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Abstract

A method is given for quantitatively rating the social acceptance of
different options which are the matter of a preferential vote.
The proposed method is proved to satisfy certain desirable conditions,
among which there is a majority principle, a property of clone con-
sistency, and the continuity of the rates with respect to the data.
One can view this method as a quantitative complement for a qualita-
tive method introduced in 1997 by Markus Schulze. It is also related
to certain methods of one-dimensional scaling or cluster analysis.

Keywords: preferential voting, Condorcet, paired comparisons, ma-
jority principle, clone consistency, approval voting, continuous rating,
one-dimensional scaling, ultrametrics, Robinson condition, Greenberg
condition.

AMS subject classifications: 05C20, 91B12, 91B14, 91C15, 91C20.

The outcome of a vote is often expected to entail a quantitative rating of
the candidate options according to their social acceptance. Some voting
methods are directly based upon such a rating. This is the case when each
voter is asked to choose one option and each option is rated by the fraction
of the vote in its favour. The resulting rates can be used for filling a single
seat (first past the post) or for distributing a number of them (proportional
representation). A more elaborate voting method based upon quantitative
rates was introduced in 1433 by Nikolaus von Kues [23 : § 1.4.3, § 4 ] and again
in 1770–1784 by Jean-Charles de Borda [23 : § 1.5.2, § 5 ]. Here, each voter is
asked to rank the different options in order of preference and each option is
rated by the average of its ranks, i. e. the ordinal numbers that give its posi-
tion in these different rankings (this formulation differs from the traditional
one by a linear function). For future reference in this paper, these two rating
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methods will be called respectively the method of first-choice fractions
and the method of average ranks .

However, both of these methods have important drawbacks, which leads
to the point of view of paired comparisons , where each option is con-
fronted with every other by counting how many voters prefer the former to
the latter and vice versa. From this point of view it is quite natural to abide
by the so-called Condorcet principle: an option should be deemed the win-
ner whenever it defeats every other one in this sort of tournament. This
approach was introduced as early as in the thirteenth century by Ramon
Llull [23 : § 1.4.2, § 3 ], and later on it was propounded again by the marquis
of Condorcet in 1785–1794 [23 : § 1.5.4, § 7 ], and by Charles Dodgson, alias
Lewis Carroll, in 1873–1876 [ 2 ; 23 : § 12 ]. Its development gives rise to a va-
riety of methods, some of them with remarkably good properties. This is
particularly the case of the method of ranked pairs , proposed in 1986/87
by Thomas M. Zavist and T. Nicolaus Tideman [37, 40 ], and the method
introduced in 1997 by Markus Schulze [34, 35 ], which we will refer to as the
method of paths . In spite of the fact that generally speaking they can pro-
duce different results, both of them comply with the Condorcet principle and
they share the remarkable property of clone consistency [38, 34 ].

Nevertheless, these methods do not immediately give a quantitative rating
of the candidate options. Instead, they are defined only as algorithms for
determining a winner or at most a purely ordinal ranking. On the other
hand, they are still based upon the quantitative information provided by the
table of paired-comparison scores, which raises the question of whether their
qualitative results can be consistently converted into quantitative ratings.

In [26 : § 10 ] a quantitative rating algorithm was devised with the aim
of complementing the method of ranked pairs. Although a strong evidence
was given for its fulfilling certain desirable conditions —like the ones stated
below—, it was also pointed out that it fails a most natural one, namely
that the output, i. e. the rating, be a continuous function of the input,
i. e. the frequency of each possible content of an individual vote. In fact,
such a lack of continuity seems unavoidable when the method of ranked
pairs is considered and those other conditions are imposed. In contrast, in
this paper we will see that the method of paths does admit such a continuous
rating procedure.

Our method can be viewed as a projection of the matrix of paired-
comparison scores onto a special set of such matrices. This projection is
combined with a subsequent application of two standard rating methods,
one of which the method of average ranks. The overall idea has some points
in common with [32 ].
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We will refer to the method described in this paper as the CLC rating
method , where the capital letters stand for “Continuous Llull Condorcet”.

The paper is organized as follows: In section 1 we state the problem
which is to be solved and we make some general remarks. Section 2 presents
an heuristic outline of the proposed method. Section 3 gives a summary of
the procedure, after which certain variants are introduced. Section 4 presents
some illustrative examples. Finally, sections 5–18 give detailed mathematical
proofs of the claimed properties for the main variant.

The reader interested to try the CLC method can make use of the tool
which is available at http://mat.uab.cat/~xmora/CLC calculator/.

1 Statement of the problem and general remarks

1.1 We consider a set of N options which are the matter of a vote. Al-
though more general cases will be included later on (§ 3.3), for the moment
we assume that each voter expresses his preferences in the form of a ranking;
by it we mean an ordering of the options in question by decreasing degree
of preference, with the possibility of ties and/or truncation (i. e. expressing
a top segment only). We want to aggregate these individual preferences into
a social rating, where each option is assigned a rate that quantifies its social
acceptance.

In some places we will restrict our attention to the case of complete votes.
For ranking votes, we are in such a situation whenever we are dealing with
non-truncated rankings. As we will see, the incomplete case will give us much
more work than the complete one.

We will consider two kinds of ratings, which will be referred to respectively
as rank-like ratings and fraction-like ones. As it is suggested by these names,
a rank-like rating will be reminiscent of a ranking, whereas a fraction-like
one will evoke the notion of proportional representation. Our method will
produce both a rank-like rating and a fraction-like one. They will agree with
each other in the ordering of the candidate options, except that the ordering
implied by the fraction-like rating may be restricted to a top segment of the
other one. Quantitatively speaking, the two ratings have different meanings.
In particular, the fraction-like rates can be viewed as an estimate of the first-
choice fractions based not only on the first choices of the voters, but also on
the whole set of preferences expressed by them. In contrast, the rank-like
rates are not focused on choosing, but they aim simply at positioning all the
candidate options on a certain scale.
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More specifically, the two ratings are asked to satisfy the following con-
ditions:

A Scale invariance. The rates depend only on the relative frequency
of each possible content of an individual vote. In other words, if
every individual vote is replaced by a fixed number of copies of it,
the rates remain exactly the same.

B Permutation equivariance. Applying a certain permutation of the
options to all of the individual votes has no other effect than getting
the same permutation in the social rating.

C Continuity. The rates depend continuously on the relative frequency
of each possible content of an individual vote.

The next conditions apply to the rank-like rating:

D Rank-like range. Each rank-like rate is a number, integer or frac-
tional, between 1 and N . The best possible value is 1 and the worst
possible one is N .

E Rank-like decomposition. Let us restrict the attention to the com-
plete case. Consider a splitting of the options into a ‘top class’ X
plus a ‘low class’ Y . Assume that all of the voters have put each
member of X above every member of Y . In that case, and only in
that case, the rank-like rates can be obtained separately for each of
these two classes according to the corresponding restriction of the
ranking votes (with the proviso that the unassembled low-class rates
differ from the assembled ones by the number of top-class members).

In its turn, the fraction-like rating is required to satisfy the following condi-
tions:

F Fraction-like character. Each fraction-like rate is a number greater
than or equal to 0. Their sum is equal to a fixed value. More
specifically, we will take this value to be the participation fraction,
i. e. the fraction of non-empty votes.

G Fraction-like decomposition. Consider the same situation as in E
with the additional assumption that there is no proper subset of X
with the same splitting property as X (namely, that all voters have
put each option from that set above every one outside it). In that
case, and only in that case, the top-class fraction-like rates are all
of them positive and they can be obtained according to the cor-
responding restriction of the ranking votes, whereas the low-class
fraction-like rates are all of them equal to 0.
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H Case of plumping votes. Assume that each voter plumps for a sin-
gle option. In that case, the fraction-like rates coincide with the
fractions of the vote obtained by each option.

Furthermore, we ask for some properties that concern only the concomitant
social ranking, i. e. the purely ordinal information contained in the social
rating:

I Majority principle. Consider a splitting of the options into a ‘top
class’ X plus a ‘low class’ Y . Assume that for each member of X
and every member of Y there are more than half of the individual
votes where the former is preferred to the latter. In that case, the
social ranking also prefers each member of X to every member of Y .

J Clone consistency. A setC of options is said to be a cluster (of clones)
for a given ranking when each element from outside C compares
with all elements of C in the same way (i. e. either it lies above all
of them, or it lies below all of them, or it ties with all of them).
In this connection, it is required that if a set of options is a cluster
for each of the individual votes, then: (a) it is a cluster for the social
ranking; and (b) contracting it to a single option in all of the in-
dividual votes has no other effect in the social ranking than getting
the same contraction.

1.2 Let us emphasize that the individual votes that we are dealing with do
not have a quantitative character (at least for the moment): each voter is
allowed to express a preference for x rather than y , or vice versa, or maybe
a tie between them, but he is not allowed to quantify such a preference.

This contrasts with ‘range voting’ methods, where each individual vote is
already a quantitative rating [36, 1 ]. Such methods are free from many of the
difficulties that lurk behind the present setting. However, they make sense
only as long as all voters mean the same by each possible value of the rating
variable. This hypothesis may be reasonable in some cases, but quite often
it is hardly applicable (a typical symptom of its not being appropriate is a
concentration of the rates in a small set independently of which particular
options are under consideration). In such cases, it is quite natural that the
individual votes express only qualitative comparisons between pairs of op-
tions. If the issue is not too complicated, one can expect these comparisons
to form a ranking. In the own words of [1a ], “When there is no common lan-
guage, a judge’s only meaningful input is the order of his grades”. Certainly,
the judges will agree upon the qualitative comparison between two options
much more often than they will agree upon their respective rates in a certain
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scale. Such a lack of quantitative agreement may be due to truly different
opinions; but quite often it is rather meaningless. Of course, the rates will
coincide more easily if a discrete scale of few grades is used. But then it
may happen that the judges rate equally two options about which they all
share a definite preference for one over the other, in which case these discrete
rates are throwing away genuine information. Anyway, voting is often used
in connection with moral, psychological or aesthetic qualities, whose appre-
ciation may be as little quantifiable, but also as much “comparable”, as, for
instance, the feelings of pleasure or pain.

So, in our case the quantitative character of the output is not present
in the individual votes (unless we adopt the general setting considered at
the end of § 3.3), but it derives from the fact of having a number of them.
The larger this number, the more meaningful is the quantitative character of
the social rating. This is especially applicable to the continuity property C,
according to which a small variation in the proportion of votes with a given
content produces only small variations in the rates. In fact, if all individual
votes have the same weight, a few votes will be a small proportion only in the
measure that the total number of votes is large enough.

In this connection, it should be noticed that property C differs from
the continuity property adopted in [1 ] (axiom 6), which does not refer to
small variations in the proportion of votes with a given content, but to small
variations in the quantitative content of each individual vote. In the general
setting considered at the end of § 3.3, the CLC method satisfies not only the
continuity property C, but also the axiom 6 of [1 ]; in contrast, the “majority-
grade” method considered in [1 ] satisfies the latter but not the former.

1.3 One can easily see that the method of average ranks satisfies conditions
A–E. In principle that method assumes that all of the individual votes are
complete rankings; however, one can extend it to the general case of rankings
with ties and/or truncation while keeping those conditions (it suffices to use
formula (6) of § 2.5). In their turn, the first-choice fractions are easily seen
to satisfy conditions A–C and F–H. However, neither of these two methods
satisfies conditions I and J. In fact, these conditions were introduced precisely
as particularly desirable properties that are not satisfied by those methods
[23, 2, 38 ].

Of course, one can go for a particular ranking method that satisfies con-
ditions I and J and then look for an appropriate algorithm to convert the
ranking result into the desired rating according to the quantitative informa-
tion coming from the vote. But this should be done in such a way that the
final rating be always in agreement with the ranking method as well as in
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compliance with conditions A–H, which is not so easy to achieve. From this
point of view, our proposal can be viewed as providing such a complement
for one of the variants of the method of paths [34, 35 ].

1.4 When the set X consists of a single option, the majority principle I
takes the following form:

I1 Majority principle, winner form. If an option x has the property
that for every y 6= x there are more than half of the individual votes
where x is preferred to y , then x is the social winner.

In the complete case the preceding condition is equivalent to the following
one:

I1 ′ Condorcet principle. If an option x has the property that
for every y 6= x there are more individual votes where x is pre-
ferred to y than vice versa, then x is the social winner.

However, we want to admit the possibility of individual votes where no in-
formation is given about certain pairs of options. For instance, in the case of
a truncated ranking it makes sense to interpret that there is no information
about two particular options which are not present in the list. In that case
condition I1 is weaker than I1 ′ , and the CLC method will satisfy only the
weaker version.

This lack of compliance with the Condorcet principle and its being re-
placed by a weaker condition may be considered undesirable. However, other
authors have already remarked that such a weakening of the Condorcet
principle is necessary in order to be able to keep other properties [39 ] (see
also [18 ]). In our case, Condorcet principle seems to conflict with the con-
tinuity property C (see § 3.3). On the other hand, the Condorcet principle
was originally proposed in connection with the complete case [23 ], its gener-
alization in the form I1 ′ instead of I1 being due to later authors. Even so,
nowadays it is a common practice to refer to I1 ′ by the name of “Condorcet
principle’.

1.5 As we mentioned in the preceding subsection, we want to admit the
possibility of individual votes where no information is given about certain
pairs of options. In this connection, the CLC method will carefully dis-
tinguish a definite indifference about two or more options from a lack of
information about them (see [13 ]). For instance, if all of the individual votes
are complete rankings but they balance into an exact social indifference —in
particular if each individual vote expresses such a complete indifference—,
the resulting rank-like rates will be all of them equal to (N+1)/2 and the cor-
responding fraction-like rates will be equal to 1/N . In contrast, in the case of
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a full abstention, i. e. where no voter has expressed any opinion, the rank-like
rates will be all of them equal to N and the corresponding fraction-like rates
will be equal to 0.

Although the decomposition conditions E and G have been stated only
for the complete case, some partial results of that sort will hold under more
general conditions. In particular, the following condition will be satisfied
for general, possibly incomplete, ranking votes: The winner will be rated
exactly 1 (in both the rank-like rating and the fraction-like one) if and only if
all of the voters have put that option into first place.

Conditions E and G, as well as the preceding property, refer to cases
where “all of the voters” proceed in a certain way. Of course, it should
be clear whether we mean all of the “actual” voters or maybe all of the
“potential” ones (i. e. actual voters plus abstainers). We assume that one has
made a choice in that connection, thus defining a total number of voters V .
Considering all potential voters instead of only the actual ones has no other
effect than contracting the final rating towards the point where all rates take
the minimal value (namely, N for rank-like rates and 0 for fraction-like
ones).

1.6 It is interesting to look at the results of the CLC rating method when
it is applied to the approval voting situation, i. e. the case where each voter
gives only a list of approved options, without any expression of preference
between them. In such a situation it is quite natural to rate each option
by the number of received approvals; the resulting method has pretty good
properties, not the least of which is its eminent simplicity [6 ].

Now, an individual vote of approval type can be viewed as a truncated
ranking which ties up all of the options that appear in it. So it makes sense
to apply the CLC rating method. Quite remarkably, one of its variants turns
out to order the options in exactly the same way as the number of received
approvals (see § 17). More specifically, the variant in question corresponds
to interpreting that the non-approved options of an individual vote are tied
to each other. However, the main variant, which acknowledges a lack of
comparison between non-approved options, can lead to different results.

2 Heuristic outline

This section presents our proposal as the result of a quest for the desired
properties. Hopefully, this will communicate the main ideas that lie behind
the formulas.
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2.1 The aim of complying with conditions I and J calls for the point of
view of paired comparisons . In accordance with it, our procedure will be
based upon considering every pair of options and counting how many voters
prefer one to the other or vice versa. To that effect, we must adopt some
rules for translating the ranking votes (possibly truncated or with ties) into
binary preferences. In principle, these rules will be the following:

(a) When x and y are both in the list and x is ranked above y (without
a tie), we certainly interpret that x is preferred to y .

(b) When x and y are both in the list and x is ranked as good as y ,
we interpret it as being equivalent to half a vote preferring x to y
plus another half a vote preferring y to x .

(c) When x is in the list and y is not in it, we interpret that x is
preferred to y .

(d) When neither x nor y are in the list, we interpret nothing about
the preference of the voter between x and y .

Later on (§ 3.2, 3.3) we will consider certain alternatives to rules (d) and (c).

The preceding rules allow us to count how many voters support a given bi-
nary preference, i. e. a particular statement of the form “x is preferable to y”.
By doing so for each possible pair of options x and y , the whole vote gets
summarized into a set of N(N−1) numbers (since x and y must be different
from each other). We will denote these numbers by Vxy and we will call them
the binary scores of the vote. The collection of these numbers will be called
the Llull matrix of the vote. Since we look for scale invariance, it makes
sense to divide all of these numbers by the total number of votes V , which
normalizes them to range from 0 to 1. In the following we will work mostly
with these normalized scores, which will be denoted by vxy . In practice,
however, the absolute scores Vxy have the advantage that they are integer
numbers, so we will use them in the examples.

In general, the numbers Vxy are bound to satisfy Vxy+Vyx ≤ V , or equiv-
alently vxy + vyx ≤ 1. The special case where the ranking votes are all of
them complete, i. e. without truncation, is characterized by the condition
that Vxy +Vyx = V , or equivalently vxy +vyx = 1. From now on we will refer
to such a situation as the case of complete votes .

Besides the scores vxy , in the sequel we will often deal with the margins
mxy and the turnovers txy , which are defined respectively by

mxy = vxy − vyx, txy = vxy + vyx. (1)

Obviously, their dependence on the pair xy is respectively antisymmetric
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and symmetric, that is

myx = −mxy, tyx = txy. (2)

It is clear also that the scores vxy and vyx can be recovered from mxy and
txy by means of the formulas

vxy = (txy+mxy)/2, vyx = (txy−mxy)/2. (3)

2.2 A natural candidate for defining the social preference is the following:
x is socially preferred to y whenever vxy > vyx . Of course, it can happen
that vxy = vyx , in which case one would consider that x is socially equivalent
to y . The binary relation that includes all pairs xy for which vxy > vyx will
be denoted by µ(v) and will be called the comparison relation ; together
with it, we will consider also the adjoint comparison relation µ̂(v) which
is defined by the condition vxy ≥ vyx .

As it is well-known, the main problem with paired comparisons is that
the comparison relations µ(v) and µ̂(v) may lack transitivity even if the
individual preferences are all of them transitive [23, 2 ]. More specifically,
µ(v) can contain a ‘Condorcet cycle’, i. e. a sequence x0x1 . . . xn such that
xn = x0 and xixi+1 ∈ µ(v) for all i .

A most natural reaction to it is going for the transitive closure of µ̂(v),
which we will denote by µ̂∗(v). By definition, µ̂∗(v) includes all (ordered)
pairs xy for which there is a path x0x1 . . . xn from x0 = x to xn = y
whose links xixi+1 are all of them in µ̂(v). In other words, we can say that
µ̂∗(v) includes all pairs that are “indirectly related” through µ̂(v). However,
this operation replaces each cycle of intransivity by an equivalence between
its members. Instead of that, we would rather break these equivalences
according to the quantitative information provided by the scores vxy . This
is what is done in such methods as ranked pairs or paths. However, these
methods use that quantitative information to reach only qualitative results.
In contrast, our results will keep a quantitative character until the end.

2.3 The next developments rely upon an operation (vxy) → (v∗xy) that
transforms the original binary scores into a new one. This operation is defined
in the following way: for every pair xy , one considers all possible paths
x0x1 . . . xn going from x0 = x to xn = y ; every such path is associated with
the score of its weakest link, i. e. the smallest value of vxixi+1

; finally, v∗xy is
defined as the maximum value of this associated score over all paths from x
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to y . In other words,

v∗xy = max
x0 = x
xn = y

min
i ≥ 0
i < n

vxixi+1
, (4)

where the max operator considers all possible paths from x to y , and the
min operator considers all the links of a particular path. The scores v∗xy will
be called the indirect scores associated with the (direct) scores vxy .

If (vxy) is the table of 0’s and 1’s associated with a binary relation ρ
(by putting vxy = 1 if and only if xy ∈ ρ), then (v∗xy) is exactly the table
associated with ρ∗ , the transitive closure of ρ . So, the operation (vxy) 7→
(v∗xy) can be viewed as a quantitative analog of the notion of transitive closure
(see [8 : Ch. 25 ]).

