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Abstract. Consider a committee of experts dealing with dichotomous choice prob-
lem, where the correctness probabilities are all greater than 1

2
. We prove that, if a

random subcommittee of odd size m is selected randomly, and entrusted to make
a decision by majority vote, its probability of deciding correctly increases with m.
This includes a result of Ben-Yashar and Paroush (2000), who proved that a random
subcommittee of size m ≥ 3 is preferable to a random single expert.

1. Introduction and model

There is a variety of situations where a group of decision makers is
required to select one of two alternatives, of which exactly one is correct.
This gives rise to the dichotomous choice model, which goes back more
than two centuries, as far as Condorcet (1785).

Each expert i has a correctness probability pi, indicating his ability
to identify the correct alternative. We assume that each pi ≥ 1

2 (cf.
Nitzan and Paroush 1985). The selections of the experts are assumed
to be independent.

A decision rule is a rule for translating the individual opinions into
a group decision. One of the most popular decision rules is the simple
majority rule.

There are several directions in the study of the dichotomous choice
model. One of them is concerned with Condorcet’s Jury Theorem in
various setups. Condorcet’s original statement may be phrased as com-
posed of two parts (see Ben-Yashar and Paroush 2000):

(i) A group decision, utilizing the simple majority rule, is more likely
to be correct than that of any of the members.
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(ii) The probability of the group to make a correct choice using the
simple majority rule tends to 1 as the number of members tends
to infinity.

Part (i) is referred to as the nonasymptotic part of Condorcet’s
statement, and (ii) as the asymptotic part (see Ben-Yashar and Paroush
2000). This statement provides the theoretical justification of demo-
cratic voting in public affairs and in social choice. A Condorcet’s Jury
Theorem (CJT) is a formulation of conditions substantiating Con-
dorcet’s belief. The classical conditions of this theorem are the inde-
pendence of the decision makers and the same value p > 1/2 of the
individual correctness probabilities. Note that the first proof of the
classical CJT is due to Laplace in 1812.

Attempts to generalize the theorem were made in several direc-
tions. In particular, several studies considered the case of heteroge-
neous correctness probabilities (cf. Grofman, Owen and Feld 1983;
Miller 1986; Young 1989; Paroush 1998; Berend and Paroush 1998).
Others compared decision groups of different sizes (cf. Feld and Grof-
man 1984; Paroush and Karotkin 1989; Maranon 2000; Karotkin and
Paroush 2003). Another aspect was concerned with identifying the opti-
mal decision rule under partial information on correctness probabilities
(cf. Sapir 1998; Berend and Sapir 2002).

Most of the previous studies were focused on the asymptotic part
of Condorcet’s statement. For example, Berend and Paroush (1998)
found necessary and sufficient conditions for the asymptotic part of
Condorcet’s statement for independent voters in heterogeneous teams.

The nonasymptotic part of Condorcet’s statement is also not always
valid (Nitzan and Paroush 1982; Ben-Yashar and Paroush 2000). For in-
stance, Ben-Yashar and Paroush (2000) calculated that the nonasymp-
totic part of Condorcet’s statement is valid if the competence vector
is (0.8, 0.7, 0.7), in which case the simple majority rule yields a prob-
ability 0.826 of correct choice. However, it is invalid for competence
vectors (0.8, 0.7, 0.6) or (0.9, 0.6, 0.6), where the probabilities of a simple
majority to choose correctly are 0.788 and 0.792, respectively.

The motivation for this paper derives from the results of Ben-Yashar
and Paroush (2000). They considered a slight adjustment of Condorcet’s
statement, which is valid regardless of the specific competence structure
of the group. Their main result is that the probability of a group of
odd size n with competence structure (p1, p2, . . . pn), where pi > 1

2 for
each i, to reach the correct decision when utilizing the simple majority
rule is larger than the probability p̄ = 1

n

∑n
i=1 pi of a random group

member to do so.
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To illustrate it, consider again the examples given above with compe-
tence structures (0.8, 0.7, 0.6) or (0.9, 0.6, 0.6), in which the nonasymp-
totic part of Condorcet’s statement is invalid. In each of these cases p̄ =
0.7, while the probabilities of the simple majority to choose correctly
are 0.788 > 0.7 and 0.792 > 0.7.

