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Abstract The “finesse point” introduced here extends the notion of a core; it is a
position that minimizes what a candidate needs to do to counter moves that are made
by an opponent. The definition, which is motivated by the “chaos theorem” as well as
by the dynamics of positive and negative political campaigning, is also used to define
a “malicious point,” which is an optimal location from which a candidate can engage
in “negative campaigning.”

1 Introduction

McKelvey’s (1979) seminal chaos theorem states that, with surprisingly relaxed con-
ditions, an agenda can be created where it is possible to start at any specified proposal
and, with a succession of majority votes, end at any other specified proposal. While
examples exhibiting this troubling dynamic are easy to create, for the most part the
extremes of McKelvey’s theorem are not observed in practice. Why? Perhaps the typ-
ically more stable behavior is caused by an “incumbency effect” or other moderating
forces. Contributing to our understanding of this more limited status is the finesse point
(Saari 2007) that is developed here. As this point is explicitly designed to control the
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chaos theorem behavior, it can be expected to identify aspects of what permits more
moderate behavior.

McKelvey’s result centers around the existence of a core point; this is a position
that no other alternative can beat with the specified voting rule. The power of the core
is manifested by how it leads to valued concepts that help us understand elections and
competitive interactions such as the well known “median voter theorem.” The core,
however, fails to exist in many natural settings; it is this non-existence that unleashes
McKelvey’s effect. Understandably, the negative conclusions that are associated with
an empty core have encouraged a search for natural replacements. Examples include
the uncovered set, yolk, and so forth. (Miller 2005 provides an excellent, informative
survey.) The finesse point is a new contribution.

The idea motivating the finesse point is simple: if a core point cannot be beaten,
then any extension, such as the finesse point, should be a point that minimizes what it
takes to keep from being beaten. Stated in a game theoretic manner, the finesse point
minimizes the needed effort to disrupt and destroy any minimal winning coalition
(i.e., a coalition with just enough voters to ensure victory) that supports an opponent.
After developing its properties, the finesse point is then related to the uncovered set,
yolk, etc. Because the finesse point is designed to minimize what a candidate must
do to attract enough of her opponent’s supporters to avoid defeat, it is reasonable to
treat it as the kind of position that a successful, experienced politician adopts to more
easily respond to competitors. Indeed, the development of the finesse point borrows
from apparent election dynamics such as positive and negative campaigning.

The finesse point also reflects a candidate’s need to preserve a sense of credibility.
Namely, changes in a candidate’s position, or charges she makes about her opponent,
cannot vary wildly. If, for instance, voters view negative campaigning as demonstrating
malice toward an opponent, then adopting excessive stands would be counterproduc-
tive. To capture this sense, we define a “malicious point” as a stance from which charges
cast by a candidate against her opponent can be minimal yet effective to ensure that
her opponent’s position is not a “winning” one. These finesse and malicious points
are related as part of our main objective to find a position that minimizes the “effort”
needed to control the consequences of the McKelvey chaos result.

2 Basic ideas

Standard notions of spatial voting are used where the “issue space” is represented by
an Euclidean space R

k : each of the k coordinate axes represents a separate issue. The
components of a voter’s ideal point, p = (p1, . . . , pk), identify his “ideal” or “most
preferred” outcome over these issues. As illustrated in Fig. 1a where bullets designate
voters’ ideal points, the dashed lines show that voter three’s ideal position is to spend a
moderate amount on domestic issues and a considerable amount on foreign aid. While
our conclusions can be extended to include voter preferences that are represented with
smooth, strictly convex utility functions, it suffices for our current purposes to assume
that the closer a position is to a voter’s ideal point, the more he likes it. These pref-
erences are called “Euclidean.” We adopt the standard assumption that no two ideal
points agree.
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(b)(a)

Fig. 1 Voter and candidate positions. a A two issue example, b a one issue example

Candidates’ positions are also represented by points in issue space; they are the
diamonds in Fig. 1a where the subscripts represent their names of “Candidate” and
“Opponent.” A voter prefers the candidate whose position is closer to his ideal point;
e.g., in Fig. 1a, voter 1 prefers Opponent while voter 3 prefers Candidate. To add
flexibility into applications and the discussion, treat a candidate’s point as the voters’
perception of her stance rather than her actual position.

This “perception” interpretation reflects the ever present problems of incomplete
information and the objectives of negative campaigning. An illustration is the 1988 US
presidential campaign where the “Americans for Bush” launched a “Willie Horton”
ad, which featured a criminal who committed horrendous crimes while furloughed,
to create the perception that the Democratic candidate Dukakis was “soft on crime.”
For purposes of the 1988 election, Dukakis’ actual stance was not as consequential
as the voters’ perception. As this example also illustrates, we must expect there to be
multiple perceptions of a candidate’s position; e.g., members of one political party
may perceive her stand quite differently than members of another party. Such differ-
ences, however, are ignored here primarily because it would detract from our main
objective of introducing the finesse point. At each instant of time, then, assume there
is a unique perception of each candidate.

The role of campaigning, whether positive or negative, is to change the voters’
image of some candidate. For our purposes, positive campaigning is where a candi-
date’s campaign tactics are directed toward changing her perception, or stance, with
the voters. Negative campaigning is where her campaign tactics are directed toward
changing the voters’ views of her opponent.

Our main contribution is to extend the game theoretic concept of the core. In terms
of an election, a candidate’s position is a core point if it cannot be defeated by any
position taken by her opponent. To illustrate with the majority vote and a single issue,
the core agrees with the median voter’s ideal point; e.g., in Fig. 1b, this is voter three’s
ideal point. To appreciate this well-known “Median Voter Theorem” (Downs 1957;
Hotelling 1929), notice that if Opponent’s position is anywhere else, as indicated by
the diamond in Fig. 1b, Candidate can win by assuming a position closer to voter
three’s ideal point to attract the votes of voters one and three.

Obviously, each candidate would like to be positioned in the core. But if the core
fails to exist, then a trailing candidate presumably seeks “weak spots” in an opponent’s
supporting coalition to encourage voters to change their vote. To motivate the finesse
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point, we first examine the possible reactions of a trailing candidate to any winning
position of an opponent when a core does not exist, and how a winning candidate can
make the campaign more difficult for her opponent.

3 An empty core

Our results hold for q-voting rules; this is where a winning candidate must receive
q, the quota, or more of the n votes, n

2 < q < n. Let C(q, n) denote the set of q-
rule core points for the specified voter preferences. For the simple majority vote, q
is the first integer greater than n

2 , while for the two-thirds rule q is the first integer
greater than 2n

3 ; q-rules often arise in politics (Nurmi 2002), even to elect a pope (Saari
1995, 2007). We ignore the unanimity q = n rule only because C(n, n) always exists
(to find the issue spaces for which we can expect an empty q-rule core, see Saari 2004).

McKelvey’s (1979) chaos result describes the troubling dynamics that can accom-
pany an empty core. Choose any two positions in issue space represented by an initial
pi and a final p f . If a majority-vote core does not exist, then there exists a sequence
of positions, p1, p2, . . . , pm , where p1 = pi , pm = p f , and each p j is preferred
by a majority of the voters over p j−1. Restated in words, with an empty core, it is
possible to start anywhere and end up anywhere else via a carefully selected sequence
of majority votes. Tataru (1996, 1999) extended McKelvey’s seminal theorem to all
q-rules: call this collection of results the “chaos theorem.” Richards (1994) made
this terminology appropriate by establishing a connection between the voting “chaos
theorem” and “chaotic dynamics.”

