∈ G s.t.
k ∈ C(X,ΩA) k : (X,P ′) 9̇ (ΩA,ΩA)

present key definitions and the main result (Cor. VI.4). The
omitted definitions and results can be recovered from the ones
in §III–V, by replacing a single-parameter codensity lifting
(Def. III.1) by a multi-parameter one (Def. VI.1).

Definition VI.2 (codensity bisimulation). Assume the setting
of Def. VI.1. Let c : X → FX be an F -coalgebra. An object
P ∈ EX is a codensity bisimulation over c if c : (X,P ) →̇
(FX,FΩ,τP ); that is, c : X → FX is decent with respect to
the designated indistinguishability structures.

Definition VI.3 (codensity bisimilarity game). In the setting
of Def. VI.2, let G be a generating set of EX . The codensity
bisimilarity game is the safety game, played by two players
D and S, shown in Table X.

Corollary VI.4 (soundness and completeness of codensity
games). Assume the setting of Def. VI.3. P ∈ EX is a winning
position for Duplicator if and only if P v νΦΩ,τ

c .

Example VI.5 (bisimulation topology for deterministic au-
tomata). Here we describe the topological example in Table V.
Consider the CLatu-fibration Top → Set and the functor
AΣ = 2 × ( )Σ : Set → Set, where Σ is a fixed alphabet.
Coalgebras for this functor are deterministic automata over Σ;
see e.g. [19], [20].

We take the following data as a parameter of codensity
lifting (cf. Def. VI.1): A = {ε} ∪ Σ, Ωα is the Sierpinski
space for each α ∈ A, and the modalities τε, τa : AΣ2 → 2
(where a ∈ Σ) are defined by

τε(t, ρ) = t and τa(t, ρ) = ρ(a).

Recall that the Sierpinski space is the set 2 = {⊥,>} with
the topology {∅, {>}, 2}; this observation domain models the
situation where acceptance of a word is only semi-decidable.

Let c : X → AΣX be a deterministic automata. The
above choice of parameters leads to the following codensity
bisimilarity: the state space X is equipped with the topology
generated by the following family of open sets.

{x ∈ X | w is accepted from x} ⊆ X, for each w ∈ Σ∗

One can extract various information from this bisimulation
topology via standard topological constructs. For example,
the specialization order of this topology coincides with the
language inclusion order.

For illustration by comparison, consider changing the obser-
vation domain from the Sierpinski space to the discrete 2-point
set. The bisimulation topology over X is now generated by

{x ∈ X | w is accepted from x} and
{x ∈ X | w is not accepted from x}, for each w ∈ Σ∗.

We can now observe rejection of a word, too, because {⊥} ⊆
2 is open. The specialization order of this topology is the
language equivalence, and it satisfies the R0 separation axiom
(while the last Sierpinski example does not).

We take these examples of bisimulation topology as a
process-semantical incarnation of the “observability via topol-
ogy, computability via continuity” paradigm from domain the-
ory. The definition of codensity bisimulation (cf. Def. III.1) fits
well with this intuition, too: a continuous map k : (X,P ) →̇ Ω
in Def. III.1 is a “computable observation”; accordingly, an
open set of the bisimulation topology is a property that is
decided by finitely many of those computable observations.

VII. TRANSFER OF CODENSITY BISIMILARITIES

In our formulation, for the same endofunctor F : C → C,
we can use various CLatu-fibrations and parameters (Ω, τ)
to equip F -coalgebras with different bisimilarity-like notions.
Some relations among those codensity bisimilarities can be
categorically captured by the following theorem.

Theorem VII.1 (transfer of codensity bisimilarity). Let p :
E → C and q : F → C be CLatu-fibrations, F : C → C be
an endofunctor, c : X → FX be an F -coalgebra, T : E → F
be a full and faithful fibered functor from p to q preserving
fibered meets, and {(ΩA, τA)}A∈A be an A-indexed family of
parameters for codensity lifting of F along p.

E T //

p ""

F
q||

C
Fcc

In this setting, {(TΩA, τA)}A∈A is an A-indexed family of
parameters for codensity lifting of F along q, and we have
νΦTΩ,τ

c = T (νΦΩ,τ
c ).

Example VII.2. We show that the codensity bisimilarities
in Examples III.2 & III.3 are indeed the usual bisimilarity
notions for Kripke frames. Recall that they are build on the
two CLatu-fibrations EqRel→ Set and ERel→ Set.

We first note that the inclusion functor i : EqRel→ ERel
is a reflection, having the equivalence closure ( )eq : ERel→
EqRel as the left adjoint. It follows that i is meet-preserving.
Moreover, i is fibered.