The main point, remarked in 1998 by Markus Schulze [34 b ], is that the
comparison relation associated with a table of indirect scores is always tran-
sitive (Theorem 6.3). So, µ(v∗) is always transitive, no matter what the
case is for µ(v). This is true in spite of the fact that µ(v∗) can easily differ
from µ∗(v). In the following we will refer to µ(v∗) as the indirect com-
parison relation .

Remark

Somewhat surprisingly, in the case of incomplete votes the transitive re-
lation µ(v∗) may differ from µ(v) even when the latter is already transitive.
An example is given by the following profile, where each indicated preference
is preceded by the number of people who voted in that way: 17 a , 24 c ,
16 a � b � c , 16 b � a � c , 8 b � c � a , 8 c � b � a ; in this case the direct
comparison relation µ(v) is the ranking a � b � c , whereas the indirect
comparison relation µ(v∗) is the ranking b � a � c . More specifically, we
have Vab = 33 > 32 = Vba but V ∗ab = 33 < 40 = V ∗ba .

The agreement with µ(v) can be forced by suitably redefining the indirect
scores; more specifically, formula (4) can be replaced by an analogous one
where the max operator is not concerned with all possible paths from x to y
but only those contained in µ(v). This idea is put forward in [35 ]. Generally
speaking, however, such a method cannot be made into a continuous rating
procedure since one does quite different things depending on whether vxy >
vyx or vxy < vyx . On the other hand, we will see that in the complete case the
indirect comparison relation does not change when the paths are restricted
to be contained in µ(v) (§ 7).

2.4 In the following we put

ν = µ(v∗), ν̂ = µ̂(v∗), mν
xy = v∗xy − v∗yx. (5)
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So, xy ∈ ν if and only if v∗xy > v∗yx , i. e. mν
xy > 0, and xy ∈ ν̂ if and only if

v∗xy ≥ v∗yx , i. e. mν
xy ≥ 0. From now on we will refer to mν

xy as the indirect
margin associated with the pair xy .

As it has been stated above, the relation ν is transitive. Besides that,
it is clearly antisymmetric (one cannot have both v∗xy > v∗yx and vice versa).
On the other hand, it may be not complete (one can have v∗xy = v∗yx ). When it
differs from ν , the complete relation ν̂ is not antisymmetric and —somewhat
surprisingly— it may be not transitive either. For instance, consider the
profile given by 4 b � a � c , 3 a � c � b , 2 c � b � a , 1 c � a � b ; in this
case the indirect comparison relation ν = µ(v∗) contains only the pair ac ; as
a consequence, ν̂ contains cb and ba but not ca . However, one can always
find a total order ξ which satisfies ν ⊆ ξ ⊆ ν̂ (Theorem 8.2). From now on,
any total order ξ that satisfies this condition will be called an admissible
order .

The rating that we are looking for will be based on such an order ξ . More
specifically, it will be compatible with ξ in the sense that the rates rx will
satisfy the inequality rx ≤ ry whenever xy ∈ ξ . If ν is already a total order,
so that ξ = ν , the preceding inequality will be satisfied in the strict form
rx < ry , and this will happen if and only if xy ∈ ν (Theorem 10.2).

If there is more than one admissible order then some options will have
equal rates. In fact, we will have rx = ry whenever xy ∈ ξ1 and yx ∈ ξ2 ,
where ξ1, ξ2 are two admissible orders. This will be so because we want the
rating to be independent of the choice of ξ . This independence with respect
to ξ seems essential for achieving the continuity property C; in fact, each
possible choice of ξ for a given profile of vote frequencies may easily become
the only one for a slight perturbation of that profile (but not necessarily, as
it is illustrated by example 10 of [35 : § 4.6 ]).

The following steps assume that one has fixed an admissible order ξ .
From now on the situation xy ∈ ξ will be expressed also by x �ξ y . According
to the definitions, the inclusions ν ⊆ ξ ⊆ ν̂ are equivalent to saying that
v∗xy > v∗yx implies x �ξ y and that the latter implies v∗xy ≥ v∗yx . In other
words, if the different options are ordered according to �ξ , the matrix v∗xy
has then the property that each element above the diagonal is larger than or
equal to its symmetric over the diagonal.

2.5 Rating the different options means positioning them on a line. Besides
complying with the qualitative restriction of being compatible with ξ in the
sense above, we want that the distances between items reflect the quantitative
information provided by the binary scores. However, a rating is expressed
by N numbers, whereas the binary scores are N(N − 1) numbers. So we
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are bound to do some sort of projection. Problems of this kind have a cer-
tain tradition in combinatorial data analysis and cluster analysis [15, 24, 14 ].
In fact, some of the operations that will be used below can be viewed from
that point of view.

Let us assume for a while that we are dealing with complete ranking
votes, so that it makes sense to talk about the average ranks. It is well-
known [2 : Ch. 9 ] that their values, which we will denote by r̄x , can be ob-
tained from the Llull matrix by means of the following formula:

r̄x = N −
∑
y 6=x

vxy. (6)

Equivalently, we can write

r̄x = (N + 1−
∑
y 6=x

mxy ) / 2, (7)

where the mxy are the margins of the original scores vxy , i. e. mxy = vxy−vyx .
In fact, the hypothesis of complete votes means that vxy + vyx = 1, so that
mxy = 2vxy − 1, which gives the equivalence between (6) and (7).

Let us look at the meaning of the margins mxy in connection with the
idea of projecting the Llull matrix into a rating: If there are no other items
than x and y , we can certainly view the sign and magnitude of mxy as giving
respectively the qualitative and quantitative aspects of the relative positions
of x and y on the rating line, that is, the order and the distance between
them. When there are more than two items, however, we have several pieces
of information of this kind, one for every pair, and these different pieces
may be incompatible with each other, quantitatively or even qualitatively,
which motivates indeed the problem that we are dealing with. In particular,
the average ranks often violate the desired compatibility with the relation ξ .

In order to construct a rating compatible with ξ , we will use a formula
analogous to (6) where the scores vxy are replaced by certain projected
scores vπxy to be defined in the following paragraphs. Together with them,
we will make use of the corresponding projected margins mπ

xy = vπxy−vπyx
and the corresponding projected turnovers tπxy = vπxy + vπyx . So, the rank-
like rates that we are looking for will be obtained in the following way:

rx = N −
∑
y 6=x

vπxy. (8)

This formula will be used not only in the case of complete ranking votes, but
also in the general case where the votes are allowed to be incomplete and/or
intransitive binary relations.
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2.6 Let us begin by the case of complete votes, i. e. txy = vxy + vyx = 1.
In this case, we put also tπxy = 1. Analogously to (6) and (7), formula (8) is
then equivalent to the following one:

rx = (N + 1−
∑
y 6=x

mπ
xy ) / 2. (9)

We want to define the projected margins mπ
xy so that the rating defined

by (9) be compatible with the ranking ξ , i. e. xy ∈ ξ implies rx ≤ ry .
Now, this ranking derives from the relation ν , which is concerned with the
sign of mν

xy = v∗xy − v∗yx . This clearly points towards taking mπ
xy = mν

xy .
However, this is still not enough for ensuring the compatibility with ξ .
In order to ensure this property, it suffices that the projected margins, which
we assume antisymmetric, behave in the following way:

x �ξ y =⇒ mπ
xy ≥ 0 and mπ

xz ≥ mπ
yz for any z 6∈ {x, y} . (10)

On the other hand, we also want the rates to be independent of ξ when
there are several possibilities for it. To this effect, we will require the pro-
jected margins to have already such an independence.

The next operation will transform the indirect margins so as to satisfy
these conditions. It is defined in the following way, where we assume x �ξ y
and x′ denotes the item that immediately follows x in the total order ξ :

mν
xy = v∗xy − v∗yx, (11)

mσ
xy = min {mν

pq | p �−
ξ x, y �−

ξ q }, (12)

mπ
xy = max {mσ

pp′ | x �−
ξ p �ξ y }, (13)

mπ
yx = −mπ

xy. (14)

One can easily see that the mσ
xy obtained in (12) already satisfy a condition

analogous to (10). However, the independence of ξ is not be ensured until
steps (13–14). This property is a consequence of the fact that the projected
margins given by the preceding formulas satisfy not only condition (10) but
also the following one:

mπ
xy = 0 =⇒ mπ

xz = mπ
yz for any z 6∈ {x, y} . (15)

In particular, this will happen whenever mν
xy = 0 (since this implies mσ

pp′ = 0
for all p such that x �−

ξ p �ξ y ). More particularly, in the event of having
two admissible orders that interchange two consecutive elements p and p′

we will have mπ
pp′ = mσ

pp′ = mν
pp′ = 0 and consequently mπ

pz = mπ
p′z for any

z 6∈ {p, p′} , as it is required by the desired independence of ξ .
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Anyway, the projected margins are finally introduced in (9), which de-
termines the rank-like rates rx . The corresponding fraction-like rates will be
introduced in § 2.9.

Remarks

1. Condition (10) gives the pattern of growth of the projected mar-
gins mπ

pq when p and q vary according to an admissible order ξ . This pattern
is illustrated in figure 1 below, where the square represents the matrix (mπ

pq)
with p and q ordered according to ξ , from better to worse. As usual, the first
index labels the rows, and the second one labels the columns. The diagonal
corresponds to the case p = q , which we systematically leave out of con-
sideration. Having said that, here it would be appropriate to put mπ

pp = 0.
Anyway, the projected margins are greater than or equal to zero above the
diagonal and smaller than or equal to zero below it, and they increase or re-
main the same as one moves along the indicated arrows. The right-hand side
of the figure follows from the left-hand one because the projected margins
are antisymmetric.

x

y

z1 z2 z3 x y

z1

z2

z3

Figure 1. Directions of growth of the projected margins.

Of course, the absolute values dxy = |mπ
xy| keep this pattern in the up-

per triangle but they behave in the reverse way in the lower one. Such
a behaviour is often considered in combinatorial data analysis, where it is
associated with the name of W. S. Robinson, a statistician who in 1951 in-
troduced a condition of this kind as the cornerstone of a method for se-
riating archaeological deposits (i. e. placing them in chronological order)
[31 ; 14 : § 4.1.1, 4.1.2, 4.1.4 ; 33 ].

Condition (15), more precisely its expression in terms of the dxy , is also
considered in cluster analysis, where it is referred to by saying that the
‘dissimilarities’ dxy are ‘even’ [15 : § 9.1 ] (‘semidefinite’ according to other
authors).
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In the present case of complete votes, the projected margins mπ
xy defined

by (11–14) satisfy not only (10) and (15), but also the stronger condition

mπ
xz = max (mπ

xy,m
π
yz), whenever x �ξ y �ξ z . (16)

Besides (10) and (15), this property implies also that the dxy satisfy the
following inequality, which makes no reference to the relation ξ :

dxz ≤ max (dxy, dyz), for any x, y, z . (17)

This condition, called the ultrametric inequality, is also well known in clus-
ter analysis, where it appears as a necessary and sufficient condition for the
dissimilarities dxy to define a hyerarchical classification of the set under con-
sideration [14 : § 3.2.1 ; 29 ].

Our problem differs from the standard one of combinatorial data analysis
in that our dissimilarities, namely the margins, are antisymmetric, whereas
the standard problem considers symmetric dissimilarities. In other words,
our dissimilarities have both magnitude and direction, whereas the standard
ones have magnitude only. This makes an important difference in connection
with the seriation problem, i. e. positioning the items on a line. Let us remark
that the case of directed dissimilarities is considered in [14 : § 4.1.2 ].

2. The operation (mν
xy) → (mπ

xy) defined by (12–13) is akin to the
single-link method of cluster analysis, which can be viewed as a continuous
method for projecting a matrix of dissimilarities onto the set of ultrametric
distances; such a continuous projection is achieved by taking the maximal
ultrametric distance which is bounded by the given matrix of dissimilarities
[15 : § 7.3, 7.4, 8.3, 9.3 ]. The operation (mν

xy) → (mπ
xy) does the same kind of

job under the constraint that the clusters —in the sense of cluster analysis—
be intervals of the total order ξ .

2.7 In order to get more insight into the case of incomplete votes, it is
interesting to look at the case of plumping votes, i. e. the case where each
vote plumps for a single option. In this case, and assuming interpretation (d),
the binary scores of the vote have the form vxy = fx for every y 6= x , where
fx is the fraction of voters who choose x .

In the spirit of condition H, in this case we expect the projected scores
vπxy to coincide with the original ones vxy = fx . So, both the projected
margins mπ

xy and the projected turnovers tπxy should also coincide with the
original ones, namely fx − fy and fx + fy . In this connection, one easily
sees that the indirect scores v∗xy coincide with vxy (see Proposition 9.4).
As a consequence, ξ is any total order for which the fx are non-increasing.
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If we apply formulas (11–14), we first get mν
xy = v∗xy − v∗yx = vxy − vyx =

fx − fy , and then mσ
xx′ = fx − fx′ , but the projected margins resulting

from (13) cease to coincide with the original ones. Most interestingly, such
a coincidence would hold if the max operator of formula (13) was replaced
by a sum.

Now, these two apparently different operations —maximum and addition—
can be viewed as particular cases of a general procedure which involves taking
the union of certain intervals, namely γxx′ = [ (txx′−mσ

xx′)/2 , (txx′+m
σ
xx′)/2 ].

In fact, in the case of complete votes, all the turnovers are equal to 1, so these
intervals are all of them centred at 1/2 and the union operation is equivalent
to looking for the maximum of the widths. In the case of plumping votes,
we know that txx′ = fx + fx′ and we have just seen that mσ

xx′ = fx − fx′ ,
which implies that γxx′ = [fx′ , fx] ; so, the intervals γxx′ and γx′x′′ are then
adjacent to each other (the right end of the latter coincides with the left end
of the former) and their union involves adding up the widths.

This remark strongly suggests that the general method should rely on
such intervals. In the following we will refer to them as score intervals.
A score interval can be viewed as giving a pair of scores about two options,
the two scores being respectively in favour and against a specified preference
relation about the two options. Alternatively, it can be viewed as giving a
certain margin together with a certain turnover.

More specifically, one is immediately tempted to replace the minimum
and maximum operations of (12–13) by the intersection and union of score
intervals. The starting point would be the score intervals that combine the
original turnovers txy with the indirect margins mν

xy . Such a procedure works
as desired both in the case of complete votes and that of plumping ones.
Unfortunately, however, it breaks down in other cases of incomplete votes
which produce empty intersections or disjoint unions. So, a more elaborate
method is required.

2.8 In this subsection we will finally describe a rank-like rating procedure
which is able to cope with the general case. This procedure will use score
intervals. However, these intervals will not be based directly on the original
turnovers, but on certain transformed ones. This prior transformation of the
turnovers will have the virtue of avoiding the problems pointed out at the
end of the preceding paragraph.

So, we are given as input from one side the indirect margins mν
xy , and

from the other side the original turnovers txy . The output to be produced is
a set of projected scores vπxy . They should have the virtue that the associated
rank-like rating given by (8) has the following properties: (a) it is the exactly
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the same for all admissible orders ξ ; and (b) it is compatible with any such
order ξ , i. e. xy ∈ ξ implies rx ≤ ry .

As we did in the complete case, we will require the projected scores vπxy
to satisfy the condition of independence with respect to ξ .

On the other hand, in order to ensure the compatibility condition (b),
it suffices that the projected scores behave in the following way:

x �ξ y =⇒ vπxy ≥ vπyx and vπxz ≥ vπyz for any z 6∈ {x, y} . (18)

If we think in terms of the associated margins mπ
xy and turnovers tπxy —which

add up to 2vπxy— it suffices that both of them satisfy conditions analogous
to (18). More, specifically, it suffices that the projected margins be antisym-
metric and satisfy condition (10) of § 2.6 and that the projected turnovers
be symmetric and satisfy

x �ξ y =⇒ tπxz ≥ tπyz for any z 6∈ {x, y} . (19)

So, we want the projected scores to be independent of ξ , and their asso-
ciated margins and turnovers to satisfy conditions (10) and (19). These re-
quirements are fulfilled by the procedure formulated in (20–26) below. These
formulas use the following notations: Ψ is an operator to be described in a
while; [a, b] means the closed interval {x ∈ R | a ≤ x ≤ b } ; |γ| means the
length of such an interval γ = [a, b] , i. e. the number b−a ; and

•
γ means its

barycentre, or centroid, i. e. the number (a+b)/2. As in (11–14), the follow-
ing formulas assume that x �ξ y , and x′ denotes the option that immediately
follows x in the total order ξ .

mν
xy = v∗xy − v∗yx, txy = vxy + vyx, (20)

mσ
xy = min {mν

pq | p �−
ξ x, y �−

ξ q }, tσxy = Ψ[(tpq), (m
σ
pp′)] xy, (21)

γxx′ = [ (tσxx′ −mσ
xx′)/2 , (tσxx′ +mσ

xx′)/2 ], (22)

γxy =
⋃
{ γpp′ | x �−

ξ p �ξ y }, (23)

mπ
xy = |γxy|, tπxy = 2

•
γxy, (24)

mπ
yx = −mπ

xy, tπyx = tπxy, (25)

vπxy = max γxy = (tπxy+mπ
xy)/2, vπyx = min γxy = (tπxy−mπ

xy)/2. (26)

Like (11–14), the preceding procedure can be viewed as a two-step trans-
formation. The first step is given by (21) and it transforms the input mar-
gins and turnovers (mν

xy, txy) into certain intermediate projections (mσ
xy, t

σ
xy)
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which already satisfy conditions analogous to (10) and (19) but are not in-
dependent of ξ . The condition of independence requires a second step which
is described by (22–26). As in § 2.6, the superdiagonal final projections co-
incide with the intermediate ones, i. e. mπ

xx′ = mσ
xx′ and tπxx′ = tσxx′ . Notice

also that the intermediate margins mσ
xy are constructed exactly as in (12).

The main difficulty lies in constructing the intermediate turnovers tσxy so
that they do not depend on ξ . The reason is that this condition involves
the admissible orders, which depend on the relation ν associated with the
indirect margins mν

xy . So, that construction must take into account not only
the original turnovers but also the indirect margins. This connection with
the mν

xy will be controlled indirectly through the mσ
xx′ . In fact, we will look

for the tσxy so as to satisfy the following conditions:

mσ
xx′ ≤ tσxx′ ≤ 1, (27)

0 ≤ tσpy − tσp′y ≤ mσ
pp′ , (28)

0 ≤ tσxq − tσxq′ ≤ mσ
qq′ . (29)

Notice that (28) ensures that tσpy and tσp′y will coincide with each other when-
ever mσ

pp′ = 0. Since mσ
pp′ = mν

pp′ , we are in the case of having two admis-
sible orders that interchange p with p′ . The fact that this implies tσpy = tσp′y
eventually ensures the independence of ξ (Theorem 9.2; we say ‘eventually’
because the full proof is quite long).

In the case of complete votes we will have tσxy = 1, so that condition (27)
will be satisfied with an equality sign in the right-hand inequality, whereas
(28) and (29) will be satisfied with an equality sign in the left-hand inequality.
In the case of plumping votes, where we know that mσ

xx′ = mxx′ = fx − fx′
(§ 2.7), we will have tσxy = txy = fx+fy , so that (28) and (29) will be satisfied
with an equality sign in the right-hand inequalities (equation (27) is satisfied
too, but in this case the inequalities can be strict).

Notice also that conditions (28–29) imply the following one:

0 ≤ tσxx′ − tσx′x′′ ≤ mσ
xx′ +mσ

x′x′′ . (30)

In geometrical terms, the inequalities in (27) mean that (a) the inter-
val γxx′ is contained in [0, 1]. On the other hand, the inequalities in (30)
mean that the intervals γxx′ and γx′x′′ are related to each other in the fol-
lowing way: (b) the barycentre of the first one lies to the right of that of the
second one; (c) the two intervals overlap each other.

Conditions (27–29) can be easily achieved by taking simply tσxy = 1.
However, this choice goes against our aim of distinguishing between definite
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indifference and lack of information; in particular, condition H requires that
in the case of plumping votes the projected turnovers should coincide with
the original ones (which are then less than 1). Now, conditions (27–29)
are convex with respect to the tσxy (the whole set of them), i. e. if they are
satisfied by two different choices of these numbers, they are satisfied also
by any convex combination of them. This implies that for any given set of
original turnovers txy there is a unique set of values tσxy which minimizes the
euclidean distance to the given one while satisfying those conditions.

