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1 Introduction

In 1973-75 Gibbard and Satterthwaite published a fundamental impossibility the-
orem which states that every non-dictatorial social choice function, whose range
contains at least three alternatives, at certain profiles can be manipulated by asin-
gleindividual [12,22]. After that, the natural question arose: if there are no perfect
rules, which ones are the best, i.e. least manipulable? The answer to this question
cannot be given in absolute terms. It stipulates introducing a certain index of ma-
nipulability of the rule and a certain model for the population. The answer may
depend both on the choice of the index and on the choice of the model.

To answer this question, various indices of manipulability of voting rules have
been introduced and studied [1,8,14,20,21] and various models introduced [2,
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21]. Among the models the following two have gained the lion's share of atten-
tion. The first one, IC (Impartial Cuture) conjecture, assumes that all voters are
independent. The second one, the IAC (Impartial Anonymous Culture) conjecture,
assumes some degree of dependency.

Among the indices, the probability of obtaining a manipulable profile either
for an individual or for a coalition has attracted most attention, both for the IC and
for the IAC conjectures [8,17,20].

In some cases, these indices have been calculated exactly, mainly in the three-
aternative case [11,17-19]. In others, they have been estimated in computer sim-
ulations[1,8,14,20,24].

The probability of manipulation has been especialy well-studied for the im-
portant class of scoring voting rules, and significant progress has been made in
comparing them. In his seminal paper [21], Saari showed that in his “geometric”
model, Borda is the least manipulable for the three-alternative case in relation to
micro manipulation, but this does not extend to the case of four alternatives. Kim
and Roush [15], on the other hand, proved that, asymptotically, when the number
of voterstends to infinity Borda becomes coalitionally manipulable with probabil -
ity 1.

Some other characteristics have also been used, mostly in computer simula-
tions [1,8,20]. In this paper, we originaly aimed to compare scoring rules under
theC, using the average minimum size of the coalition capable of manipulation as
the principal characteristic of manipulability of therule. The greater this character-
istic, the better therule. This characteristic wasfirst introduced by Chamberlin [8],
where he estimated it for four different rules by means of computer simulation.

To our surprise we discovered that while Chamberlin’s characteristic is mean-
ingful for most classical rules, it is biased towards antiplurality, and the closer
the rule gets to the antiplurality, the larger is its average minimum coalition size.
Hence, there are no optimal rulesin relation to this characteristic at all. We suggest
using the asymptotic average threshold coalition size instead. This new character-
istic coincides with the average minimum coalition size on classical rules but does
not have the bias towards antiplurality. We show how to calculate the limiting
value of this characteristic when n — oo, and discuss which rule is optimal for
large electorates. We prove that, among all scoring rules, Bordaisthe optimal rule
in this sense in three— and four—alternative elections. When the number of alterna-
tives m is five or more, |m/2]-approval voting is optimal, where for each voter
most preferred | m /2] aternatives are considered approved.

2 Scoring Rules

Let A and N betwo finite setsof cardinality m and n respectively. The elements of
A ={ay,...,an} will be caled dternatives, the elements of N agents. We will
denote agentsas 1, 2, . .. , n. We assume that the agents have preferences over the
set of aternatives. By £ = £(A) we denote the set of al linear orders on A; they
represent the preferences of agents over A. The elements of the Cartesian product

LM=LX...x L (ntimes)
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are called profiles. They represent the collection of preferences of the society N.
If alinear order R; € L representsthe preferences of the i-th agent, then by a R;b,
where a,b € A, we denote that this agent prefers a to 5. A family of mappings
F,: £L" — A,n € N, iscaled asocia choice function (SCF).

Definition 1 Let u = (Ry, ... , R,) bea profile. We say that aprofilew’ occurred

as a result of misrepresentation by agents of a coalition C' = {i1,... ,ix} C N,
if agents of C' who previously submitted linear orders R;,, ... , R;, now submit
linear orders R; , ... , R} whilethe remaining voters submit their original linear
orders.

Definition 2 Let F bean SCF and C = {iy,... ,ix} € N bea coalition. We say
that a profile « is manipulable for F* by the coalition C, if there is a profile u,
which occurred as a result of misrepresentation by the agents of C' with the linear
orders R;, , ... , R;, being replaced by them with linear orders R; , ... , R , if
F)R; F(u)forall s=1,2,... k.

