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Abstract

We show that efficient anonymous incentive compatible (dominant strat-
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is unable to change the welfare of anyone else. The characterization is used to

derive existence and non-existence results for models with a finite number of

individuals and to explain existence results in the continuum. A similar charac-

terization and conclusions are demonstrated for private goods in [7]. However,

unlike private goods, elimination of externalities with public goods implies that

individuals cannot change the outcome. Hence, such mechanisms provide only

weak incentives for truth-telling.
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1 Introduction

We examine the problem of allocating public goods produced by a private good.

It is impossible to satisfy efficiency, anonymity, and incentive compatibility (see

[1],[13],[16],[17]). Our aim is to understand why, by characterizing the demands im-

posed by these conditions. Our main result is that the mutual consistency of these de-

mands requires the elimination of a literal interpretation of “externalities”— changes

in one individual’s preferences should not impose utility consequences on anyone else.

This holds both for ordinal and quasilinear preferences.

The goal of mechanism design is to find an outcome function (a mechanism)

satisfying certain conditions, or to show that no such function exists. For the purposes

of this paper, we distinguish between the minimum requirements on the domain

of an outcome function such that anonymity, efficiency, and incentive compatibility

can be meaningfully defined and the robustness of such conditions. Robustness is

typically built into mechanism design by assuming the domain is a Cartesian product

of preference profiles. Regarding minimum requirements as separate from robustness

will be essential, below.

We consider the set of outcome functions (i.e., mechanisms) defined at a utility

profile and ask if there is a neighborhood of this profile (domain of the mechanism)

over which an outcome function has the desired features. Efficiency is a pointwise

property for each preference profile. Incentive compatibility requires that the neigh-

borhood should include any single-person change in the preference profile. Anonymity

is acknowledged by allowing the neighborhood to include profiles where all individuals

can report the same preferences. This leads to the construction of “minimally com-

prehensive” neighborhoods on which the requirements of efficiency, incentive com-

patibility, and anonymity can be said to be well-defined. We show that on such

neighborhoods the desired outcome function must not allow any individual to change

the welfare of anyone else (Theorem 2). 1

To further establish our claim we do two more things. First, we show that there are

non-trivial profiles and neighborhoods for which outcomes functions with the desired

properties exist. Such neighborhoods can be constructed around an economy such

1In one direction, this characterization is immediate: an efficient mechanism that eliminates ex-

ternalities satisfies incentive compatibility. Suppose an individual enjoys a certain utility level, say

ū, from reporting his preferences truthfully. If the individual were to misrepresent his preferences,

the no externalities condition says that others’ utilities would not change. Therefore, if the mis-

representation led to a utility level greater than ū, i.e., was not incentive compatible, that would

contradict efficiency. Hence, the goal is to show that an anonymous efficient incentive compatible

mechanism must eliminate externalities.
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that indifference curves of at least some individuals have “kinks,” i.e., discontinuities

in marginal rates of substitution. (See Section 4). Second, to prove that ours is really

a characterization of outcome functions that are efficient, anonymous, and incentive

compatible, we show that an outcome function with the desired properties defined on

a domain containing a minimally comprehensive neighborhood would also exhibit no

externalities. (Theorem 3).

These conclusions rely on the separation of minimal conditions from robustness.

Because externalities are typically unavoidable for efficient outcome functions, our

characterization yields impossibility conclusions on domains that are much smaller

than a Cartesian product of preference profiles. (Corollary 2) Therefore, one might

question the characterization as merely a sharper impossibility result in disguise. To

dispel this interpretation we point to the following:

• The characterization has a meaningful economic interpretation. Internalization

of externalities has long been regarded as important to harmonize self-interest

with efficiency— each person should bear the cost imposed or receive the benefit

conferred on others by his actions.

Our findings demonstrate that the modern, mechanism design formalization of this

problem confirms the necessity of a literal application of this principle. That its

realization is problematic is simply a reflection of the fact that externalities cannot

typically be eliminated.

A second reason why the no externalities condition is meaningful is that it is not

limited to public goods. The results in [7] show:

• The requirement that externalities must be eliminated holds for the characteri-

zation of efficiency, anonymity and incentive incentive compatibility for private

goods.

When there are private goods, neighborhoods are created around preference profiles

with “flats,” i.e., marginal rates of substitution that are constant in a neighborhood.

With public goods, no externalities implies no change in quantities. With private

goods, no externalities implies no change in prices: no individual can have a utility

consequential effect on the trading opportunities of anyone else, i.e., the environment

should be perfectly competitive.

The juxtaposition of no change in quantities versus no change in prices mirrors

the well-known duality between public and private goods.2 I.e., with private goods,

2The same duality underlies the relation between flats in convex sets and kinks in their associated

support functions.
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prices are the “public goods,” whereas with public goods, prices are the “private

goods.” These connections provide added confirmation that the same no externalities

principle underlies possibility— and therefore impossibility— in both environments.

As a unified summary, the elimination of externalities requires that individuals are

unable to change the values of the relevant public goods, i.e., quantities in the case

of public goods and prices in the case of private goods.

A third justification concerns robustness.

• No externalities underlies the existence of efficient, incentive compatible, and

anonymous outcome functions for populations with large numbers of individu-

als.

The no externalities characterization described above applies to a small population,

i.e., with n individuals. We show that the aggregate kink needed for possibility does

not depend on n. For fixed n, there are many profiles of kinked utilities, each defined

on a separate neighborhood, such that within each neighborhood the desired conditions

obtain. As n goes to infinity the size of any individual’s kink can go to zero, and in

the limit all utilities can be differentiable. Consequently, the exceptional character of

the no externalities property is more likely as n approaches infinity and it becomes

typical for populations in the continuum. Such an argument is demonstrated in [7]

for private goods where the size of the flats can be made arbitrarily small as the

number of individuals increases and, in the limit, indifference surfaces can be curved.

We shall provide a brief sketch, below, of a parallel construction for public goods

implying that there are outcome functions that are generically efficient, anonymous,

and incentive compatible in economies with a continuum of agents. For results with

similar conclusions see [4],[9],[11],[6].

The contrast between the absence of robust existence of anonymous, efficient,

incentive compatible outcome functions for small populations and the presence of

robust existence with large numbers can be imputed to the absence of robustness of

the no externalities property for small populations along with the presence of that

property for large populations.