In simpler terms, the chaos theorem asserts that with an empty core, with sufficient
time (required to carry out the necessary m steps where m may be a large integer) and
skill in packaging successive positions, it is possible to lead the voters from any initial
position to any desired final position—even if all voters view the final position as more
undesirable than an earlier proposal! With Fig. 1a, for instance, there is a sequence
of proposals starting at Opponent’s initial position (the diamond near the center of
the triangle) and, with a succession of majority vote victories, ending at the dagger
located in the far upper right-hand corner of the figure. Clearly, all voters represented
in Fig. 1a prefer the original position to the final one (for election campaigns, replace
majority vote “victories” with majority vote “opinions”).

Countering the wide and wild dynamics allowed by the chaos result, the finesse
point introduces a centrally located position from which, with a candidate’s thoughtful
actions, a sense of stability is imposed. Namely, while the chaos theorem ensures that
voters can be led from one position to any other, the finesse point is a stance from which
only minimal modifications can respond to any proposed change. As indicated above,
such a point can be loosely treated as the kind of position adopted by a successful,
experienced politician; e.g., it might explain the incumbency effect.

To motivate the definition of the finesse point, we first determine the settings from
which a candidate can use positive and/or negative campaigning. As asserted next with
fairly general conditions, either approach can be successfully used at any moment, so
the choice is determined by other factors. As both strategies always are viable, we
must anticipate a mixture of positive and negative campaigning, which is what we
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observe. Incidentally, while three-voter results of this type can be easy to prove, the
complexity significantly increases with the number of voters because of the added
number of winning coalitions. What makes the proof of Theorem 1 immediate is the
chaos theorem.

Theorem 1 For n voters and any number of issues in a two candidate q-rule elec-
tion, suppose that C(q, n) is empty. For any position of an opponent who currently is
winning, the losing candidate can adopt a winning position by using either positive
or negative campaigning.

The chaos theorem ensures a sequence of positions pi , . . . , p f starting at an initial
pi , which we select to be the opponent’s current position, and ending at a final p f ,
where each position is preferred by q of the voters over the preceding one. A can-
didate’s positive winning strategy is to adopt a position that beats pi , the opponent’s
current position. The chaos theorem ensures for any q-rule, any number of voters,
and any number of issues, that such a position always exists. As the candidate’s own
perceived position is changed, this strategy is positive campaigning.

To prove that a negative strategy always exists, choose the initial position pi as
the opponent’s current position, and let the final position p f be a specific candidate’s
current position. According to the chaos theorem, there exists a position that makes
p f a winning position. Consequently, the candidate’s negative campaigning strategy
is to change her opponent’s perceived stance to one of the guaranteed settings that the
candidate can beat.

3.1 An illustrating example

Before illustrating Theorem 1 with the three-voter Fig. 1a preferences, notice that the
Pareto set (i.e., positions that if changed in any manner will hurt some voter) consists
of the points inside the convex hull defined by the voters’ ideal points; this is the tri-
angle with vertices defined by the three ideal points. In Fig. 1a, both candidates have
their positions inside the Pareto set while the dagger is not.

With Euclidean preferences, voters one and two vote for Opponent to make her
the majority vote winner. The options for Candidate to successfully react are deter-
mined by her winning set (Shepsle and Weingast 1984). To find this set depicted in
Fig. 2a, draw a circle about each ideal point that passes through Opponent’s position;1

as all points inside this circle are closer to the voter’s ideal point, he prefers them
to Opponent’s position. The resulting trefoil is Candidate’s winning set; namely, any
point in a leaf is preferred by a majority of the voters over Opponent’s position. The
lower leaf, for instance, identifies all positions that voters one and two prefer to Oppo-
nent’s perceived opinion. But Candidate’s current position is not in the Fig. 2a trefoil,
so Opponent is winning. Clearly, Candidate’s positive campaigning strategies move
her new stance inside the trefoil. Presumably the easiest approach (i.e., involving the

1 This set, which denotes all positions that beat Opponent, often is denoted by W(O). With two candidates,
it is more intuitive to call this “Candidate’s winning set” because it identifies positions where Candidate
can win. When discussing legislative actions, the traditional notion is preferred.
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(a) (b)

Fig. 2 Strategic options for Candidate. a Positive campaigning, b negative campaigning

least change) is to select a position directly toward voter two’s ideal point: doing so
moves Candidate’s newly perceived beliefs into the leaf on the upper right-hand side
to solidify her support from the {2, 3} winning coalition. In other words, relative to
Opponent’s current position, {2, 3} is the closest winning coalition for Candidate.

Candidate’s choices can also be described with Opponent’s winning set as depicted
in Fig. 2b. Pass circles through Candidate’s perceived position: as Opponent is posi-
tioned in the trefoil’s lower leaf, she currently is winning. The optimal way for Candi-
date to “redefine” her own position and drop Opponent’s position out of this winning
set is to move directly toward voter two’s ideal point (i.e., emphasize these issues);
as this change reduces the radius of the circle centered at voter two’s ideal point, it
moves the winning set away from Opponent’s position.

To illustrate Candidate’s negative campaigning choices relative to Opponent’s win-
ning set in Fig. 2b, her strategies must move Opponent’s perceived position outside
of this set. By using the closest leaf edge of this example, this objective is most easily
accomplished by painting Opponent’s views as being sufficiently to the left—directly
away from voter two’s ideal point.

3.2 Options for the winning candidate

The leading candidate, Opponent in Fig. 2, also has negative and positive campaigning
opportunities, which motivate what we will call the “selective finesse point” in Sect. 6.
By currently winning, Opponent’s position is in her winning set depicted in Fig. 2b.
She may wish to make Candidate’s task more difficult by increasing both the size
of the leaf in which her position is located and the minimal distance of her position
from the leaf’s boundary. This can be done by increasing the radius to voter two’s
ideal point; i.e., increase the distance of Candidate’s perceived position from the ideal
points in Opponent’s majority coalition ({1, 2} in Fig. 2a). This negative campaign-
ing assumes the flavor of “Candidate is not representing the views of the majority
consisting of voters one and two,” or “Candidate’s views are more representative of
voter three than any other voter.” Contrary to the occasionally suggested impression,
negative campaigning is a viable option for a winning candidate, and it is observed in
actual elections.
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Positive campaigning options are determined by Fig. 2a. Opponent must adopt
a position to move her position so that Candidate’s winning set is moved farther
from Candidate’s current perceived position; i.e., reduce the distance from Oppo-
nent’s position to the ideal points of voter’s one and two (with a slight emphasis on
voter two) to better reflect the preferences of her winning coalition. Using Fig. 2b, her
positive strategy moves her position so that she is better identified with her winning
coalition. These are commonly observed strategies.

3.3 Costs of negative and positive campaigning

With an empty core and both candidate’s positions in the Fig. 2 Pareto set, adopting
either a negative or a positive approach could change Candidate’s fortunes. Which
approach involves a smaller change in perception? The answer follows.

Theorem 2 With three voters and two candidates in a majority vote election with
an empty core where voters have Euclidean preferences, if the campaign costs are
measured by the shortest distance to a winning position and if both candidates are in
the Pareto set, then a positive and a negative strategy are equally expensive for the
trailing candidate.

In words, when measured by the required “distance” to change voters’ perceptions,
neither positive nor negative campaigning has an advantage over the other. This equal-
ity has pragmatic significance because actual campaign costs (measured by money,
public opinion, etc.) per unit change of perception differ between positive and negative
strategies. This differing cost per unit change determines the least expensive way to
attract supporting voters; e.g., if negative campaigning attracts free press coverage or
publicity, then it is cheaper to campaign negatively.