In other words, a profile is manipulable by a coalition C' if agents of C can
misrepresent their preferences in such away that every member of C' will benefit
from the change.

A scoring rule F' is characterised by the sequence of scoresv; > vy > ... >
vm,. For each profile w € L™ and for every alternative a € A, we can define the
score of a, denoted Scr(u, a), which can becomputed as Scrp (u, a) = >~ , veiy,
where the number i, shows how many times the alternative a was ranked kth. The
alternative with the highest score is declared the winner. If more than one alter-
native has the greatest score, an agreed-upon tie-breaking procedure is employed
to determine the winner. For most models of the behaviour of the population, the
probability of atietendsto zeroasn — oo. Notethat it is possible, and convenient,
to assumethat v; = 1 and v,,, = 0.

We can formalise this situation as follows. We write the linear order R; as

ap;(1) > ap;(2) > > ap;(m)

where P, € Sym(m) is a permutation from the symmetric group Sym(m) on
{1,2,... ,m}. Thisway, we may assume that each agent ¢ chooses a permutation
P; € Sym(m) (in effect, a permutation of the alternatives). Let P;v denote the
result of applying the permutation P; to the elements of the vector v in the obvious
way; that is

Pv = ('l}Pi—l(l), .. ,'UPi—l(m)) .

Then P;v gives us the contribution of agent i to the “scoreboard” vector
n
X, = (Scr(u,a1),...,Scr(u,am)) = Zpiv.
1=1

The winning alternative is the one corresponding to the greatest element of X,,.
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Although the score vector v is not random in nature, neverthel essthe following
two characteristics of this vector will play acrucial role. We set

1 & 1 —
v=—>Y v, ad ol =—> (v; —0)>.
v m = UJ Uv m j:1(v] ’U)

Examples of scoring rules include the following.

Example 1 Plurality voting: v = (1,0,...,0). We have v = 1/m, and 02 =
(m —1)/m2.

Example 2 Borda'srule: v = (1,2=2 .. _L_ 0). Wehavev = 1/2,and 02 =
(m+1)/12(m —1).

Example 3 Antiplurdity voting: v = (1,...,1,0). Wehave v = (m — 1)/m, and
02 =(m—1)/m>

Example 4 k-Approva voting: v = (1,...,1,0,...,0) (k ones). We have v =
k/m,and 02 = k(m — k)/m?.

Pluraity and antiplurality rules are particular cases of the k-approval voting
for k = 1 and k = m—1, respectively. Brams and Sanver [7] define a fixed rule
as avoting system in which voters vote for a predetermined number of candidates.
Any fixed rule is a k-approval voting rule for some k. The Borda and the fixed
rules will be further called classical.

The difference between k-approval voting and approval voting has to be em-
phasised. Under approval voting any voter may approve as many alternatives as she
wishes, while under k-approval voting it is compulsory that any voter approves her
exactly k best alternatives. Thus approval voting is not ascoring rule. We refer the
reader to the book by S. Brams and P. Fishburn [4] and to the more recent survey
of the same authors[5].

3 TheWinning Margin

This section addresses the problem: if the voters choose permutations indepen-
dently and uniformly at random from Sym(m) (which corresponds to the IC con-
jecture), what is the asymptotic behaviour of the winning margin (i.e. the differ-
ence between the greatest and second-greatest elements of X,,)? The central limit
theorem is used to find the asymptatics.

Proposition 1 (Central limit result.)
X, —nvl
ou/n

where X isthe m x m matrix with diagonal elements equal to 1 and off-diagonal
elements equal to —=-, and 1 is used to denote a vector of 1s.

m—1"

Lo N(0, %), (1)
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Proof The P;v arei.i.d. random vectorswith mean v1 and covariance matrix o2 3.
The result follows by the classical central limit theorem (see e.g. [9], p. 170).

Defined: R™ — [0, c0) such that §(z) is the difference between the greatest
and second-greatest elements of z. Note that ¢ is continuous, with the properties
d(ax) = ad(z) fora > 0; §(xz + bl) = §(x) for b € R. We can thus apply ¢ to
both sides of (1) to obtain

£ 5(Y), 2

whereY ~ N (0, X).
Proposition 2 (Conver gence of expectation) We also have

E[5(Xy)]
oo/
Proof To establish convergence of the expectation when we already have conver-

gence in distribution, it is sufficient to check that our family of random variables
{8(X,,)/ou/n}, -, isbounded in mean square ([3], Corollary to Theorem 25.12).