EqRel

p %%

ERel
( )eq

oo

⊥ //i

qzz

Set Pcc
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We introduce shorthands Ṗ2, Ṗ3 for the liftings in Exam-
ples III.2 & III.3:

Ṗ2 = PEq2,� : EqRel→ EqRel (Example III.2),
Ṗ3 = PEq2,� : ERel→ ERel (Example III.3)

Now, for the sake of our proof, let us introduce a relational
lifting Ṗ1 : ERel → ERel of P along ERel → Set, for
which it is obvious that the corresponding bisimilarity notion is
the usual bisimilarity for Kripke frames. We do so in concrete
terms, instead of as a codensity lifting:

(S, T ) ∈ Ṗ1(R) ⇐⇒ (∀x ∈ S. ∃y ∈ T. (x, y) ∈ R) ∧
(∀y ∈ T. ∃x ∈ S. (x, y) ∈ R).

We note that Ṗ2 is the restriction of Ṗ1 from ERel to EqRel
along i. Note also that Ṗ3 = Ṗ1 ◦ i ◦ ( )eq.

Let c : X → PX be a Kripke frame and Φi = c∗ ◦ Ṗi
(i = 1, 2, 3) be the predicate transformer corresponding to
each lifting. Theorem VII.1 states that νΦ3 = i(νΦ2).

Furthermore, by Ṗ1 v Ṗ3 (where v is the order in (3)), we
have νΦ1 v νΦ3. From i ◦ Ṗ2 = Ṗ1 ◦ i and fiberedness of c,
we can see that i(νΦ2) is a fixed point of Φ1, which yields
i(νΦ2) v νΦ1 by the Knaster–Tarski theorem. The three
(in)equalities so far allow us to conclude νΦ3 = i(νΦ2) =
νΦ1, stating that the conventional bisimilarity νΦ1 is equal
to the codensity bisimilarities in Examples III.2 & III.3. As a
consequence, the conventional bisimilarity νΦ1 is necessarily
an equivalence relation.

VIII. EXAMPLES

A. Kripke Frames and (Conventional) Bisimilarity

We consider EqRel → Set as an underlying CLatu-
fibration, and a Kripke frame c : X → PX (as a P-coalgebra).
We further use the codensity lifting PEq2,� (Example III.2) and
the generating set described in Example V.2 to trim games; the
resulting game is shown in Table XI. As shown in Example
VII.2, the codensity bisimilarity νΦ

Eq2,�
c (which is νΦ2 in

Example VII.2) coincides with conventional bisimilarity on c
using the standard relational lifting of P to ERel.

Theorem VIII.1. (x, y) is a D-winning position if and only
if (x, y) ∈ νΦ

Eq2,�
c , if and only if x and y are bisimilar.

Extension of this result to labeled transition systems and
Kripke models (with valuations) is straightforward, using
suitable choice of endofunctors—see also §VIII-B.

B. Deterministic Automata and Their Language Equivalence

We use the functor AΣ : Set→ Set from Example VI.5, for
which a coalgebra is a deterministic automaton. Let us lift AΣ

along the fibration EqRel → Set, with the same modalities
τε, τa : AΣ2 → 2 as in Example VI.5 (where a ∈ Σ). Our
observation domains are Ωα = (2,Eq2) for all α ∈ {ε} ∪ Σ.

TABLE XI
CODENSITY BISIMILARITY GAME FOR CONVENTIONAL BISIMILARITY

position pl. possible moves
(x, y) ∈ X ×X S k ∈ Set(X, 2) s.t.

∃x′ ∈ c(x). k(x′) = >
6⇔ ∃y′ ∈ c(y). k(y′) = >

k ∈ Set(X, 2) D (x′′, y′′) s.t. k(x′′) 6= k(y′′)

TABLE XII
CODENSITY BISIMILARITY GAME FOR DETERMINISTIC AUTOMATA AND

THEIR LANGUAGE EQUIVALENCE

position pl. possible moves
(x, y) ∈ X ×X S If π1(x) 6= π1(y) then S wins

If π1(x) = π1(y) then
a ∈ Σ and k ∈ Set(X, 2)
s.t. k(π2(x)(a)) 6= k(π2(y)(a))

a ∈ Σ and D (x′′, y′′) ∈ X ×X s.t. k(x′′) 6= k(y′′)
k ∈ Set(X, 2)

TABLE XIII
CODENSITY BISIMILARITY GAME FOR DETERMINISTIC AUTOMATA AND

BISIMULATION TOPOLOGY

position pl. possible moves
O ∈ TopX S a ∈ {ε} ∪ Σ and k ∈ Set(X, 2)

s.t. τa ◦ (AΣk) ◦ c : (X,O) 9̇ (2,Ωa)
a ∈ {ε} ∪ Σ D O′ ∈ TopX
and k ∈ Set(X, 2) s.t. k : (X,O′) 9̇ (2,Ωa)