The intuition for the proof (Appendix) is central our definition of the finesse point;
it captures the objective of persuading “swing voters” to leave and disrupt an existing
minimal winning coalition (favoring an opponent) to avoid being beaten. The ulti-
mate goal, of course, is to win, so the swing voters may help to create a new minimal
winning coalition (favoring the candidate). However, “winning” is not necessary to
achieve our goal of extending the core. Namely, for the same reasons why core points
are defined to avoid being beaten, but not necessarily winning, the finesse points are
designed to minimize the needed effort to avoid being beaten. (For the majority vote,
the difference arises only when there are an even number of voters.)

To illustrate the “swing voter” comment with Fig. 2, voter two is the swing voter
for both of Candidate’s strategies, and voter three is the target for both of Opponent’s
strategies. In Fig. 2a, a positive campaign by Candidate must be directed toward voter
two to encourage him to leave the winning {1, 2} coalition and create the winning
{2, 3} coalition; in Fig. 2b, a negative campaign also is targeted toward voter two to
destroy Opponent’s winning {1, 2} coalition. The amount of change needed for each
strategy to achieve a winning coalition is the shortest distance from the targeted per-
ceived position to the leaf edge defined by the swing voter’s ideal point. As the edges
are circles centered at ideal points, the distances are determined by the radii of the
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different circles. The proof of Theorem 2 shows that the nearest distance is the same
for a positive or negative approach.

4 Finesse points

A candidate strives to attract a winning coalition. But a winning coalition contains
minimal ones, so we emphasize these structures. To be precise, a minimal winning
coalition for a q-rule consists of precisely q voters where the convex hull defined by
their ideal points does not contain any other voters’ ideal points. By being “minimal,”
the coalition’s “winning status” is lost should even a single voter leave the coalition;
this permits the analysis to concentrate on individual preferences.

With any number of voters and issues, we need to find a position that minimizes
the amount of change (for positive and/or negative campaigning) to react to any min-
imal winning coalition of Opponent; it minimizes what is needed to convert some
member of any minimal winning coalition supporting Opponent to join a coalition
that supports Candidate’s new position. By moving a voter out of Opponent’s minimal
winning coalition, the coalition no longer is winning, so Candidate avoids defeat (but,
as true with the core points, she may not be the winner). How this can be done depends
on what a candidate knows about her opponent. If, for instance, her opponent must
support certain beliefs (e.g., a specific position on social security or abortion rights),
then certain coalitions are irrelevant while others gain in importance.

Start with the worse case scenario where a candidate has no knowledge about
her opponent. (With legislative agenda models, this corresponds to having no prior
knowledge about possible counterproposals.) With no information, the approach must
involve all possible minimal winning coalitions. Settings involving more information
are described in Sect. 6.

As suggested by Fig. 2, the worse case scenario facing the positive campaigning of
Candidate is if Opponent’s position is precisely at the middle of the widest portion of
the biggest leaf of the winning set. To avoid defeat, Candidate must woo at least one
of these voters to join her coalition.

Stated geometrically, Candidate must change her position to entice some voter to
leave Opponent’s winning coalition to join a coalition that supports Candidate. The
geometry shows that while this change must be targeted toward specific swing voters,
the amount of change is no more than half the leaf’s width.2 To find this region, for a
winning coalition C, denote its Pareto set by P(C). (That is, P(C) is the set of points
where any change causes some coalition member to have a poorer outcome. With
Euclidean preferences, P(C) is the convex hull of the ideal points of a coalition; e.g.,
with two voters it is a line connecting the two ideal points.) The widest portion of a
leaf is where it intersects P(C); this is the interval defined by the intersection of a leaf
with the C edge of the triangle.

Let dC be the width of the appropriate leaf of the winning set defined by the winning
coalition C; e.g., in Fig. 2b, d{1,2} is the length of the interval on the triangle’s lower

2 Remember, the worse case is if the opponent’s position is at the middle of the widest portion, so the
necessary change in a radius is this distance, which is half the leaf’s width.

123



Finessing a point: augmenting the core 129

leg that also is in the lower leaf of the winning set. Using the radii of circles in the
figure, r j , and the length of the segment between the i th and j th ideal points, zi, j , it
follows that

di, j = ri + r j − zi, j (1)

The d{2,3} < d{1,3} < d{1,2} values of Fig. 2b benefit Candidate if Opponent courts
the {2, 3} coalition, but Candidate’s Fig. 2b position would create problems if Oppo-
nent decided to court the {1, 2} group. The reason is that as d{2,3} < d{1,2}, necessary
changes in Candidate’s position to attract a voter from {2, 3} (the change is bounded
by d{2,3}

2 ) are more modest than if Candidate had to attract a voter from {1, 2}. If there
is no information about an opponent, then the goal is to minimize the maximum dC

value over all possible minimal winning coalitions. This is accomplished with the
finesse point.

4.1 A d-finesse point

To introduce a “d-finesse point” for three voters (Saari 2007), recall from high school
geometry that an ellipse can be created as indicated in Fig. 3a. About two pegs on
a board place a string (given by the dashed line) tied in a loop with a length larger
than twice the distance between pegs. Put a pencil inside the string and trace it around
creating the dotted curve: this curve is an ellipse. Call it a “d-ellipse” where 2d is the
extra length of the string; i.e., 2d equals the length of the string minus twice the length
between the pegs. Equivalently (because the part of the string connecting the pegs is
taut),

2d is the sum of the lengths of the two dashed slanted lines (the two radii from
the pegs to the point) minus the length between the pegs.

By comparing this definition with Eq. 1 and the definition of dC , it follows that all
points on the d-ellipse defined by two ideal points have dC = 2d for this two-voter
coalition. In higher dimensions (i.e., with more issues), this construction creates a
d-ellipsoid. (an alternative definition for the d-ellipse is given below to motivate the
construction of the “generalized ellipsoid”).

•
(a) (b) (c)

Fig. 3 Finding the d-finesse point. a Creating an ellipse, b intersecting ellipses, c moving the finesse point
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(a) (b)

Fig. 4 Structure of sets. a Two of the six E2
d (C) ellipses, b winning set for thee issues

For the majority vote and three voters a minimal winning coalition consists of any
two ideal points. About each coalition, construct a d-ellipse. For any two coalitions,
these two d-ellipses intersect at a point in the triangle. From this point and with either
of these two coalitions, the widest portion of an opponent’s winning set leaf is precisely
2d. But if this point is not in the d-ellipse for the third coalition, then the widest portion
of the opponent’s winning set for the third coalition exceeds 2d. Thus, if an opponent
courted this third coalition, it would create problems. To avoid these problems, the
“d-finesse point” is where all three ellipses first intersect in a unique point: this point
has the smallest d value over all winning coalitions. In other words, once positioned
at this point, a change of no more than d will disrupt an opponent’s winning position.

To extend this construction to any number of voters, any specified q-rule, with only
two issues, start with a minimal winning coalition C. Let E2

d(C) be the union of P(C)

and all d-ellipsoids (interior and surface) defined by each pair of ideal points in C (see
Fig. 4a). To explain why P(C) is included in E2

d(C), recall that the finesse point mini-
mizes what it takes to keep from being beaten by a coalition. Namely, E2

d(C) identifies
all possible points for which an appropriate change of no more then d will ensure that
the candidate cannot be beaten by the voters in coalition C. As this property clearly
holds if our candidate’s point is in P(C), P(C) must be in E2

d(C).
To explain this construction and to indicate how to identify which voters from coa-

lition C a candidate should target her appeal, notice that each d-ellipsoid is defined
by a pair of voters from C; for any proposal p on this ellipsoid, it takes an appropriate
change of no more than distance d to move one of these swing voters out of coalition C;
the voters that remain no longer constitute a minimal winning coalition for Opponent.
If a point p is on the boundary of E2

d(C), but not in P(C), then p is on the d-ellipsoid
boundary for some two ideal points from C; the width of the lens defined by p and these
two ideal points is 2d. If Candidate’s position is at p and if C is a winning coalition
supporting Opponent, then at least one the voters defined by these two ideal points is
the swing voter that should be the target of Candidate’s changed position.