Moreover, Ben-Yashar and Paroush (2000) concluded that the same
holds for a subset of an odd number of experts chosen at random
from the original group. Namely, the probability of a randomly selected
subcommittee of odd size m ≥ 3 to decide correctly when utilizing the
simple majority rule is larger than the probability p̄ = 1

n

∑n
i=1 pi of a

random single member to do so.
The result of Ben-Yashar and Paroush (2000) raises the question

as to how the probability of making a correct decision varies when we
use the simple majority rule for randomly selected subcommittees of
various sizes. Their result implies that it is preferable to let a random
set of an odd size m ≥ 3 decide rather than selecting a random single
member and letting him decide by himself. Is it, more generally, better
to select a random large subcommittee rather than a smaller one? The
purpose of this paper is to answer this question.

Obviously, in these results it is immaterial whether the group size n
is odd or even, as only the subcommittees are important. Moreover, it is
both interesting and technically convenient to consider subcommittees
of even size as well. In this case, if a vote results in a draw, the decision
is made randomly, with a 50 percent chance of accepting each of the two
opinions (see Berg 1993). It will turn out that increasing the committee
size from m to m+1 always increases the probability of making a correct
choice if m is even. However, if m is odd, then increasing it by 1 leaves
the probability exactly the same.

In Section 2 we present the main results and in Section 3 their proofs.
Section 4 discusses the results.

The authors would like to express their gratitude to R. Ben-Yashar
and J. Paroush for discussions on this topic and helpful comments on
the first draft of the paper.

2. Main Results

We start with several notations. The committee of n members will be
denoted by n̄ = {1, 2, . . . , n}. As mentioned previously, pi is the prob-
ability of the i-th expert to choose the correct alternative, and denote
qi = 1− pi his probability to make a mistake. E = {e1, e2, . . . , em} is a
typical set of m members, where 1 ≤ e1 < e2 < . . . < em ≤ n.
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Mm,j(E) = Mm,j(e1, e2, . . . , em) for 0 ≤ j ≤ m is the probabil-
ity that exactly m − j of the members of E will choose the correct
alternative, while all the others will choose the incorrect one:

Mm,j(E) =



























1, m = 0,

∑

E1 ⊆ E

|E1| = m − j

∏

i∈E1

pi ·
∏

i∈E\E1

qi, m ≥ 1.

For example,

M3,1(1, 2, 3) = p1p2q3 + p1q2p3 + q1p2p3.

Sn,m,j is the sum of all Mm,j(E)’s as E ranges over the
(n
m

)

subsets
of n̄ of size m. Namely, denoting by n̄m this collection of subsets:

Sn,m,j =
∑

E∈n̄m

Mm,j(E).

For example,

S4,3,1 = M3,1(1, 2, 3) + M3,1(1, 2, 4) + M3,1(1, 3, 4) + M3,1(2, 3, 4).

For E of odd size m ≥ 1, let M(E) = M(e1, e2, . . . , em) be the
probability of E to make the correct choice when utilizing the simple
majority rule:

M(E) =

(m−1)/2
∑

j=0

Mm,j(E).

For example, if E = {1, 2, 3} then M(E) = M3,0(E) + M3,1(E).
Strictly speaking, the simple majority rule is not well-defined for

even-sized committees. It is natural, though, to extend the rule to this
case by tossing a coin if the votes are split evenly within the committee.
Namely, we define the probability of E of even size m ≥ 0 to make the
correct choice when utilizing the simple majority rule by:

M(E) =

m/2−1
∑

j=0

Mm,j(E) +
1

2
Mm,m/2(E).

Denote by M̄m the probability of a randomly selected subcommittee
of m members to decide correctly when utilizing the simple majority
rule. That is, for odd m ≥ 1

M̄m =
1
(n
m

)

∑

E∈n̄m

M(E) =
1
(n
m

)

(m−1)/2
∑

j=0

Sn,m,j,
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and for even m ≥ 0:

M̄m =
1
(n
m

)

∑

E∈n̄m

M(E) =
1
(n
m

)





m/2−1
∑

j=0

Sn,m,j +
1

2
Sn,m,m/2



 .

For example, if n = 4 and m = 3 then

M̄3 =
1

4
(M(1, 2, 3) + M(1, 2, 4) + M(1, 3, 4) + M(2, 3, 4)),

where
M(1, 2, 3) = M3,0(1, 2, 3) + M3,1(1, 2, 3),
M(1, 2, 4) = M3,0(1, 2, 4) + M3,1(1, 2, 4),
M(1, 3, 4) = M3,0(1, 3, 4) + M3,1(1, 3, 4),
M(2, 3, 4) = M3,0(2, 3, 4) + M3,1(2, 3, 4),

or, equivalently,

M̄3 =
1

4
(S4,3,0 + S4,3,1),

where

S4,3,0 = M3,0(1, 2, 3) + M3,0(1, 2, 4) + M3,0(1, 3, 4) + M3,0(2, 3, 4),
S4,3,1 = M3,1(1, 2, 3) + M3,1(1, 2, 4) + M3,1(1, 3, 4) + M3,1(2, 3, 4).