TABLE XIV
CODENSITY BISIMILARITY GAME FOR NONDETERMINISTIC AUTOMATA

AND THEIR BISIMILARITY

position pl. possible moves
(x, y) ∈ X ×X S If π1(x) 6= π1(y) then S wins

If π1(x) = π1(y) then
a ∈ Σ and k ∈ Set(X, 2)
s.t. ∃x′ ∈ π2(x)(a). k(x′) = >

< ∃y′ ∈ π2(y)(a). k(y′) = >
a ∈ Σ and D (x′′, y′′) ∈ X ×X s.t. k(x′′) 6= k(y′′)
k ∈ Set(X, 2)

TABLE XV
CODENSITY BISIMILARITY GAME FOR PROBABILISTIC BISIMILARITY

position pl. possible moves
(x, y) S r ∈ [0, 1] and k ∈ Set(X, 2) s.t.
∈ X ×X c(x)(k−1(>)) ≥ r > c(y)(k−1(>)), or

c(y)(k−1(>)) ≥ r > c(x)(k−1(>))
r ∈ [0, 1] and D (x′′, y′′) s.t. k(x′′) 6= k(y′′)
k ∈ Set(X, 2)

The resulting codensity lifting (AΣ)Ω,τ : EqRel → EqRel
is concretely described as follows.

(AΣ)Ω,τ (R) =
(
(t1, ρ1), ∀k : X → 2.

(t2, ρ2)
)

(∀x, y ∈ X. (x, y) ∈ R⇒ k(x) = k(y))
∈ (AΣX)2 ⇒ (t1 = t2)∧

(∀a ∈ Σ. (k ◦ ρ1)(a) = (k ◦ ρ2)(a))

 .

Let c : X → AΣX be a deterministic automaton. It is not hard
to see that the codensity bisimilarity νΦΩ,τ

c coincides with
language equivalence of deterministic automata. Our trimmed
codensity game is shown in Table XII (in a slightly optimized
form). The game therefore characterizes the language equiva-
lence (Cor. VI.4).
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C. Deterministic Automata and the Language Topology

We introduced two versions of bisimulation topology for
deterministic automata in Example VI.5. They are in close
correspondences with accepted languages; therefore we call
them language topologies.

For the first topology in Example VI.5 (where Ω is the
Sierpinski space, capturing that acceptance is only semi-
decidable), the corresponding (untrimmed) codensity game is
shown in Table XIII. It follows from our general results that
the game notion is sound and complete.

We have not yet found a good way (e.g. generating sets) of
trimming the game arena; this is left as future work.

D. Nondeterministic Automata and Bisimilarity

Let us now turn to nondeterministic automata, that is, NΣ-
coalgebras for the functor NΣ = 2 × (P )Σ. Much like the
situation for DFAs, we lift this functor along the CLatu-
fibration EqRel → Set by codensity lifting with multiple
observation domains, as follows. Let A be the set {ε} ∪ Σ.
We set the parameter of codensity lifting as follows, where
a ∈ Σ.

Ωε = Ωa = Eq2, τε(t, ρ) = t, τa(t, ρ) = �(ρ(a)).

The resulting codensity lifting (NΣ)Ω,τ : EqRel → EqRel
is concretely described as

(NΣ)Ω,τ (R) =

(
(t1, ρ1), ∀k : X → 2.

(t2, ρ2)
)

(∀x, y ∈ X. (x, y) ∈ R⇒ k(x) = k(y))
∈ (NΣX)2 ⇒ (t1 = t2)∧(

∀a ∈ Σ. > ∈ (k ◦ ρ1)(a)
⇔ > ∈ (k ◦ ρ2)(a)

)
 .

Let c : X → NΣX be a nondeterministic automaton. It is
again not hard to see that the codensity bisimilarity νΦΩ,τ

c is
the usual notion of bisimilarity of nondeterministic automata.
Our trimmed codensity game is shown in Table XIV, in a
slightly optimized form, and it captures bisimilarity.

A topological variant of the above story is possible, much
like in §VIII-C.

E. Markov Chains and Bisimulation Metric

Recall Examples III.9, IV.5, and V.3. Markov chains are
D≤1-coalgebras. We use the CLatu-fibration PMet1 →
Set, taking pseudometrics as a notion of indistinguishability.
With the lifting parameter we described in Example III.9, we
get the bisimulation metric as the codensity bisimilarity. We
can use the generating set described in Example V.3 to obtain
a trimmed codensity game; the resulting game essentially co-
incides with the one in Table II in the introduction. Therefore,
Cor. V.12 gives an abstract proof for the correctness of the
game.