The paper is organized as follows. In Section 2 we define our neighborhoods. The

main results are presented in section 3. Section 4 analyzes conditions under which an

outcome function has the desired properties and explains why typically it does not

exist. Section 5 links the paper to the literature. All proofs appear in the appendix.
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2 Preliminaries

Society is composed of n consumers. Person i = 1, . . . , n has preferences �i over pairs

(a, b) ∈ A × ℜ+, where A ⊂ ℜk is a compact convex set of public good vectors and b

is a private good. It is assumed throughout that preferences are continuous, convex,

and increasing in b. The cost of producing public goods is measured in units of the

private good and is given by the convex function ϕ : A → ℜ+. Society is endowed

with b units of the private good which are sufficient to produce any quantities of the

public goods in A. The set of feasible allocations is

F =
{

(a, b1, . . . , bn) : (a, bi) ∈ A × ℜ+, i = 1, . . . , n,
∑

i bi + ϕ(a) = b
}

In the special case of costless public goods ϕ ≡ 0.

Preferences are representable by utilities. A mechanism is a function that picks

a point in F according to the social profile of preferences. To simplify notation,

we define the domain of the mechanism to be utility vectors and assume that two

ordinally equivalent utility vectors lead to the same result. Formally, let U be the set of

continuous, quasiconcave functions, increasing in b but not necessarily differentiable

and not necessarily increasing in a. In addition, we assume that preferences are

restricted to exhibit bounded rates of substitution between public goods and the

private good. That is, there exists M such that for all u and (a, b) ∈ A × [0, b], and

(∆a, ∆b) 6= 0 such that u(a, b) = u(a + ∆a, b + ∆b),

|∆b| < M‖∆a‖ . (1)

We refer to this as a Lipschitz condition on u. Likewise, we assume that ϕ is Lipschitz

(with the same M). That is, for ∆a 6= 0,

|ϕ(a + ∆a) − ϕ(a)| < M‖∆a‖ . (2)

Bounds on rates of substitution between public goods and the private good and

on the rate of change of the cost function limit the extent to which one individual will

be able to influence the outcome. The bound will also ensure the existence of prices

(see Prop. 1 in the appendix below). Note that the Lipschitz condition is consistent

with a possible absence of differentiability in u and ϕ.

We define the domain of the mechanism f ∈ F to be elements of Un, with the

following restrictions:

Ordinal Equivalence If u = (u1, . . . , un) and u′ = (u′
1, . . . , u

′
n) ∈ Un are such that

for each i there exists an increasing function hi such that u′
i = hi ◦ ui, then

f(u) = f(u′).
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Our analysis is therefore of utility profiles, but each of the assumptions and results

to follow can be expressed in terms of preferences only.

For u = (u1, . . . , un) ∈ Un and u′ ∈ U , let (u−i, u
′
i) = (u1, . . . , u

′
i, . . . , un). The

main features of the mechanism on a domain D ⊆ Un are:

Efficiency For every u ∈ D, there is no allocation (a, b1, . . . , bn) ∈ F such that for

all i, ui(a, bi) > ui(f0(u), fi(u)); and for some j, uj(a, bj) > uj(f0(u), fj(u)).

We shall assume that individuals are only identifiable by their characteristics, not

their ‘names.’ Hence, two individuals with the same preferences are indistinguishable

and will therefore receive the same allocation of the private, as well as the public,

good.

Anonymity If ui = uj, then fi(u) = fj(u).

The aim of the paper is to show equivalence of the next three conditions.

Incentive Compatibility 3 For all i, u ∈ D, u′
i such that (u−i, u

′
i) ∈ D,

ui(f0(u), fi(u)) > ui(f0(u−i, u
′
i), fi(u−i, u

′
i)).

No Externalities For all i, u ∈ D, u′
i such that (u−i, u

′
i) ∈ D, and j 6= i,

uj(f0(u−i, u
′
i), fj(u−i, u

′
i)) = uj(f0(u), fj(u)).

No Change The mechanism f is constant on D. That is, for all i, u ∈ D, u′
i such

that (u−i, u
′
i) ∈ D,

f0(u−i, u
′
i) = f0(u) and for all j (including i), fj(u−i, u

′
i) = fj(u)

The no externalities condition says that the welfare of any individual j 6= i is

invariant to the reported utility of i. The no change condition says that the outcome

is itself invariant to the reported utility of any individual. Evidently, no change

implies no externalities but not conversely. For example, quantities of a and the

allocation of its costs may vary such that all individuals are indifferent. In public

goods environments this is extremely unlikely. In the domains constructed below for

finite numbers of individuals, it does not occur; and the limiting results for large

numbers do not rely on it. Theorem 2, below, shows that when f is efficient and

3Also called strategy-proofness.
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anonymous, the following are equivalent: incentive compatibility, no externalities,

and no change.

For given utility u and a point (a, b), let Ψ(a, b; u) be the set of changes that do

not reduce the value of u. Formally,

Ψ(a, b; u) = {(∆a, ∆b) : u(a + ∆a, b + ∆b) > u(a, b)}. (3)

Since preferences are convex, Ψ(a, b; u) is convex. The special case of quasilinearity

satisfies the added restriction that (∆a, ∆b) ∈ Ψ(a, b; u) if and only if (∆a, ∆b) ∈

Ψ(a, b + α; u) for all α such that b + α > 0.

We define the following partial ordering with respect to convex preferences:

Definition 1 The utility function u′ is a sharpening of u at (a, b) if for (∆a, ∆b) 6=

(0, 0),

u(a, b) = u(a + ∆a, b + ∆b) =⇒ u′(a, b) > u′(a + ∆a, b + ∆b). (4)

If u′ is a sharpening of u at (a, b), then except for the common point (0, 0), the set

of changes for u′, Ψ(a, b; u′), lies entirely inside Ψ(a, b; u) (see Fig. 1). Sharpening is

similar to the comparison used by Maskin [8] to define a condition called monotonicity,

except that the strict inequality of eq. (4) is replaced with a weak one. We have

not adopted this terminology because sharpening will be used here to introduce the

geometry of kinks in convex preferences. We note that the reverse comparison, that

we call flattening, plays a parallel role in the characterization of efficiency, anonymity

and incentive compatibility with private goods (see [7]).

a

b

u
′

u

Figure 1: u′ is a sharpening of u at (a, b).
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3 Mechanisms

3.1 Domains

Consider a utility profile u and function f . Our aim is to check under what condi-

tions one can build a non-trivial domain D around u such that on this domain f is

efficient, anonymous, and incentive compatible, and to analyze the behavior of f on

this domain. As mentioned above, mechanism design begins with a domain and looks

for a mechanism with given properties whereas we start with the properties and build

a domain over which they can be satisfied.

There is a tension between the requirement that the properties can be satisfied

and the existence of a meaningful characterization. The smaller the domain the easier

it is to satisfy the first requirement. However, if it is too small the requirements will

be meaningless. One extreme case is when D = {u} where for all i 6= j, ui 6=

uj. As utilities are ordinal, there are typically many efficient allocations, and any

such allocation will satisfy anonymity (because no two consumers have the same

preferences) and incentive compatibility (because no one can declare another utility

function). On the other hand, if the domain is too big the assumptions will contradict

each other, as on a universal domain no efficient mechanism can be both IC and

anonymous (see [1, 13, 16, 17]). For the domain to be non-trivial, it should be rich

enough so that the above three requirements will be restrictive.