For all other pairs of ideal points in C, if its d-ellipsoid does not include p, then the
lens width from p is wider than 2d. As the winning set is in the intersection of all lens,
2d is an upper bound on the width of the winning set. Thus if C is a minimal winning
coalition supporting Opponent, then it is possible to alter p by no more than distance
d to change the allegiance of one of the C voters away from Opponent. Clearly, this
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change in p must be aimed toward one of the two voters in the d-ellipsoid boundary
that contains p; i.e., this d-ellipsoid identifies which voters to target. The following
definition mimics the ellipse construction.

Definition 1 For two issues, a q-rule d-finesse point is a point that is in each E2
d(C)

for all minimal winning coalitions C where d is the smallest possible value permitting
such a point to exist. The adjustment region, denoted by S

2
d(q), is a ball centered about

a d-finesse point with radius d.

As shown in the Appendix, the E2
d(C) structures describe the winning set’s width

with two issues. However, ellipsoids no longer are appropriate with three or more
issues. In Fig. 4b, for instance, suppose for a q = 3 rule that a proposal p is above
the triangular P(C) where the coalition is represented by the three vertices (for now,
ignore the center bullet). To find the winning set, for each voter, a sphere centered at
the voter’s ideal point is constructed so that p is on its boundary. Because the winning
set has to appeal to all members in coalition C, it is the P(C) region that is in each of
the three spheres. As such, with more issues, the winning set is the small triangular
shaped region in the interior, rather than the lenses. A worse case scenario positions
Opponent at the bullet in the center of this triangular region; this position is α-units
(for some α value) from each of the three surfaces. But the size of this triangular region
is quite small compared to the width of any of the three lens. So, if ellipses were used
for an extension of E2

d(C) for three issues, we would capture the widths of the lens
rather than the much smaller, appropriate α value. A new construction is needed.

To describe the approach, first consider an alternative way to construct the
d-ellipses. For the i th and j th ideal points, select any point on the line intervalP({i, j}).
Denote the distances from the selected point to the ideal points as ρk , k = i, j. The
points of intersection of the circles of radius rk = ρk + d for k = i, j , are two points
on the d-ellipse; the center of the lens defined by the r j circles is the selected P({i, j})
point. The d-ellipse is created by varying the selected point in P({i, j}).

Similarly, for k issues and k ideal points that define a (k − 1)-dimensional sim-
plex, define the generalized k-fold d-ellipsoid for this coalition K in the following
manner: Select any point in P(K); it uniquely defines k distances, ρ j , to each ideal
point. Each r j = ρ j + d defines a sphere about the j th voter’s ideal points; points on
the intersection of all k spheres about the k ideal points are on the generalized ellip-
soid (the intersection of these spheres replaces the leafs from the earlier discussion).
The generalized ellipsoid is generated by carrying out this construction over all P(K)

points. As the ρ j ’s define the center point of the curvilinear region defined by the r j ’s,
any point in this curvilinear region is at most d-distance from the nearest surface of a
sphere (or, from the generalized lens).

A “generalized ellipsoid” is not an ellipsoid; i.e., it does not satisfy an ellipsoid’s
usual quadratic equations.3 The construction of this surface is illustrated with Fig. 4b,
where the three ideal points define the vertices of a triangle. Select any point in this
plane; e.g., the bullet in the center. The lengths of the dashed lines from each vertex to
the selected point define the three ρ j values. The associated points on the generalized

3 While we have not computed the equations for the surface, it is an algebraic expression of degree no more
than 2(k − 1).
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ellipsoid surface are determined by the three spheres of radius r j = ρ j + d that are
centered about the respective ideal points. By geometry, these three spheres meet in
two unique points; one is above the plane and the other is below (a line drawn between
the two defined points is orthogonal to the plane and passes through the selected point).
The generalized ellipsoid is created by moving the bullet over all points in the trian-
gle. The arcs in the figure are where the spheres, or the voters’ level sets, intersect
the plane; they define a portion of the win set boundary (the rest of the win set, the
intersection of the spheres, is above and below the plane).

The points defining the generalized ellipsoid in Fig. 4b are directly above and below
the simplex. The value of d (equals α) is smaller than what would be possible if we
had used actual ellipsoids defined by pairs of points. The reason is that the three-fold
d-value is determined by the distance directly above the center point of the curvilin-
ear triangle, while for an ellipsoid, a significant part of its d value involves reaching
the center point of the curvilinear triangle before moving above it. This extra effort,
creates an incorrect and overly large d value.

Definition 2 For a q-rule and a minimal winning coalition C, let Ed(C) be the union
of P(C), the d-ellipsoid for each pair of ideal points in C, and the generalized k-fold
d-ellipsoid for each set of k ≥ 3 ideal points in C that define a (k − 1) dimensional
simplex, k = 3, . . . , n. A q-rule d-finesse point is a point that is in each Ed(C) for all
minimal winning coalitions C such that d is the smallest possible value allowing such
a point to exist. The adjustment region, denoted by Sd(q), is a ball centered about a
d-finesse point with radius d.

Some results follow; proofs are in the Appendix.

Theorem 3 For a q-rule with any finite number of voters and issues, the following
are true.

1. A q-rule d-finesse point always exists.
2. A point is a q-rule d-finesse point for d = 0 if and only if it is a q-rule core point.
3. A q-rule d-finesse point is a q-rule malicious point. The maximum amount of

change in a position needed to respond to the opponent, with either positive or
negative campaigning, is d; it is a change in the adjustment region Sd(q).

The d-finesse point achieves our goal; not only is it a natural generalization of the
core (part 2), but the d value indicates how far the coalitions are removed from defining
a core point.

This connection with the core yields other conclusions. For instance, as a core point
need not be unique, the d-finesse points (Theorem 3), or the malicious points, need
not be unique. A four-voter illustration is where all ideal points are on a line, so the
majority vote core is the subinterval between the second and third voters’ ideal points.

Part 3 asserts that the d-finesse point and malicious point agree. At this common
point the necessary change is no more than d for negative or positive campaigning,
so it is in Sd(q). Thus Theorem 3 extends Theorem 2 to any number of voters, issues,
and q-rules. By specifying the amount of change required to counter any action, d
provides a measure of the inherent stability, or instability, of the system. Namely,
“small” d-values suggest a fairly stable system, while “large” d-values can require
more extreme changes to avoid the chaos theorem consequences.
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5 Geometry of the finesse point

To develop intuition about the finesse point, start with the three voter setting where
the geometry is easier to understand. Let r j be the distance from the j th voter’s
ideal point to the finesse point and z j,k the distance between the j th and kth vot-
ers’ ideal points. Changes in voter preferences—their ideal points—change the z j,k

values. The goal is to discover the corresponding changes in the location of the
finesse point, as given by the r j and d values. It is interesting (Eq. 2) to discover
how changes in, say, r1 and r3, are governed by the positioning of the second voter’s
ideal point.