F. Continuous State Markov Chains and Bisimulation Metric

In order to accommodate continuous state Markov chains
(for which measurable structures are essential), we consider
an example that involves Meas. Continuing §VIII-E, by the
change-of-base along the forgetful functor U : Meas→ Set,

we get another CLatu-fibration U∗(PMet1) → Meas. A
continuous state Markov chain is a coalgebra X → G≤1X of
the so-called sub-Giry functor over Meas—see, e.g., [29].

Since the forgetful functor Meas→ Set has a left adjoint,
Prop. V.6 gives us a fibered separator for U∗(PMet1) →
Meas. This gives us a game notion similar to that in §VIII-E.

G. Markov Chains and Probabilistic Bisimilarity

In order to define bisimilarity-like equivalence relation on
Markov chains, we first lift D≤1 along the CLatu-fibration
EqRel → Set. For that purpose, here we use the following
multiple lifting parameters. The index set is A = [0, 1]. For
each r ∈ A, we set Ωr = (2,Eq2), and define a threshold
modality τr : D≤12→ 2 by τr(p) = > if and only if p(>) ≥ r.
Then for any R ∈ EqRelX , the relation part of the codensity
lifting DΩ,τ

≤1 (X,R) relates p, q ∈ D≤1(X) if and only if

∀r ∈ [0, 1]. ∀k : X → 2.
(
(∀(x, y) ∈ R. k(x) = k(y))

=⇒
(∑

x∈k−1(>) p(x) ≥ r ⇔
∑
x∈k−1(>) q(x) ≥ r

))
.

Let us fix a Markov chain c : X → D≤1X . All these data
give rise to DΩ,τ

≤1 and νΦΩ,τ
c as in Definitions VI.2 and III.8.

It is not hard to see that the resulting codensity bisimilarity
coincides with probabilistic bisimilarity in [4]. Note, for
example, that a relation-preserving map k : (X,R) →̇ (2,Eq2)
coincides with an R-closed subset of X . The resulting trimmed
codensity game is in Table XV. It is essentially the same
as Table I (arising from [13]). The difference is that r is
additionally present in Table XV; it is easy to realize that
r plays no role in the game.

IX. CONCLUSIONS AND FUTURE WORK

Motivated by some recent works [8], [10], [11], [13], and
especially by the similarity of the two games (Tables I and II),
we introduced a fibrational framework that uniformly describes
the correspondence between various bisimilarity notions and
games. The fibrational abstraction allows us to accommodate
some new examples, such as bisimulation topology. Moreover,
the structural theory developed in §VI–VII provides new
insights to the nature of bisimilarity, we believe, identifying
the crucial role of observation maps (k : X → Ω in Def. III.1)
in bisimulation notions.

As future work, we intend to accommodate modal logics
as is done in [10]. We are also interested in using games
with more complex winning conditions (e.g. parity); they have
been used for (bi)simulation notions for Büchi and parity
automata [31]. Finally, we will pursue the algorithmic use of
the current results.

REFERENCES

[1] D. Park, “Concurrency and automata on infinite sequences,” in
Proceedings of the 5th GI-Conference on Theoretical Computer
Science. London, UK, UK: Springer-Verlag, 1981, pp. 167–183.
[Online]. Available: http://dl.acm.org/citation.cfm?id=647210.720030

[2] R. Milner, Communication and Concurrency. Prentice-Hall, 1989.
[3] D. Sangiorgi and J. Rutten, Eds., Advanced Topics in Bisimulation and

Coinduction, ser. Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 2011.

12

http://dl.acm.org/citation.cfm?id=647210.720030


[4] K. G. Larsen and A. Skou, “Bisimulation through probabilistic testing,”
Inf. Comput., vol. 94, no. 1, pp. 1–28, 1991.

[5] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden, “Metrics
for labelled markov processes,” Theoretical Computer Science,
vol. 318, no. 3, pp. 323 – 354, 2004. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0304397503006042

[6] C. Hermida and B. Jacobs, “Structural induction and coinduction in a
fibrational setting,” Inf. Comput., vol. 145, no. 2, pp. 107–152, 1998.
[Online]. Available: https://doi.org/10.1006/inco.1998.2725

[7] I. Hasuo, T. Kataoka, and K. Cho, “Coinductive predicates and
final sequences in a fibration,” Mathematical Structures in Computer
Science, vol. 28, no. 4, pp. 562–611, 2018. [Online]. Available:
https://doi.org/10.1017/S0960129517000056

[8] P. Baldan, F. Bonchi, H. Kerstan, and B. König, “Coalgebraic behavioral
metrics,” Logical Methods in Computer Science, vol. 14, no. 3, 2018.
[Online]. Available: https://doi.org/10.23638/LMCS-14(3:20)2018