That is, £ [(5(Xn) /av\/ﬁﬂ should be bounded, independently of 7. For this,
note that 6(z) = 6(x — b1) < 2|z — bl < 2|z — bl||, for @l z € R™ and

— E[o(Y)]. 3

b € R. Hence
2
§(X,)2 41X, — nol|3 4 & " .
o [ no? | =F no? " no? 2E X (Upfl(j) a U>
v v v j=1 i=1
m n 2
= ZE |:<'[}Pb—l(j) — 17) ] = 4m,
J=1i=1 !

making use of the fact that for any fixed j, v pi) e independent random vari-
ables, and so the variance of their sum is the sum of their variances. The result
follows.

Proposition 3 (The distribution of 6(Y)) The random vector Y has the same
multivariatenormal distributionas , /-~ (Z — Z1),where Z = (Z1, ... , Zp,) ~
N(0,1,) and Z = ;- > | Z;. In particular,

B[3(Y)] =\ < E[5(2)].

Proof The distribution of Y is N(0, Y). To see that , /-5 (Z — Z1) as0o has

this distribution, one only has to verify that Cov (Z; — Z, Z, — Z) = é;, — 1/m
and E [Z; — Z] =0.
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Thevaues of E,, = E [6(Y)] for various m can be found from several pub-
lished tables of the expected order statistics of normal variables; e.g. thosein [13].
This allows the construction of the following table:

m | 3 4 5 6 7 8 9 10 16

E. | 1036 0.845 0.747 0685 0643 0.611 0586 0.567 0.4971

Theorem 1 The average winning margin WM (n,m,v) = E [§(X,,)] is asymp-
toticto E,,,0,+/n asn — oo.

Proof Followsfrom Propositions 1-3.

4 Threshold Coalition Size

Given a profile, in order to determine the minimum manipulating coalition size
for this profile we have to know the winning margin and how the scores may
change during the manipulation attempt. Suppose we are given the scoring rule
with a score vector v = (vy, ... ,v,,). Suppose aso that at a certain profile the
aternative a wins, while b has the second-best score. A voter wants to manipulate
in favour of b. Then b must have a higher rank on the ballot of this voter. The best
that the voter can do isto move b to the first position on her ballot and move a to
the last position. This will reduce the winning margin by (v1 — v;) + (v — vs,),
where i and j are the original positions of b and a respectively; note i < j. The
greatest amount by which any single voter will be able (and willing) to reduce the
winning margin is thus

dy = max [(v1 — v;) + (Vig1 — vm)] .
For the Bordarule, d, = (m — 2)/(m — 1). For plurdity and k-approval voting,

dy, = 1.
L et the threshold coalition size M,, be (the random variable) given by

Mv = ;

where, asin the last section, §(X,,) is the winning margin. Any coalition capable
of manipulating the outcome of the election must have at least [ M, ] members.
(Here [-] denotes the ceiling function: [z] is the smallest integer not less than «.
We will also use the floor function: | x| isthe greatest integer not greater than «.)

A note of caution must be given here. It is not true that any coalition of more
than [ M, ] members can manipulate at the given profile. This coalition is capable
of reversing the gap between the best and the second best alternative but it is pos-
sible that the third (and highly undesirable) alternative will overtake both and ruin
the manipulation attempt. This can beillustrated by the following example:

Example 5 Let us consider the Borda rule B and the following profile u:
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Ri1 Ry R3s Ry Rs Rg
a a b b ¢ c
b b a c a b
c ¢c ¢ a b a

As Scg(u,a) = 3, Scg(u,b) = 3.5 and Scg(u,c) = 2.5, the winner is b. The
codlition {1, 2} may attempt to manipulate to get a chosen, submitting linear or-
ders R} and R/, where they swap the order of b and ¢. By doing so, they will
reverse the winning margin between b and a but their attempt will fail since ¢ will
be chosen, which istheir worst aternative.

Nevertheless M, is a very important parameter of the rule. We will show that
for classical scoring rulesthis number asymptotically coincideswith the minimum
size of the coalition that is capable of manipulation.

Theorem 2 The average threshold coalition size, ATC(n,m,v) = E[M,], is
asymptotic to C(m, v)y/n asn — oo, where C'(m, v) = E,,0,/d,.