So, the operator Ψ can defined in the following way: tσxy is the set of
turnovers which is determined by conditions (27–29) together with that of
minimizing the following measure of deviation with respect to the txy :

Φ =
∑
x

∑
y

(tσxy − txy)2. (31)

The actual computation of the tσxy can be carried out in a finite number of
steps by means of a quadratic programming algorithm [22 : § 14.1 (2nd ed.) ].

Anyway, the preceding operations have the virtue of ensuring the desired
properties.

Remarks

1. Condition (19) is illustrated in figure 2, where the arrows indicate
the directions of growth of the projected turnovers. The right-hand side of
the figure follows from the left-hand one because the projected turnovers are
symmetric.

x

y

z1 z2 z3 x y

z1

z2

z3

Figure 2. Directions of growth of the projected turnovers.

This condition can be associated with the name of Marshall G. Greenberg,
a mathematical psychologist who in 1965 considered a condition of this form
—at the suggestion of Clyde H. Coombs— in connection with the problem of
producing a rating after paired-comparison data, specially in the incomplete
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case [12 ; 14 : § 4.1.2 ]. Having said that, we strongly differ from that author in
that he applies a property like (19) to the scores, whereas we consider more
appropriate to apply it to the turnovers.

In fact, under the general assumption that each vote is a ranking, pos-
sibly incomplete, and that each ranking is translated into a set of binary
preferences according to rules (a–d) of § 2.1, it is fairly reasonable to expect
that the turnover for a pair xy , i. e. the number of voters who expressed an
opinion about x in comparison with y , should increase as x and/or y are
higher in the social ranking. In practice, the original turnovers can deviate
to a certain extent from this ideal behaviour. In contrast, our projected
turnovers are always in agreement with it (with respect to the total order ξ ).

2. The projected scores turn out to satisfy not only (18), but also the
following stronger property:

if x �ξ y then vπxy ≥ vπyx
and vπxz ≥ vπyz, v

π
zx ≤ vπzy for any z 6∈ {x, y} . (32)

So, the projected scores increase or remain constant in the directions shown
in figure 1. Furthermore, we will see that the quotients mπ

xy/t
π
xy have also

the same property.

3. In contrast to the case of complete votes, in this case the projected
margins do not satisfy (16) but only

mπ
xz ≤ mπ

xy +mπ
yz, whenever x �ξ y �ξ z . (33)

As a consequence, the absolute values dxy = |mπ
xy| satisfy the triangular

inequality:
dxz ≤ dxy + dyz, for any x, y, z . (34)

4. Under the assumption of ranking votes (but not necessarily in a more
general setting) one can see that the original turnovers already satisfy (27).
In this case, the preceding definition of Ψ turns out to be equivalent to
an analogous one where conditions (27–29) are replaced simply by (28–29).
From this it follows that the intermediate turnovers have then the same sum
as the original ones: ∑

x

∑
y

tσxy =
∑
x

∑
y

txy. (35)

2.9 Finally, let us see how shall we define the fraction-like rates ϕx . As in
the case of the rank-like rates, we will use a classical method which would
usually be applied to the original scores, but here we will apply it to the
projected scores. This method was introduced in 1929 by Ernst Zermelo [41 ]
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and it was rediscovered by other authors in the 1950s [4, 11 ] (see also [16 ]).
Zermelo’s work was motivated by chess tournaments, whereas the other au-
thors were considering comparative judgments. Anyway, all of them were
especially interested in the incomplete case, i. e. the case where turnovers
may depend on the pair xy .

More specifically, the fraction-like rates ϕx will be determined by the
following system of equations (together with the condition that ϕx ≥ 0 for
every x): ∑

y 6=x

tπxy ϕx/(ϕx + ϕy) =
∑
y 6=x

vπxy (= N − rx), (36)

∑
x

ϕx = f, (37)

where (36) contains one equation for every x , and f stands for the fraction of
non-empty votes (i. e. f = F/V where F is the number of non-empty votes
and V is the total number of votes). In spite of having N + 1 equations, the
N equations contained in (36) are not independent, since their sum results in
the identity (

∑
x

∑
y 6=x t

π
xy)/2 =

∑
x

∑
y 6=x v

π
xy . On the other hand, it is clear

that (36) is insensitive to all of the ϕx being multiplied by a constant factor.
This indeterminacy disappears once (36) is supplemented with equation (37).

In the case of plumping votes, where we know that vπxy = fx and tπxy =
fx + fy , the solution of (36–37) is easily seen to be ϕx = fx , as required by
condition H.

The problem of solving the system (36–37) is well posed when the pro-
jected Llull matrix (vπxy) is irreducible. This means that there is no splitting
of the options into a ‘top class’ X plus a ‘low class’ Y so that vπyx = 0 for
any x ∈ X and y ∈ Y . When such a splitting exists, one is forced to put
ϕy = 0 for all y ∈ Y . For more details, the reader is referred to section 11.

Zermelo (and the other authors) dealed also with the problem of nu-
merically solving a non-linear system of the form (36). In this connection,
he showed that in the irreducible case its solution (up to a multiplicative
constant) can be approximated to an arbitrary degree of accuracy by means
of an iterative scheme of the form

ϕn+1
x =

(∑
y 6=x

vπxy

)/(∑
y 6=x

tπxy/(ϕ
n
x + ϕny )

)
, (38)

starting from an arbitrary set of values ϕ0
x > 0.
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The fraction-like rates ϕx determined by (36–37) can be viewed as an
estimate of the first-choice fractions using not only the first choices but the
whole rankings. Properly speaking, Zermelo’s method (with the original
scores and turnovers) corresponds to a maximum likelihood estimate of the
parameters of a certain probabilistic model for the outcomes of a tournament
between several players, or, more in the lines of our applications, for the
outcomes of comparative judgments. This model will be briefly described
in section 11. Although we are far from its hypotheses, we will see that
Zermelo’s method is quite suitable for translating our rank-like rates into
fraction-like ones.

3 Summary of the method. Variants. General forms of vote

3.1 Let us summarize the whole procedure. In the general case, where the
votes are not necessarily complete, it consists of the following steps:

1. Form the Llull matrix (vxy) (§ 2.1). Work out the turnovers txy =
vxy + vyx .

2. Compute the indirect scores v∗xy defined by (4). An efficient way to
do it is the Floyd-Warshall algorithm [8 : § 25.2 ]. Work out the indirect
margins mν

xy=v∗xy−v∗yx and the associated indirect comparison relation
ν = {xy | mν

xy > 0} .
3. Find an admissible order ξ (§ 2.4) and arrange the options according to

it. For instance, it suffices to arrange the options by non-decreasing val-
ues of the ‘tie-splitting’ Copeland scores κx = 1+ |{ y | y 6=x, mν

yx>0}|
+ 1

2
|{ y | y 6=x, mν

yx=0}| (Proposition 8.5).

4. Starting from the indirect margins mν
xy , work out the superdiagonal

intermediate projected margins mσ
xx′ as defined in (21.1).

5. Starting from the original turnovers txy , and taking into
account the superdiagonal intermediate projected margins mσ

xx′ ,
determine the intermediate projected turnovers tσxy so as to minimize
(31) under the constraints (27–29). This can be carried out in a fi-
nite number of steps by means of a quadratic programming algorithm
[22 : § 14.1 (2nd ed.) ].

6. Form the intervals γxx′ defined by (22), derive their unions γxy as defi-
ned by (23), and read off the projected scores vπxy (26).

7. Compute the rank-like ranks rx according to (8).

8. Determine the fraction-like rates ϕx by solving the system (36–37).
This can be done numerically by means of the iterative scheme (38).
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In the complete case, the scores vxy and the margins mxy are related to
each other by the monotone increasing transformation vxy = (1 + mxy)/2.
Because of this fact, the preceding procedure can then be simplified in the
following way:

• Step 2 computes m∗xy instead of v∗xy and takes mν
xy = (m∗xy −m∗yx)/2.

• Step 5 is not needed.

• Step 6 reduces to (13–14).

• Step 7 makes use of formula (9).

3.2 The preceding procedure admits of certain variants which might be
appropriate to some special situations. Next we will distinguish four of them,
namely

1. Main

2. Dual

3. Balanced

4. Margin-based

The above-described procedure is included in this list as the main variant.
The four variants are exactly equivalent to each other in the complete case,
but in the incomplete case they can produce different results. In spite of this,
they all share the main properties.

The dual variant is analogous to the main one except that the max-min
indirect scores v∗xy are replaced by the following min-max ones:

∗vxy = min
x0 = x
xn = y

max
i ≥ 0
i < n

vxixi+1
. (39)

Equivalently, ∗vxy = 1− v̂∗yx where v̂xy = 1− vyx . In the complete case one
has ∗vxy = 1− v∗yx , so that ∗vxy − ∗vyx = v∗xy − v∗yx and µ(∗v) = µ(v∗); as a
consequence, the dual variant is then equivalent to the main one.

The balanced variant takes ν = µ(v∗) ∩ µ(∗v) together with

mν
xy =


min (v∗xy − v∗yx, ∗vxy − ∗vyx), if xy ∈ µ(v∗) ∩ µ(∗v),

−mν
yx, if yx ∈ µ(v∗) ∩ µ(∗v),

0, otherwise.

(40)

The remarks made in connection with the dual variant show that in the
complete case the balanced variant is also equivalent to the preceding ones.
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The margin-based variant follows the simplified procedure of the end
of § 3.1 even if one is not originally in the complete case. Equivalently,
it corresponds to replacing the original scores vxy by the following ones:
v′xy = (1 +mxy)/2. This amounts to replacing any lack of information about
a pair of options by a definite indifference between them, which brings the
problem into the complete case. So, the specific character of this variant lies
only in its interpretation of incomplete votes. Although this interpretation
goes against the general principle stated in § 1.5, it may be suitable to cer-
tain situations where the voters are well acquainted with all of the options.
In the case of ranking votes, it amounts to replace rule (d) of § 2.1 by the
following one:

(d ′ ) When neither x nor y are in the list, we interpret that they are
considered equally good (or equally bad), so we proceed as in (b).

In other words, each truncated vote is completed by appending to it all the
missing options tied to each other.

Remark

Other variants —in the incomplete case— arise when equation (8) is
replaced by the following one:

rx = 1 +
∑
y 6=x

vπyx. (41)

3.3 Most of our results will hold if the “votes” are not required to be rank-
ings, but they are allowed to be general binary relations. In particular, this
allows to deal with certain situations where it makes sense to replace rule (c)
of § 2.1 by the following one:

(c ′ ) When x is in the list and y is not in it, we interpret nothing about
the preference of the voter between x and y .

One could even allow the votes to be non-transitive binary relations; such a
lack of transitivity in the individual preferences may arise when individuals
are aggregating a variety of criteria [13 ].

A vote in the form of a binary relation ρ contributes to the binary scores
with the following amounts:

vxy =


1, if xy ∈ ρ and yx /∈ ρ
1/2, if xy ∈ ρ and yx ∈ ρ
0, if xy /∈ ρ.

(42)

Even more generally, a vote could be any set of normalized binary scores,
i. e. an element of the set Ω = { v ∈ [0, 1]Π | vxy+vyx ≤ 1 } , where Π denotes
the set of pairs xy ∈ A× A with x 6= y .
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Anyway, the collective Llull matrix is simply the center of gravity of
a distribution of individual votes:

vxy =
∑
k

αk v
k
xy, (43)

where αk are the relative frequencies or weights of the individual votes vk .

4 Examples

4.1 As a first example of a vote which involved truncated rankings, we
look at an election which took place the 16th of February of 1652 in the
Spanish royal household. This election is quoted in [30 ], but we use the
slightly different data which are given in [28 : vol. 2, p. 263–264 ]. The office
under election was that of “aposentador mayor de palacio”, and the king was
assessed by six noblemen, who expressed the following preferences:

Marqués de Ariça . . . . . . . . . . . . . . . . . . . . . . . . b � e � d � a
Conde de Barajas . . . . . . . . . . . . . . . . . . . . . . . . b � a � f
Conde de Montalbán . . . . . . . . . . . . . . . . . . . . . a � f � b � d
Marqués de Povar . . . . . . . . . . . . . . . . . . . . . . . . e � b � f � c
Conde de Puñonrostro . . . . . . . . . . . . . . . . . . . e � a � b � f
Conde de Ysinguién . . . . . . . . . . . . . . . . . . . . . . b � d � a � f

The candidates a – f nominated in these preferences were:

a Alonso Carbonel (architect, 1583–1660)
b Gaspar de Fuensalida (died 1664)
c Joseph Nieto
d Simón Rodŕıguez
e Francisco de Rojas (1583–1659)
f Diego Velázquez (painter, 1599–1660)

The CLC computations are as follows:

x

a

b

c

d

e

f

Vxy
a b c d e f

∗ 2 5 3 3 5
4 ∗ 6 6 4 5
1 0 ∗ 1 0 0
2 0 3 ∗ 2 2
3 2 3 3 ∗ 3
1 1 5 4 3 ∗

x

a

b

c

d

e

f

V ∗xy
a b c d e f

∗ 2 5 4 3 5
4 ∗ 6 6 4 5
1 1 ∗ 1 1 1
2 2 3 ∗ 2 2
3 2 3 3 ∗ 3
3 2 5 4 3 ∗

κ

2 1
2

1
6
5
3

3 1
2
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x

b

a

e

f

d

c

Mν
xy

b a e f d c

∗ 2 2 3 4 5
∗ ∗ 0 2 2 4
∗ ∗ ∗ 0 1 2
∗ ∗ ∗ ∗ 2 4
∗ ∗ ∗ ∗ ∗ 2
∗ ∗ ∗ ∗ ∗ ∗

x

b

a

e

f

d

c

Txy
b a e f d c

∗ 6 6 6 6 6
∗ ∗ 6 6 5 6
∗ ∗ ∗ 6 5 3
∗ ∗ ∗ ∗ 6 5
∗ ∗ ∗ ∗ ∗ 4
∗ ∗ ∗ ∗ ∗ ∗

x

b

a

e

f

d

c

Mσ
xy

b a e f d c

∗ 2 2 3 4 5
∗ ∗ 0 2 2 4
∗ ∗ ∗ 0 1 2
∗ ∗ ∗ ∗ 1 2
∗ ∗ ∗ ∗ ∗ 2
∗ ∗ ∗ ∗ ∗ ∗

x

b

a

e

f

d

c

T σxy
b a e f d c

∗ 6 6 6 6 6
∗ ∗ 6 6 5 1

3 4 2
3

∗ ∗ ∗ 6 5 1
3 4 2

3

∗ ∗ ∗ ∗ 5 1
3 4 2

3

∗ ∗ ∗ ∗ ∗ 4
∗ ∗ ∗ ∗ ∗ ∗

x

b

a

e

f

d

c

Mπ
xy

b a e f d c

∗ 2 2 2 2 3
∗ ∗ 0 0 1 2 1

6

∗ ∗ ∗ 0 1 2 1
6

∗ ∗ ∗ ∗ 1 2 1
6

∗ ∗ ∗ ∗ ∗ 2
∗ ∗ ∗ ∗ ∗ ∗

x

b

a

e

f

d

c

T πxy
b a e f d c

∗ 6 6 6 6 5
∗ ∗ 6 6 5 1

3 4 1
6

∗ ∗ ∗ 6 5 1
3 4 1

6

∗ ∗ ∗ ∗ 5 1
3 4 1

6

∗ ∗ ∗ ∗ ∗ 4
∗ ∗ ∗ ∗ ∗ ∗

x

b

a

e

f

d

c

V π
xy

b a e f d c

∗ 4 4 4 4 4
2 ∗ 3 3 3 1

6 3 1
6

2 3 ∗ 3 3 1
6 3 1

6

2 3 3 ∗ 3 1
6 3 1

6

2 2 1
6 2 1

6 2 1
6 ∗ 3

1 1 1 1 1 ∗

x

b

a

e

f

d

c

rx ϕx

2.6667 0.3049
3.6111 0.1703
3.6111 0.1703
3.6111 0.1703
4.0833 0.1293
5.1667 0.0549
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According to these results, the office should have been given to candi-
date b , who is also the winner by most other methods. In the CLC method,
this candidate is followed by three runners-up tied to each other, namely
candidates a , e and f . In spite of the clear advantage of candidate b , the
king appointed candidate f , namely, the celebrated painter Diego Velázquez.

4.2 As an example where the votes are complete strict rankings, we will con-
sider the final round of a dancesport competition. Specifically, we will take
the final round of the Professional Latin Rising Star section of the 2007 Black-
pool Dance Festival (Blackpool, England, 25th May 2007). The data were
taken from http://www.scrutelle.info/results/estelle/2007/blackpool

-2007/.

As usual, the final was contested by six couples, whose numbers were
3 , 4 , 31 , 122 , 264 , 238 . Eleven adjudicators ranked their simultaneous per-
formances in four equivalent dances.

The all-round official result was 3 � 122 � 264 � 4 � 31 � 238 . This
result comes from the so-called “Skating System”, whose name reflects a
prior use in figure-skating. The Skating System has a first part which pro-
duces a separate result for each dance. This is done mainly on the basis of the
median rank obtained by each couple, a criterion which Condorcet proposed
as a “practical” method in 1792/93 [23 : ch. 8 ]. However, the fine properties
of this criterion are lost in the second part of the Skating System, where
the all-round result is obtained by adding the up the final ranks obtained in
the different dances.

From the point of view of paired comparisons, it makes sense to base
the all-round result on the Llull matrix which collects the 44 rankings pro-
duced by the 11 adjudicators over the 4 dances [26 : § 11 ]. As one can see
below, in the present case this matrix exhibits several Condorcet cycles, like
for instance 3 � 4 � 264 � 3 and 3 � 122 � 264 � 3 , which means that the
competition was closely contested. In such close contests, the Skating System
often has to resort to certain tie-breaking rules which are virtually equivalent
to throwing the dice. In contrast, the all-round Llull matrix has the virtue
of being a more accurate quantitative aggregate over the different dances.
On the basis of this more accurate aggregate, in this case the indirect scores
reveal an all-round ranking which is quite different from the one produced by
the Skating System (but it coincides with the one produced by other paired-
comparison methods, like ranked pairs). In consonance with all this, the
CLC rates obtained below are quite close to each other, particularly for the
couples 3 , 4 , 122 and 264 .

Since we are dealing with complete votes, in this case the CLC compu-



Continuous rating for preferential voting, § 4 29

tations can be carried out entirely in terms of the margins. In the following
we have chosen to pass to margins after computing the indirect scores, but
we could have done it before that step.

x

3

4

31

122

238

264

Vxy
3 4 31 122 238 264

∗ 23 28 23 28 20
21 ∗ 23 20 30 24
16 21 ∗ 15 25 18
21 24 29 ∗ 28 23
16 14 19 16 ∗ 19
24 20 26 21 25 ∗

x

3

4

31

122

238

264

V ∗xy
3 4 31 122 238 264

∗ 23 28 23 28 23
24 ∗ 24 23 30 24
21 21 ∗ 21 25 21
24 24 29 ∗ 28 24
19 19 19 19 ∗ 19
24 23 26 23 25 ∗

κ

4
2
5
1
6
3

x

122

4

264

3

31

238

Mν
xy

122 4 264 3 31 238

∗ 1 1 1 8 9
∗ ∗ 1 1 3 11
∗ ∗ ∗ 1 5 6
∗ ∗ ∗ ∗ 7 9
∗ ∗ ∗ ∗ ∗ 6
∗ ∗ ∗ ∗ ∗ ∗

x

122

4

264

3

31

238

Mπ
xy

122 4 264 3 31 238

∗ 1 1 1 3 6
∗ ∗ 1 1 3 6
∗ ∗ ∗ 1 3 6
∗ ∗ ∗ ∗ 3 6
∗ ∗ ∗ ∗ ∗ 6
∗ ∗ ∗ ∗ ∗ ∗

x

122

4

264

3

31

238

rx ϕx

3.3636 0.1815
3.3864 0.1788
3.4091 0.1761
3.4318 0.1734
3.5682 0.1583
3.8409 0.1318
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4.3 As a second example of an election involving truncated rankings we take
the Debian Project leader election, which is using the method of paths since
2003. So far, the winners of these elections have been clear enough. However,
a quantitative measure of this clearness was lacking. In the following we
consider the 2006 election, which had a participation of V = 421 actual
voters out of a total population of 972 members. The individual votes are
available in http://www.debian.org/vote/2006/vote-002.