[9] F. Bonchi, D. Petrisan, D. Pous, and J. Rot, “Coinduction up-to in a
fibrational setting,” in Joint Meeting of the Twenty-Third EACSL Annual
Conference on Computer Science Logic (CSL) and the Twenty-Ninth
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, T. A. Henzinger
and D. Miller, Eds. ACM, 2014, pp. 20:1–20:9. [Online]. Available:
https://doi.org/10.1145/2603088.2603149

[10] B. König and C. Mika-Michalski, “(Metric) bisimulation games and real-
valued modal logics for coalgebras,” in 29th International Conference
on Concurrency Theory, CONCUR 2018, September 4-7, 2018, Beijing,
China, 2018, pp. 37:1–37:17.

[11] F. Bonchi, B. König, and D. Petrisan, “Up-to techniques for behavioural
metrics via fibrations,” in 29th International Conference on Concurrency
Theory, CONCUR 2018, September 4-7, 2018, Beijing, China, ser.
LIPIcs, S. Schewe and L. Zhang, Eds., vol. 118. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2018, pp. 17:1–17:17. [Online].
Available: https://doi.org/10.4230/LIPIcs.CONCUR.2018.17

[12] T. Wißmann, J. Dubut, S. Katsumata, and I. Hasuo, “Path category
for free—open morphisms from coalgebras with non-deterministic
branching,” CoRR, vol. abs/1811.12294, 2018, to appear in Proc.
FoSSaCS 2019. [Online]. Available: http://arxiv.org/abs/1811.12294

[13] N. Fijalkow, B. Klin, and P. Panangaden, “Expressiveness of Proba-
bilistic Modal Logics, Revisited,” in Procs. ICALP 2017, ser. Leibniz
International Proceedings in Informatics (LIPIcs), vol. 80, 2017, pp.
105:1–105:12.

[14] S. Katsumata, T. Sato, and T. Uustalu, “Codensity lifting of monads
and its dual,” Logical Methods in Computer Science, vol. 14, no. 4,
2018. [Online]. Available: https://doi.org/10.23638/LMCS-14(4:6)2018

[15] D. Sprunger, S. Katsumata, J. Dubut, and I. Hasuo, “Fibrational
bisimulations and quantitative reasoning,” in Coalgebraic Methods in
Computer Science - 14th IFIP WG 1.3 International Workshop, CMCS
2018, Colocated with ETAPS 2018, Thessaloniki, Greece, April 14-15,
2018, Revised Selected Papers, ser. Lecture Notes in Computer Science,
C. Cı̂rstea, Ed., vol. 11202. Springer, 2018, pp. 190–213. [Online].
Available: https://doi.org/10.1007/978-3-030-00389-0 11

[16] J. Desharnais, F. Laviolette, and M. Tracol, “Approximate analysis of
probabilistic processes: Logic, simulation and games,” in 2008 Fifth
International Conference on Quantitative Evaluation of Systems, Sep.
2008, pp. 264–273.

[17] B. Jacobs, Categorical Logic and Type Theory. Amsterdam: North
Holland, 1999.

[18] A. Joyal, M. Nielsen, and G. Winskel, “Bisimulation from open maps,”
Inf. Comput., vol. 127, no. 2, pp. 164–185, 1996.

[19] J. J. M. M. Rutten, “Universal coalgebra: a theory of systems,” Theor.
Comp. Sci., vol. 249, pp. 3–80, 2000.

[20] B. Jacobs, Introduction to Coalgebra: Towards Mathematics of States
and Observation, ser. Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2016, vol. 59. [Online].
Available: https://doi.org/10.1017/CBO9781316823187

[21] F. van Breugel, M. W. Mislove, J. Ouaknine, and J. Worrell, “An
intrinsic characterization of approximate probabilistic bisimilarity,”
in Foundations of Software Science and Computational Structures,
6th International Conference, FOSSACS 2003 Held as Part of the
Joint European Conference on Theory and Practice of Software,
ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings,
ser. Lecture Notes in Computer Science, A. D. Gordon, Ed.,
vol. 2620. Springer, 2003, pp. 200–215. [Online]. Available:
https://doi.org/10.1007/3-540-36576-1 13

[22] P. J. L. Cuijpers and M. A. Reniers, “Topological (bi-)simulation,”
Electr. Notes Theor. Comput. Sci., vol. 100, pp. 49–64, 2004. [Online].
Available: https://doi.org/10.1016/j.entcs.2004.08.017

[23] T. Wilke, “Alternating tree automata, parity games, and modal µ-
calculus,” Bull. Belg. Math. Soc. Simon Stevin, vol. 8, no. 2, pp. 359–391,
2001.