Proof Follows from Theorem 1 and the arguments given at the beginning of this
section.

5 Minimum Manipulating Coalition Size

Our next goal isto provethat in alarge electorate it isalmost certain that acoalition
will exist that can reverse the margin between the best and second-best alternatives.
Moreover, for the classical voting rules it will be of size [M,,] or [M,] + 1 (de-
pending on the tie-breaking procedure). First, we will show that, for any constant
t and for any linear order R € L, it isamost certain that, for n large enough, at
least ¢[ M, | voters will submit thislinear order. To see this, note that the number
of voters who submit R will be of order n, but [M,,] is of order only \/n. The
following result states this fact more formally.

Theorem3Let R € £ bealinear order and u = (Ry,..., R,) be a random
profile. Let ¢ > 0 be a positive number. Then, for any scoring rule with score
vector v, thereisa number S > 0 such that

P (#{i| Ri= R} > t[M,]) > 1 —2e77"

for all large enough n. That is, the probability that a coalition of like-minded
voters, who submit linear order R, of size t[M,, ] exists converges to 1 with expo-
nential rateasn — oo.

Proof Let D, be the random variable which is 1 if voter ¢ submits R and O other-
wise. Let M" = """ | D; bethe number of voterswho submit R; the claimis that
M’ > tM, with high probability. Let p = E [D;]. The IC conjecture states that
p=1/m! > 0.Choosea € (0, p); then

(M' < an) = (%i(Dip) Sap)

=1
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Also,

(Mv > %) = (5 (i‘; @1) > O‘f“) = <% —glegt ([adv/t,oo))) .

Since (—oo,a—p|and K = 6~ !([ad,, /t, >)) are closed setswhich do not include
the origin, Cramér’s large-deviation theorem ([10], p.36) gives that for some 3 >
01

1 X
Pl= D;i—p)<a-p|<e® and P|[ZL_—pleK)<e P
(nZ( p) <« p) e <n v > e

i=1

for al large enough n. It follows that
P(M' >tM,) > P (M >anand M, < an/t) > 1 —2e "
for dl large enough n.

The following theorem was effectively proved in[15]. Here we prove adlightly
stronger statement.

Theorem 4 (Kim-Roush, 1996) Any scoring voting rule F', with the exception
of antiplurality, is coalitionally manipulable with limiting probability 1, i.e. the
probability that a random profile is coalitionally manipulable for £ converges to
1 with exponential rate asn — oo. If F' isone of the classical scoring rules with
the score vector v, then the probability of existence of manipulating coalition of
size M, + 1 also converges to 1 with exponential rate.

Proof Let uw = (Ry,...,R,) bearandom profile. Let F(u) = w and s is the
alternative with the second-best score. Let v be the score vector of F and let d =
v1 — Up_1 = 1 —v,_1. Since F isdifferent from the antiplurality, v,,_, # 1 and
d>0.

Lett > d,/d. By Theorem 3, among R;’stherewill beat least ¢[ M,,] of linear
orders R for which w occupiesthelast place and s occupies second to last. Moving
s to the top place without changing the order of other alternatives will add dt[ M, ]
points to the score of s while the score of w will remain the same and the scores
of other aternatives will not increase. As dt[M,] > 0(X,,), the new winner will
be s and this manipulation attempt will be successful.

If Fisclassical and different from antiplurality, then d = d,, and as we saw
above u will be aimost surely manipulable by a coalition of size [M,, | + 1.

The antiplurality A is the exception indeed. In the three-alternative case the
limiting probability of coalitional manipulability will be 1/2. If alternatives are
denoted a, b, ¢, then aprofile with Sc4(a) > Sca(b) > Sca(c) is manipulable if
Sca(a)+Sca(c) < 2Sca(b) and not manipulableif Sca(a)+Sca(c) > 2Sca(b).
Due to the symmetry these two events have equal probabilities. Kim and Roush
[15] gave the formulafor calculating the limiting probability for m > 3.

Let F' be a scoring rule with a score vector v. Let the minimum manipulating
coalition size M C,, be (the random variable) equal to the minimum size of acoali-
tion capable of manipulation, if the random profile is manipulable, and oo if it is
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not. Let average minimum manipulating coalition size AM M C(n, m,v) be the
expectancy of M C,, conditional on the event that the random profile is manipula-
ble.