In particular, M̄0 = 1
2 and M̄1 = p̄ = 1

n

∑n
i=1 pi. If n is odd, then M̄n

is the probability that a committee of size n utilizing a simple majority
rule will make the correct choice.

With these notations, we may rephrase the basic result of Ben-
Yashar and Paroush (2000) mentioned above as the assertion that, for
a group of odd size n ≥ 3 with competence structure (p1, p2, . . . pn),
where pi > 1

2 for each i, we have:

M̄1 < M̄n.

Their generalized result is that, for a group of (odd or even) size n ≥ 3
with competence structure (p1, p2, . . . pn), where pi > 1

2 for each i, we
have:

M̄1 < M̄m, 3 ≤ m ≤ n, (m odd).

Our main result is

THEOREM 1. For a group of size n with any competence structure

(p1, p2, . . . pn), where pi ≥
1
2 for each i, we have:

M̄m(E)







≤ M̄m+1, 0 ≤ m ≤ n − 1, m even,

= M̄m+1, 1 ≤ m ≤ n − 1, m odd.

Moreover, for any even m we have M̄m = M̄m+1 if and only if pi = 1
2

for 1 ≤ i ≤ n.
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In particular, Theorem 1 implies both of the above theorems of Ben-
Yashar and Paroush (2000). In addition, it provides the monotonicity
of the probability of a correct choice as a function of the size of the
selected subcommittee. Namely

M̄0 ≤ M̄1 = M̄2 ≤ M̄3 = M̄4 ≤ . . . = M̄n−1 ≤ M̄n

if n is odd, and

M̄0 ≤ M̄1 = M̄2 ≤ M̄3 = M̄4 ≤ . . . ≤ M̄n−1 = M̄n

if n is even.

3. Proofs

To prove Theorem 1 we will need the following two lemmas. Denote by
n̄m,r = {(E,E′) : E ∈ n̄m, E′ ∈ n̄r, E

⋂

E′ = ∅}.

LEMMA 1. For a group of size n and nonnegative integers m and r,
m + r ≤ n and 0 ≤ j ≤ m and 0 ≤ k ≤ r we have:

∑

(E,E′)∈n̄m,r

Mm,j(E)Mr,k(E′) =

(

j + k

k

)(

m + r − j − k

r − k

)

Sn,m+r,j+k.

Proof of Lemma 1. Each term in the sum defining Mm,j(E) is of the

form
∏

i∈E1

pi ·
∏

i∈E\E1

qi, where E1 ⊆ E is of size m−j. Similarly, Mr,k(E
′)

consists of terms of the form
∏

i∈E′

1

pi ·
∏

i∈E′\E′

1

qi, with |E′
1| = r−k. Hence,

for E
⋂

E′ = ∅, the product Mm,j(E)Mr,k(E′) is made of terms of the

form
∏

i∈F1

pi ·
∏

i∈(E
⋃

E′)\F1

qi, where F1 ⊆ E
⋃

E′ and |F1| = m+r−j−k.

Let F and F1 ⊆ F be arbitrary fixed sets of sizes m+r and m+r−j−k,
respectively. Letting E and E ′ vary over all pairs of disjoint sets of sizes
m and r, respectively, the product Mm,j(E)Mr,k(E′) contains the term
∏

i∈F1

pi ·
∏

i∈F\F1

qi if and only if

E ⊆ F and |E
⋂

F1| = m − j, and E ′ = F \ E.
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Choosing the m−j elements of E
⋂

F1 out of the m+r−j−k elements of
F1 may be done in

(m+r−j−k
m−j

)

ways, choosing the remaining j elements

of E (i.e., those of E
⋂

(F \ F1)) may be done in
(j+k

j

)

ways, and the

set E′ is then uniquely determined. Hence the term
∏

i∈F1

pi ·
∏

i∈F\F1

qi

appears in
∑

(E,E′)∈n̄m,r

Mm,j(E)Mr,k(E
′) exactly

(m+r−j−k
m−j

)(j+k
j

)

times.

Obviously, Sn,m+r,j+k is the sum of the same terms, each taken only
once. This proves the lemma.