[24] R. Ehlers and D. Moldovan, “Sparse positional strategies for safety
games,” in Proceedings First Workshop on Synthesis, SYNT 2012,
Berkeley, California, USA, 7th and 8th July 2012., ser. EPTCS, D. A.
Peled and S. Schewe, Eds., vol. 84, 2012, pp. 1–16. [Online]. Available:
https://doi.org/10.4204/EPTCS.84.1

[25] T. A. Beyene, S. Chaudhuri, C. Popeea, and A. Rybalchenko, “A
constraint-based approach to solving games on infinite graphs,” in
The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’14, San Diego, CA, USA, January
20-21, 2014, S. Jagannathan and P. Sewell, Eds. ACM, 2014, pp.
221–234. [Online]. Available: https://doi.org/10.1145/2535838.2535860

[26] H. Herrlich, “Topological functors,” General Topology and its
Applications, vol. 4, no. 2, pp. 125 – 142, 1974. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0016660X74900166
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APPENDIX

A. Direct Proof of Equivalence of the Two Game Notions
Characterizing Probabilistic Bisimilarity (Tables I, III)

1) Table III  Table I : Assume that Duplicator wins
Table III from (x, y), and let Spoiler play some Z in Table I .
There are two cases to consider which are essentially identical,
but we write them down separately just to make sure.

• If τ(x, Z) > τ(y, Z) then make Spoiler select s = x
and play Z in Table III. To this Duplicator responds
with some Z ′ ⊇ Z such that τ(x, Z) ≤ τ(y, Z ′), which
implies that Z ′ 6= Z. Pick any y′ ∈ Z ′ \ Z and play it
as Spoiler in Table III; when Duplicator responds with
some x′ ∈ Z, play the pair x′ and y′ as Duplicator in
Table I.

• If τ(x, Z) < τ(y, Z) then make Spoiler select s = y
and play Z in Table III. To this Duplicator responds
with some Z ′ ⊇ Z such that τ(y, Z) ≤ τ(x, Z ′), which
implies that Z ′ 6= Z. Pick any y′ ∈ Z ′ \ Z and play it
as Spoiler in Table III; when Duplicator responds with
some x′ ∈ Z, play the pair x′ and y′ as Duplicator in
Table I.

2) Table I  Table III : This is a less straightforward
implication. A winning strategy for Duplicator in Table III is
built not from a single strategy in Table I, but rather from an
entire collection of winning positions.

Formally, assume that Duplicator wins Table I from (x, y),
and let Spoiler choose s ∈ {x, y} and play some Z in Table III.
Define

Z̄ = {w ∈ X | ∃v ∈ Z s.t. Duplicator wins Table I from (v, w)}.

One basic observation is that Z ⊆ Z̄, since Duplicator wins
from all positions of the form (w,w). As a result:

τ(x, Z) ≤ τ(x, Z̄) and τ(y, Z) ≤ τ(y, Z̄). (4)

Another observation is that Spoiler wins Table I from the
position Z̄. To see this, consider any Duplicator’s response
x′ ∈ Z̄, y′ 6∈ Z̄. Then there is some v ∈ Z such that Duplicator
wins Table I from (v, x′). If Duplicator could win Table I
from (x′, y′) then she could win from (v, y′) as well, which
contradicts the assumption that y′ 6∈ Z̄.

Since we assume that Duplicator wins Table I from (x, y),
Z̄ cannot be a legal move for Spoiler from (x, y), hence

τ(x, Z̄) = τ(y, Z̄).

Together with (4) this implies that

τ(x, Z) ≤ τ(y, Z̄) and τ(y, Z) ≤ τ(x, Z̄),

so Z ′ = Z̄ is a legal move for Duplicator in stage (ii) of
Table III, no matter if Spoiler chose s = x or s = y in stage
(i). To this, in stage (iii) replies with some y′ ∈ Z̄ \ Z. By
definition of Z̄, there is some v ∈ Z such that Duplicator wins
Table I from (v, y′), so Duplicator can respond with x′ = v.

B. Introduction to CLatu-Fibration

We present an introduction to (CLatu-)fibrations, starting
from a functor FE : Cop → CLatu. The relevance of the latter
is explained in §II-B. For details, readers are referred to [17].

1) The Grothendieck Construction: In general, the equiva-
lence between index categories Cop → Cat and fibrations is
well-known. Here we sketch the Grothendieck construction
from the former to the latter, focusing the special case of
Cop → CLatu and CLatu-fibrations. Its idea is to “patch
up” the family

(
FEX

)
X∈C of complete lattices, and form a

big category E, as shown in Fig. 2.
On the right-hand side in Fig. 2, we add some arrows (de-

noted by 99K) so that we have an arrow (FEf)(Q)→ Q in E
for each Q ∈ FEY . (On the left-hand side, the correspondence
p99K depicts the action of the map FEf .) The diagram in E in
Fig. 2 should be understood as a Hasse diagram: those arrows
which arise from composition are not depicted.