We recap the results of this section in the following

Theorem 5 For any scoring rule different from the antiplurality,
AMMC(n,m,v) > ATC(n,m,v).

The average minimum manipulating coalition size AM M C(n, m, v) and average
threshold coalition size ATC(n, m, v), are asymptotically equal and, asn — oo,
both areis asymptotic to C'(m, v)\/n, where C'(m,v) = E,,0,/d,.

Proof By Theorem 4 we may discard nonmanipulable profiles. Hence, the first
part isclear since M C,, > M,,. For al rules but antiplurality the remainder of the
theorem follows from Theorems 2 and 4.

6 A Drawback of the Average Minimum Manipulating Coalition Size

We will illustrate this drawback in the case of m = 3 dternatives, but apparently
it appearsfor al m > 3.

Consider the scoring rule v = (1,1 — p,0), where 0 < p < 1. For agiven
profile, denote the winning candidate a, the second-placegetter b, and the third-
placegetter c. Let d; = 6(X,,) be the winning margin of « over b, and dy =
d(—X,,) be the “second margin” between b and ¢. Two types of manipulation in
favour of b are possible:

— A voter who prefers ¢ to b to a may mis-represent his preference as b, ¢, a. The
effect of this will be to reduce the winning margin by p, while increasing the
second margin by 2p.

— A voter who prefers b to a to ¢ may mis-represent his preference asb, ¢, a. The
effect of thiswill be to reduce both the winning and second marginsby 1 — p.

Suppose a codlition of voters contains x; voters of the first type and x5 voters of
the second type. Successful manipulation by this coalition requires

dy —pr1 — (1 —p)ra <0,
do + 2px1 — (1 — p)ze > 0.

If 0 < p < 1/2, then the smallest coalition that can succesfully manipulate has

d
x1:O, .%‘Qzljp
Whendlgdg,and
_di—dy i+ dy
o3 0 T 3(1-p)
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when d; > ds. If, on the other hand, 1/2 < p < 1, then the minimal coalition has

d
Tr1 = —1, T = 0.
p
Let usdenote z; = =z, if x > 0 and ;. = 0, otherwise. Then the minimum

manipulating coalition size can be written as

1 1/1 1
MCy= —————di+5(~——| (d—d
maX(p,l—p)1+3<p 1—p)+(1 )+

inal caseswhere(0 < p < 1. (Thereisasmall probability that insufficiently many
like-minded voters will exist to form such aminimal coalition. But by Theorem 3,
this possibility can be neglected for our purposes.)

If we define p : R3 — [0,00) by p(z) = (6(x) — §(—x))4, the excess of
the winning margin over the second margin, and note that for these rules d, =
max(p, 1 — p), then we can write

0(Xn) 1 (l _ L)J)(Xn)-

MC, =
dy 3

p l—p
Note that the first term of this expression is the threshhold coalition size M,,.

The average minimum manipulating coalition size can be taken to be the ex-
pectation of this quantity. (Strictly speaking, this expectation should be conditional
on manipulability of the profile. But since the probability of this event converges
rapidly to 1 — by Theorem 3 again — the conditional expectation can be replaced
by an unconditional one for our purposes.) Also, by the same arguments as used
in section 3, we have

Ep(X,)]  [Tm Elp(X.)] [ m
e g )] ad = EOER L p (7)),

where Z ~ N(0, I,,,). The average minimum manipulating codlition size thus
satisfies
AMMC(n,3,v) E[MC,] Es 1 <1 1 )
~ - =+ ——=|-———1] Elp2)].
0 i —a e T=) E@)
When 1/2 < p < 1 the second term vanishes. For such rules, the average thresh-

hold coalition size and the average minimum manipulating coalition size have the
same asymptotics. But when 0 < p < 1/2, the value of

y(w) = lim AMMC(n,3,v)/v/n

exceeds that of lim,,_,o, AT'C(n,3,v)/y/n. For smal p, it is much greater, and
indeed lim,, ¢ v(v) = oo.

Now let us consider the case p = 0: the anti-plurality rule. For this rule, only
the voters of the second type have power to manipulate. If d; < do, ho manipula-
tion is possible; otherwise the smallest manipulating coalition has

I ZO, $2=d1.
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Hence

AMMC (n,3,v) = E[MC,|dy > ds]

B

= FE[dy|d; > dg]
Eldilgsa] /P (d > d2)
=2 [0(Xn)15(x,)>6(-x,)] -

(In the notation used here, 14 has the value 1 if the logical proposition @ is true,
and 0 if itisfalse) So

v(v) = lim w = 20’1,\/%E [5(Z)16(Z)25(7Z)] N
n vn
which is afinite number.