Theorem 4 Let the three voters be denoted by i, j, k. The position of the finesse point
and the value of d satisfy the following expressions.

r j − rk = z j,i − zk,i , (2)

d = r j − 1

2

[
z j,k + z j,i − zi,k

] = 1

3

∑

j

r j − 1

6

∑

j<k

z j,k . (3)

According to Eq. 2, when the ideal points define an equilateral triangle (solid lines
of Fig. 3c) where z1,2 = z2,3 = z1,3, then r1 = r2 = r2 and the d-finesse point (the
bullet) is at the triangle’s center. The d value is surprisingly small; e.g., elementary

trigonometry proves that r1 =
√

3
3 z1,2; by using Eq. 3, d is about 0.0773z1,2, or less

than 8% of the common distance between ideal points (in an example in the Appendix
(Eq. 10), the d value is about 2.6% of the length of the shortest leg).

Moving the top ideal point, which belongs to voter 3, directly upwards (dashed
lines in Fig. 3c) creates an isosceles triangle, where z1,3 = z2,3, so r1 = r2 while
r3 = r1 + (z2,3 − z1,2). (From Eq. 2, differences in leg lengths define differences
in r j lengths.) Direct trigonometric computations (Appendix) prove that the common
r1 = r2 value increases, and the finesse point moves upwards. But no matter how far
the ideal point moves upwards, the inequality z1,2

2 < r1 < z1,2 always is satisfied!
Consequently, the finesse point remains near the shorter edge. Also, from, Eq. 3 we
have that

d = 1

3

[
3r1 + (z1,3 − z1,2)

] − 1

6

[
3z1,2 + 2(z1,3 − z1,2)

] = r1 − 1

2
z1,2,

which, because r1 < z1,2, means that d <
z1,2

2 , or less than half the shortest leg. (It is
much smaller.)

In the the portion of the Appendix that follows the proof of Theorem 4, we develop
an easy algebraic way to find the r j and d values, along with the finesse point’s position,
for all possible three-voter majority vote settings. But to develop intuition about what
can happen, it is informative to use Theorem 4 to appreciate how changes in the ideal
points change the finesse point. Let φk, j be the angle with vertex at the kth voter’s
ideal point defined by the legs rk and zk, j ; φ1,2 is depicted in Fig. 3c (so, φk, j and φ j,k

are different angles).
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Theorem 5 Assume that z1,2 < z1,3 < z2,3; i.e., the two shorter legs of the triangle
are attached to voter one’s ideal point, and the two longer legs are attached to voter
three’s ideal points. Then

r1 < r2 < r3, and φ1,2 < φ1,3, φ2,1 < φ2,3, φ3,1 < φ3,2. (4)

It follows, again, that the finesse point is closest to the ideal point with the shorter
legs and farthest from the one with the longer legs. Stated in words, the finesse point is
closer to a coalition with more coherent views than one with separated views. (Indeed,
r j is smaller than the shorter leg connecting the j th voter’s ideal point to some other
voter’s point, and d is strictly less than half the length of the shortest leg. When z j,k leg
lengths agree, appropriate r j and φ j,k inequalities become equalities.4) As φ j,k +φ j,i

defines the triangle’s angle at vertex j , it follows from Eq. 4 that about each ideal
point, the finesse point’s position must be skewed toward the shorter leg.

As the number of voters increases, the Ed(C) structure provides surprises because
the d-ellipse for a larger z j,k value is fatter (this “fatness” explains the Theorem 5
assertion that the finesse point is farther from the most distant ideal point; it also per-
mits the relatively small d values for the finesse point). Indeed, using the equation for
an ellipse, it follows that (proof is in the Appendix)

the widest portion of a d-ellipse for z j,k is 2d

√
1 + z j,k

d
. (5)

Small z j,k values represent closely positioned ideal points, here (Eq. 5) the ellipse
resembles a circle where the widest portion is slightly larger than the circle’s diameter,
or 2d. But if z j,k = 3d, the width is 4d, and if z j,k = 24d, the d-ellipse width grows
to 10d. As a consequence, the d-ellipse of a pair of C points that are sufficiently far
apart can be the Ed(C) portion that defines the finesse point; this holds even if this
pair ends up being the most distant of C points from the finesse point!

This assertion is dramatically illustrated in Fig. 4a with the four-voter minimal coa-
lition (as C is a minimal winning coalition for a q = 4 rule, n could be 5, 6, or 7). With
four ideal points, Ed(C) has six ellipses; only the two extreme ones are displayed.
The d value used for this figure is the distance between the two closest ideal points.
While these two ideal points may be closer to the eventual position of the finesse
point, the properties of Ed(C) and the location of the finesse point can be governed
by the d-ellipse defined by the two most separated ideal points; they represent both
intuitively and mathematically a “weak spot” (i.e., possible swing voters) in a coali-
tion supporting an opponent. The actual location of the finesse point depends on the
positions of all other minimal winning coalitions.

Notice how this construction leads to assertions that corresponds to intuition: If
Candidate wants to siphon voters away from C that supports Opponent, an optimal
way is to consider those members whose beliefs are weak with respect to the rest of
C; these points can define the largest z j,k . Whether this strategy holds depends on

4 Certain Eq. 4 inequalities reverse with changes in leg lengths; they become equalities when leg lengths
agree.
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whether the z j,k leg creates the appropriate Ed(C) ellipse that meets Candidate’s cur-
rent position. Also, expect a finesse point to be closer to a compact minimal winning
coalition, which suggests that this is a group with a cohesion in beliefs, than to a
coalition with spread apart ideal points, which indicates a coalition with a diversity in
beliefs.

5.1 Comparison with the yolk, uncovered set, etc

Ferejohn et al. (1984) defined the yolk to be the sphere of minimal radius that intersects
all median lines. Here a median line is the natural extension of the median point: it is a
line (hyperplane in higher dimensions) with no more than half of the voters on either
side. The yolk extends, in an obvious manner, to the “q-rule yolk.”

Definition 3 For n
2 < q < n, a q-line is a line (or hyperplane) with less than q of

the voters’ ideal points on either side. A q-rule yolk, Y(q), is the circle (or sphere) of
minimal radius that intersects all q-lines.

A median line divides the space into two parts where no winning coalition is strictly
on either side. This means that a winning coalition must include ideal points from, or
across, the median line. As a core point must be on all median lines, the yolk is an
extension of the core. Similarly, the q-hyperplane divides the space so that no q-vote
winning coalition is strictly in either portion. For all of the examples that we have
investigated, the finesse point’s adjustment region Sd(q) sharply refines the yolk. Our
next result identifies some of these situations. With the equilateral triangle of Fig. 3c,
for instance, the yolk’s center is at the finesse point. The yolk’s radius is 0.25 the
length of a triangle edge while, as shown above, d equals only about 0.077 of the edge
length.

We expect, but have not proved, that Sd(q) ⊂ Y(q) always holds. This expression
is true, for instance, if all of the ideal points are on the Pareto set’s boundary, but a
general result has eluded us due to the complexity of the yolk as demonstrated by
Stone and Tovey (1992) (see also Miller 2005).

Miller (1980) introduced, and McKelvey (1986) further developed, the uncovered
set for the majority vote. Again, the extension of this notion to q-rules is immediate.
Namely, position p is covered by p1 with the q-rule if p1 beats p and every point
that beats p1 also beats p. The q-rule uncovered set consists of all points that are not
covered by any other point. As a covered proposal probably would not be a legislative
outcome, the q-vote uncovered set identifies plausible q-vote legislative outcomes.
Thus another favorable property of the q-rule d-finesse point is that it is in the q-rule
uncovered set.