That election resulted in the following Llull matrix:

x

1

2

3

4

5

6

7

8

Vxy
1 2 3 4 5 6 7 8

∗ 321 144 159 1
2 193 1

2 347 1
2 246 320

51 ∗ 42 53 50 262 65 163
251 340 ∗ 198 1

2 253 362 300 345
245 1

2 341 204 1
2 ∗ 256 371 1

2 291 1
2 339 1

2

193 1
2 325 144 149 ∗ 357 254 321 1

2

26 1
2 77 24 22 1

2 21 ∗ 30 74 1
2

137 292 90 109 1
2 131 330 ∗ 296

76 207 54 71 1
2 75 1

2 302 1
2 89 ∗

Notice that candidate 4 is the winner according to the Condorcet principle
(but not according to the majority principle, since V43 does not reach V/2).
Notice also that there is no Condorcet cycle. However, candidates 1 and 5
are in a tie for third place: both of them defeat all other candidates except
4 and 3 , and V15 coincides exactly with V51 .

The ensuing CLC computations are as follows:

x

1

2

3

4

5

6

7

8

V ∗xy
1 2 3 4 5 6 7 8

∗ 321 159 1
2 159 1

2 193 1
2 347 1

2 246 320
89 ∗ 89 89 89 262 89 163

251 340 ∗ 198 1
2 253 362 300 345

245 1
2 341 204 1

2 ∗ 256 371 1
2 291 1

2 339 1
2

193 1
2 325 159 1

2 159 1
2 ∗ 357 254 321 1

2

77 77 77 77 77 ∗ 77 77
137 292 137 137 137 330 ∗ 296
89 207 89 89 89 302 1

2 89 ∗

κ

3 1
2

7
2
1

3 1
2

8
5
6
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x

4

3

1

5

7

8

2

6

Mν
xy

4 3 1 5 7 8 2 6

∗ 6 86 96 1
2 154 1

2 250 1
2 252 294 1

2

∗ ∗ 91 1
2 93 1

2 163 256 251 285
∗ ∗ ∗ 0 109 231 232 270 1

2

∗ ∗ ∗ ∗ 117 232 1
2 236 280

∗ ∗ ∗ ∗ ∗ 207 203 253
∗ ∗ ∗ ∗ ∗ ∗ 44 225 1

2

∗ ∗ ∗ ∗ ∗ ∗ ∗ 185
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

x

4

3

1

5

7

8

2

6

Txy
4 3 1 5 7 8 2 6

∗ 403 405 405 401 411 394 394
∗ ∗ 395 397 390 399 382 386
∗ ∗ ∗ 387 383 396 372 374
∗ ∗ ∗ ∗ 385 397 375 378
∗ ∗ ∗ ∗ ∗ 385 357 360
∗ ∗ ∗ ∗ ∗ ∗ 370 377
∗ ∗ ∗ ∗ ∗ ∗ ∗ 339
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

x

4

3

1

5

7

8

2

6

Mσ
xy

4 3 1 5 7 8 2 6

∗ 6 86 96 1
2 154 1

2 250 1
2 252 294 1

2

∗ ∗ 86 93 1
2 154 1

2 250 1
2 251 285

∗ ∗ ∗ 0 109 231 232 270 1
2

∗ ∗ ∗ ∗ 109 231 232 270 1
2

∗ ∗ ∗ ∗ ∗ 203 203 253
∗ ∗ ∗ ∗ ∗ ∗ 44 225 1

2

∗ ∗ ∗ ∗ ∗ ∗ ∗ 185
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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x

4

3

1

5

7

8

2

6

T σxy
4 3 1 5 7 8 2 6

∗ 403.4 403.4 403.4 403.25 403.25 392 392
∗ ∗ 397.4 397.4 397.25 397.25 386 386
∗ ∗ ∗ 389.6 389.6 389.6 374.75 374.75
∗ ∗ ∗ ∗ 389.6 389.6 374.75 374.75
∗ ∗ ∗ ∗ ∗ 385 366 366
∗ ∗ ∗ ∗ ∗ ∗ 366 366
∗ ∗ ∗ ∗ ∗ ∗ ∗ 339
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

x

4

3

1

5

7

8

2

6

Mπ
xy

4 3 1 5 7 8 2 6

∗ 6 86 86 109 203 203 217
∗ ∗ 86 86 109 203 203 217
∗ ∗ ∗ 0 109 203 203 217
∗ ∗ ∗ ∗ 109 203 203 217
∗ ∗ ∗ ∗ ∗ 203 203 217
∗ ∗ ∗ ∗ ∗ ∗ 44 185
∗ ∗ ∗ ∗ ∗ ∗ ∗ 185
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

x

4

3

1

5

7

8

2

6

T πxy
4 3 1 5 7 8 2 6

∗ 403.4 397.4 397.4 389.6 385 385 371
∗ ∗ 397.4 397.4 389.6 385 385 371
∗ ∗ ∗ 389.6 389.6 385 385 371
∗ ∗ ∗ ∗ 389.6 385 385 371
∗ ∗ ∗ ∗ ∗ 385 385 371
∗ ∗ ∗ ∗ ∗ ∗ 366 339
∗ ∗ ∗ ∗ ∗ ∗ ∗ 339
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗



Continuous rating for preferential voting, § 4 33

x

4

3

1

5

7

8

2

6

V π
xy

4 3 1 5 7 8 2 6

∗ 204.7 241.7 241.7 249.3 294 294 294
198.7 ∗ 241.7 241.7 249.3 294 294 294
155.7 155.7 ∗ 194.8 249.3 294 294 294
155.7 155.7 194.8 ∗ 249.3 294 294 294
140.3 140.3 140.3 140.3 ∗ 294 294 294

91 91 91 91 91 ∗ 205 262
91 91 91 91 91 161 ∗ 262
77 77 77 77 77 77 77 ∗

rx ϕx

3.6784 0.2067
3.6926 0.2048
4.1105 0.1596
4.1105 0.1596
4.5720 0.1218
5.8100 0.0599
5.9145 0.0559
6.7197 0.0317

As one can see, the CLC results are in full agreement with the Copeland
scores of the original Llull matrix. In particular, they still give an exact tie
between candidates 1 and 5 . Even so, the CLC rates yield a quantitative
information which is not present in the Copeland scores. In particular, they
show that the victory of candidate 4 over candidate 3 was relatively narrow.

For the computation of the rates we have taken V = 421 (the actual
number of votes) instead of V = 972 (the number of people with the right
to vote); in particular, the fraction-like rates ϕx have been computed so that
they add up to f = 1 instead of the true participation ratio f = 421/972.
This is especially justified in Debian elections since they systematically
include “none of the above” as one of the alternatives, so it is reasonable
to interpret that abstention does not have a critical character. In the present
case, “none of the above” was alternative 8 , which obtained a better result
than two of the real candidates.

4.4 Finally, we look at an example of approval voting. Specifically, we
consider the 2006 Public Choice Society election [5 ]. Besides an approval
vote, here the voters were also asked for a preferential vote “in the spirit
of research on public choice”. However, here we will limit ourselves to the
approval vote, which was the official one. The vote had a participation of
V = 37 voters, most of which approved more than one candidate.

The actual votes are listed in the following table,1 where we give not
only the approval voting data but also the associated preferential votes. The
approved candidates are the ones which lie at the left of the slash.

1We are grateful to Prof. Steven J. Brams, who was the president of the Public Choice
Society when that election took place, for his kind permission to reproduce these data.
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A � B /
A � C � B /
D /� A � B � E � C
B � A /� D � C � E
D � A � B � C /� E
C � B � A /
E /� D
C � A � B � E /
D � E /� C � A � B
E /
B � C /
D � C /� B � E � A
B /

A /
A /
D /� A ∼ B ∼ C ∼ E
A ∼ C /
/ B � E � A � D � C
A ∼ B ∼ E /
A ∼ B ∼ C ∼ D ∼ E /
D � A � B /
B � D � A /� C � E
A /� B � E � C � D
D /
A ∼ C � B /� D � E
A /� D � B � C � E

C /� B � D � A � E
C /
D ∼ E /� A � B ∼ C
B /� C � A � D � E
D � C � E /
C /� A � B ∼ D ∼ E
C /
B � D /� E � C � A
B � C /� A � E � D
D � A � C � B /
D � E /� A � B

The approval voting scores are the following: A : 17, B : 16, C : 17, D : 14,
D : 9. So according to approval voting there was a tie between candidates A
and C , which were followed at a minimum distance by candidate B .

The CLC computations are as follows:

x

A

B

C

D

E

Vxy
A B C D E

∗ 12 1
2 11 14 15 1

2

11 1
2 ∗ 12 13 1

2 14 1
2

11 13 ∗ 14 1
2 15 1

2

11 11 1
2 11 1

2 ∗ 11 1
2

7 1
2 7 1

2 7 1
2 6 1

2 ∗

x

A

B

C

D

E

V ∗xy
A B C D E

∗ 12 1
2 12 14 15 1

2

11 1
2 ∗ 12 13 1

2 14 1
2

11 1
2 13 ∗ 14 1

2 15 1
2

11 1
2 11 1

2 11 1
2 ∗ 11 1

2

7 1
2 7 1

2 7 1
2 7 1

2 ∗

κ

1
3
2
4
5

x

A

C

B

D

E

Mν
xy

A C B D E

∗ 1
2 1 2 1

2 8
∗ ∗ 1 3 8
∗ ∗ ∗ 2 7
∗ ∗ ∗ ∗ 4
∗ ∗ ∗ ∗ ∗

x

A

C

B

D

E

Txy
A C B D E

∗ 22 24 25 23
∗ ∗ 25 26 23
∗ ∗ ∗ 25 22
∗ ∗ ∗ ∗ 18
∗ ∗ ∗ ∗ ∗
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x

A

C

B

D

E

Mσ
xy

A C B D E

∗ 1
2 1 2 1

2 8
∗ ∗ 1 2 1

2 8
∗ ∗ ∗ 2 7
∗ ∗ ∗ ∗ 4
∗ ∗ ∗ ∗ ∗

x

A

C

B

D

E

T σxy
A C B D E

∗ 24 1
2 24 1

2 24 1
2 22 7

8

∗ ∗ 24 1
2 24 1

2 22 3
8

∗ ∗ ∗ 24 1
2 21 3

8

∗ ∗ ∗ ∗ 19 3
8

∗ ∗ ∗ ∗ ∗

x

A

C

B

D

E

Mπ
xy

A C B D E

∗ 1
2 1 2 5.56

∗ ∗ 1 2 5.56
∗ ∗ ∗ 2 5.56
∗ ∗ ∗ ∗ 4
∗ ∗ ∗ ∗ ∗

x

A

C

B

D

E

T πxy
A C B D E

∗ 24 1
2 24 1

2 24 1
2 20.94

∗ ∗ 24 1
2 24 1

2 20.94
∗ ∗ ∗ 24 1

2 20.94
∗ ∗ ∗ ∗ 19 3

8

∗ ∗ ∗ ∗ ∗

x

A

C

B

D

E

V π
xy

A C B D E

∗ 12 1
2 12 3

4 13 1
4 13 1

4

12 ∗ 12 3
4 13 1

4 13 1
4

11 3
4 11 3

4 ∗ 13 1
4 13 1

4

11 1
4 11 1

4 11 1
4 ∗ 11.69

7.69 7.69 7.69 7.69 ∗

x

A

C

B

D

E

rx ϕx

3.6014 0.2315
3.6149 0.2276
3.6486 0.2181
3.7720 0.1928
4.1689 0.1299

So, the winner by the CLC method is candidate A . However, this is true
only for the main variant. For the other three variants (dual, balanced and
margin-based) the result is a tie between A and C , in full agreement with
the approval voting scores. In § 17 we will see that the margin-based variant
always gives such a full agreement.

Remark. In all of the preceding examples, the matrix of the indirect scores has
a constant row which corresponds to the loser. However, it is not always so.

5 Some terminology and notation

We consider a finite set A . Its elements represent the options which are
the matter of a vote. The number of elements of A will be denoted by N .
We will be particularly concerned with (binary) relations on A . Stating
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that two elements a and b are in a certain relation ρ is equivalent to saying
that the (ordered) pair formed by these two elements is a member of a certain
set ρ . The pair formed by a and b , in this order, will be denoted simply
as ab .

The pairs that consist of two copies of the same element, i. e. those of
the form aa , are not relevant for our purposes. So, we will systematically
exclude them from our relations. This can be viewed as a sort of normal-
ization. The set of all proper pairs, i. e. the pairs ab with a 6= b , will be
denoted as Π , or if necessary as Π (A). So, we will restrict our attention
to relations contained in Π (such relations are sometimes called “strict”, or
“irreflexive”). In particular, the relation that includes the whole of Π will
be called complete tie.

A relation ρ ⊆ Π will be called :

• total, or complete, when at least one of ab ∈ ρ and ba ∈ ρ holds for
every pair ab .

• antisymmetric when ab ∈ ρ and ba ∈ ρ cannot occur simultane-
ously.

• transitive when the simultaneous occurrence of ab ∈ ρ and bc ∈ ρ
implies ac ∈ ρ .

• a partial order, when it is at the same time transitive and antisym-
metric.

• a total order, or strict ranking, when it is at the same time tran-
sitive, antisymmetric and total.

• a complete ranking when it is at the same time transitive and total.

• a truncated ranking when it consists of a complete ranking on a
subset X of A together with all pairs ab with a ∈ X and b 6∈ X .

For every relation ρ ⊆ Π , we will denote by ρ′ the relation that consists
of all pairs of the form ab where ba ∈ ρ ; ρ′ will be called the converse
of ρ . On the other hand, we will denote by ρ̄ the relation that consists
of all pairs ab for which ab /∈ ρ ; ρ̄ will be called the complement of ρ .
For certain purposes, it will be useful to consider also the relation ρ̂ given
by the complement of the converse of ρ , or equivalently by the converse
of its complement. So, ab ∈ ρ̂ if and only if ba 6∈ ρ . This relation will
be called the adjoint of ρ . This operation will be used mainly in § 8, in
connection with the indirect comparison relation ν = µ(v∗). The following
proposition collects several properties which are immediate consequences of
the definitions:
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Lemma 5.1.

(a) ˆ̂ρ = ρ.

(b) ρ ⊂ σ ⇐⇒ σ̂ ⊂ ρ̂.

(c) ρ is antisymmetric ⇐⇒ ρ ⊆ ρ̂ ⇐⇒ ρ̂ is total.

(d) ρ is total ⇐⇒ ρ̂ ⊆ ρ ⇐⇒ ρ̂ is antisymmetric.

Besides pairs, we will be concerned also with longer sequences a0a1 . . . an .
They will be referred to as paths, and in the case an = a0 they are called
cycles. When aiai+1 ∈ ρ for every i , we will say that the path a0a1 . . . an is
contained in ρ , and also that a0 and an are indirectly related through ρ .
When ρ is transitive, the condition “a is indirectly related to b through ρ”
implies ab ∈ ρ . In general, however, it defines a new relation, which is
called the transitive closure of ρ , and will be denoted by ρ∗ ; this is the
minimum transitive relation that contains ρ . The transitive-closure opera-
tor is easily seen to have the following properties: ρ∗ ⊆ σ∗ whenever ρ ⊆ σ ;
(ρ ∩ σ)∗ ⊆ (ρ∗) ∩ (σ∗); (ρ∗) ∪ (σ∗) ⊆ (ρ ∪ σ)∗ ; (ρ∗)∗ = ρ∗ . On the other
hand, one can easily check that

Lemma 5.2. The transitive closure ρ∗ is antisymmetric if and only if ρ con-
tains no cycle. More specifically, ab, ba ∈ ρ∗ if and only if ρ contains a cycle
that includes both a and b.

A subset C ⊆ A will be said to be a cluster for a relation ρ when, for
any x 6∈ C , having ax ∈ ρ for some a ∈ C implies bx ∈ ρ for any b ∈ C ,
and similarly, having xa ∈ ρ for some a ∈ C implies xb ∈ ρ for any b ∈ C .
On the other hand, C ⊆ A will be said to be an interval for a relation ρ
when the simultaneous occurrence of ax ∈ ρ and xb ∈ ρ with a, b ∈ C
implies x ∈ C . The following facts are easy consequences of the definitions:
If ρ is antisymmetric and C is a cluster for ρ then C is also an interval
for ρ . If ρ is total and C is an interval for ρ then C is also a cluster for ρ .
As a corollary, if ρ is total and antisymmetric, then C is a cluster for ρ
if and only if it is an interval for that relation. Later on we will make use of
the following fact, which is also an easy consequence of the definitions:

Lemma 5.3. The following conditions are equivalent to each other:

(a) C is a cluster for ρ.

(b) C is a cluster for ρ̂.

(c) The simultaneous occurrence of ax ∈ ρ and xb ∈ ρ̂ with a, b ∈ C
implies x ∈ C , and similarly, the simultaneous occurrence of ax ∈ ρ̂
and xb ∈ ρ with a, b ∈ C implies also x ∈ C .
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When C is a cluster for ρ , it will be useful to consider a new set Ã
and a new relation ρ̃ defined in the following way: Ã is obtained from A
by replacing the set C by a single element c̃ , i. e. Ã = (A \ C) ∪ {c̃} ;
for x, y ∈ A \ C , xc̃ ∈ ρ̃ if and only if there exists c ∈ C such that xc ∈ ρ ,
c̃y ∈ ρ̃ if and only if there exists c ∈ C such that cy ∈ ρ , and finally,
xy ∈ ρ̃ if and only if xy ∈ ρ . We will refer to this operation as the con-
traction of ρ by the cluster C . If ρ is a strict ranking (resp. a complete
ranking) on A , then ρ̃ is a strict ranking (resp. a complete ranking) on Ã .

Given a relation ρ , we will associate every element x with the following
sets:

• the set of predecessors, Px , i. e. the set of y ∈ A such that yx ∈ ρ .

• the set of successors, Sx , i. e. the set of y ∈ A such that xy ∈ ρ .

• the set of collaterals, Cx , i. e. the set of y ∈ A \ {x} which are
neither predecessors nor successors of x in ρ .

The sets Px , Sx and Cx are especially meaningful when the relation ρ is
a partial order. In that case, and it is quite natural to rank the elements of
A by their number of predecessors, or by the number of elements which are
not their successors. More precisely, it makes sense to define the rank of x
in ρ as

κx = 1 + |Px| + ϑ |Cx| = 1 + (1− ϑ) |Px| + ϑ (N − 1− |Sx|), (44)

where ϑ is a fixed number in the interval 0 ≤ ϑ ≤ 1. If we do not say
otherwise, we will take ϑ = 1/2 . The following facts are easy consequences
of the definitions:

Lemma 5.4. Assume that ρ is a partial order. In that case, having xy ∈ ρ
implies the following facts: Px ⊂ Py , Sx ⊃ Sy (both inclusions are strict),
and κx < κy (for any ϑ in the interval 0 ≤ ϑ ≤ 1). For ϑ = 1/2 , the average
of the numbers κx is equal to (N + 1)/2. If ρ is a total order, then κx does
not depend on ϑ; furthermore, having xy ∈ ρ is then equivalent to κx < κy .

As in § 2.2, given a set of binary scores sxy , we denote by µ(s) the corre-
sponding comparison relation:

xy ∈ µ(s) ≡ sxy > syx. (45)

For such a relation, the adjoint µ̂(s) corresponds to replacing the strict in-
equality by the non-strict one.
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6 The indirect scores and its comparison relation

Let us recall that the indirect scores v∗xy are defined in the following way:

v∗xy = max {vα | α is a path x0x1 . . . xn from x0 = x to xn = y },

where the score vα of a path α = x0x1 . . . xn is defined as

vα = min {vxixi+1
| 0 ≤ i < n }.

In the following statements, and the similar ones which appear elsewhere,
“any x, y, z” should be understood as meaning “any x, y, z which are pairwise
different from each other”.

Remark. The matrix of indirect scores v∗ can be viewed as a power of v
(supplemented with vxx = 1) for a matrix product defined in the following
way: (vw)xz = maxy min(vxy, wyz). More precisely, v∗ coincides with such a
power for any exponent greater than or equal to N − 1.

Lemma 6.1. The indirect scores satisfy the following inequalities:

v∗xz ≥ min (v∗xy, v
∗
yz) for any x, y, z . (46)

Proof. Let α be a path from x to y such that v∗xy = vα ; let β be a path
from y to z such that v∗yz = vβ . Consider now their concatenation αβ . Since
αβ goes from x to z , one has v∗xz ≥ vαβ . On the other hand, the definition
of the score of a path ensures that vαβ = min (vα, vβ). Putting these things
together gives the desired result.