Consider the incentive compatibility condition. We require that at least from the

original profile u, each individual should be able to announce any type in U . This

leads to our first requirement for a domain.

Definition 2 The domain D is inclusive around u if
⋃

i (u−i,U) ⊂ D.

The fact that D is inclusive around u is essential. It means that we can apply

the full strength of the incentive compatibility at u. Note that a domain may be

inclusive around several different profiles. If the mechanism were inclusive around

every u ∈ D, that would imply D = Un, which leads to an immediate impossibility

result as there is no efficient, anonymous, and incentive compatible mechanism on

Cartesian products. While our characterization applies to this limiting case, it also

applies when the mechanism is only inclusive around some u ∈ D, a restriction that

it critical for making the characterization non-vacuous.

When individuals manipulate their preferences they may potentially affect the

allocations of both the public and the private good. As the following lemma shows,

incentive compatibility implies no change for the class of possible sharpenings of
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individual utility (see Definition 1).4

Lemma 1 Let u ∈ D. If f is incentive compatible and u′
i is a sharpening of ui at

(f0(u), fi(u)) and (u−i, u
′
i) ∈ D, then f0(u−i, u

′
i) = f0(u) and fi(u−i, u

′
i) = fi(u).

The implications of anonymity follow from profiles where everyone has the same

preferences. One simple way to obtain such profiles is to permit all sharpenings in

the domain. Formally, denote by U∗(u, a, b) the set of functions u′ ∈ U where u′ is a

sharpening of u at (a, b). The following definition says that if u belongs to the domain

and the mechanism chooses f0(u), then the domain also includes all sharpenings of

u at (. . . , (f0(u), fi(u)), . . .).

Definition 3 The domain D is first order with respect to f if u = (u1, . . . , un) ∈ D

implies that
n

∏

i=1

U∗(ui, f0(u), fi(u)) ⊂ D.

We will then say that (D, f) is first order.

Another property of sharpening of utilities is their benign effect on efficiency. If

person i sharpens his utility at the efficient outcome he receives from f , the previous

Lemma says that i cannot change his outcome and the following Lemma says if the

original allocation is efficient, it will continue to be efficient for the perturbed economy.

Lemma 2 Suppose that f(u) is efficient for u. Then for all i and u′
i ∈ U∗(ui, f0(u),

fi(u)), f(u) is also efficient for (u−i, u
′
i).

The first order condition limits the allowable perturbations that individuals can

make from any u ∈ D, but the fact that they form a Cartesian product says that

the first order perturbations for i are independent of those for j 6= i. By contrast,

the inclusiveness condition consists of the opposite kind of construction. It places no

limits on the allowable perturbations any individual can make, but it permits only

one-at-a-time departures.

Definition 4 The pair (D, f) is comprehensive around u if D is first order with

respect to f and D is inclusive around u.

3.2 Characterization

A key property of (D, f) satisfying our assumptions is that the private good must be

shared equally. This strong conclusion can be obtained on a very restricted domain

4Monotonicity/sharpening is used in [8] to establish a similar conclusion with respect to Nash

Implementation.
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and without assuming that f is efficient. (A similar result is obtained on a larger

domain by Barbera and Jackson [1] and Serizawa [13]).

Theorem 1 Let (D, f) be first order. If f is anonymous and incentive compatible

on D, then for every u ∈ D and for every i,

fi(u) =
b − ϕ(f0(u))

n
.

Among the pairs (D, f) that are comprehensive around u, where f0(u) = a∗, we

define those that are minimal. By Theorem 1, f allocates the private good equally

between all consumers.

(1) Consider all u where for exactly one i, ui ∈ U and for all j 6= i, uj ∈ U∗(uj, a
∗, b/n).

That is, exactly one person moves anywhere, and all other individuals sharpen

(or not) their utilities at the outcome they received by the mechanism.

(2) For any u in (1), if f0(u) 6= a∗, then all the economies u′ where for all i,

u′
i ∈ U∗(ui, f0(u), b/n) are also in (D, f). Such profiles are obtained when some,

or all, individuals sharpen their utility at their outcome of the mechanism at

profiles obtained by procedure (1).

Condition (1) around u allows any one individual to deviate by announcing any

ui among those that are Lipschitz and monotonic in b, provided other individuals can

only sharpen their utility at their outcome from f(u). By permitting sharpenings at

any u ∈ D, a first order mechanism (condition (2)) allows individuals to announce

other utilities consistent with f(u) being an efficient choice. A minimally compre-

hensive (D, f) is the smallest such domain, i.e., with only one u ∈ D satisfying the

above.

The following is an example of a minimally comprehensive domain.

Example 1 Let A = [0, 1] (that is, there is only one public good) and let

ui(a, b) =











mia + b a 6 1
2

mi − mia + b a > 1
2

for m1 . . .mn > 0 such that
∑

mi > 2M (recall that M is the Lipschitz constant).

Indifference curves of such utility functions are v-shaped. Assume ϕ ≡ 0 and let

u = (u1, . . . , un). By efficiency, f1(u) = 1
2

and by Theorem 1, fi(u) = b/n, i =

1, . . . , n. A minimally comprehensive domain (D, f) around u is the set of all profiles

u where ui∗ ∈ U and for i 6= i∗, ui is a sharpening of ui. That is, for x < y < 1
2
,

ui(y)−ui(x) < −mi(y−x) and for x > y > 1
2
, ui(x)−ui(y) > mi(x−y), i∗ = 1, . . . , n.
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The following is the main result of the paper.

Theorem 2 Let (D, f) be minimally comprehensive around u ∈ Un. If f satisfies

efficiency and anonymity, then the following three conditions are equivalent: incentive

compatibility, no externalities, and no change.

Next, we want to show that our analysis is really a characterization of efficient,

incentive compatible mechanisms. We first observe that although we did not assume

continuity, since f exhibits no change on D it is trivially continuous. To establish the

uniqueness of the result, we confine our attention to mechanisms that are continuous.

Define

Continuity uℓ → u implies f(uℓ) → f(u).5

Suppose that the function g is continuous on D and (D, g) is comprehensive with

respect to g around u. We show that g coincides with f .

Theorem 3 Let (D, f) be comprehensive around u ∈ Un, where f satisfies continu-

ity, efficiency, anonymity, and incentive compatibility. Suppose that g on D satisfies

continuity, efficiency, anonymity, and either incentive compatibility or no externali-

ties. Then g ≡ f .