LEMMA 2. For a group of size n we have

Sn,2k+1,k ≥ Sn,2k+1,k+1, 1 ≤ k ≤ (n − 1)/2,

with equality if and only if pi = 1
2 , i = 1, 2, . . . , n.

Proof of Lemma 2. Since

Sn,2k+1,k =
∑

E ∈ n̄2k+1

Mm,k(E)

and
Sn,2k+1,k+1 =

∑

E ∈ n̄2k+1

Mm,k+1(E),

it suffices to show that

M2k+1,k(E) ≥ M2k+1,k+1(E), E ∈ n̄2k+1. (1)

Take an arbitrary set E of size 2k+1. To prove (1) for E, we recall that
its left hand side consists of the sum of the probabilities of all voting
results in which exactly k + 1 of the members of E vote correctly and
the other k incorrectly:

M2k+1,k(E) =
∑

E1 ⊆ E

|E1| = k + 1

∏

i∈E1

pi ·
∏

i∈E\E1

qi.

Since all p′is are at least 1
2 , we have:

∏

i∈E1

pi ·
∏

i∈E\E1

qi ≥
∏

i∈E1\{i0}

pi ·
∏

i∈(E\E1)
⋃

{i0}

qi, E1 ⊆ E, i0 ∈ E1.(2)
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Summing (2) over all i0 ∈ E1, we obtain:

(k + 1) ·
∏

i∈E1

pi ·
∏

i∈E\E1

qi ≥
∏

i∈E\E1

qi · Mk+1,1(E1). (3)

Summing (3) over all sets E1 ⊆ E with |E1| = k + 1 we arrive at:

(k + 1)M2k+1,k(E) ≥ (k + 1)M2k+1,k+1(E).

Clearly, equality takes place if and only if pi = 1
2 for all i ∈ E. This

proves (1), and thereby the lemma.

Proof of Theorem 1. First we will show that:

M̄2k+1 = M̄2k+2, 0 ≤ k ≤ n/2 − 1. (4)

To this end, recall that the probability of a randomly selected sub-
committee of size 2k + 1 to decide correctly when utilizing the simple
majority rule is

M̄2k+1 =
1

( n
2k+1

)

∑

E∈n̄2k+1

M(E). (5)

Now:

(n − 2k − 1)
∑

E∈n̄2k+1

M(E) =
∑

E∈n̄2k+1

M(E)
∑

i∈n̄\E

1

=
∑

E∈n̄2k+1

M(E)
∑

i∈n̄\E

(pi + qi)

=
∑

(E,E′)∈n̄2k+1,1

M(E)(M1,0(E
′) + M1,1(E

′))

=
k
∑

j=0

∑

(E,E′)∈n̄2k+1,1

M2k+1,j(E)M1,0(E
′)

+
k
∑

j=0

∑

(E,E′)∈n̄2k+1,1

M2k+1,j(E)M1,1(E
′).
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Using Lemma 1 twice with m = 2k + 1 and r = 1, the first time with
k = 0 and the second with k = 1, we obtain:

(n − 2k − 1)
∑

E∈n̄2k+1

M(E) =
k
∑

j=0

(2k + 2 − j)Sn,2k+2,j +
k+1
∑

j=1

jSn,2k+2,j

= (2k + 2)





k
∑

j=0

Sn,2k+2,j +
1

2
Sn,2k+2,k+1



 .

(6)

Substituting (6) into (5) we find that

M̄2k+1 =
2k + 2

( n
2k+1

)(n−2k−1)
1

)





k
∑

j=0

Sn,2k+2,j +
1

2
Sn,2k+2,k+1





=
2k + 2

( n
2k+2

)(2k+2
1

)





k
∑

j=0

Sn,2k+2,j +
1

2
Sn,2k+2,k+1





=
1

( n
2k+2

)





k
∑

j=0

Sn,2k+2,j +
1

2
Sn,2k+2,k+1



 = M̄2k+2,

which proves (4).
It remains to prove that:

M̄2k ≤ M̄2k+1, 0 ≤ k ≤ (n − 1)/2.