If we adopt the average minimum manipulating coalition size as a measure
of goodness of the rule, then we will have to accept that, the closer the rule to
antiplurality the better it becomes, and that there are no optimal rules. Thiswould
be clearly an absurd conclusion. Hence, no matter how attractive it may seem, the
average minimum manipulating coalition size is not an appropriate measure for
comparing rules. We suggest that the average threshold coalition size should be
used instead.

7 Optimal Scoring Rules

In this section we will determine the rules optimal in relation to asymptotic average
threshold coalition size. For m = 3,4 the optima rule is Borda Count and for
m > 5 the optimal ruleis |m/2|-approva voting.

By Theorem 5, we may assume that the quality of the ruleis determined by the
ratio o, /d,, or on the number C(m, v) = E,,0,/d, whichwewill analysein this
section.

Theorem 6 The asymptotic average minimum manipulating coalition size is max-
imised among all scoring rules by the Borda rule when the number m of alterna-
tivesis3 or 4, and by |m/2|-approval voting when m > 5.

Proof We must show that the claimed rules maximise theratio ¢, /d,, (or equiva-
lently, o2 /d?) among all score vectors v.
Note that

Z BIU-VP] =3

i=1 i<j
where U and V' are independent copies of vp-1 ;). We recdll that, v, = 1 and
v = 0. If we parametrize the score vectors by setting v; = Z;Z—l t;, where
t1,oo sty > 0and YT = 1, then

o =5 —m22<2 )

i<j \k=i

2
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Let usfirst consider al the score vectors v with afixed value of d,,. Among these,
we only have to maximise o,,. The set

m—1
Va: {(tl,... 7tm71)2a”ti Zaand thzl}

i=1

includes a representation of all the score vectors with d, = 1 — «. Since S is
a convex function and V,, is a convex set, the maximum value of S on V, must
be attained at an extremal point of V,, i.e. at one of the points () () with every
component except the ith equal to « (and the ith component equal to 1 —(m—2)a).
In particular, the maximum value of o, among all score vectorswithd, = 1 — «
is attained by av corresponding to one of the t(V)(a).

Now let us see that the maximum is achieved at t*(a) = t(l"/2))(a), and
aso at t([™/2D (). Observe that S(t)(a)) = S(t™=%)(a)) by symmetry, so it
is enough to note that when ¢ < |m/2],

S(tD (@) — St (a)) < 0. (4)

Sincea < —1-, wehavel — (m — 2)a > . Now adirect calculation shows that

St (a)) — StV (a)) = %{ ) (= (m=2)a+(r=1a)® - (ra)?)
r=1
Y (ra-1- <m—2>a+(r—1>a>2)}
=Y ((raP = (1= (m—2a+ (= 1)a)?) <0.
r=i+1
It now remainsto find
St (o)) | 1
rec{ g 0= S ) ©

For m = 3, we have

St (a)) S(1—-a,a) 2(1—a+a?) 2 <1+( @ )

- 1—a)?

(1-a)? (1-a)2  91-a)2 9
Since thisis an increasing function of «, its maximum is achieved when « takes

its grestest possible value of 1/2. This corresponds to the Bordarule.
For m = 4, we have

St*(a))  S(,1—-20,a) 1-2a+2a% 1 ( N a? )
=

1—a) I—a)? = 41-a2 4 (1—a)?

Since this is again an increasing function of «, its maximum is achieved when «
takes its greatest possible value of 1/3. This also corresponds to the Bordarule.
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Now we turn our attention to the case m > 5. Note that in general

S(t*(a))%{ Yo o (G-it+ D)+ > (G-i+1)a)

i<j<|m/2] [m/2]<i<j

+ > (1(m2j+i)a)2}

i<|m/2|<j

24+en—3 2
:cm(l—(m—2)a+< te 3m+m>a2>7

wherec,, = (1 —e,,/m?)/4 and e, is1if misodd, 0if m iseven. To complete
our proof, we must show that the maximum in (5) is attained when o = 0, i.e. that
St (a))/(1 —a)? < S(#*(0)) = ¢, for 0 < a < 1/(m — 1). To thisend, note
that

1+em3m+m2> >
3 al.