A remark on anonymity: The key objectives are efficiency and incentive compati-

bility. Anonymity, too, is a desirable feature: it is also essential. Without it, efficiency

and incentive compatibility could be achieved by serial dictatorship in which the most

desirable outcome to individual 1 is chosen, and in the case of ties, the most desirable

to individual 2 among the remaining, etc.

4 Possibility and Impossibility Results

To show that the above characterization is not vacuous, we provide examples of mech-

anisms and comprehensive domains over which efficiency, anonymity, and incentive

compatibility are satisfied. As claimed above, such mechanisms on these environ-

ments must exhibit no externalities. To simplify, in this section we restrict attention

to the costless case, i.e., ϕ ≡ 0.

Let f0(u) = a∗ be the efficient allocation chosen at u. From Theorem 1, fi(u) =

b/n for all u ∈ D. Recalling that U∗(ui, a
∗, b/n) is the set of sharpening of ui at

5An ordinal definition of continuity should be stated in terms of convergence of preferences.

Convergent utilities is a convenient short-cut.
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(a∗, b/n), let

D(u, a∗) =
⋃

i

{

...U∗(ui−1, a
∗, b/n) × U × U∗(ui+1, a

∗, b/n) × ...
}

(5)

The set D(u, a∗) contains all the profiles obtained from u by letting one person move

anywhere while everyone else is sharpening his utility at his outcome of f(u), which

by Theorem 1 is (a∗, b/n).

For (∆a, ∆b) on the boundary of Ψ(a, b; u), ∆b measures the maximum quantity

of the private good b an individual with utility u is willing to pay (or the minimum

to receive) to make the change ∆a from the allocation (a, b).

Corollary 1 Let u and a∗ satisfy for all ∆a and (∆b1, . . . , ∆bn),

∀i ui(a
∗ + ∆a, b/n + ∆bi) = ui(a

∗, b/n) =⇒
n

∑

i=1

∆bi > 2M · ‖∆a‖ (6)

Then there is a mechanism f and a domain D = D(u, a∗) such that D is compre-

hensive around u and f is efficient, anonymous, and incentive compatible on D. For

such a mechanism, f0(u) = a∗ and fi(u) = b/n for all u ∈ D.

To understand this Corollary, observe first that by Theorem 1, the mechanism

should give everyone b/n units of the private good. By eq. (6), and given an equal

division of the private good, moving from a∗ to any other allocation a∗+∆a requires a

positive total compensation in terms of the private good, hence a∗ is the only efficient

outcome for f (given an equal division of the private good). Moreover, as the total

compensation is more than 2M ·‖∆a‖, it follows that whatever utility function person

i chooses, as it is Lipschitz with bound M , the total compensation in all directions will

still be positive. Person i can therefore not change the efficiency of (a∗, b/n, . . . , b/n),

and as he cannot change the allocation of the private good he cannot change the

allocation and the efficiency of the public goods.

Figure 2 illustrates Corollary 1. Inequality (6) establishes a sufficiently large

“kink” at a∗ among the individuals to nullify the ability of any one person to overturn

its efficiency. Even if he were to set the slope of his indifference curve through (a∗, b/n)

to be M or −M .

Remark 1 Note the following.

1. Corollary 1 requires n > 3. Otherwise, inequality (6) cannot be satisfied.

2. The condition in (6) does not imply that for every consumer, or even for any

consumer, a∗ is the optimal quantity for the egalitarian (b/n, . . . , b/n) allocation

of the private good. (See e.g. consumers 1 and 4 in Fig. 2).
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Figure 2: Sum of sharpenings (not drawn to scale)

3. The condition of (6) implies that at least one consumer has nondifferentiable

preferences at a∗, but it does not imply that all consumers have nondifferentiable

preferences at this point. (Compare consumers 2 and 3 in Fig. 2. For simplicity,

consumer 3’s preferences are drawn as linear, but they could be non-linear and

differentiable.)

4. The condition in (6) is sufficient, but not necessary. For example, if n = 3

and u1(a, b) = u2(a, b) = u3(a, b) = b − 4M ‖ a∗ − a ‖ /7, then the mechanism

f such that f0(u−i, u) = a∗ and fi(u−i, u) = b/3, i = 1, 2, 3, satisfies all the

requirements in D(u, a∗). �

If an efficient mechanism created no externalities, the argument in footnote 1

says that it would be incentive compatible. Conversely, Theorem 2 implies that

if a change in the public good allocation were required to accommodate a change

in one individual’s preferences, that would unavoidably create positive or negative

externalities on the payoffs for others. And Theorem 2 also implies that the presence

of externalities creates opportunities for strategic manipulation. To show how non-

generic is the possibility of exact efficiency and incentive compatibility with a fixed

finite population, the following suffices for impossibility:

Corollary 2 If (D, f) is comprehensive around each u ∈ D and there exists no a ∈ A

such that f0(D) ≡ {a}, then f is not incentive compatible and it exhibits externalities.
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To illustrate impossibility, recall that by Theorem 1, bi = b/n for all i. Hence, no

consumer is punished in his b-good compensation for announcing false preferences. It

is easy to construct examples where given the fixed allocation of the b-good, a∗ = f0(u)

is not the best point for one consumer and this consumer has the ability to change

this outcome by announcing false preferences. For example, suppose k = 1 (k is the

number of public goods), A = [0, 1], let u2(a, b) = . . . = un(a, b) = b−Ma/2n, and let

u1(a, b) = b+Ma/2n. Let u1(a, b) = 1
2
Ma+b to obtain f0(u) = 0 but f0(u−1, u1) = 1.

So consumer 1 is better off announcing u1 instead of his true utility u1.

The fragility of the possibility result in Corollary 1 is demonstrated by Corollary 2.

Corollary 1 can also be used to point out why the larger the number of individuals,

the smaller the influence any one individual has on an efficient choice of public goods.

In the limiting case of a continuum of individuals, if the selection of efficient outcomes

is a continuous function of the distribution of individual preferences, the influence of

any one individual’s preferences necessarily vanishes. Hence, the conflict between

efficiency, anonymity and the elimination of externalities also vanishes.

As a building block for the asymptotic analysis underlying the results in the con-

tinuum, consider the following extension of Corollary 1 that demonstrates possibility

on a domain consisting of disjoint unions of minimally comprehensive domains.

Corollary 3 Let n > 3. There is an efficient, anonymous, incentive compatible, no

externalities mechanism f on the domain

D =
⋃

a∗ {D(u, a∗) : u and a∗ satisfy inequality (6)

and D(u, a∗) is minimally comprehensive}

The disjoint unions of minimally comprehensive domains highlighted in Corol-

lary 3 cover only a small subset of Un. Nevertheless, they suggest how the collection
⋃

a∗ D(u, a∗) can come closer to filling out Un the larger is n. Using the techniques

employed in [7], the set Un\{
⋃

a∗ D(u, a∗)} applied to an approximate notion of in-

centive compatibility can be shown to converge to a closed no-where dense set in the

continuum limit.