The following lemma is somehow a converse of the preceding one:

Lemma 6.2. Assume that the original scores satisfy the following inequal-
ities:

vxz ≥ min (vxy, vyz) for any x, y, z . (47)

In that case, the indirect scores coincide with the original ones.

Proof. The inequality v∗xz ≥ vxz is an immediate consequence of the defini-
tion of v∗xz . The converse inequality can be obtained in the following way:
Let γ = x0x1x2 . . . xn be a path from x to z such that v∗xz = vγ . By virtue
of (47), we have

min
(
vx0x1 , vx1x2 , vx2x3 , . . . , vxn−1xn

)
≤ min

(
vx0x2 , vx2x3 , . . . , vxn−1xn

)
.

So, v∗xz ≤ vγ′ where γ′ = x0x2 . . . xn . By iteration, one eventually gets
v∗xz ≤ vxz .
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Theorem 6.3 (Schulze, 1998 [34 b ]). µ(v∗) is a transitive relation.

Proof. We will argue by contradiction. Let us assume that
xy ∈ µ(v∗) and yz ∈ µ(v∗), but xz /∈ µ(v∗). This means respectively that
(a) v∗xy > v∗yx and (b) v∗yz > v∗zy , but (c) v∗zx ≥ v∗xz . On the other hand,
Lemma 6.1 ensures also that (d) v∗xz ≥ min (v∗xy, v

∗
yz). We will

distinguish two cases depending on which of the two last quantities is smaller:
(i) v∗yz ≥ v∗xy ; (ii) v∗xy ≥ v∗yz .

Case (i) : v∗yz ≥ v∗xy . We will see that in this case (c) and (d) entail a
contradiction with (a). In fact, we have the following chain of inequalities:
v∗yx ≥ min (v∗yz, v

∗
zx) ≥ min (v∗yz, v

∗
xz) ≥ min (v∗yz, v

∗
xy) = v∗xy , where we are

using successively: Lemma 6.1, (c), (d) and (i).

Case (ii) : v∗xy ≥ v∗yz . An entirely analogous argument shows that in this
case (c) and (d) entail a contradiction with (b). In fact, we have v∗zy ≥
min (v∗zx, v

∗
xy) ≥ min (v∗xz, v

∗
xy) ≥ min (v∗yz, v

∗
xy) = v∗yz , where we are using

successively: Lemma 6.1, (c), (d) and (ii).

7 Restricted paths

In this section we consider paths restricted to either µ(v) or µ̂(v). Such
restricted paths allow to achieve not only the majority principle I1, but also
the Condorcet principle I1 ′ . In exchange, however, this idea can hardly be
made into a continuous rating method, since one is doing quite different
things depending on whether vxy > vyx or vxy < vyx . Even so, we will
see that in the complete case —where I1 is equivalent to I1 ′— the indirect
comparison relations which are obtained under such restrictions coincide with
the one which is obtained when arbitrary paths are used. More specifically,
we will look at the comparison relations associated with u∗xy and w∗xy , where
uxy and wxy are defined as

uxy =

{
vxy, if vxy > vyx,

0, otherwise;
wxy =

{
vxy, if vxy ≥ vyx,

0, otherwise.
(48)

Proposition 7.1.

(a) µ(u∗) ⊆ µ∗(v).

(b) µ(w∗) ⊆ µ̂∗(v).

Proof. Part (a). Let us begin by recalling that µ∗(v) means the transitive
closure of µ(v). Let us assume that xy ∈ µ(u∗), i. e. u∗xy > u∗yx . Since we
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are dealing with non-negative numbers, this ensures that u∗xy > 0. By the
definition of u∗xy , this implies the existence of a path x0x1 . . . xn from x0 = x
to xn = y such that uxixi+1

> 0 for all i . According to (48.1), this ensures
that vxixi+1

> vxi+1xi , i. e. xixi+1 ∈ µ(v), for all i . Therefore, xy ∈ µ∗(v).
An entirely analogous argument proves part (b).

Lemma 7.2.

(a) u∗xy ≤ w∗xy ≤ v∗xy.

(b) v∗xy > 1/2 =⇒ u∗xy = w∗xy = v∗xy.

(c) v∗xy = 1/2 =⇒ w∗xy = v∗xy.

In the complete case one has:

(d) v∗xy < 1/2 =⇒ u∗xy = w∗xy = 0.

(e) v∗xy = 1/2 =⇒ u∗xy = 0.

Proof. Part (a). It is simply a matter of noticing that uxy ≤ wxy ≤ vxy
and checking that the inequality pxy ≤ qxy for all x, y implies p∗xy ≤ q∗xy
for all x, y . As an intermediate result towards this implication, one can see
that pγ ≤ qγ for all paths γ . In fact, if γ = x0x1 . . . xn and i is such that
qγ = qxixi+1

, the definition of pγ and the inequality between pxy and qxy
give pγ ≤ pxixi+1

≤ qxixi+1
= qγ . The second step of that implication uses an

analogous argument: if γ is a path from x to y such that p∗xy = pγ , we can
write p∗xy = pγ ≤ qγ ≤ q∗xy , where we are using the intermediate result and
the definition of q∗xy .

Part (b). Let γ = x0x1 . . . xn be a path from x to y such that v∗xy = vγ .
Since v∗xy > 1/2, every link of that path satisfies vxixi+1

> 1/2, which implies
that vxixi+1

> vxi+1xi (because vxixi+1
+ vxi+1xi ≤ 1). Now, that inequality

entails that uxixi+1
= vxixi+1

, from which it follows that uγ = vγ . Finally, it
suffices to combine these facts with the inequality uγ ≤ u∗xy and the inequal-
ities of part (a):

v∗xy = vγ = uγ ≤ u∗xy ≤ w∗xy ≤ v∗xy.

Part (c). The proof is similar to that of part (b). Here we deal with
the non-strict inequality vxixi+1

≥ 1/2, which entails vxixi+1
≥ vxi+1xi and

wxixi+1
= vxixi+1

. These facts allow to conclude that

v∗xy = vγ = wγ ≤ w∗xy ≤ v∗xy.

Part (d). The hypothesis that v∗xy < 1/2 means that for every path
γ = x0x1 . . . xn from x to y there exists at least one i such that vxixi+1

< 1/2.
By the assumption of completeness, this implies that vxixi+1

< vxi+1xi , so that
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uxixi+1
= wxixi+1

= 0. This implies that uγ = wγ = 0. Since γ is arbitrary,
it follows that u∗xy = w∗xy = 0.

Part (e). The proof is similar to that of part (d). Here we deal with
the non-strict inequality vxixi+1

≤ 1/2, which implies vxixi+1
≤ vxi+1xi and

uxixi+1
= 0. This holds for at least one link of every path γ from x to y .

So, u∗xy = 0.

Theorem 7.3. In the complete case one has µ(u∗) = µ(w∗) = µ(v∗).

Proof. It suffices to prove the three following statements:

v∗xy > v∗yx =⇒ u∗xy > u∗yx and w∗xy > w∗yx (49)

w∗xy > w∗yx =⇒ v∗xy > v∗yx, (50)

u∗xy > u∗yx =⇒ v∗xy > v∗yx, (51)

Proof of (49). By combining the completeness assumption with the hy-
pothesis of (49) we can write 1 = vxy + vyx ≤ v∗xy + v∗yx < 2v∗xy , so that
v∗xy > 1/2. According to part (b) of Lemma 7.2, this inequality implies that
u∗xy = w∗xy = v∗xy . On the other hand, part (a) of the same lemma ensures
that u∗yx ≤ w∗yx ≤ v∗yx . By combining these facts with the hypothesis of (49)
we obtain the right-hand side of it.

Proof of (50). Here we begin by noticing that the left-hand side implies
w∗xy > 0, which by part (d) of Lemma 7.2 entails v∗xy ≥ 1/2. If v∗yx < 1/2,
we are finished. If, on the contrary, v∗yx ≥ 1/2, then parts (a), (b) and (c) of
Lemma 7.2 allow to conclude that v∗yx = w∗yx < w∗xy ≤ v∗xy.

Proof of (51). Similarly to above, the left-hand side implies u∗xy > 0,
which by parts (d) and (e) of Lemma 7.2 entails v∗xy > 1/2. If v∗yx ≤ 1/2,
we are finished. If, on the contrary, v∗yx > 1/2, then parts (a) and (b) of
Lemma 7.2 allow to conclude that v∗yx = u∗yx < u∗xy ≤ v∗xy.

8 Admissible orders

Let us recall that an admissible order is a total order ξ such that ν ⊆ ξ ⊆ ν̂ .
Here ν is the indirect comparison relation ν = µ(v∗). So xy ∈ ν if and only if
mν
xy = v∗xy − v∗yx > 0, and xy ∈ ν̂ if and only if mν

xy ≥ 0.

Lemma 8.1. Assume that ρ is an antisymmetric and transitive relation.
If ρ contains neither xy nor yx, then (ρ ∪ {xy})∗ is also antisymmetric.
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Proof. We will proceed by contradiction. According to Lemma 5.2, if
(ρ ∪ {xy})∗ were not antisymmetric, ρ ∪ {xy} would contain a cycle γ .
On the other hand, the hypotheses on ρ ensure, by the same lemma, that
ρ contains no cycles. Therefore, γ must involve the pair xy . By following
this cycle from one ocurrence of the pair xy until the next ocurrence of x , one
obtains a path from y to x which is contained in ρ . But, since ρ is transitive,
this entails that yx ∈ ρ , which contradicts one of the hypotheses.

Theorem 8.2. Given a transitive antisymmetric relation ρ on a finite
set A, one can always find a total order ξ such that ρ ⊆ ξ ⊆ ρ̂. If ρ
contains neither xy nor yx, one can constrain ξ to include the pair xy .

Proof. If ρ is total, it suffices to take ξ = ρ (notice that ρ̂ = ρ because of
statements (c) and (d) of Lemma 5.1). Otherwise, let us consider the relation
ρ1 = (ρ ∪ {xy})∗ , where xy is any pair such that ρ contains neither xy
nor yx . According to Lemma 8.1, ρ1 is antisymmetric. Furthermore, it is
obvious that ρ ⊂ ρ1 . Therefore, the statements (b) and (c) of Lemma 5.1
ensure that ρ ⊂ ρ1 ⊆ ρ̂1 ⊂ ρ̂ . From here, one can repeat the same process
with ρ1 substituted for ρ : if ρ1 is total we take ξ = ρ1 ; otherwise we consider
ρ2 = (ρ1 ∪ {x1y1})∗ , where x1y1 is any pair such that ρ1 contains neither
x1y1 nor y1x1 , and so on. This iteration will conclude in a finite number of
steps since A is finite.

Corollary 8.3. One can always find an admissible order ξ .

Proof. It follows from Theorem 8.2 because ν = µ(v∗) is certainly antisym-
metric and Theorem 6.3 ensures that it is transitive.

Later on we will make use of the following fact:

Theorem 8.4. Given a transitive antisymmetric relation ρ on a finite set A
and a set C which is a cluster for ρ, one can always find a total order ξ
such that ρ ⊆ ξ ⊆ ρ̂ and such that C is a cluster for ξ .

Proof. As in the proof of Theorem 8.2, we will progressively extend ρ until
we get a total order. Here, we will take care that besides being transitive
and antisymmetric, the successive extensions ρi keep the property that C
be a cluster for ρi . To this effect, the successive additions to ρ will follow
a certain specific order, and we will make an extensive use of the necessary
and sufficient condition given by Lemma 5.3.
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In a first phase we will deal with pairs of the form cd with c, d ∈ C .
Let us assume that neither cd nor dc is contained in ρ , and let us consider
ρ1 = (ρ ∪ {cd})∗ . Besides the properties mentioned in the proof of Theo-
rem 8.2, we claim that this relation has the property that C is a cluster
for ρ1 . According to Lemma 5.3, it suffices to check that the simultaneous
occurrence of ax ∈ ρ1 and xb ∈ ρ̂1 with a, b ∈ C implies x ∈ C , and
similarly, that the simultaneous occurrence of ax ∈ ρ̂1 and xb ∈ ρ1 with
a, b ∈ C implies also x ∈ C . So, let us assume first that ax ∈ ρ1 and
xb ∈ ρ̂1 with a, b ∈ C . Since ρ ⊂ ρ1 , we have xb ∈ ρ̂ (because ρ̂1 ⊂ ρ̂).
If ax ∈ ρ , we immediately get x ∈ C since C is known to be a cluster for ρ
(Lemma 5.3). Otherwise, i. e. if ax ∈ ρ1 \ ρ , we see that ρ1 contains a path
of the form γ = a . . . cd . . . x . But this entails the existence of a path from
d to x contained in ρ . So, by transitivity, dx ∈ ρ . Again, this fact together
with xb ∈ ρ̂ ensures that x ∈ C since C is known to be a cluster for ρ .
A similar argument takes care of the case where ax ∈ ρ̂1 and xb ∈ ρ1 with
a, b ∈ C .

By repeating the same process we will eventually get an extension of ρ
with the same properties plus the following one: it includes either cd or dc
for any c, d ∈ C . In other words, its restriction to C is a total order. In the
following, this relation will be denoted by η .

Now we will deal with pairs of the form cq or qc with c ∈ C and q 6∈ C .
Let us assume that neither cq nor qc belong to η . In this case we will
proceed by taking η1 = (η ∪ {`q})∗ , where ` denotes the last element of C
according to the total order determined by η (alternatively, one could take
η1 = (η ∪ {qf})∗ , where f denotes the first element of C by η ). By so
doing, we make sure that η1 contains all pairs of the form zq with z ∈ C .
As a consequence, C will keep the property of being a cluster for η1 . In fact,
let us assume, in the lines of Lemma 5.3, that ax ∈ η1 and xb ∈ η̂1 with
a, b ∈ C . The hypothesis that ax ∈ η1 can be divided in two cases, namely
either ax ∈ η or ax ∈ η1 \ η . Let us consider first the case ax ∈ η1 \ η .
By the definition of η1 , this means that η1 contains a path of the form
γ = a . . . `q . . . x , whose final part shows that qx ∈ η1 . On the other hand,
we know that η1 contains bq (since b ∈ C ). By transitivity, this entails
bx ∈ η1 and therefore xb 6∈ η̂1 , in contradiction with the hypothesis that
xb ∈ η̂1 . So, the only possibility of having ax ∈ η1 and xb ∈ η̂1 is ax ∈ η .
Besides, xb ∈ η̂1 implies that xb ∈ η̂ . So x ∈ C because C is a cluster for η
(Lemma 5.3). Let us assume now that ax ∈ η̂1 and xb ∈ η1 . Like before, the
former implies ax ∈ η̂ . Again, the hypothesis that xb ∈ η1 can be divided
in two cases, namely either xb ∈ η or xb ∈ η1 \ η . In the first case we have
ax ∈ η̂ and xb ∈ η . So x ∈ C because C is a cluster for η . In the second
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case we can still use the same argument since η1 contains a path of the form
γ = x . . . `q . . . b , which shows that x` ∈ η .

By repeating the same process we will eventually get an extension of η
with the same properties plus the following one: it includes either cq or qc
for any c ∈ C and q 6∈ C .

Finally, it rests to deal with any pairs of the form pq with p, q 6∈ C .
However, these pairs do not cause any problems since they do not appear in
the definition of C being a cluster.

In practice, one can easily obtain admissible orders by suitably arranging
the elements of A according to their number of victories, ties and defeats
against the others according to the indirect comparison relation ν . More
precisely, it suffices to arrange the elements of A by non-decreasing values of
their rank κx in ν as defined in (44). According to the the particular nature
of ν and the definitions given in § 5, the sets Px , Sx and Cx which appear
in (44) are given by

Px = { y | y 6= x, mν
xy < 0 }, (52)

Sx = { y | y 6= x, mν
xy > 0 }, (53)

Cx = { y | y 6= x, mν
xy = 0 }. (54)

So, ranking by κx amounts to applying the Copeland rule to the tourna-
ment defined by the indirect comparison relation ν = µ(v∗) (see for instance
[38 : p. 206–209 ]).

Proposition 8.5. Any total ordering of the elements of A by non-decreasing
values of κx(ν) is an admissible order. This is true for any fixed value of ϑ
in the interval 0 ≤ ϑ ≤ 1.

Proof. Let ξ be a total order of A for which x 7→ κx does not decrease.
This means that

xy ∈ ξ =⇒ κx ≤ κy,

or equivalently,
κy < κx =⇒ xy /∈ ξ.

Furthermore, the total character of ξ allows to derive that

κy < κx =⇒ yx ∈ ξ.

On the other hand, we know by Theorem 6.3 that ν = µ(v∗) is transitive. As
a consequence, by Lemma 5.4, xy ∈ ν implies κx < κy . By combining this
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with the preceding implication (with x and y interchanged with each other),
we get that ν ⊆ ξ . In order to complete the proof that ξ is admissible, we
must check that ξ ⊆ ν̂ , or equivalently, that xy 6∈ ν̂ implies xy 6∈ ξ . This is
true because of the following chain of implications:

xy 6∈ ν̂ ⇐⇒ yx ∈ ν =⇒ κy < κx =⇒ xy 6∈ ξ,

where we used respectively the definition of ν̂ , Lemma 5.4, and the hypothesis
that κx does not decrease along ξ .

In the following section we will make use of the following fact:

Lemma 8.6. Given two admissible orders ξ and ξ̃ , one can find a sequence
of admissible orders ξi (i = 0 . . . n) such that ξ0 = ξ , ξn = ξ̃ , and such that
ξi+1 differs from ξi only by the transposition of two consecutive elements.

Proof. Given two total orders ρ and σ , we will denote as d(ρ, σ) the number
of pairs ab such that ab ∈ ρ \σ . Obviously, ρ = σ if and only if d(ρ, σ) = 0.
Furthermore, we will say that ab is a consecutive pair in ρ whenever ab ∈ ρ
and there is no x ∈ A such that ax, xb ∈ ρ . If all pairs ab which are
consecutive in ξ belong to ξ̃ , the transitivity of ξ̃ allows to derive that
ξ ⊆ ξ̃ ; furthermore, the fact that all total orders on the finite set A have
the same number of pairs allows to conclude that ξ = ξ̃ . So, if ξ̃ 6= ξ , there
must be some pair ab which is consecutive in ξ but it does not belong to ξ̃ .
Since ab belongs to the admissible order ξ and ba belongs to the admissible
order ξ̃ , it follows that mν

ab = 0. Let us take as ξ1 the total order which
differs from ξ only by the transposition of the two consecutive elements a
and b ; i. e. ξ1 = (ξ \ {ab}) ∪ {ba} . This order is admissible since ξ is so
and mν

ab = 0. Obviously, d(ξ1, ξ̃) = d(ξ, ξ̃) − 1. From here, one can repeat
the same process with ξ1 substituted for ξ : if ξ1 still differs from ξ̃ we take
ξ2 = (ξ1 \ {a1b1}) ∪ {b1a1} , where a1b1 is any pair which is consecutive in
ξ1 but it does not belong to ξ̃ , and so on. This iteration will conclude in a
number of steps equal to d(ξ, ξ̃), since d(ξi, ξ̃) decreases by one unit in each
step.

9 The projection

Let us recall that our rating method is based upon certain projected scores vπxy .
These quantities (or equivalently, the projected margins mπ

xy = vπxy − vπyx
and the projected turnovers tπxy = vπxy + vπyx ) are worked out by means of
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the procedure (20–26) of page 18. Its starting point are the indirect mar-
gins mν

xy = v∗xy − v∗xy and the original turnovers txy = vxy + vyx . From these
quantities, equations (21.1) and (21.2), used in this order, determine what
we called the intermediate projected margins and turnovers, mσ

xy and tσxy .
After their construction, one becomes interested only in their superdiagonal
elements mσ

xx′ and tσxx′ . In fact, these quantities are combined into certain
intervals γxx′ whose unions give rise to the whole set of projected scores.