St (@) = em(l — a)? = cma <—(m — 1)+ (

Since 1 (—1 + € — 3m +m?) > 0 for m > 5, for these values of m we obtain

S(t* (@) —em(1—a)? < ema (_(m 94 (—1 + em — 3m+ m2) m1 )

3 -1

CTYL «

= —0— — 134 12m —2m?) <0.
3(m_1)(em + 12m m)_

This ends the proof.

The following graph and table display the numbers C'(m, v) for small m for
the plurality, Borda, | m/2]-approval, and 3-approval voting.
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The following table gives some numerical values of the numbers C(m, v) for

small m:
3 4 5 6 7 8 9 10
Borda 0.846 | 0.472 | 0.352 | 0.292 | 0.257 | 0.233 | 0.216 | 0.203
Plurality 0.488 | 0.366 | 0.299 | 0.255 | 0.225 | 0.202 | 0.184 | 0.170
3-Appr. 0.366 | 0.366 | 0.343 | 0.318 | 0.296 | 0.276 | 0.260
|m/2]-Appr. | 0.488 | 0.423 | 0.366 | 0.343 | 0.318 | 0.306 | 0.291 | 0.284

We included 3-approva voting in this table for the following reason. In the
recent presidential electionsin France, in which there were 16 candidates, the fol-
lowing experiment was conducted [16]. The experiment was run in six places: in
a village, called Gy-les-Nonnains and in five voting posts in Orsay, a suburb of

28
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Paris. In these places voters had a possibility, after casting their official ballot, to
vote unofficially according to the approval voting rule. In both places the aver-
age number of approvals on a ballot was three. So 3-approval voting may be the
best approximation to approval voting among the scoring rules. Comparing it with
Borda, we see that Borda eventually gets better than 3-approval but it happens only
for m > 28.

Thisis not the first case when optimality of |m /2 |-approval voting manifests
itself in some form. Brams and Fishburn [6] (see aso [5]) proved that under ap-
proval voting the strategy of approving exactly |m /2] aternatives maximises ef-

ficacy.

8 Conclusion

We see that there are no optimal rules relative to the asymptotic average minimum
manipulating coalition size. This characteristic is biased towards the antiplurality
and should be used with great caution. The average threshold coalition sizeis max-
imised among al scoring rules by the Bordarule not only for the three-alternative
case but aso for the case of four alternatives. At the same time, when the number
of alternativesislarger than four the | m /2 |-approval voting is preferable. It isin-
teresting that in the Saari’s geometric model for m = 4 the 2-approval voting is
better than Borda in respect to micro manipulation [21] and Saari expected Borda
to fare poorly relative to coordinated macro manipulation. Although the difference
in models should be taken into account, our results do not seem to confirm these
expectations.

Itishard toimagine |m/2|-approval voting implemented in practice. The best
approximation to this rule would be Mgjoritarian Compromise which for large
societies behaves as | m /2 |-approval voting [23].

Some experimental evidence [16] suggests that 3-approval voting might be the
best approximation among scoring rules to the classical approval voting. If so, the
characteristics of approval voting seem to be quite good since Borda surpasses
3-approval only for m > 28.

It is interesting to compare these results with the results obtained by Cham-
berlinin [8] using computer simulation. The four rules plurality, Borda, Hare and
Coombs were tested using the IC conjecture in three-alternative elections and for
those profiles for which al four rules were manipulable (which is about 30% of
all profiles), the average minimum manipulating coalition size was recorded in the
following table.

Voting system | 21 voters | 1000 voters

Plurality 2.4 124
Borda 2.3 15.4
Hare 15 5.9
Coombs 25 11.6

We see that for 21 voters the result of comparison is inconclusive while for
1000 voters Bordais clearly the best.
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Since for classical rules the asymptotic average minimum coalition size is the
same as the asymptotic average threshold coalition size, we can compare Cham-
berlin’'s results with ours. For 1000 voters our results give us 15.4 for the plurality
and 26.8 for the Borda rule. The difference is especialy significant for the Borda
rule. One possible explanation of this discrepancy is that in Chamberlin's simu-
lations only profiles manipulable for all four rules, including Hare's rule, were
considered. Since Hare's rule is manipulable only in 30% of all cases, this can be
a rather restricted set of profiles which are more prone to manipulation than the
majority of profiles.
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