5 Concluding Comments

A Post-Samuelson View of Public Goods: Concern about free-rider behavior with

respect to public goods was an important precursor of mechanism design. Writing

before those ideas had been formalized, Samuelson [12] contrasted private and public

goods with respect to the size of the market:
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In ordinary market economics as you increase the number of sellers of a

homogeneous commodity indefinitely, you pass from monopoly through

indeterminate oligopoly and can hope to reach a determinate competitive

equilibrium in the limit. It is sometimes thought that increasing the num-

ber of citizens who are jointly supplied public goods leads to a similar

determinate result. This is reasoning from a incorrect analogy. A truer

analogy in private economics would be the case of a bilateral-monopoly

supplier of joint products whose number of joint products— meat, horn,

hide, and so on— is allowed to increase without number: such a process

does not lead to a determinate equilibrium of the type praised in the

literature.

This paper and the results of [7] demonstrate that Samuelson’s conjectured con-

clusions about “indeterminacy” can be rephrased in terms of externalities. In each

of the above environments, the necessary and sufficient condition for aligning incen-

tives with efficiency is the elimination of externalities. Whether goods are public or

private, externalities are typically unavoidable when the number of individuals is not

large. Moreover, the presence of externalities can be interpreted as an indetermi-

nacy with respect to the gains from trade, leading to a tradeoff between efficiency

and incentive compatibility. When goods are private, externalities can typically be

eliminated when the number of individuals is large, with a consequent determinacy

in the gains from trade. Samuelson correctly conjectured that with large numbers

and public goods, Lindahl equilibrium allocations would not be incentive compati-

ble. Nevertheless, equal cost-sharing is an anonymous efficient incentive compatible

mechanism because with large numbers individuals are typically unable to change

the outcome, hence externalities are eliminated. However, unlike private goods, the

inability to change the outcome implies that there are no positive rewards associated

with incentive compatibility.

The Vickrey-Clarke-Groves Characterization: Our focus on no externalities resembles

the conclusions of [15], [2], and [3], called VCG mechanisms. Such schemes need not

satisfy anonymity, but that requirement can be added without changing its essential

features. More important is the fact that its conclusions are based on the hypothesis

that preferences are quasilinear. Quasilinearity allows the allocation of resources to

be separated into non-money commodity components and the money commodity.

This, in turn, permits a qualified notion of efficiency with respect to non-money

allocations that is well-defined even if the allocation of money commodity payments

is not consistent with full efficiency, i.e., does not satisfy budget balance with respect
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to the money commodity.

The VCG approach applies on an unrestricted domain of quasilinear preferences.

The main result is that to achieve qualified efficiency and incentive compatibility,

individuals should internalize the externalities they create. This implies that the

money payment associated with the individual’s non-money allocation should, up to

a constant, equal its social cost as measured by its consequences, positive or negative,

on the welfare of others. In principle, this is similar to no externalities. But, in

practice it differs because the absence of budget balance means that the payment

made by the individual causing the externalities is not necessarily received by those

on whom it is imposed. In contrast, by insisting on a characterization of incentive

compatibility with full efficiency— where existence is problematic, we are placing the

quasilinear model on a similar footing to the ordinal model. This repositioning allows

us to demonstrate that the no externalities characterization is equally applicable to

both.

No Change: The no change characterization of efficiency, anonymity and incentive

compatibility with public goods is also the conclusion of other characterizations in-

volving incentive compatibility. In the context of quasilinear preferences, Schum-

mer [14] extends the notion of strategy-proofness (incentive compatibility) to bribe-

proofness, defined as the absence of gain to both from one individual paying another

to misreport his preferences. He shows that when the domain of preferences is suf-

ficiently rich, e.g., smoothly connected, the only bribe-proof allocations are those

precluding change, even when money payments are not required to satisfy budget

balance.

The externalities described here are a consequence of a change in an individual’s

utility caused by a change in the allocation of resources. It does not include those

situations in which an individual can report information that changes the utility of a

given allocation for another individual, called interdependent values. In a quasilinear

model, and also without imposing budget balance, Jehiel et. al. [5] show that on a

rich domain allowing for externalities/public goods as well as interdependent values,

the only incentive compatible allocations are those precluding change.

Public Goods and Social Choice: If the choice set is one dimensional and preferences

are single-peaked, Moulin [10] showed that selecting the most preferred alternative of

the median voter is anonymous, efficient and incentive compatible. If preferences are

convex, they are single-peaked along any one dimension. Zhou [17] showed that when

the dimension of the set of alternatives is greater than one, restricting to continuous

and convex preferences implies that the only incentive compatible mechanisms are
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dictatorial. Barbera and Jackson [1] characterize incentive compatible mechanisms

that are not necessarily efficient or anonymous.

Appendix: Proofs

Proof of Lemma 1 Let (a, bi) = (f0(u), fi(u)) and let (a′, b′i) = (f0(u−i, u
′
i),

fi(u−i, u
′
i)). If ui(a

′, b′i) > ui(a, bi), then person i with the true utility ui will be

better off announcing u′
i. Otherwise, ui(a

′, b′i) 6 ui(a, bi). If (a, bi) 6= (a′, b′i), then, by

the definition of a sharpening, u′
i(a, bi) > u′

i(a
′, b′i), and person i with the true utility

u′
i will be better off announcing ui instead. This leaves (a, bi) as the only possible

outcome of fi(u−i, u
′
i). �

Proof of Lemma 2 For j 6= i, denote u′
j = uj, and denote (a, b1, . . . , bn) = f(u).

Suppose that there exists (a′, b′1, . . . , b
′
n) such that for all j, u′

j(a
′, b′j) > u′

j(a, bj)

and for some k, u′
k(a

′, b′k) > u′
k(a, bk). But if u′

i(a
′, b′i) > (>)u′

i(a, bi), then by the

definition of sharpening, ui(a
′, b′i) > (>)ui(a, bi), a contradiction to the assumption

that (a, b1, . . . , bn) is efficient for u. �

Proof of Theorem 1 The proof is based on the method used by Makowski, Ostroy,

and Segal [7] and is similar to the one used by Serizawa [13, Prop. 1]. As details vary,

we provide a complete proof of the theorem.

Observe first that by the Lipschitz condition (1) and the hypothesis that the

domain of ui is the compact set A × [0, b], there exists M ′ < M such that

|b′ − b| < M ′ ‖a − a′ ‖ .