Wuffle et al. (1989) introduced a “finagle point,” which is intended to minimize
what it takes for a candidate to win with the majority vote. Whenever “not losing” with
the majority vote is equivalent to “winning,” such as with an odd number of voters,
the finagle point should agree with the finesse point. But the complicated definition
and construction of the finagle point are hard to follow, so it has been defined only for
two issues, the majority vote, and with three voters, or for special two-issue settings
involving an odd number of voters where their ideal points define a highly symmetric
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configuration. While there is no natural extension of the finagle point even for standard
situations involving, say, four or five voters with an arbitrary positioning of their ideal
points, we prove for at least for three voters, two issues, and the majority vote that the
finagle point agrees with the finesse point (because the finagle point agrees with the
finesse point in this setting, our construction of the finesse point provides an easier
way to construct the finagle point).

Theorem 6 For n ≥ 3 voters, we have the following:

1. With n − 1 issues and n ideal points that define a (n − 1)-dimensional simplex,
Sd(q) is a proper subset of Y(q); the yolk’s center is in Sd(q). Thus, with three
voters the majority-vote adjustment set is a proper subset of the yolk and the yolk’s
center is in the adjustment set.

2. A q-rule finesse point generally is not at the center of Y(q). Indeed, for n = 3,
the d-finesse point is at the center of Y(2) iff the ideal points define an equilateral
triangle.

3. If d(q) is the d-value for a q-rule finesse point and if q1 < q2, then d(q2) ≤ d(q1).
4. A q-rule d-finesse point is a q-rule uncovered point.
5. For three voters, two issues, and the majority vote, the finesse point agrees with

the finagle point.

As part 1 shows, the adjustment set can be a (sharp) refinement of the yolk.
Part 3 asserts, as we should expect, that with a stronger q rule, the amount of

change can be smaller. But while Sd(q2) � Sd(q1) holds for all examples that we
have investigated, this relationship has not been established in general.

A combination of parts 1 and 5 answers a Wuffle et al. (1989) question as to whether,
for three voters and two issues, their finagle point is in the majority vote yolk; it is.

6 Selective finesse points and a selective core

There are times when certain minimal winning coalitions can be ignored; e.g., it
may be that certain coalitions are not politically feasible. Whenever this is true, the
d-finesse point is inappropriate because it unnecessarily guards against changes that
an opponent will not, or cannot, take. Obviously, the more we know about an opponent
the better we know which winning coalitions are relevant. So, rather than defining the
d-finesse point over all minimal winning coalitions, the selective d-finesse point is
defined, in the natural manner, over a specified set of minimal winning coalitions.

Definition 4 A selective core point is one that cannot be beaten with specified win-
ning coalitions. Similarly, with Euclidean preferences, a selective d-finesse point is a
point in Ed(C) for all specified minimal winning coalitions C where d is the smallest
value allowing such a point to exist.

With Euclidean preferences, the selective core is determined by the intersection of
the Pareto sets of all specified winning coalitions. While the core is empty for Fig. 2a,
suppose it is not possible to form the coalition {1, 3}. In this case, the “selective
core point” is determined by the two remaining coalitions of {1, 2} and {2, 3}. As
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Fig. 5 Polarized setting

P({1, 2})∩P({2, 3}) = {2}, which is voter two’s ideal point, this point is the selective
core point.

Adding an issue, maybe a divisive one, could separate old coalitions or create new
ones; the new issue may even be a strategic move to replace the original core with a
selective core or finesse point. This dynamic is depicted in Fig. 5 where, had there
been one issue on the x-axis, the core would be voter six’s ideal point with voters
one and four widely separated and never in the same minimal winning coalition.
The new issue, depicted by the y-axis, is sufficiently divisive to make {1, 2, 3, 4} a
natural minimal winning coalition. While the core does not exist, if the setting is suffi-
ciently polarized so that {1, 2, 3, 4} and {5, 6, 7} are the only realistic coalitions, then
P({1, 2, 3, 4}) is the selective core. If the realistic minimal winning coalitions expand
to involve any four of voters {1, 2, 3, 4, 5}, the selective core moves to a position near
the median of the dominating majority party. But if the winning coalitions consist of
{1, 2, 3, 4}, {2, 5, 6, 7} and {3, 5, 6, 7}, then a selective core vanishes to be replaced
by the selective d-finesse point; it is close to the median of P({1, 2, 3, 4}).

The following result is immediate.

Theorem 7 For q-rule and a specified selection of minimal winning coalitions, with
any number of voters and issues, the following are true.

1. The q-rule selective d-finesse point exists. In general, the d value for a selective
d-finesse point is smaller than that for a d-finesse point.

2. A point is a q-rule selective d-finesse point for d = 0 if and only if the point is a
selective q-rule core point.

3. A selective q-rule d-finesse point is the selective q-rule finagle point and the q-rule
malicious point. The maximum amount of change in a position needed to respond
to the opponent, with either positive or negative campaigning, is d.

7 Conclusion

It is informative to compare what happens with voting dynamics with results from
general dynamics. Voting dynamics linked to a core, or a selective core, force each
winning proposal to be closer to the core. Notice how this dynamic resembles “asymp-
totic stability” from physics where a particle continually moves toward an equilibrium.
Physics also uses “orbital stability” where points may not be attracted to a stable
point but they remain nearby. Our d-finesse point corresponds to a controlled system
approach to orbital stability in voting.
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The d-finesse point, which extends the core while refining the yolk, is a partial
response to the negativity of the chaos theorem. The chaos theorem asserts that any-
thing can happen; the d-finesse point identifies a centrally located position that ensures
at least a level of stability by exercising appropriate responses. In spatial voting, add-
ing issues tends to generate instabilities (Saari 2004). On the other hand, introducing
appropriate issues may create a sense of stability by making certain winning coalitions
ineffective. The associated stability is captured with the selective core and d-finesse
points.

Appendix

Proof of Theorem 2 With each candidate in the Pareto set, the line connecting a can-
didate’s position with the nearest point on a winning set passes through the swing
voter’s ideal point. Let ri, j be the radius of the circle centered at voter j’s ideal point
and passing through candidate i’s position. The circle geometry of Euclidean prefer-
ences requires that, for positive campaigning, |rC, j − rO, j | is the shortest distance to
move Candidate’s position to the leaf edge of the circle defined by Opponent’s position
and voter j’s ideal point. The closest strategy is identified by the smallest value of
{|rC,1 −rO,1|, |rC,2 −rO,2|, |rC,3 −rO,3|}. A similar argument for negative campaign-
ing shows that |rO, j − rC, j | is the shortest distance to move Opponent’s position to
the leaf edge defined by Candidate’s position and voter j’s ideal point. As the smallest
distance for both possibilities uses the same set of numbers, the conclusion follows.
This completes the proof.

Proof of Theorem 3 Part 1. With a finite number of voters, the Pareto set over all vot-
ers (defined by their ideal points) is bounded. Thus for a sufficiently large value of d
and any winning coalition C, set Ed(C) includes the Pareto set. For this d value, all
Ed(C) sets intersect. It now follows from standard analysis and the compactness of
the Ed(C) sets that a minimal d value exists where all Ed(C) sets still meet. Such an
intersection point is a d-finesse point.

Part 2. Point p is a core point iff p is in each winning coalition’s Pareto set P(C) iff
p ∈ E0(C) for each minimal winning coalition C iff p is a d-finesse point for d = 0.