Let us recall in more detail the meaning of the operator Ψ which appears
in step (21.2). This operator produces the intermediate projected turnovers
(tσxy) as a function of the original turnovers (txy) and the superdiagonal
intermediate projected margins (mσ

pp′). Here we are using parentheses to
emphasize that we are dealing with the whole collection of turnovers and the
whole collection of superdiagonal intermediate projected margins. Specif-
ically, (tσxy) is found by imposing certain conditions, namely (27–29), and
minimizing the function (31), which is nothing else than the euclidean dis-
tance to (txy). Equivalently, we can think in the following way (where the
pair xy is not restricted to belong to ξ ): we consider a candidate (τxy) which
varies over the set T which is determined by the following conditions:

τyx = τxy, (55)

mσ
xx′ ≤ τxx′ ≤ 1; (56)

0 ≤ τxy − τxy′ ≤ mσ
yy′ , (57)

we associate each candidate (τxy) with its euclidean distance from (txy);
finally, we define (tσxy) as the only value of (τxy) which minimizes such a
distance. The minimizer exists and it is unique as a consequence of the fact
that T is a closed convex set [17 : ch. I, § 2 ]. In this connection, one can say
that (tσxy) is the orthogonal projection of (txy) onto the convex set T .

The procedure (20–26) produces the projected scores as the end points
of the intervals

(23) γxy =
⋃
{γpp′ | x �−

ξ p �ξ y},

where

(22) γxx′ = [ (tσxx′ −mσ
xx′)/2 , (tσxx′ +mσ

xx′)/2 ].

The desired properties of the projected scores and the associated margins and
turnovers will be based upon the following properties of the intervals γxy ,
where we recall that |γ| means the length of an interval, and

•
γ means its

barycentre, or centroid, i. e. the number (a+ b)/2 if γ = [a, b] .
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Lemma 9.1. The sets γxy have the following properties for x �ξ y �ξ z :

(a) γxy is a closed interval.

(b) γxy ⊆ [0, 1].

(c) γxz = γxy ∪ γyz .

(d) γxy ∩ γyz 6= ∅.

(e) |γxz| ≥ max ( |γxy| , |γyz| ).

(f)
•
γxy ≥

•
γxz ≥

•
γyz .

(g) |γxz|/
•
γxz ≥ max ( |γxy|/

•
γxy , |γyz|/

•
γyz ).

Proof. Let us start by recalling that the superdiagonal intermediate turnovers
and margins are ensured to satisfy the following inequalities:

0 ≤ mσ
xx′ ≤ tσxx′ ≤ 1 (58)

(30) 0 ≤ tσxx′ − tσx′x′′ ≤ mσ
xx′ +mσ

x′x′′ . (59)

From (58) it follows that 0 ≤ (tσxx′ − mσ
xx′)/2 ≤ (tσxx′ + mσ

xx′)/2 ≤ 1. So,
every γxx′ is an interval (possibly reduced to one point) and this interval
is contained in [0, 1]. Also, the inequalities of (59) ensure on the one hand
that

•
γxx′ ≥

•
γx′x′′ , and on the other hand that the intervals γxx′ and γx′x′′

overlap each other. In the following we will see that these facts about the
elementary intervals γxx′ entail the stated properties of the sets γxy defined
by (59).

Part (a). This is an obvious consequence of the fact that γpp′ and γp′p′′
overlap each other.

Part (b). This follows from the fact that γpp′ ⊆ [0, 1].

Part (c). This is a consequence of the associative property enjoyed by the
set-union operation.

Part (d). This is again an obvious consequence of the fact that γpp′ and
γp′p′′ overlap each other (take p′ = y ).

Part (e). This follows from (c) because γ ⊆ η implies |γ| ≤ |η| .
Part (f). This follows from the fact that

•
γpp′ ≥

•
γp′p′′ because of the fol-

lowing general fact: If γ and η are two intervals with
•
γ ≥ •

η then
•
γ ≥ (γ ∪ η)

• ≥ •
η . This is clear if γ and η are disjoint and also if one

of them is contained in the other. Otherwise, γ \ η and η \ γ are nonempty
intervals and the preceding disjoint case allows to proceed in the following
way:

•
γ ≥ (γ ∪ (η \ γ))

•
= (γ ∪ η)

•
= ((γ \ η) ∪ η)

• ≥ •
η.

Part (g). This follows from (c) and (d) because of the following general
fact: If γ and η are two closed intervals with γ ⊆ η ⊂ [0,+∞) then |γ|/ •

γ ≤
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|η|/ •
η . In fact, let γ = [a, b] and η = [c, d] . The hypothesis that γ ⊆ η takes

then the following form : c ≤ a and b ≤ d . On the other hand, the claim
that |γ|/ •

γ ≤ |η|/ •
η takes the following form: (b−a)/(b+a) ≤ (d−c)/(d+c).

An elementary computation shows that the latter is equivalent to bc ≤ ad ,
which is a consequence of the preceding inequalities.

The projection procedure makes use of a particular admissible order ξ .
In fact, this order occurs in equations (21–23), as well as in conditions (27–
29). In spite of this, the next theorem claims that the final results are
independent of ξ . The proof is not difficult, but it is rather long.

Theorem 9.2. The projected scores do not depend on the admissible order ξ
used for their calculation, i. e. the value of vπxy is independent of ξ for
every xy ∈ Π. On the other hand, the matrix of the projected scores in an
admissible order ξ is also independent of ξ ; i. e. if xi denotes the element
of rank i in ξ , the value of vπxixj is independent of ξ for every pair of
indices i, j .

Remark. The two statements say different things since the identity of xi and
xj may depend on the admissible order ξ .

Proof. For the purposes of this proof it becomes necessary to change our
set-up in a certain way. In fact, until now the intermediate objects mσ

xy , tσxy
and γxy were considered only for x �ξ y , i. e. xy ∈ ξ . However, since we
have to deal with changing the admissible order ξ , here we will allow their
argument xy to be any pair (of different elements), no matter whether it
belongs to ξ or not. In this connection, we will certainly put mσ

yx = −mσ
xy

and tσyx = tσxy . On the other hand, concerning γxy and γyx , we will proceed in
the following way: if γxy = [a, b] then γyx = [b, a] . So, generally speaking the
γxy are here “oriented intervals”, i. e. ordered pairs of real numbers. However,
γxy will always be “positively oriented” when xy belongs to an admissible
order (but it will be reduced to a point whenever there is another admissible
order which includes yx). In particular, the γpp′ which are combined in (23)
are always positively oriented intervals; so, the union operation performed in
that equation can always be understood in the usual sense. In the following,
γ’ denotes the oriented interval “reverse” to γ , i. e. γ’ = [b, a] if γ = [a, b] .

So, let us consider the effect of replacing ξ by another admissible order ξ̃ .
In the following, the tilde is systematically used to distinguish between hom-
ologous objects which are associated respectively with ξ and ξ̃ ; in particular,
such a notation will be used in connection with the labels of the equations
which are formulated in terms of the assumed admissible order.
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With this terminology, we will prove the two following equalities. First,

γxy = γ̃xy, for any pair xy (x 6= y), (60)

where γxy are the intervals produced by (21–23) together with the opera-
tion γyx = γ’xy , and γ̃xy are those produced by (2̃1–2̃3) together with the
operation γ̃yx = γ̃’xy . Secondly, we will see also that

γxixj = γ̃x̃ix̃j , for any pair of indices ij (i 6= j), (61)

where xi denotes the element of rank i in ξ , and analogously for x̃i in ξ̃ .
These equalities contain the statements of the theorem since the projected
scores are nothing else than the end points of the γ intervals.

Now, by Lemma 8.6, it suffices to deal with the case of two admissible
orders ξ and ξ̃ which differ from each other by one inversion only. So, we
will assume that there are two elements a and b such that the only difference
between ξ and ξ̃ is that ξ contains ab whereas ξ̃ contains ba . According to
the definition of an admissible order, this implies that mν

ab = mν
ba = 0.

In order to control the effect of the differences between ξ and ξ̃ , we
will make use of the following notation: P and p will denote respectively
the set of predecessors of a in ξ and its lowest element, i. e. the immediate
predecessor of a in ξ ; in this connection, any statement about p will be
understood to imply the assumption that P is not empty. Similarly, Q and q
will denote respectively the set of successors of b in ξ and its top element,
i. e. the immediate successor of b in ξ ; here too, any statement about q will
be understood to imply the assumption that Q is not empty. So, ξ and ξ̃
contain respectively the paths pabq and pbaq .

Let us look first at the superdiagonal intermediate projected margins mσ
hh′ .

According to (21.1), mσ
hh′ is the minimum of a certain set of values of mν

xy .
In a table where x and y are ordered according to ξ , this set is an upper-
right rectangle with lower-left vertex at hh′ . Using ξ̃ instead of ξ amounts
to interchanging two consecutive columns and the corresponding rows of that
table, namely those labeled by a and b . In spite of such a rearrangement,
in all cases but one the underlying set from which the minimum is taken
is exactly the same, so the mininum is the same. The only case where the
underlying set is not the same occurs for h = a in the order ξ , or h = b in
the order ξ̃ ; but then the minimum is still the same because the underlying
set includes mν

ab = mν
ba = 0. So,

mσ
xixi+1

= m̃σ
x̃ix̃i+1

, for any i = 1, 2, . . . N−1. (62)
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In more specific terms, we have

mσ
xx′ = m̃σ

xx′ , whenever x 6= p, a, b, (63)

mσ
pa = m̃σ

pb, (64)

mσ
ab = m̃σ

ba = 0, (65)

mσ
bq = m̃σ

aq. (66)

In connection with equation (63) it should be clear that for x 6= p, a, b the
immediate successor x′ is the same in both orders ξ and ξ̃ .

Next we will see that the intermediate projected turnovers tσxy are invari-
ant with respect to ξ :

tσxy = t̃σxy, for any pair xy (x 6= y), (67)

where tσxy are the numbers produced by (21.2) together with the symmetry

tσyx = tσxy , and t̃σxy are those produced by (2̃1.2) together with the symmetry

t̃σyx = t̃σxy .

We will prove (67) by seeing that the set T determined by conditions

(55,56,57) coincides exactly with the set T̃ determined by (55,5̃6,5̃7). In other
words, conditions (56–57) are exactly equivalent to (5̃6–5̃7) under condition
(55), which does not depend on ξ .

In order to prove this equivalence we begin by noticing that condition (56)
coincides exactly with (5̃6) when x 6= p, a, b . This is true because, on the
one hand, x′ is then the same in both orders ξ and ξ̃ , and, on the other
hand, (63) ensures that the right-hand sides have the same value. Similarly
happens with conditions (57) and (5̃7) when y 6= p, a, b . So, it remains
to deal with conditions (56) and (5̃6) for x = p, a, b , and with conditions
(57) and (5̃7) for y = p, a, b . Now, on account of the symmetry (55), one
easily sees that condition (56) with x = a is equivalent to (5̃6) with x = b .
In fact, both of them reduce to 0 ≤ τab ≤ 1 since mσ

ab = m̃σ
ba = 0, as it

was obtained in (65). This last equality ensures also the equivalence between
condition (57) with y = a and condition (5̃7) with y = b . In this case both
of them reduce to

τxa = τxb. (68)

This common equality plays a central role in the equivalence between the re-
maining conditions. Thus, its combination with (66) ensures the equivalence
between (56) with x = b and (5̃6) with x = a , as well as the equivalence
between (57) with y = b and (5̃7) with y = a when x 6= a, b . On the
other hand, its combination with (64) ensures the equivalence between (56)
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and (5̃6) when x = p , as well as the equivalence between (57) and (5̃7)
when y = p and x 6= a, b . Finally, we have the two following equivalences:
(57) with y = p and x = b is equivalent to (5̃7) with y = p and x = a
because of the same equality (68) together with (64) and the symmetry (55);
and similarly, (57) with y = b and x = a is equivalent to (5̃7) with y = a
and x = b because of (68) together with (66) and (55). This completes the
proof of (67).

Having seen that condition (68) is included in both (57) and (5̃7), it
follows that the intermediate projected turnovers satisfy

tσxa = tσxb, t̃σxa = t̃σxb. (69)

By taking x = p, q and using also (67), it follows that

tσxx′ = t̃σxx′ , whenever x 6= p, a, b, (70)

tσpa = t̃σpb, (71)

tσab = t̃σba, (72)

tσbq = t̃σaq. (73)

In other words, the superdiagonal intermediate turnovers satisfy

tσxixi+1
= t̃σx̃ix̃i+1

, for any i = 1, 2, . . . N−1. (74)

On account of the definition of γxixi+1
and γ̃x̃ix̃i+1

, the combination of (62)
and (74) results in

γxixi+1
= γ̃x̃ix̃i+1

, for any i = 1, 2, . . . N−1, (75)

from which the union operation (23) produces (61).

Finally, let us see that (60) holds too. To this effect, we begin by noticing
that (65) together with (72) are saying not only that γab = γ̃ba but also that
this interval reduces to a point. As a consequence, we have

γba = γab = γ̃ba = γ̃ab. (76)

Let us consider now the equation γpa = γ̃pb , which is contained in (75). Since
γab reduces to a point, the overlapping property γpa ∩ γab 6= ∅ (part (d) of
Lemma 9.1) reduces to γab ⊆ γpa . Therefore, γpb = γpa∪γab = γpa (where we
used part (c) of Lemma 9.1). Analogously, γ̃pa = γ̃pb∪ γ̃ba = γ̃pb . Altogether,
this gives

γpb = γpa = γ̃pb = γ̃pa. (77)
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By means of an analogous argument, one obtains also that

γaq = γbq = γ̃aq = γ̃bq. (78)

On the other hand, (75) ensures that

γxx′ = γ̃xx′ , whenever x 6= p, a, b. (79)

Finally, part (c) of Lemma 9.1 allows to go from (76–79) to the desired general
equality (60).

Theorem 9.3. The projected scores and their asssociated margins and turn-
overs satisfy the following properties with respect to any admissible order ξ :

(a) The following inequalities hold whenever x �ξ y :

vπxy ≥ vπyx mπ
xy ≥ 0, (80)

vπxz ≥ vπyz, vπzx ≤ vπzy, (81)

mπ
xz ≥ mπ

yz, mπ
zx ≤ mπ

zy, (82)

tπxz ≥ tπyz, tπzx ≥ tπzy, (83)

mπ
xz/t

π
xz ≥ mπ

yz/t
π
yz, mπ

zx/t
π
zx ≤ mπ

zy/t
π
zy. (84)

(b) If vπxy = vπyx , or equivalently mπ
xy = 0, then (81–84) are satisfied all of

them with an equality sign.

(c) In the complete case, the projected margins satisfy the following property:

mπ
xz = max (mπ

xy,m
π
yz), whenever x �ξ y �ξ z . (85)

Proof. We will see that these properties derive from those satisfied by the
γ intervals, which are collected in Lemma 9.1. For the derivation one has to
bear in mind that vπxy and vπyx are respectively the right and left end points
of the interval γxy , and that mπ

xy = −mπ
yx and tπxy = tπyx are respectively the

width and twice the barycentre of γxy .

Part (a). Let us begin by noticing that (82) will be an immediate con-
sequence of (81), since mπ

xz = vπxz − vπzx and mπ
yz = vπyz − vπzy . On the other

hand, (83.2) is equivalent to (83.1) and (84.2) is equivalent to (84.1). These
equivalences hold because the turnovers and margins are respectively sym-
metric and antisymmetric. Now, (80) holds as soon as γxy is an interval, as
it is ensured by part (a) of Lemma 9.1. So, it remains to prove the inequali-
ties (81), (83.1) and (84.1). In order to prove them we will distinguish three
cases, namely: (i) x �ξ y �ξ z ; (ii) z �ξ x �ξ y ; (iii) x �ξ z �ξ y .
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Case (i) : By part (c) of Lemma 9.1, in this case we have γxz ⊇ γyz . This
immediately implies (81) because [a, b] ⊇ [c, d ] is equivalent to saying that
b ≥ d and a ≤ c . On the other hand, the inequalities (83.1) and (84.1) are
contained in parts (f) and (g) of Lemma 9.1. Case (ii) is analogous to case (i).

Case (iii) : In this case, (81) follows from part (d) of Lemma 9.1 since
[a, b] ∩ [c, d ] 6= ∅ is equivalent to saying that b ≥ c and a ≤ d . On the
other hand, (83.1) is still contained in part (f) of Lemma 9.1 (because of the
symmetric character of the turnovers), and (84.1) holds since mπ

xz ≥ 0 ≥ mπ
yz .

Part (b). The hypothesis that vπxy = vπyx is equivalent to saying that γxy
reduces to a point, i. e. γxy = [v, v] for some v . The claimed equalities will
be obtained by showing that in these circumstances one has γxz = γyz . We
will distinguish the same three cases as in part (a).

Case (i) : On account of the overlapping property γxy ∩ γyz 6= ∅ (part (d)
of Lemma 9.1), the one-point interval γxy = [v, v] must be contained in γyz .
So, γxz = γxy ∪ γyz = γyz (where we used part (c) of Lemma 9.1). Case (ii)
is again analogous to case (i).

Case (iii) : By part (c) of Lemma 9.1 (with y and z interchanged with
each other), the fact that γxy reduces to the one-point interval [v, v] implies
that both γxz and γzy reduce also to this one-point interval

Part (c). In the complete case the intermediate projected turnovers are
all of them equal to 1, so the intervals γpp′ and γxy are all of the centred
at 1/2. In these circumstances, (85) is exactly equivalent to part (c) of
Lemma 9.1.

The following propositions identify certain situations where the preceding
projection reduces to the identity.

Proposition 9.4. In the case of plumping votes the projected scores coin-
cide with the original ones.

Proof. Let us begin by recalling that in the case of plumping votes the
binary scores have the form vxy = fx for every y 6= x , where fx is the
fraction of voters who choose x . This implies that v∗xy = vxy = fx . In
fact, any path γ from x to y starts with a link of the form xp , whose
associated score is vxp = fx . So vγ ≤ fx and therefore v∗xy ≤ fx . But on
the other hand fx = vxy ≤ v∗xy . Consequently, we get mν

xy = v∗xy − v∗yx =
vxy − vyx = fx − fy , and the admissible orders are those for which the fx
are non-increasing. Owing to this non-increasing character, the intermediate
projected margins are mσ

xx′ = mxx′ = fx − fx′ . On the other hand, the
intermediate projected turnovers are tσxy = txy = fx + fy . In fact these
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numbers are easily seen to satisfy conditions (27–29) and they obviously
minimize (31). As a consequence, γxx′ = [fx′ , fx] . In particular, the intervals
γxx′ and γx′x′′ are adjacent to each other (the right end of the latter coincides
with the left end of the former). This fact entails that γxy = [fy, fx] whenever
x �ξ y . Finally, the projected scores are the end points of these intervals,
namely vπxy = fx = vxy and vπyx = fy = vyx .

Proposition 9.5. Assume that the votes are complete. Assume also that
there exists a total order ξ such that µ(v) ⊆ ξ ⊆ µ̂(v) and such that the
original margins satisfy

mxz = max (mxy,myz), whenever x �ξ y �ξ z in ξ . (86)

In that case, the projected scores coincide with the original ones. Besides,
condition (86) holds also for any other total order ξ̃ which satisfies µ(v) ⊆
ξ̃ ⊆ µ̂(v).

Remark. The hypothesis that µ(v) ⊆ ξ ⊆ µ̂(v) is not the one which defines
an admissible order, namely µ(v∗) ⊆ ξ ⊆ µ̂(v∗). However, in the course of
the proof we will see that v∗xy = vxy . So, ξ will be after all an admissible
order.

Proof. Since we are in the complete case, the scores vxy and the margins
mxy are related to each other by the monotone increasing transformation
vxy = (1 +mxy)/2. Therefore, condition (86) on the margins is equivalent to
the following one on the scores:

vxz = max (vxy, vyz), whenever x �ξ y �ξ z in ξ . (87)

On the other hand, since vxy + vyx = 1, the preceding condition is also
equivalent to the following one:

vzx = min (vzy, vyx), whenever x �ξ y �ξ z in ξ . (88)

In fact, vzx = 1− vxz = 1−max (vxy, vyz) = min (vzy, vyx).

Now, we claim that these properties imply the following one:

vxz ≥ min(vxy, vyz), for any x, y, z . (89)

In order to prove (89) we will distinguish four cases depending on whether or
not do xy and yz belong to ξ : (a) If xy, yz ∈ ξ , then (89) is an immediate
consequence of (87). (b) Similarly, if xy, yz 6∈ ξ , then (89) is an immediate
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consequence of (88) with x and z interchanged with each other. (c) Consider
now the case where xy 6∈ ξ and yz ∈ ξ . In this case we have vxy ≤ 1/2 ≤ vyz ,
so min(vxy, vyz) = vxy . Now we must distinguish two subcases: If xz ∈ ξ ,
then vxy ≤ 1/2 ≤ vxz , so we get (89). If, on the contrary, zx ∈ ξ , then
(88) applied to y �ξ z �ξ x gives vxy = min (vxz, vzy) ≤ vxz as claimed.
(d) Finally, the case where xy ∈ ξ and yz 6∈ ξ is analogous to the preceding
one.