Let a∗ = f0(u). Since the mechanism utilizes all of b (that is,
∑n

i=1 fi(u) =

b − ϕ(a∗)), it follows that if not all agents receive the same quantity of the b-good,

then there is some i, say i = 1, such that f1(u) > [b − ϕ(a∗)]/n. Define

u∗(a, b) = b − M ′ ‖a − a∗‖

Clearly, u∗ is a strict sharpening of all the functions ui at (a∗, b) for all b. Let

u1 = (u−1, u
∗) and obtain by Lemma 1 that f0(u

1) = f0(u) = a∗ and f1(u
1) =

f1(u) > [b − ϕ(a∗)]/n.

Since f1(u
1) > [b − ϕ(a∗)]/n and

∑n

i=1 fi(u
1) = b − ϕ(a∗), there must be another

person, say 2, such that f2(u
1) < [b − ϕ(a∗)]/n. Let u2 = (u1

−2, u
∗). Again by

Lemma 1, f2(u
2) = f2(u

1) and f0(u
2) = f0(u

1) = a∗. But now consumers 1 and
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2 have the same utility function, therefore, by anonymity, both receive the same

amount of b, which is strictly less than [b−ϕ(a∗)]/n. So there is another person, say

3, such that f3(u
2) > [b− ϕ(a∗)]/n. Continuing to replace the utility functions of all

individuals by u∗ we get at the end that all consumers have the same utility function,

but either for all i, fi > [b − ϕ(a∗)]/n (n is odd), or for all i, fi < [b − ϕ(a∗)]/n (n is

even). In both cases we get a violation of
∑

bi = b − ϕ(a∗). �

The proof of Theorem 2 will utilize Prop. 1 below. We defined in eq. (3)

Ψ(a, b; u) = {(∆a, ∆b) : u(a + ∆a, b + ∆b) > u(a, b)}

In addition, (∆a, ∆b) on the boundary of Ψ(a, b; u) satisfies the Lipschitz property (1).

Fixing the price of the b good to be 1, let

Ψ∗(a, b; u) = {p : (p, 1) · Ψ(a, b; u) > 0}

define the normals to the set of supporting hyperplanes to Ψ(a, b; u) at (a, b). The

convexity and Lipschitz properties of Ψ(a, b; u) plus the fact that Ψ(a, b; u) contains

the zero element on its boundary imply that Ψ∗(a, b; u) 6= ∅.

The geometry of production is based on

Υ(a, ϕ(a)) = {(∆a, ∆b) : ∆b > ϕ(a + ∆a) − ϕ(a)}.

Using the same normalization for the b good, let

Υ∗(a, ϕ(a)) = {p : (p,−1) · Υ(a, ϕ(a)) 6 0}.

Reflecting its cost, the price of the b good enters with a minus sign. Again, the

convexity and Lipschitz properties of ϕ and the fact that the zero element is on its

boundary imply that Υ∗(a, ϕ(a)) 6= ∅.

The aggregate as-least-as-good-as change set for u at f(u) = (f0(u), fi(u)) is:

Φ(f(u);u) = {(∆a, ∆b) : ∀i (∆a, ∆bi) ∈ Ψ(f0(u), fi(u); ui),
∑

i

∆bi = ∆b}.

Note: the same ∆a is applied in each Ψ(f0(u), fi(u); ui).

The convexity of Φ(f(u);u) and Υ(f0(u), ϕ(f0(u))) is well-known to imply that

Proposition 1 (pricing and efficiency) The mechanism f is efficient at u iff there

exists p ∈ Υ∗(f0(u), ϕ(f0(u)) and pi ∈ Ψ∗(f0(u), fi(u); ui) satisfying
∑

pi = p such

that

(p,−1) · Υ(f0(u), ϕ(f0(u))) 6 0 6
∑

i

(pi, 1) · Ψ(f0(u), fi(u), ui).
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Equivalently,

0 ∈ Φ∗(f(u);u) −Υ∗(f0(u), ϕ(f0(u)).

Proof of Theorem 2 Let u,u′ ∈ D, and suppose that f0(u) = a∗ but f0(u
′) = a′ 6=

a∗. As D is minimally comprehensive around u, we can assume wlg that

1. a∗ = f0(u),

2. there exists i such that for all j 6= i, uj is a sharpening of uj at (a∗, [b−ϕ(a∗)]/n),

3. u′ = (u−i, u
′
i).

We deal first with the case of no production cost (that is, ϕ ≡ 0). By Theorem 1, for

all j, fj(u) = fj(u
′) = b/n. We assume first that for all i, ui(a

∗, b/n) 6= ui(a
′, b/n)

and u′
i(a

∗, b/n) 6= u′
i(a

′, b/n).

The arguments below relate essentially to a line in ℜk, so we assume first one

public good only. We show at the end of the proof how to extend it to many goods.

Assume, wlg, a′ < a∗.

First we want to replace, for all j 6= i, the function uj with ũj which will satisfy

the following requirements (See Fig. 3).

1. It will be a sharpening of uj at (a∗, b/n);

2. It will be a sharpening of uj at (a′, b/n);

3. The slopes of its indifference curves along the [a′, a∗] segment will be constant.

As
∑

bj = b and for all j, bj > 0, the relevant domain over which all utilities are

defined is compact. There exists therefore M ′′ < M such that for all j, uj satisfies the

Lipschitz condition with respect to M ′′. Choose M ′ ∈ (M ′′, M) and let the slope of all

indifference curves of ũj be −M ′ to the left of a′ and M ′ to the right of a∗. We assumed

that for all j 6= i, uj(a
∗, b/n) 6= uj(a

′, b/n). Suppose that uj(a
′, b/n) < uj(a

∗, b/n).

Let b′ < b/n such that uj(a
′, b/n) < uj(a

∗, b′) and define the slope of the indifference

curves of ũj between a′ and a∗ to be −(b/n− b′)/(a∗ − a′) The construction of ũj for

the case uj(a
′, b/n) > uj(a

∗, b/n) is similar.

Denote

• ũ = (. . . , ũi−1, ui, ũi+1, . . .);

• ũ′ = (. . . , ũi−1, u
′
i, ũi+1, . . .);

19



a′ a∗

b
n

b

b′

uj

ũj

Figure 3: Before and after sharpenings at a′ and a∗

By Lemma 1, f0(ũ) = a∗ and f0(ũ
′) = a′. Recall that a′ < a∗, and let

• x =
∑

j 6=i MRSb,a(ũj(a, b/n)) for a ∈ (a′, a∗);

• y = lima↑a∗ MRSb,a(ui(a, b/n));

• z = lima↓a′ MRSb,a(u′
i(a, b/n)).

By the construction of ũj, x is constant along (a′, a∗). By the efficiency of f0(ũ) = a∗

and f0(ũ
′) = a′, we obtain that x + y 6 0 but x + z > 0 (see Prop. 1). Our aim is to

show that person i has the ability to manipulate f0 to his benefit, a violation of IC.