Part 3. At a d-finesse point, the largest possible distance from Opponent’s position
to the boundary of the winning set is d. That boundary is created by a circle (or sphere)
passing through Candidate’s current position with center at a voter’s ideal point. By
moving Candidate’s position d units directly toward that voter’s ideal point, the new
circle, defining the new winning set, passes precisely through Opponent’s position. As
such a move changes Candidate’s position, this is positive campaigning. According
to the definition of a d-finesse point, if Candidate’s position differs from a d-finesse
point, Opponent could find position requiring Candidate to change by more than d
units.

Similarly, with negative campaigning, Candidate must move Opponent’s perceived
position outside of the winning set. If Candidate is located at the d-finesse point, then
the largest possible distance is d—the largest possible distance in a winning set. How-
ever, if Candidate’s position is not at the d-finesse point, then, from the definition of
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the d-finesse point, Opponent can find positions that would require a larger change
in her position to move out of the winning set. Thus a d-finesse point is a malicious
point.

Proof of Theorem 4 By construction, at the finesse point we have ri + rk = zi,k + 2d
and ri + r j = zi, j + 2d. Subtracting the first from the second yields Eq. 2. To derive
Eq. 3, adding r1 + r2 = z1,2 + 2d to the Eq. 2 r1 − r2 = z1,2 − z1,3 leads to
2r1 = z1,2 + z1,3 − z2,3 + 2d. Solving for d and expressing the equation in a general
form yields d = r j − 1

2 [z j,k + z j,i − zk,i ]; this is the first part of Eq. 3. Adding the
three equation gives 3d = ∑

r j − 1
2

∑
j<k z j,k , or the second part of Eq. 3.

Finding the finesse point for all q = 2 three-voter examples. This constructive
approach is based on the material introduced just after Def. 1 where the d-ellipse
for coalition P({i, j}) is defined by points of intersection of the circles of radius
ri = ρi + d and r j = ρ j + d where

ρi + ρ j = zi, j . (6)

Recall, each pair of circles defines two points on the d-ellipse; the relevant part of
the d-ellipse is found by varying the ρi value from 0 to zi, j so that all points on the
line interval are covered.

A finesse point fixes the r j and d values. An important observation is that, accord-
ing to r j = ρ j + d, the finesse point also fixes the ρ j values that are associated with
this finesse point, and the values are the same for both coalitions to which j belongs.
The importance of having fixed ρ j values for both coalitions is that the values can be
determined with elementary algebra. Namely, it follows that

ρ1 + ρ2 = z1,2, ρ1 + ρ3 = z1,3, ρ2 + ρ3 = z2,3; (7)

the solution for this system of equations is

ρ1 = z1,2 + z1,3 − z2,3

2
, ρ2 = z1,2 + z2,3 − z1,3

2
, ρ3 = z1,3 + z2,3 − z1,2

2
. (8)

Thus, ρ j is half the sum of the lengths of the two adjoining legs minus the length of
the third leg (See Eq. 3).

To find the d value and the finesse point for a given configuration of three ideal
points, just solve the three equations coming from these ρ j values and the rk = ρk +d
expressions. Namely, if the kth agent’s ideal point is located at (p1, p2), then the
associated equation is (x − p1)

2 + (y − p2)
2 = (ρk + d)2.

To illustrate, suppose the first, second, and third voters’ ideal points are located,
respectively, at (0, 0), (5, 0), and (0, 12), so z1,2 =5, z1,3 =12, z2,3=

√
52 + 122=13.

From these zi, j values and Eq. 8, it follows that ρ1 = 2, ρ2 = 3, ρ3 = 10.

If the finesse point is located at (x, y), then the three equations in the three unknowns
are obtained by expressing the r2

k = (ρk + d)2 values in the above algebraic form:
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x2 + y2 = (2 + d)2, (x − 5)2 + y2 = (3 + d)2, x2 + (y − 12)2 = (10 + d)2.

(9)

Solving these equations leads to the values

x = 2 − d

5
, y = 2 − 2d

3
, d = 0.13276 or x = 1.97345, y = 1.9115.

(10)

Consistent with the Sect. 4 description about the finesse point, notice how the d value
is quite small, about 0.026 the shortest z j,k length, and how the finesse point is located
near the ideal point with the shortest legs (i.e., near the juncture of the two minimal
winning coalitions with the stronger ties). While this algebraic approach holds for all
three-voter, two issue, majority vote configurations, the above example was selected
to minimize the occurrence of square roots.

A similar construction holds for any q-rule setting with any number of issues. How-
ever, the number of equations that must be used increases the complexity of the analy-
sis. With q = 4 from Fig. 4a, for instance, the one (x − p1)

2 + (y − p2)
2 = (ρk + d)2

for a pair of points is replaced by six equations involving all pairs of points. Other
geometric analysis, however, can reduce the number of necessary equations.

Proof of Theorem 5 The leg length inequalities of Eq. 4 follow from Eq. 2. From the

law of cosines, cos(φ j,k) = r2
j +z2

j,k−r2
k

2r j z j,k
. As larger cosine values correspond to smaller

angles, the Eq. 4 angle inequalities follow from the inequalities on leg lengths and the
r j values.

Proof of Eq. 5 An ellipse with both foci (the nails in the description) on the x-axis,

z distance apart, and x = 0 in the center, has the equation x2

a2 + y2

b2 = 1 for some
a > b > 0 values. When y = 0, the d-ellipse is at point x = z

2 + d; this is the a
value. When x = 0, the string defining a d-ellipse forms an isosceles triangle, where
the height above the x = 0 point is

√( z

2
+ d

)2 −
( z

2

)2 =
√

zd + d2 = d

√
1 + z

d
;

this is the b value. Notice that this 2b width yields Eq. 5. Other properties follow from

the d-ellipse’s equation, x2

((z/2)+d)2 + y2

zd+d2 = 1. For instance, a circle of diameter 2d
with center anywhere between the two ideal points is in the d-ellipse; e.g., the ellipse
width at an ideal point is 2d[2 − 1

1+ z
2d

] > 2d.

Proof of Theorem 6 (Parts 1, 5) To show for n = 3 that the finagle and finesse points
agree, we outline the construction of the finagle point (see Wuffle et al. (1989) for
more details.) Find three circles (Fig. 6a) where each is centered at a voter’s ideal
point and tangent to the other two. Such circles exist and are uniquely determined. (In
general, such tangencies do not exist, so this is what limits the finagle point approach.)
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Fig. 6 The yolk versus the
finesse point. a Finagle point,
b E2

d (C) suffices for two issues

(a) (b)

In the curvilinear triangle defined by the three circles, find the largest inscribed circle:
the finagle point is the circle’s center.

To prove that this point is our majority vote d-finesse point, let r be the radius of the
circle centered at the finagle point. The dashed lines connecting any two ideal points
is the distance between the two ideal points plus 2r , so it is on a r -ellipse. As this is
true for all pairs of ideal points, the finagle point is a d-finesse point where r = d.
That this is the minimum d value follows from the fact that in the Pareto set, the three
d-ellipses have a unique point of intersection. While the finagle point is our d = r
finesse point for n = 3, our construction does not rely on this special Fig. 6a behavior,
which holds primarily for triangles and special symmetric figures: this is what permits
our d-finesse point to hold for any number of voters, issues, and q-rules.