Now we invoke Lemma 6.2, according to which (89) implies that v∗xy =
vxy . In particular, ξ is ensured to be an admissible order. Let us consider
any pair xy contained in ξ . By applying condition (86) we see that mσ

xy =
mν
xy = mxy . On the other hand, since the votes are complete we have

tσxy = 1. So, the intervals γpp′ and their unions are all of them centred
at 1/2. In this case, the union operation of (23) is equivalent to a maximum
operation performed upon the margins. On account of (86), this implies that
mπ
xy = mxy . Since we also have tπxy = 1 = txy , it follows that vπxy = vxy and

vπyx = vyx .

Having proved that vxy = v∗xy = vπxy , and taking into account that this
entails mxy = mπ

xy , one easily sees that condition (86) holds also for any
other total order ξ̃ such that µ(v) ⊆ ξ̃ ⊆ µ̂(v). In fact, such an order is
an admissible one, since µ(v∗) = µ(v), and that condition is guaranteed by
part (c) of Theorem 9.3.

10 The rank-like rates

Let us recall that the rank-like rates rx are given by the formula

(8) rx = N −
∑
y 6=x

vπxy. (90)

where vπxy are the projected scores. In the special case of complete votes,
where vπxy+vπyx = 1, the preceding formula is equivalent to the following one:

(9) rx = (N + 1−
∑
y 6=x

mπ
xy ) / 2. (91)

Let us remark also that in this special case the rank-like rates have the
property that ∑

x∈A

rx = N(N + 1)/2. (92)
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In view of formula (90), the properties of the projected scores obtained
in Theorem 9.3 imply the following facts:

Lemma 10.1.

(a) If x �ξ y in an admissible order ξ , then rx ≤ ry .

(b) rx = ry if and only if vπxy = vπyx , i. e. mπ
xy = 0.

(c) The inequalities (80– 84) are satisfied whenever rx ≤ ry .
In particular, vπxy > vπyx implies rx < ry .

Proof. Part (a). It is an immediate consequence of the preceding formula
together with the inequalities (80) and (81.1) ensured by Theorem 9.3.

Part (b). According to the formula above,

ry − rx = (vπxy − vπyx) +
∑
z 6=x
z 6=y

(vπxz − vπyz). (93)

Let ξ be an admissible order. By symmetry we can assume xy ∈ ξ . As a
consequence, Theorem 9.3 ensures that the terms of (93) which appear in
parentheses are all of them greater than or equal to zero. So the only pos-
sibility for their sum to vanish is that each of them vanishes separately,
i. e. vπxy = vπyx and vπxz − vπyz for any z 6∈ {x, y} . Finally, part (b) of The-
orem 9.3 ensures that all of these equalities hold as soon as the first one is
satisfied.

Part (c). It suffices to use the contrapositive of (a) in the case of a strict
inequality and (b) together with Theorem 9.3.(b) in the case of an equality.

Theorem 10.2. The rank-like rating given by (90) is related to the indirect
comparison relation ν = µ(v∗) in the following way:

(a) xy ∈ ν̂ ⇒ rx ≤ ry .

(b) rx < ry ⇒ xy ∈ ν .

(c) If ν contains a set of the form X × Y with X ∪ Y = A,
then rx < ry for any x ∈ X and y ∈ Y .

(d) If ν is total, i. e. ν̂ = ν , then xy ∈ ν ⇔ rx < ry .

Proof. Part (a). Let us begin by noticing that xy ∈ ν implies rx ≤ ry . This
follows from part (a) of Lemma 10.1 since ν is included in any admissible
ordering ξ . Consider now the case xy ∈ ν̂ \ ν . This is equivalent to saying
that ν contains neither xy nor yx . Now, in this case Theorem 8.2 ensures
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the existence of an admissible order which contains such a pair xy . So, using
again the preceding proposition, we are still ensured that rx ≤ ry .

Part (b). It reduces to the the contrapositive of (a).

Part (c). Let x ∈ X and y ∈ Y . Since X × Y ⊂ ν , part (a) ensures
that rx ≤ ry . So, it suffices to exclude the possibility that rx = ry . This
will be done by showing that this equality leads to a contradiction. By
part (b) of Lemma 10.1, that equality implies vπxy = vπyx , or equivalently,
mπ
xy = 0. But according to (22–24), this means that mσ

hh′ = 0 for all h
such that x �−

ξ h �ξ y . Here we are making use of an admissible order ξ .
In particular we have mσ

``′ = 0, where ` denotes the lowest element of X
according to ξ , and `′ is the top element of Y . But this contradicts the fact
that ``′ ∈ X × Y ⊂ ν .

Part (d). It suffices to show that rx < rx′ , where x′ denotes the item
that immediately follows x in the total order ν . This follows from part (c)
by taking X = {p | p �−

ξ x} and Y = {q | x′ �−
ξ q} and using the transitivity

of ν .

By construction, the rank-like rates are related to the projected scores in
the same way as the average ranks are related to the original scores when
the votes are complete rankings (§ 2.5). Therefore, if we are in the case of
complete ranking votes and the projected scores coincide with the original
ones, then the rank-like rates coincide with the average ranks:

Proposition 10.3. Assume that the votes are complete rankings. Assume
also that the Llull matrix satisfies the hypothesis of Proposition 9.5. In that
case, the rank-like rates rx coincide exactly with the average ranks r̄x .

Proof. This is an immediate consequence of Proposition 9.5.

11 Zermelo’s method

The Llull matrix of a vote can be viewed as corresponding to a tournament
between the members of A where x and y have played Txy matches (the
number of voters who made a comparison between x and y , even if this
comparison resulted in a tie) and Vxy of these matches were won by x ,
whereas the other Vyx were won by y (one tied match will be counted as
half a match in favour of x plus half a match in favour of y ). For such a
scenario, Ernst Zermelo [41 ] devised in 1929 a rating method which turns
out to be quite suitable to convert our rank-like rates into fraction-like ones.
This method was rediscovered later on by other autors [4, 11 ].
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Zermelo’s method is based upon a probabilistic model for the outcome
of a match between two items x and y . This model assumes that such a
match is won by x with probability ϕx/(ϕx+ϕy) whereas it is won by y with
probability ϕy/(ϕx + ϕy), where ϕx is a non-negative parameter associated
with each player x , usually referred to as its strength. If all matches are
independent events, the probability of obtaining a particular system of values
for the scores (Vxy) is given by

P =
∏
{x,y}

(
Txy
Vxy

)(
ϕx

ϕx + ϕy

)Vxy ( ϕy
ϕx + ϕy

)Vyx
, (94)

where the product runs through all unordered pairs {x, y} ⊆ A with x 6= y .
Notice that P depends only on the strength ratios; in other words, multi-
plying all the strengths by the same value has no effect on the result. On
account of this, we will normalize the strengths by requiring their sum to
take a fixed positive value f . In order to include certain extreme cases, one
must allow for some of the strengths to vanish. However, this may conflict
with P being well defined, since it could lead to indeterminacies of the type
0/0 or 00 . So, one should be careful in connection with vanishing strengths.
With all this in mind, for the moment we will let the strengths vary in the
following set:

Q = {ϕ ∈ RA | ϕx > 0 for all x ∈ A,
∑
x∈A

ϕx = f }. (95)

Together with this set, in the following we will consider also its closure Q,
which includes vanishing strengths, and its boundary ∂Q = Q \Q .

In connection with our interests, it is worth noticing that Zermelo’s model
can be viewed as a special case of a more general one, proposed in 1959
by Robert Duncan Luce, which considers the outcome of making a choice
out of multiple options [21 ]. According to Luce’s ‘choice axiom’, the proba-
bilities of two different choices x and y are in a ratio which does not depend
on which other options are present. As a consequence, it follows that every
option x can be associated a number ϕx so that the probability of choos-
ing x out of a set X 3 x is given by ϕx/(

∑
y∈X ϕy). Obviously, Zermelo’s

model corresponds to considering binary choices only. It is interesting to
notice that Luce’s model allows to associate every ranking with a certain
probability. In fact, a ranking can be viewed as the result of first choosing
the winner out of the whole set A , then choosing the best of the remainder,
and so on. If these successive choices are assumed to be independent events,
then one can easily figure out the corresponding probability. Anyway, when
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the normalization condition
∑

x∈A ϕx = f (≤ 1) is adopted, Luce’s theory
of choice allows to view ϕx as the first-choice probability of x , and to view
1− f as the probability of abstaining from making a choice out of A .

Let us mention here also that the hypothesis of independence which lies
behind formula (94) is certainly not satisfied by the binary comparisons which
arise out of preferential voting. In order to satisfy that hypothesis, the indi-
vidual votes should be based upon independent binary comparisons, in which
case they could take the form of an arbitrary binary relation, as we consid-
ered in § 3.3. However, even if the independence hypothesis is not satisfied,
we will see that Zermelo’s method, which we are about to discuss, has good
properties for transforming our projected scores into fraction-like rates.

Zermelo’s method corresponds to a maximum likelihood estimate of the
parameters ϕx from a given set of actual values of Vxy (and of Txy = Vxy +
Vyx ). In other words, given the values of Vxy , one looks for the values of ϕx
which maximize the probability P . Since Vxy and Txy are now fixed, this is
equivalent to maximizing the following function of the ϕx :

F (ϕ) =
∏
{x,y}

ϕx
vxy ϕy

vyx

(ϕx + ϕy)txy
, (96)

(recall that vxy = Vxy/V and txy = Txy/V where V is a positive constant
greater than or equal to any of the turnovers Txy ; going from (94) to (96)
involves taking the power of exponent 1/V and disregarding a fixed multi-
plicative constant). The function F is certainly smooth on Q . Besides, it is
clearly bounded from above, since the probability is always less than or equal
to 1. However, generally speaking F needs not to achieve a maximum in Q ,
because this set is not compact. In the present situation, the only general
fact that one can guarantee in this connection is the existence of maximizing
sequences, i. e. sequences ϕn in Q with the property that F (ϕn) converges
to the lowest upper bound F = sup {F (ψ) |ψ ∈ Q} .

In connection with maximizing the function F defined by (96) it makes
a difference whether two particular items x and y satisfy or not the in-
equality vxy > 0, or more generally —as we will see— whether they satisfy
v∗xy > 0. By the definition of v∗xy , the last inequality defines a transitive
relation —namely the transitive closure of the one defined by the former
inequality—. In the following we will denote this transitive relation by the
symbol D . Thus,

x D y ⇐⇒ v∗xy > 0. (97)

Associated with it, it is interesting to consider also the following derived rela-
tions, which keep the property of transitivity and are respectively symmetric
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and antisymmetric:

x ≡ y ⇐⇒ v∗xy > 0 and v∗yx > 0, (98)

x . y ⇐⇒ v∗xy > 0 and v∗yx = 0. (99)

Therefore, ≡ is an equivalence relation and . is a partial order. In the
following, the situation where x . y will be expressed by saying that x
dominates y . The equivalence classes of A by ≡ are called the irreducible
components of A (for V). If there is only one of them, namely A itself, then
one says that the matrix V is irreducible. So, V is irreducible if and only if
v∗xy > 0 for any x, y ∈ A . It is not difficult to see that this property is
equivalent to the following one formulated in terms of the direct scores only:
there is no splitting of A into two classes X and Y so that vyx = 0 for any
x ∈ X and y ∈ Y ; in other words, there is no ordering of A for which the
matrix V takes the form (

VXX VXY
O VY Y

)
, (100)

where VXX and VY Y are square matrices and O is a zero matrix. Besides, a
subset X ⊆ A is an irreducible component if and only if X is maximal, in the
sense of set inclusion, for the property of VXX being irreducible. On the other
hand, it also happens that the relations D and . are compatible with the
equivalence relation ≡ , i. e. if x ≡ x̄ and y ≡ ȳ then x D y implies x̄ D ȳ ,
and analogously x . y implies x̄ . ȳ . As a consequence, the relations
D and . can be applied also to the irreducible components of A for V .
In the following we will be interested in the case where V is irreducible, or
more generally, when there is a top dominant irreducible component ,
i. e. an irreducible component which dominates any other. From now on we
systematically use the notation VRS to mean the restriction of (vxy) to x ∈ R
and y ∈ S , where R and S are arbitrary non-empty subsets of A . Similarly,
ϕR will denote the restriction of (ϕx) to x ∈ R .

The next theorems collect the basic results that we need about Zermelo’s
method.

Theorem 11.1 (Zermelo, 1929 [41 ]; see also [11, 16 ]). If V is irreducible,
then:

(a) There is a unique ϕ ∈ Q which maximizes F on Q.
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(b) ϕ is the solution of the following system of equations:∑
y 6=x

txy
ϕx

ϕx + ϕy
=
∑
y 6=x

vxy, (101)

∑
x

ϕx = f, (102)

where (101) contains one equation for every x.

(c) ϕ is an infinitely differentiable function of the scores vxy as long as
they keep satisfying the hypothesis of irreducibility.

Proof. Let us begin by noticing that the hypothesis of irreducibility entails
that F can be extended to a continuous function on Q by putting F (ψ) = 0
for ψ ∈ ∂Q . In order to prove this claim we must show that F (ψn) → 0
whenever ψn converges to a point ψ ∈ ∂Q . Let us consider the following
sets associated with ψ : X = {x |ψx > 0} and Y = {y |ψy = 0} . The second
one is not empty since we are assuming ψ ∈ ∂Q , whereas the first one is not
empty because the strengths add up to the positive value f . Now, for any
x ∈ X and y ∈ Y , F (ψn) contains a factor of the form (ψny )vyx , which tends
to zero as soon as vyx > 0. So, the only way for F (ψn) not to approach zero
would be VYX = O , in contradiction with the irreducibility of V .

After such an extension, F is a continuous function on the compact set Q.
So, there exists ϕ which maximizes F on Q. However, since F (ψ) vanishes
on ∂Q whereas it is strictly positive for ψ ∈ Q , the maximizer ϕ must belong
to Q . This establishes the existence part of (a).

Maximizing F is certainly equivalent to maximizing logF . According to
Lagrange, any ϕ ∈ Q which maximizes logF under the condition of a fixed
sum is bound to satisfy

∂ logF (ϕ)

∂ϕx
= λ, (103)

for some scalar λ and every x ∈ A . Now, a straightforward computation
gives

∂ logF (ϕ)

∂ϕx
=
∑
y 6=x

(
vxy
ϕx
− txy
ϕx + ϕy

)
. (104)

On the other hand, using the fact that vxy + vyx = txy , the preceding expres-
sion is easily seen to imply that

∑
x

∂ logF (ϕ)

∂ϕx
ϕx = 0. (105)
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In other words, the gradient of logF at ϕ is orthogonal to ϕ , which was
foreseeable since F (ϕ) remains constant when ϕ is multiplied by an arbitrary
positive number. Notice that this is true for any ϕ . In particular, (105)
entails that the above Lagrange multiplier λ is equal to zero; in fact, it
suffices to plug (103) in (105) and to use the fact that

∑
x ϕx = f is positive.

So, the conditions (103) reduce finally to

∂ logF (ϕ)

∂ϕx
= 0, (106)

for every x ∈ A , which is equivalent to (101) on account of (104) and the fact
that ϕx > 0. So, any maximizer must satisfy the conditions stated in (b).

Let us see now that the maximizer is unique. Instead of following the
interesting proof given by Zermelo, here we will prefer to follow [16 ], which
will have the advantage of preparing matters for part (c). More specifically,
the uniqueness will be obtained by seeing that any critical point of logF as
a function on Q , i. e. any solution of (101–102), is a strict local maximum;
this implies that there is only one critical point, because otherwise one should
have other kinds of critical points [9 : §VI.6 ] (we are invoking the so-called
mountain pass theorem; here we are using the fact that logF becomes −∞
at ∂Q). In order to study the character of a critical point we will look at
the second derivatives of logF with respect to ϕ . By differentiating (104),
one obtains that

∂2 logF (ϕ)

∂ϕx2
= −

∑
y 6=x

(
vxy
ϕ2
x

− txy
(ϕx + ϕy)2

)
, (107)

∂2 logF (ϕ)

∂ϕx ∂ϕy
=

txy
(ϕx + ϕy)2

, for x 6= y. (108)

On the other hand, when ϕ is a critical point, equation (101) transforms
(107) into the following expression:

∂2 logF (ϕ)

∂ϕx2
= −

∑
y 6=x

txy
(ϕx + ϕy)2

ϕy
ϕx
. (109)

So, the Hessian bilinear form is as follows:∑
x,y

(
∂2 logF (ϕ)

∂ϕx ∂ϕy

)
ψx ψy = −

∑
x,y 6=x

txy
(ϕx + ϕy)2

(
ϕy
ϕx
ψ2
x − ψxψy

)
= −

∑
x,y 6=x

txy
(ϕx + ϕy)2 ϕxϕy

(
ϕ2
yψ

2
x − ϕxϕyψxψy

)
= −

∑
{x,y}

txy
(ϕx + ϕy)2 ϕxϕy

(ϕyψx − ϕxψy)2 ,

(110)
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where the last sum runs through all unordered pairs {x, y} ⊆ A with x 6= y .
The last expression is non-positive and it vanishes if and only if ψx/ϕx =
ψy/ϕy for any x, y ∈ A (the ‘only if’ part is immediate when txy > 0;
for arbitrary x and y the hypothesis of irreducibility allows to connect
them through a path x0x1 . . . xn (x0 = x , xn = y ) with the property that
txixi+1

≥ vxixi+1
> 0 for any i , so that one gets ψx/ϕx = ψx1/ϕx1 = · · · =

ψy/ϕy ). So, the vanishing of (110) happens if and only if ψ = λϕ for some
scalar λ . However, when ψ is restricted to variations within Q , i. e. to vec-
tors in TQ = {ψ ∈ RA |

∑
x ψx = 0} , the case ψ = λϕ reduces to ψ = 0

(since
∑

x ϕx = f is positive). So, the Hessian is negative definite on TQ .
This ensures that ϕ is a strict local maximum of logF as a function on Q .
In fact, one easily arrives at such a conclusion when Taylor’s formula is used
to analyse the behaviour of logF (ϕ+ ψ) for small ψ in TQ .

Finally, let us consider the dependence of ϕ ∈ Q on the matrix V .
To begin with, we notice that the set I of irreducible matrices is open since
it is a finite intersection of open sets, namely one open set for each splitting
of A into two sets X and Y . The dependence of ϕ ∈ Q on V is due to
the presence of vxy and txy = vxy + vyx in the equations (101–102) which
determine ϕ . However, we are not in the standard setting of the implicit
function theorem since we are dealing with a system of N + 1 equations
whilst ϕ varies in a space of dimension N −1. In order to place oneself
in a standard setting, it is convenient here to replace the condition of nor-
malization

∑
x ϕx = f by the alternative one ϕa = 1, where a is a fixed

element of A . This change of normalization corresponds to mapping Q to
U = {ϕ ∈ RA |ϕx > 0 for all x ∈ A, ϕa = 1} by means of the diffeo-
morphism g : ϕ 7→ ϕ/ϕa , which has the property that F (g(ϕ)) = F (ϕ).
By taking as coordinates the ϕx with x ∈ A \ {a} =: A′ , one easily checks
that the function F restricted to U —i. e. restricted to ϕa = 1— has the
property that the matrix ( ∂2 logF (ϕ)/∂ϕx∂ϕy | x, y ∈ A′) is negative def-
inite and therefore invertible, which entails that the system of equations
( ∂ logF (ϕ,V)/∂ϕx = 0 | x∈A′) determines ϕ ∈ U as a smooth function of
V ∈ I .

Let us recall that a maximizing sequence means a sequence ϕn ∈ Q such
that F (ϕn) approaches the lowest upper bound of F on Q .

Theorem 11.2 (Statements (a) and (b) are proved in [41 ]; results related
to (c) are contained in [7 ]). Assume that there exists a top dominant irre-
ducible component X . In this case:

(a) There is a unique ϕ ∈ Q such that any maximizing sequence con-
verges to ϕ.
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(b) ϕX is the solution of a system analogous to (101–102) where x and
y vary only within X . ϕA\X = 0.