As x + y 6 0 but x + z > 0, and as |y|, |z| < M ′, it follows that x ∈ (−M ′, M ′).

Let ûη
i be such that for all b,

MRSb,a(ûη
i (a, b)) =











−M ′ a < a′

−η a ∈ (a′, a∗)

M ′ a > a∗

By Prop. 1, if η + x < 0 [resp., η + x > 0], then the only efficient point where the

private good is equally allocated is a∗ [resp., a′]. Therefore, if x > 0, then person

i with the utility û−x+ε, 0 < ε < min{M − M ′, |x|}, can switch the economy from

a′, where it will be if he declares û−x+ε, to a∗, which he favors, by stating û−x−ε.
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Similarly, if x < 0, person i with the true utility û−x−ε can switch the economy from

a∗, where it will be if he declares û−x−ε, to a′, which he favors, by stating û−x+ε. If

x = 0, sharpen slightly the utility of one person j 6= i at a∗ and follow the same

analysis.

We assumed that for all j 6= i, uj(a
∗, b/n) 6= uj(a

′, b/n). If for some j 6= i,

uj(a
∗, b/n) = uj(a

′, b/n), then it is impossible to satisfy points 1 and 2 in the con-

struction of ũj. In that case define ũj as above, only that between a′ and a∗ the slope

of the indifference curves will be zero. By construction a∗ = f0(ũ) and a′ = f0(ũ
′),

as these are the only efficient allocations satisfying an equal allocation of the private

good.

Our analysis was done with respect to one public good only. We only provide a

sketch of a proof for the general case, based on the above analysis. To extend the

sharpening of Fig. 3 to ℜk, recall that the vertical axis in this figure represents the

private commodity and the horizontal axis is the line through (a′, 0) and (a∗, 0). The

sharpening in the other directions will be to the slope of −M ′ (or, when necessary,

−M ′′) towards the indifference curves of the picture.

Lastly, we extend the proof to the case of non-zero production cost. Let (D, f)

be first order and suppose that the mechanism f on D satisfies efficiency, anonymity,

and incentive compatibility when the cost function is ϕ. We use this mechanism to

create a mechanism g on a first order domain D′ that satisfies efficiency, anonymity,

and incentive compatibility when there are no production costs.

For every u ∈ U , define v(a, b; u) = u(a, b−ϕ(a)/n) and for u = (u1, . . . , un) ∈ Un,

let v(u) = (v1(·; u), . . . , vn(·; u)). Observe that since u and ϕ are Lipschitz, so is v(·; u)

(even if with a different constant). Let D′ = {v(u) : u ∈ D}, and define a mechanism

g for the domain D′ by

• g0(v(u)) = f0(u); and

• gi(v(u)) = fi(u) + ϕ(f0(u))
n

Lemma 3 (g,D′) is first order.

Proof For every profile of utilities in D′ there is a profile in D generating it. So let

v(u) ∈ D′ and let v′
i be a sharpening of vi at (g0(v), gi(v)). Since g0(v(u)) = f0(u)

and gi(v(u)) = fi(u) + ϕ(f0(u))
n

, the function u′
i(a, b) := v′

i(a, b + ϕ(a)
n

) is a sharpening

of ui at (f0(u), fi(u)). By the comprehensibility of D, u′ = (u′
1, . . . , u

′
n) ∈ D, and as

v′ = v′(u′), v′ ∈ D′. �

Lemma 4 The mechanism g on D′ satisfies efficiency, anonymity, and incentive

compatibility.
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Proof The proof follows by the fact that the mechanism f on D satisfies these three

properties.

Efficiency: We utilize here a variant of Proposition 1. When the cost of the public

good is given by the convex function ϕ(a), the set Υ(a, ϕ(a)) = {(∆a, ∆b) : ϕ(a +

∆a) + ∆b > ϕ(a)} is convex, as is Υ∗(a, ϕ(a)) = {p : (p, 1) · (∆a, ∆b) 6 0, (∆a, ∆b) ∈

Υ(a, ϕ(a))}. It is well-known that for convex Ψ, a mechanism f is efficient at u iff

0 ∈
∑

i

Ψ∗(f0(u), fi(u); ui) + Υ∗(f0(u),
∑

i

fi(u)) (7)

By definition,

Ψ∗(g0(v(u)), gi(v(u)); vi(ui)) = Ψ∗(f0(u), fi(u); ui) +
1

n
∇(ϕ)

Hence by eq. (7) efficiency is satisfied.

Anonymity: Suppose vi(ui) = vj(uj). Then ui = uj. Since f satisfies anonymity,

fi(u) = fj(u) and gi(v(u)) = gj(v(u)).

Incentive Compatibility: Let v and v′ = (v−i, v
′) be in D′. So there are u1, . . . , un, u

′

such that u and u′ := (u−i, u
′
i) are in D, v = v(u), and v′ = v′(u′)). By definition

and the incentive compatibility of f ,

vi(g(v′)) = vi(g0(v
′), gi(v

′)) =

vi(f0(u
′), fi(u

′) + ϕ(f0(u′))
n

) =

ui(f0(u
′), fi(u

′)) =

ui(f(u′)) 6

ui(f(u)) =

ui(f0(u), fi(u)) =

vi(f0(u)), fi(u) + ϕ(f0(u))
n

) =

vi(g0(v), gi(v)) = vi(g(v)) �

We obtain that g satisfies all the requirements of Theorem 2 for the case ϕ ≡ 0,

and therefore g exhibits no change mechanism. Since g0(v(u)) = f0(u), it follows

that f too exhibits no change. �

Proof of Theorem 3 We prove the theorem for the case of zero production cost.

The extension to the general case is similar to the one used in the proof of Theorem 2.

Observe first that by Theorem 2, the minimally comprehensive domain around

u ∈ Un is D(u, f(u)) (see eq. (5)). Given u ∈ D(u, f(u)) we may therefore assume,

wlg, that
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(∗) For all i > 1, ui is a sharpening of ui at (f0(u), b/n).

Similarly to Theorem 1, we can prove the following for g:

Fact 1 If for some u ∈ D(u, f(u)), g0(u) = a∗ := f0(u), then for all i, gi(u) = b/n.

We say that the function u(a, b) is locally quasilinear around (ao, bo) if there is

ε > 0, a function v : A → ℜ, and an increasing function h : ℜ → ℜ such that

|u(a, b) − u(ao, bo)| < ε =⇒ h(u(a, b)) = v(a) + b

Suppose that for some u ∈ D(u, f(u)), g(u) = a 6= a∗ = f0(u). We first create an

economy u′ such that for all i

• g0(. . . , u
′
i, ui+1, . . .) 6= a∗

• u′
i is quasiconcave and is a sharpening of ui at (a∗, b/n)

• u′
i is locally quasilinear around (a∗, b/n)

Denote ui = (. . . , u′
i, ui+1, . . .). Suppose we created u′

i−1 and construct u′
i.