Definition A.1 (The Grothendieck construction). Given
FE : Cop → CLatu, we define the category E by

• its objects: a pair (X,P ) of an object X ∈ C and an
element P of the poset FEX; and

• its arrows: f : (X,P ) → (Y,Q) is an arrow f : X → Y
in C such that

P v (FEf)(Q).

Here v refers to the order of FEX .

Thus arises a category E that incorporates:

• the order structure of each of the posets (FEX)X∈C, and
• the pullback structure by (FEf)f : C-arrow.

For fixed X ∈ C, the objects of the form (X,P ) and the
arrows idX between them form a subcategory of E. This is
denoted by EX and called the fiber over X . It is obvious that
EX is a poset that is isomorphic to FEX .

Moreover, there is a canonical projection functor p : E→ C
that carries (X,P ) to X .

2) Formal Definition of CLatu-Fibration: We axiomatize
those structures which arise in the way described above.

Definition A.2 (CLatu-fibration). A CLatu-fibration p :
E → C consists of two categories E,C and a functor
p : E→ C, that satisfy the following properties.

• Each fiber EX is a complete lattice. Here the fiber EX
for X ∈ C is the subcategory of E consisting of the
following data: objects P ∈ E such that pP = X; and
arrows f : P → Q such that pf = idX (such arrows are
said to be vertical).

• Given f : X → Y in C and Q ∈ EY , there is an
object f∗Q ∈ EX and an E-arrow fQ : f∗Q → Q with
the following universal property. For any P ∈ EX and
g : P → Q in E, if pg = f then g factors through f(Q)
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FEX FEY
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•
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•
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•
aa ==

•
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X
f
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p
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•
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•
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•
OO
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•
`` >>

•
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44

C X
f

// Y

Fig. 2. The Grothendieck construction

uniquely via a vertical arrow. That is, there exists unique
g′ such that g = f(Q) ◦ g′ and pg′ = idX .

E

p

��

Q

=⇒

f∗Q
f(Q)

// Q

P
g

99

g′
OO

C X
f
// Y X

f
// Y

• The correspondences ( )∗ and ( ) are functorial:

id∗YQ = Q , (g ◦ f)∗(Q) = f∗(g∗Q),

idY (Q) = idQ , g ◦ f(Q) = gQ ◦ f(g∗Q).

The last equality can be depicted as follows.

E

p

��

f∗(g∗Q)
f(g∗Q)

// g∗Q
gQ
// Q

(g ◦ f)∗Q g◦f(Q)

66

C X
f

// Y
g
// Z

The category E is called the total category of the fibration; C
is the base category. The arrow fQ : f∗Q → Q is called the
Cartesian lifting of f and Q. An arrow in E is Cartesian (or
reindexing) if it coincides with fQ for some f and Q.

In the case where p : E → C is induced by an indexed
category FE : Cop → CLatu via Def. A.1, a Cartesian lifting
is given by f∗(Q) = (FEf)(Q).

In the current paper we focus on CLatu-fibrations. In a
(general) fibration, a fiber EX is not just a preorder but a
category, and this elicits a lot of technical subtleties. Never-
theless, it should not be hard to generalize the current paper’s
observations to general, not necessarily CLatu-, fibrations
(especially to the split ones). We shall often denote a vertical
arrow in E (i.e. an arrow inside a fiber) by v.

C. Codensity Characterization of Hausdorff pseudometric

Proposition A.3. Let (X, d) be a pseudometric space. For any
S, T ⊆ X , we define two functions

dH(S, T ) = max

(
sup
x∈S

inf
y∈T

d(x, y), sup
y∈T

inf
x∈S

d(x, y)

)
and

dc(S, T ) = sup
k∈PMet1((X,d),([0,1],dR))

dR

(
inf
x∈S

k(x), inf
y∈T

k(y)

)
.

The values of two functions coincide.

Proof. First, we show dc(S, T ) ≥ dH(S, T ) by contradiction.
Suppose it doesn’t hold. Then, by definition, at least one of

sup
x∈S

inf
y∈T

d(x, y)

and
sup
y∈T

inf
x∈S

d(x, y)

is greater than dc(S, T ). We can assume the former is greater
than dc(S, T ) w.l.o.g.

Therefore, for some x0 ∈ S,

dc(S, T ) < inf
y∈T

d(x0, y)

holds.
Now, since d(x0, ) is a non-expansive function by the

triangle inequality, we have

dc(S, T ) ≥ dR
(

inf
x∈S

d(x0, x), inf
y∈T

d(x0, y)

)
.