To show for n = 3 that Sd(2) is inside Y(2), notice that Y(2) touches all three edges
of the triangular Pareto Set (in Fig. 6a, Y(2) is given by the dotted circle). Each ideal
point is on two edges and Y(2) is tangent to each triangle edge, so the two distances
from an ideal point to the two tangent points are equal. If ρ j is the common distance
from ideal point i , then ρ1 +ρ2 = z1,2, ρ1 +ρ3 = z1,3, ρ2 +ρ3 = z2,3. The locations
of the tangent points follow from these three equations with three unknowns. These
tangent points also define the three Fig. 6a circles, so Sd(2) is in the Y(2) interior.
Moreover, the lines from the Y(2) center to these tangent points are perpendicular to the
edges and tangent to the two ρ j circles. As these perpendicular lines cross at the center
of the yolk and also intersect (by construction) Sd(2), the yolk’s center is in Sd(2).

To show that Sd(n − 1) ⊂ Y(n − 1) with (n − 1) issues where the n-ideal points
define a nondegenerate n-simplex, note that Y(n −1) is tangent to the n planes defined
by (n − 1) ideal points; each ideal point is in n − 1 hyperplanes. As Y(n − 1) is a
sphere, the line in each hyperplane from the j th ideal point to the Y(n − 1) tangent
point has the same length ρ j . Thus, in any hyperplane, the ρ j values define a unique
point—the Y(n − 1) tangent point. About the j th ideal point, construct a sphere of
radius ρ j . As there are precisely n of these spheres, a unique sphere can be constructed
in Pareto set that is tangent to each of n constructed spheres. This is Sd(n − 1), by
construction it is in Y(n − 1). Also by construction, the line perpendicular to each
hyperplane meets the center of Y(n−1) and is tangent to each of the (n−1) constructed
spheres, so it is in Sd(n − 1). As this is true for all such lines, the yolk center is in the
adjustment set.

The proof for Sd(q) and Y(q), n
2 < q < n, involves only minor changes; e.g., each

ideal point is in
(n−1

q−1

)
minimal coalitions and each coalition’s Pareto set has dimension
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q − 1. At least n − 1 of them are tangent to Y(q), while others may intersect this yolk.
The construction using these tangent points and spaces is the same as for q = (n − 1)

except instead of (n − 1) choices of ρ j in each (q − 1)-dimensional hyperplane, there
are q of them, and the orthogonal line from each of these hyperplanes is replaced with
a (n − 1) − (q − 1) dimensional orthogonal hyperplane.

(Part 2.) To prove for n = 3 that the d-finesse point is at the Y(2) center iff the
Pareto set is an equilateral triangle, notice that the Y(2) center is at the intersection of
the angle bisectors of the Pareto set’s angles. Thus, according to Eq. 4, the d-finesse
point is at the Y(2) center iff φ j,k = φ j,i for all j , which (Theorem 5) requires all
leg lengths of the Pareto set to agree—it is an equilateral triangle. To show that the
q-rule finesse point generally is not at the Y(q) center, consider a Pareto set that is a
k-dimensional simplex with q-hyperplanes as the faces of the simplex. With the above
construction, construct the finesse point in terms of the tangent points of the yolk on
the hyperplanes. If the simplex is not equilateral, some radii are longer than others, so
the inscribed sphere cannot have its center at the Y(q) center.

(Part 3.) For n
2 < q1 < q2, any minimal winning coalition for a q1 rule, C1, is con-

tained in some minimal winning coalition for a q2 rule, say C2. Thus Ed(C1) ⊂ Ed(C2),
so the Ed(C) sets for the q2 rule cannot meet at a larger d value than those for the q1
rule.

(Part 4.) To show that a q-rule finesse point p is a q-rule uncovered point, suppose
p1 beats p; i.e., p1 is in the winning set defined by p. As p1 is not a finesse point, the
winning set it defines for some coalition is larger than that defined by p. Consequently,
there are points that beat p1 that do not beat p; thus p is an uncovered point.
Width of winning set. In defining the finesse point, we claimed that E2

d(C) suffices for
two issues. First, place the largest possible ball in the winning set (Fig. 6b). The ball is
tangent to circles about ideal points, so a vector orthogonal to the ball is orthogonal to
the circle: it points toward the center of the ball and the particular ideal point. If the ball
is not at the center of a lens defined by two circles, then some circle on one side holds
it above the lens’ center. The two orthogonal vectors for the lens have components
toward the lens’ center, while the third one points away. Thus, with two dimensions,
the convex hull of the three ideal points must include the ball. As the ideal points
are in coalition C, for the winning set to have a ball, the point p must be in a third
dimension; i.e., there are more than two issues. Thus the winning set’s width for two
issues is given by the lens width of two circles. The first ellipse from E2

d(C) that meets
p captures the smallest width of lens defined by p, so the d value captures the winning
set’s width.

A similar argument shows that with k issues, the largest ball in a winning set is
bounded by at most k circles; the width of this structure is captured by the k-fold
d-ellipsoid. Some p choices may allow the lens of j spheres where j < k, to define
the winning set’s width. To handle such situations, Ed(C) is defined as the union of
the E j

d (C) sets for j = 2, . . . , k.

Proof of Theorem 7 The proofs follow that of the earlier theorems but over a subset
of the winning coalitions. Thus, for instance, the minimum values for d are equal or
smaller.

123



Finessing a point: augmenting the core 143

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Downs A (1957) An economic theory of democracy. Harper and Row, New York
Ferejohn JA, McKelvey RD, Packel EW (1984) Limiting distributions for a continuous state Markov mod-

els. Soc Choice Welf 1(1):45–67
Hotelling H (1929) Stability and competition. Econ J 39(March):41–57
McKelvey R (1979) General conditions for global intransitivities in formal voting models. Econometrica

47(September):1085–1112
McKelvey R (1986) Structural instability of the core. J Math Econ 15(3):179–198
Miller NR (1980) A new solution set for tournament and majority voting. Am J Polit Sci 24:68–96
Miller NR (2005) The effects of clustered ideal point configurations on the location and size of the yolk.

http://research.umbc.edu/~nmiller/RESEARCH/CLUSTERS.FIN.htm
Nurmi H (2002) Voting procedures under uncertainty. Springer, New York
Richards D (1994) Intransitivities in multidimensional spatial voting. Soc Choice Welf 11(2):109–119
Saari DG (1995) Basic geometry of voting. Springer, New York
Saari DD (2004) Geometry of stable and chaotic discussion. Am Math Monthly 111:377–393
Saari DG (2007) Hidden mathematical structures of voting. In: Simeone B, Pukelsheim F (eds) Mathe-

matics and democracy: recent advances in voting systems and collective choice. Springer, New York,
pp 221–234

Shepsle K, Weingast B (1984) Uncovered sets and sophisticated voter outcomes with implications for
agenda institutions. Am J Polit Sci 28:49–74

Stone R, Tovey C (1992) Limiting median lines do not suffice to determine the yolk. Soc Choice Welf
9:33–35

Tataru M (1996) Growth rates in multidimensional spatial voting. Ph.D. Dissertation, Northwestern
University

Tataru M (1999) Growth rates in multidimensional spatial voting. Math Soc Sci 37:253–263
Wuffle A, Feld S, Owen G, Grofman B (1989) Finagle’s Law and the Finagle Point, a new solution concept

for two-candidate competition in spatial voting games without a core. Am J Polit Sci 33:348–375

123

http://research.umbc.edu/~nmiller/RESEARCH/CLUSTERS.FIN.htm

	Finessing a point: augmenting the core
	Abstract
	1 Introduction
	2 Basic ideas
	3 An empty core
	3.1 An illustrating example
	3.2 Options for the winning candidate
	3.3 Costs of negative and positive campaigning

	4 Finesse points
	4.1 A d-finesse point

	5 Geometry of the finesse point
	5.1 Comparison with the yolk, uncovered set, etc

	6 Selective finesse points and a selective core
	7 Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