Case 1. If

ui(g0(u
i−1), gi(u

i−1)) < ui(a
∗, b

n
)

then replace ui with u′
i = u∗, given by

u∗(a, b) = b − M ′ ‖a − a∗ ‖ (8)

for some M ′ ∈ (M ′′, M) where M ′′ is such that for all j, uj satisfies the Lipschitz

condition with respect to M ′′. Clearly, u∗ is quasilinear and a sharpening of ui at

(a∗, b/n). By fact 1, if g0(u
i) = a∗, then gi(u

i) = b/n and person i benefits from

replacing ui with u′
i, a violation of IC, hence g0(u

i) 6= a∗.

Case 2. If

ui(g0(u
i−1), gi(u

i−1)) = ui(a
∗, b

n
) (9)

then, using the same technique as in the proof of Theorem 2 (see Fig. 3), replace

ui with u′
i which is a sharpening of ui at (a∗, b/n) and at (g0(u

i−1), gi(u
i−1)) such

that eq. (9) is satisfied with u′
i. As eq. (9) restricts one indifference curve only, we

can construct u′
i to be quasilinear, and by construction, u′

i is quasiconcave. The

function u′
i is only a weak sharpening of ui at (g0(u

i−1), gi(u
i−1)), but it is the limit of

sharpenings u′
i,m of ui at (g0(u

i−1), gi(u
i−1)). The functions u′

i,m are not sharpenings
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of ui at (a∗, b/n), but our domain permits one person’s utility to be any function in

U . If i = 1, then by condition (∗), for all other agent j, his utility is a sharpening of

uj at (a∗, b/n). If i > 1, then person 1 utility was already replaced by a sharpening of

u1 at (a∗, b/n) (see steps 1 and 3). As u′
i,m is a sharpening of ui at (g0(u

i−1), gi(u
i−1)),

it follows by Theorem 1 that

g0(u
i−1
−i , u′

i,m) = g0(u
i−1) 6= a∗

and by continuity, g0(u
i) 6= a∗.

Case 3. If

ui(g0(u
i−1), gi(u

i−1)) > ui(a
∗, b

n
)

then replace ui with u′
i which is depicted on Fig. 4. This function is locally quasilinear

around (a∗, b/n). It is quasiconcave, and a sharpening of ui at (a∗, b/n). It is also a

sharpening of ui at (g0(u
i−1), gi(u

i−1)). We thus obtain that g0(u
i) = g0(u

i−1) 6= a∗.

a∗ g0(u
i−1)

b
n

gi(u
i−1)

ui

u′
i

Figure 4: The function u′
i of Case 3. Area of local quasilinearity is shadowed

We now have the economy u′ which is in the domain D(u, f(u)). For each i, u′
i

is a sharpening of ui at (a∗, b/n), and g0(u
′) 6= a∗. By efficiency it is not the case

that for all i, u′
i = u∗ (see eq. (8)). Replace the utilities of those agents whose utility
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is not u∗ with u∗, one at a time. There is an agent i such that replacing his utility

u′
i with u∗ will change the quantity of the public good from a′ 6= a∗ to a∗. Denote

the profile before i makes the change u′′. Consider the path {uα
i := αu∗ + (1− α)u′

i}

where α ∈ [0, 1]. Denote uα = (u′′
−i, u

α
i ). As both u∗ and u′

i are quasiconcave, and

as each indifference curve of u∗ is a sharpening of an indifference curve of u′
i at a

point along the line a = a∗, it follows that each element of the path is a quasiconcave

function. Moreover, as both u∗ and u′
i are locally quasilinear around (a∗, b/n), so is

each element of the path.

The point a∗ (together with equal allocation of the money commodity) is an

efficient allocation for u, as it is the outcome of the mechanism f for that profile.

Its efficiency does not disappear when utility functions are replaced with sharpenings

at (a∗, b/n). Consider a profile ũα where for every j, ũα
j is quasilinear, and shares

with uα
j the indifference curve through (a∗, b/n). It is well-known that for quasilinear

utility, a necessary and condition for efficiency of (a, b1, . . . , bn) when each bi > 0 is

that
∑

i vi(a
∗) = maxa

∑

i vi(a). This, and Fact 1 imply that (a∗, b/n, . . . , b/n) is

the only efficient IC outcome for ũα. But all the utility functions of the profile uα

are locally quasilinear around (a∗, b/n, . . . , b/n), and moreover, for each j, there is a

constant segment along the line a = a∗ around b/n that belongs to the quasilinear

region. Therefore, there is a neighborhood of (a∗, b/n, . . . , b/n) where this point is

the only efficient IC outcome for all α. As this point is not the outcome of the

mechanism for α = 0, but it is the outcome of the mechanism for α = 1, we obtain

a contradiction. Therefore on the domain D(u, f(u)), g0 ≡ a∗, and by Fact 1 the

private good is allocated equally to all, as in the mechanism f . �

Proof of Corollary 1 Incentive compatibility of the mechanism follows from the fact

that the mechanism on this domain is constant. Anonymity follows by the fact that

everyone receives the same quantity of b. Next we prove efficiency. Define Li(a
∗, a, b)

to be the amount of private good compensation (positive or negative) person i with

the utility function ui will require to move from a∗ to a, given that he holds b units

of the private commodity. By the definition of Li, if the economy shifts from a∗ to a,

total compensation (in terms of the b good) required to keep every one at the same

utility level is
∑n

i=1 Li(a
∗, a, b

n
) which is positive, hence (a∗, b/n, . . . , b/n) is efficient

for u.

Let u′ ∈ D and suppose that person i’s utility is not a sharpening of ui at (a∗, b/n).

As the biggest change in Li person i can obtain is from −M to M or from M to −M ,

and as, by the definition of minimally comprehensive domains, the utilities u′
j of

all other individuals j are sharpenings of uj at (a∗, b/n), it follows by eq. (6) that
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(a∗, b/n, . . . , b/n) is still efficient. �

Proof of Corollary 3 For u′ ∈ D(u, a∗), the mechanism is given by f0(u
′) = a∗ and

f1(u
′) = · · · = fn(u′) = b/n. Note that a profile u′ can satisfy inequality (6) at not

more than one of the two points (a∗, b/n, . . . , b/n) and (a∗∗, b/n, . . . , b/n). Therefore,

if (u, a∗) and (u, a∗∗) satisfy (6), then a∗ 6= a∗∗ implies D(u, a∗)∩D(u, a∗∗) = ∅. Note

that for all u′ ∈ D(u, a∗), f(u′) = a∗ and for all u′ ∈ D(u, a∗∗), f(u′) = a∗∗. The

domain D is therefore well-defined. �
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