However, since infx∈S d(x0, x) = 0, we have dc(S, T ) ≥
infy∈T d(x0, y), which is a contradiction.

Next, we show dc(S, T ) ≤ dH(S, T ) by contradiction.
Suppose dc(S, T ) > dH(S, T ) + ε for some ε > 0. Then,

for some non-expansive k : X → [0, 1],

dR

(
inf
x∈S

k(x), inf
y∈T

k(y)

)
> dH(S, T ) + ε

holds.
W.l.o.g. we can assume infx∈S k(x) ≤ infy∈T k(y).
Thus, for some x0 ∈ S and y0 ∈ T satisfying k(x0) ≤

infx∈S k(x) + ε/5 and k(y0) ≤ infy∈T k(y) + ε/5,

dR(k(x0), k(y0)) > dH(S, T ) + 3ε/5

holds. Since

dH(S, T ) ≥ sup
x∈S

inf
y∈T

d(x, y),

there exists some y1 ∈ T satisfying

dH(S, T ) ≥ d(x0, y1) ≥ dR(k(x0), k(y1)).

However, we have k(x0) ≤ k(y0) + ε/5 ≤ k(y1) + 2ε/5,
so

dR(k(x0), k(y1) + ε/5) ≥ dR(k(x0), k(y0) + 2ε/5)
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and

dR(k(x0), k(y1)) + 3ε/5 ≥ dR(k(x0), k(y0))

holds.
Then,

dR(k(x0), k(y0))

≤ dR(k(x0), k(y1)) + 3ε/5

≤ dH(S, T ) + 3ε/5

< dR(k(x0), k(y0))

holds, which is a contradiction.

D. Omitted Proofs

1) Proof of Lem. III.11:

Proof. The downset ↓(νΦΩ,τ ) is a joint codensity bisimula-
tion, because the union of all elements of ↓(νΦΩ,τ ) is equal
to a codensity bisimulation νΦΩ,τ .

Let V be a joint codensity bisimulation. Then for any P ∈
V , we have P v νΦΩ,τ , because P v

⊔
Q∈V Q v νΦΩ,τ .

2) Proof of Lem. IV.2:

Proof. We follow the following logical equivalence.

1) ⇐⇒
(∀P ∈ V, k ∈ C(X,Ω). τ ◦ Fk ◦ c 6∈ E(P,Ω)

=⇒ ∃P ′ ∈ V. k 6∈ E(P ′,Ω)

)
⇐⇒

(
∀P ∈ V, k ∈ C(X,Ω).
(∀P ′ ∈ V. k ∈ E(P ′,Ω))
=⇒ τ ◦ Fk ◦ c ∈ E(P,Ω)

)

⇐⇒
(
∀k ∈ C(X,Ω). (k ∈ E(

⊔
P ′∈V P

′,Ω)) =⇒
τ ◦ Fk ◦ c ∈ E(

⊔
P∈V P,Ω)

)
⇐⇒

⊔
P∈V P v ΦΩ,τ (

⊔
P ′∈V P

′),

where the last equivalence is by Thm. III.7.
3) Proof of Prop. V.6:

Proof. For any X ∈ D, the bijection D(LS,X) ∼= C(S,RX)
exists. Thus, naturally identifying (R∗E)X and ERX , we have
the following for any P,Q ∈ (R∗E)X .

∀f ∈ D(LS,X). f∗P = f∗Q
=⇒ ∀f ∈ D(LS,X). (Rf)∗P = (Rf)∗Q
=⇒ ∀f ∈ D(LS,X). (Rf ◦ ηS)∗P = (Rf ◦ ηS)∗Q
=⇒ ∀g ∈ C(S,RX). g∗P = g∗Q
=⇒ P = Q

4) Proof of Prop. VII.1:

Proof. We have TΦΩ,τ = ΦTΩ,τT because, for any P ∈ FX ,

TΦΩ,τP

= T

l

A∈A

l

k∈F(P,Ω(A))

(τA ◦ F (rk) ◦ c)∗Ω(A)


=

l

A∈A

l

k∈F(P,Ω(A))

(τA ◦ F (rk) ◦ c)∗TΩ(A)

=
l

A∈A

l

k∈F(P,Ω(A))

(τA ◦ F (rk) ◦ c)∗TΩ(A)

=
l

A∈A

l

k∈F(P,Ω(A))

(τA ◦ F (p(Tk)) ◦ c)∗TΩ(A)

=
l

A∈A

l

l∈E(TP,TΩ(A))

(τA ◦ F (pl) ◦ c)∗TΩ(A)

= ΦTΩ,τTP

holds.
Considering this and the fact that T preserves meets, [15,

Lemma 20] implies T (νΦΩ,τ ) = νΦTΩ,τ .
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