Similarly to the first part of the proof

M̄2k =
1
( n
2k

)

∑

E∈n̄2k

M(E) (7)
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and

(n − 2k)
∑

E∈n̄2k

M(E) = (n − 2k)





k−1
∑

j=0

∑

E∈n̄2k

M2k,j(E) +
1

2

∑

E∈n̄2k

M2k,k(E)





=
k−1
∑

j=0

∑

E∈n̄2k

M2k,j(E)
∑

i∈n̄\E

(pi + qi)

+
1

2

∑

E∈n̄2k

M2k,k(E)
∑

i∈n̄\E

(pi + qi)

=
k−1
∑

j=0

∑

(E,E′)∈n̄2k,1

(

M2k,j(E)M1,0(E
′) + M2k,j(E)M1,1(E

′)
)

+
1

2

∑

(E,E′)∈n̄2k,1

(

M2k,k(E)M1,0(E
′) + M2k,k(E)M1,1(E

′)
)

.

By Lemma 1 this yields

(n − 2k)
∑

E∈n̄2k

M(E) =
k−1
∑

j=0

(2k + 1 − j)Sn,2k+1,j +
k−1
∑

j=0

(j + 1)Sn,2k+1,j+1

+
1

2
(k + 1)Sn,2k+1,k +

1

2
(k + 1)Sn,2k+1,k+1

= (2k + 1)
k−1
∑

j=0

Sn,2k+1,j +
3k + 1

2
Sn,2k+1,k +

k + 1

2
Sn,2k+1,k+1

= (2k + 1)
k
∑

j=0

Sn,2k+1,j +
k + 1

2
(Sn,2k+1,k+1 − Sn,2k+1,k) .
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In a view of (7), this gives:

M̄2k =
1

( n
2k

)(n−2k
1

)



(2k + 1)
k
∑

j=0

Sn,2k+1,j +
k + 1

2
(Sn,2k+1,k+1 − Sn,2k+1,k)





=
(2k + 1)

( n
2k+1

)(2k+1
1

)





k
∑

j=0

Sn,2k+1,j +
k + 1

2(2k + 1)
(Sn,2k+1,k+1 − Sn,2k+1,k)





=
1

( n
2k+1

)





k
∑

j=0

Sn,2k+1,j +
k + 1

2(2k + 1)
(Sn,2k+1,k+1 − Sn,2k+1,k)



 .

(8)

Now

M̄2k+1 =
1

( n
2k+1

)

k
∑

j=0

Sn,2k+1,j,

so that (8) we obtain

M̄2k+1 − M̄2k =
1

( n
2k+1

) ·
k + 1

2(2k + 1)
(Sn,2k+1,k − Sn,2k+1,k+1),

which by Lemma 2 completes the proof.

4. Discussion

Condorcet’s statement is sometimes split into three parts (see Karotkin
and Paroush 2003). Added to it is the assertion that the advantage of
a group decision over that of a sole expert increases with the size of the
deciding body. This may be interpreted in various ways, and only few
authors have elaborated on it. Karotkin and Paroush (2003) analyze
the question of what happens to the probability of the group to decide
correctly if a committee of size 2k + 1 is enlarged by adding 2 experts.
They find sufficient conditions for the new probability to be higher than
the old one. Similarly, they compare the probability of a homogeneous
group of 2k + 1 experts, each with correctness probability p, and that
of a group of 2k + 3 experts with lower probabilities q < p.

Our approach represents another interpretation of this part of Con-
dorcet’s statement. Namely, we have a fixed committee, but have to
select between various decision strategies. The extreme possibilities
are taking the whole body of experts or picking just one of them at
random. The results of Ben-Yashar and Paroush (2000) mean that the
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first strategy is preferable, at least as far as the probability of making
a correct decision is concerned. Of course, it may be very costly, if not
utterly infeasible, to convene the whole group to make a decision, and
one may consider middle-path strategies − pick up several members
at random and let them decide. In this paper we have shown that the
success probability when using this strategy increases consistently with
the number of selected experts.

Let us emphasize that, augmenting the deciding body is not always
advantageous. For example, a committee with competence structure
(0.9, 0.9, 0.9) has a probability of 0.972 of making the correct choice.
Adding 2 experts of competence 0.6 each reduces the probability to
0.943. In this paper we have offered an alternative interpretation, under
which the added part in Condorcet’s statement is always valid (for
experts with competence pi ≥

1
2 ). For example, for a committee with

competence structure (0.9, 0.9, 0.9, 0.6, 0.6) we have:

M̄0 = 0.5 < M̄1 = M̄2 = 0.78 < M̄3 = M̄4 = 0.886 < M̄5 = 0.943.

The situation is similar to that encountered for the statement that
a large body performs better than each of its members separately. As
we have mention, this may fail if the one member selected is one of the
top experts in the group. However, if this single member is a random
one, the statement becomes unconditionally correct (Ben-Yashar and
Paroush 2000).
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