(c) ϕ is a continuous function of the scores vxy as long as they keep
satisfying the hypotheses of the present theorem.

Proof. The definition of the lowest upper bound immediately implies the
existence of maximizing sequences. On the other hand, the compactness of Q
guarantees that any maximizing sequence has a subsequence which converges
in Q. Let ϕn and ϕ denote respectively one of such convergent maximizing
sequences and its limit. In the following we will see that ϕ must be the
unique point specified in statement (b). This entails that any maximizing
sequence converges itself to ϕ (without extracting a subsequence).

So, our aim is now statement (b). From now on we will use the follow-
ing notations: a general element of Q will be denoted by ψ ; we will write
Y = A \ X . For convenience, in this part of the proof we will replace the
condition

∑
x ψx = f by

∑
x ψx ≤ f (and similarly for ϕn and ϕ); since

F (λψ) = F (ψ) for any λ > 0, the properties that we will obtain will be

easily translated from Q̂ = {ψ ∈ RA | ψx > 0 for all x ∈ A,
∑

x∈A ψx ≤ f }
to Q . On the other hand, it will also be convenient to consider first the case
where Y is also an irreducible component. In such a case, it is interesting to
rewrite F (ψ) as a product of three factors:

F (ψ) = FXX(ψX)FY Y (ψY )FXY (ψX, ψY ), (111)

namely:

FXX(ψX) =
∏

{x,x̄}⊂X

ψx
vxx̄ ψx̄

vx̄x

(ψx + ψx̄)txx̄
, (112)

FY Y (ψY ) =
∏

{y,ȳ}⊂Y

ψy
vyȳ ψȳ

vȳy

(ψy + ψȳ)tyȳ
, (113)

FXY (ψX, ψY ) =
∏
x∈X
y∈Y

(
ψx

ψx + ψy

)vxy
, (114)

where we used that vyx = 0 and txy = vxy . Now, let us look at the effect
of replacing ψY by λψY without varying ψX . The values of FXX and FY Y
remain unchanged, but that of FXY varies in the following way:

FXY (ψX, λψY )

FXY (ψX, ψY )
=

∏
x∈X
y∈Y

(
ψx + ψy
ψx + λψy

)vxy
. (115)
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In particular, for 0 < λ < 1 each of the factors of the right-hand side of (115)
is greater than 1. This remark leads to the following argument. First, we can
see that ϕny/ϕ

n
x → 0 for any x ∈ X and y ∈ Y such that vxy > 0 (such pairs

xy exist because of the hypothesis that X dominates Y ). Otherwise, the pre-
ceding remark entails that the sequence ϕ̃n = (ϕnX, λϕ

n
Y ) with 0 < λ < 1

would satisfy F (ϕ̃n) > KF (ϕn) for some K > 1 and infinitely many n ,
in contradiction with the hypothesis that ϕn was a maximizing sequence.
On the other hand, we see also that FXY (ϕn) approaches its lowest upper
bound, namely 1. Having achieved such a property, the problem of maxi-
mizing F reduces to separately maximizing FXX and FY Y , which is solved by
Theorem 11.1. For the moment we are dealing with relative strengths only,
i. e. without any normalizing condition like (102). So, we see that FYY gets
optimized when each of the ratios ϕny/ϕ

n
ȳ (y, ȳ ∈ Y ) approaches the homolo-

gous one for the unique maximizer of FY Y , and analogously with FXX . Since
these ratios are finite positive quantities, the statement that ϕny/ϕ

n
x → 0

becomes extended to any x ∈ X and y ∈ Y whatsoever (since one can write
ϕny/ϕ

n
x = (ϕny/ϕ

n
ȳ )×(ϕnȳ/ϕ

n
x̄)×(ϕnx̄/ϕ

n
x) with vx̄ȳ > 0). Let us recover now the

condition
∑

x∈A ϕ
n
x = f . The preceding facts imply that ϕnY → 0, whereas

ϕnX converges to the unique maximizer of FXX . This establishes (b) as well
as the uniqueness part of (a).

The general case where Y decomposes into several irreducible compo-
nents, all of them dominated by X , can be taken care of by induction over
the different irreducible components of A . At each step, one deals with
an irreducible component Z with the property of being minimal, in the
sense of the dominance relation . , among those which are still pending.
By means of an argument analogous to that of the preceding paragraph, one
sees that: (i) ϕnz/ϕ

n
x → 0 for any z ∈ Z and x such that x . z with

vxz > 0; (ii) the ratios ϕnz/ϕ
n
z̄ (z, z̄ ∈ Z) approach the homologous ones

for the unique maximizer of FZZ ; and (iii) ϕnR is a maximizing sequence for
FRR , where R denotes the union of the pending components, Z excluded.
Once this induction process has been completed, one can combine its partial
results to show that ϕnz/ϕ

n
x → 0 for any x ∈ X and z 6∈ X (it suffices to

consider a path x0x1 . . . xn from x0 ∈ X to xn = z with the property that
vxixi+1

> 0 for any i and to notice that each of the factors ϕnxi+1
/ϕnxi remains

bounded while at least one of them tends to zero). As above, one concludes
that ϕnA\X → 0, whereas ϕnX converges to the unique maximizer of FXX .

The two following remarks will be useful in the proof of part (c):
(1) According to the proof above, ϕX is determined (up to a multiplicative
constant) by equations (101) with x and y varying only within X :
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Fx(ϕX,V) :=
∑
y∈X
y 6=x

txy
ϕx

ϕx + ϕy
−
∑
y∈X
y 6=x

vxy = 0, ∀x ∈ X. (116)

However, since y ∈ A \X implies on the one hand ϕy = 0 and on the other
hand txy = vxy , each of the preceding equations is equivalent to a similar one
where y varies over the whole of A \ {x} :

F ′x(ϕ,V) :=
∑
y∈A
y 6=x

txy
ϕx

ϕx + ϕy
−
∑
y∈A
y 6=x

vxy = 0, ∀x ∈ X. (117)

(2) Also, it is interesting to see the result of adding up the equations (117)
for all x in some subset W of X . Using the fact that vxy + vyx = txy , one
sees that such an addition results in the following equality:∑

x∈W
y 6∈W

txy
ϕx

ϕx + ϕy
−
∑
x∈W
y 6∈W

vxy = 0, ∀W ⊆ X. (118)

Let us proceed now with the proof of (c). In the following, V and Ṽ
denote respectively a fixed matrix satisfying the hypotheses of the theo-
rem and a slight perturbation of it. As we have done in similar occasions,
we systematically use a tilde to distinguish between homologous objects
associated respectively with V and Ṽ ; in particular, such a notation will
be used in connection with the labels of certain equations. Our aim is
to show that ϕ̃ approaches ϕ as Ṽ approaches V . In this connection we
will use the little-o and big-O notations made popular by Edmund Landau
(who by the way is the author of a paper on the rating of chess players,
namely [19 ], which inspired Zermelo’s work). This notation refers here to
functions of Ṽ and their behaviour as Ṽ approaches V ; if f and g are two
such functions, f = o(g) means that for every ε > 0 there exists a δ > 0
such that ‖Ṽ − V‖ ≤ δ implies ‖f(Ṽ)‖ ≤ ε ‖g(Ṽ)‖ ; on the other hand,
f = O(g) means that there exist M and δ > 0 such that ‖Ṽ − V‖ ≤ δ
implies ‖f(Ṽ)‖ ≤M ‖g(Ṽ)‖ .

Obviously, if Ṽ is near enough to V then vxy > 0 implies ṽxy > 0.
As a consequence, x D y implies x D̃ y . In particular, the irreducibility
of VXX entails that ṼXX is also irreducible. Therefore, X is entirely contained
in some irreducible component X̃ of A for Ṽ . Besides, X̃ is a top dominant
irreducible component for Ṽ ; in fact, we have the following chain of impli-
cations for x ∈ X ⊆ X̃ : y 6∈ X̃ ⇒ y 6∈ X ⇒ x . y ⇒ x D̃ y ⇒ x .̃ y ,
where we have used successively: the inclusion X ⊆ X̃ , the hypothesis
that X is top dominant for V , the fact that Ṽ is near enough to V , and
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the hypothesis that y does not belong to the irreducible component X̃ .
Now, according to part (b) and remark (1) from p. 66–67, ϕX and ϕ̃ eX
are determined respectively by the systems (116) and (1̃16), or equivalently
by (117) and (1̃17), whereas ϕA\X and ϕ̃A\ eX are both of them equal to zero.
So we must show that ϕ̃y = o(1) for any y ∈ X̃ \X , and that ϕ̃x−ϕx = o(1)
for any x ∈ X . The proof is organized in three main steps.

Step (1). ϕ̃y = O(ϕ̃x) whenever vxy > 0. For the moment, we assume
Ṽ fixed (near enough to V so that ṽxy > 0) and x, y ∈ X̃ . Under these
hypotheses one can argue as follows: Since ϕ̃ eX maximizes F̃ eX eX , the corre-
sponding value of F̃ eX eX can be bounded from below by any particular value
of the same function. On the other hand, we can bound it from above by the
factor ϕ̃x/(ϕ̃x + ϕ̃y)

evxy . So, we can write

(
1

2

)N(N−1)

≤
(

1

2

) ∑
p,q∈ eX t̃pq = F̃ eX eX(ψ) ≤ F̃ eX eX(ϕ̃ eX) ≤

(
ϕ̃x

ϕ̃x + ϕ̃y

)evxy
, (119)

where ψ has been taken so that ψq has the same value for all q ∈ X̃ (and
it vanishes for q 6∈ X̃ ). The preceding inequality entails that

ϕ̃y ≤
(
2N(N−1) / evxy − 1

)
ϕ̃x. (120)

Now, this inequality holds not only for x, y ∈ X̃ , but it is also trivially true
for y 6∈ X̃ , since then one has ϕ̃y = 0. On the other hand, the case y ∈
X̃, x 6∈ X̃ is not possible at all, because the hypothesis that ṽxy > 0 would
then contradict the fact that X̃ is a top dominant irreducible component.
Finally, we let Ṽ vary towards V . The desired result is a consequence of (120)
since ṽxy approaches vxy > 0.

Step (2). ϕ̃y = o(ϕ̃x) for any x ∈ X and y 6∈ X . Again, we will consider
first the special case where vxy > 0. In this case the result is easily obtained
as a consequence of the equality (1̃18) for W = X :∑

x∈X
y 6∈X

t̃xy
ϕ̃x

ϕ̃x + ϕ̃y
−
∑
x∈X
y 6∈X

ṽxy = 0. (121)

In fact, this equality implies that∑
x∈X
y 6∈X

t̃xy

(
1− ϕ̃x

ϕ̃x + ϕ̃y

)
=
∑
x∈X
y 6∈X

ṽyx. (122)

Now, it is clear that the right-hand side of this equation is o(1) and that each
of the terms of the left-hand side is positive. Since t̃xy − vxy = t̃xy − txy =
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o(1), the hypothesis that vxy > 0 allows to conclude that ϕ̃x/(ϕ̃x + ϕ̃y)
approaches 1, or equivalently, ϕ̃y = o(ϕ̃x). Let us consider now the case of
any x ∈ X and y 6∈ X . Since X is top dominant, we know that there exists
a path x0x1 . . . xn from x0 = x to xn = y such that vxixi+1

> 0 for all i .
According to step (1) we have ϕ̃xi+1

= O(ϕ̃xi). On the other hand, there
must be some j such that xj ∈ X but xj+1 6∈ X , which has been seen to
imply that ϕ̃xj+1

= o(ϕ̃xj). By combining these facts one obtains the desired
result.

Step (3). ϕ̃x − ϕx = o(1) for any x ∈ X . Consider the equations (1̃17)
for x ∈ X and split the sums in two parts depending on whether y ∈ X or
y 6∈ X : ∑

y∈X
y 6=x

t̃xy
ϕ̃x

ϕ̃x + ϕ̃y
−
∑
y∈X
y 6=x

ṽxy =
∑
y 6∈X

(ṽxy − t̃xy
ϕ̃x

ϕ̃x + ϕ̃y
). (123)

The last sum is o(1) since step (2) ensures that ϕ̃y = o(ϕ̃x) and we also know
that t̃xy − ṽxy = ṽyx = o(1) (because x ∈ X and y 6∈ X ). So ϕ̃ satisfies a
system of the following form, where x and y vary only within X and w̃xy
is a slight modification of ṽxy which absorbs the right-hand side of (123):

Gx(ϕ̃X, Ṽ, W̃) :=
∑
y∈X
y 6=x

t̃xy
ϕ̃x

ϕ̃x + ϕ̃y
−
∑
y∈X
y 6=x

w̃xy = 0, ∀x ∈ X. (124)

Here, the second argument of G refers to the dependence on Ṽ through t̃xy .
We know that t̃xy − txy = o(1) and also that w̃xy − vxy = (w̃xy − ṽxy) +
(ṽxy − vxy) = o(1). So we are interested in the preceding equation near the
point (ϕX,V,V). Now in this point we have G(ϕX,V,V) = F(ϕX,V) = 0,
as well as (∂Gx/∂ϕ̃y)(ϕX,V,V) = (∂Fx/∂ϕy)(ϕX,V). Therefore, the im-
plicit function theorem can be applied similarly as in Theorem 11.1, with
the result that ϕ̃X = H(Ṽ, W̃), where H is a smooth function which satisfies
H(V,V) = ϕX . In particular, the continuity of H allows to conclude that
ϕ̃X approaches ϕX , since we know that both Ṽ and W̃ approach V .

Finally, by combining the results of steps (2) and (3) one obtains ϕ̃y=o(1)
for any y 6∈ X .

Remarks

1. The convergence of ϕn to ϕ is a necessary condition for ϕn being a
maximizing sequence but not a sufficient one. The preceding proof shows
that a necessary and sufficient condition is that the ratios ϕny/ϕ

n
z tend to 0
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whenever y . z , whereas, if y ≡ z , i. e. if y and z belong to the same
irreducible component Z , these ratios approach the homologous ones for the
unique maximizer of FZZ .

2. If there is not a dominant component then the maximizing sequences
can have multiple limit points. However, as we will see in the next section,
the projected Llull matrices are always in the hypotheses of Theorem 11.2.

12 The fraction-like rates

Let us recall from § 2.9 that the fraction-like rates ϕx will be obtained by
applying Zermelo’s method to the projected Llull matrix (vπxy).

The next results show that this matrix has a very special structure in
connection with irreducibility.

Lemma 12.1. The projected Llull matrix (vπxy) has the following properties
for any admissible order ξ (p′ denotes the immediate successor of p in ξ ):

(a) If x �ξ y and vπyx = 0, then vπp′p = 0 for some p such that x �−
ξ p �ξ y .

(b) If vπp′p = 0 for some p, then vπyx = 0 for all x, y such that x �−
ξ p �ξ y .

(c) If x �ξ y and vπxy = 0, then vπab = 0 for all a, b such that x �−
ξ a.

Proof. Part (a). Assume that x �ξ y . Then vπyx is the left end of the
interval γxy . Now, since γxy =

⋃
{γpp′ |x �−

ξ p �ξ y} , a vanishing left end
for γxy implies the same property for some of the γpp′ , i. e. vπp′p = 0.

Part (b). According to Theorem 9.3.(a), x �−
ξ p �ξ y implies the inequal-

ities vπyx ≤ vπp′x ≤ vπp′p . Therefore, vπp′p = 0 implies vπyx = 0.

Part (c). For x �ξ y , vπxy = 0 means that γxy = [0, 0]. This implies that
γpp′ = [0, 0] for all p such that x �−

ξ p �ξ y . Now, according to Lemma 9.1,
the barycentres of the intervals γqq′ decrease or stay the same when q moves
towards the bottom. So γqq′ = [0, 0] for all q such that x �−

ξ q . As a
consequence, we immediately get vπab = 0 for any a, b such that x �−

ξ a, b .
Furthermore, for b �ξ x �−

ξ a , part (a) of Theorem 9.3 gives the following
inequalities: vπab ≤ vπax for a 6= x , and vπab ≤ vπay for a = x , where the
right-hand sides are already known to vanish. So vπab vanishes also for such a
and b .

Proposition 12.2. Let us assume that the projected Llull matrix (vπxy) is
not the zero matrix. Let us consider the set

X = {x ∈ A | vπp′p > 0 for all p such that p �ξ x}, (125)
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where the right-hand side makes use of an admissible order ξ . This set has
the following properties:

(a) It does not depend on the admissible order ξ .

(b) vπxy > 0 for any x ∈ X and y ∈ A.

(c) vπyx = 0 for any x ∈ X and y 6∈ X .

(d) rx < ry for any x ∈ X and y 6∈ X .

(e) X is the top dominant irreducible component of A for (vπxy).

Proof. Statement (a) will be proved at the end. The definition of X is
equivalent to the following one: X = A if vπp′p > 0 for any p ; otherwise,
X = {x ∈ A |x �−

ξ h} , where h is the topmost (in ξ ) element of A which
satisfies vπh′h = 0. In particular, X reduces to the topmost element of A
when vπp′p = 0 for any p .

Statement (b). In view of Lemma 12.1.(a), the definition of X implies
that vπyx > 0 for any x, y ∈ X such that x �ξ y . This statement is empty
when X reduces to a single element a , but then we will make use of the fact
that vπaa′ > 0, which is bound to happen because otherwise Lemma 12.1.(c)
would entail that the whole matrix is zero, against our hypothesis. These
facts imply statement (b) by virtue of Theorem 9.3.(a).

Statement (c). If X = A there is nothing to prove. Otherwise, if h is
the above-mentioned topmost element of A which satisfies vπh′h = 0, then
Lemma 12.1.(b) ensures that vπyx = 0 for any x, y such that x �−

ξ h �ξ y ,
i. e. any x ∈ X and y 6∈ X .

Statement (d). If X = A there is nothing to prove. Otherwise, the result
follows from parts (b) and (c) together with Lemma 10.1.(c).

Statement (e). This is an immediate consequence of (b) and (c).

Statement (a). A top dominant irreducible component is always unique
because the relation of dominance between irreducible components is anti-
symmetric.

Remarks

1. In the complete case, the average ranks r̄x defined by equation (6)
are easily seen to satisfy already a property of the same kind as (d): if X
and Y are two irreducible components of (vxy) such that X dominates Y ,
then r̄x < r̄y for all x ∈ X and y ∈ Y [25 : Thm. 2.5 ].

2. Even in the complete case, Zermelo’s rates associated with the original
Llull matrix (vxy) are not necessarily compatible with the average ranks r̄x .
However, as we will see below, the projected Llull matrices will always enjoy
such a compatibility.
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From now on, X denotes the top dominant irreducible component whose
existence is established by the preceding proposition. According to Theo-
rem 11.2, the fraction-like rates ϕx vanish if and only if x ∈ A \X and their
values for x ∈ X are determined by the restriction of (vπxy) to x, y ∈ X .
More specifically, the latter are determined by the condition of maximizing
the function

F (ϕ) =
∏
{x,y}

ϕx
vπxy ϕy

vπyx

(ϕx + ϕy)
tπxy
, (126)

under the restriction

(37)
∑
x

ϕx = f. (127)

where we will understand that x and y are restricted to X , and f denotes
the fraction of non-empty votes (i. e. f = F/V where F is the number of non-
empty votes and V is the total number of votes). Moreover, we know that
(ϕx |x ∈ X) is the solution of the following system of equations besides (127):

(36)
∑
y 6=x

tπxy
ϕx

ϕx + ϕy
=
∑
y 6=x

vπxy. (128)

where the sums extend to all y 6= x in X . The next result shows that
the resulting fraction-like rates are fully compatible with the rank-like ones
except for the vanishing of those outside the top dominant component.

Theorem 12.3.

(a) ϕx > ϕy =⇒ rx < ry .

(b) rx < ry =⇒ either ϕx > ϕy or ϕx = ϕy = 0.

Proof. Let us begin by noticing that both statements hold if ϕy = 0, i. e. if
y 6∈ X . In the case of statement (a), this is true because of Proposi-
tion 12.2.(d). So, we can assume that ϕy > 0, i. e. y ∈ X . But in this
case, each one of the hypotheses of the present theorem implies that ϕx > 0,
i. e. x ∈ X . In the case of statement (b), this is true because of Proposi-
tion 12.2.(d) (with x and y interchanged with each other) and the fact that
X is a top interval for any admissible order. So, from now on we can assume
that x and y are both in X , or, on account of Theorem 11.2, that X = A .

Statement (a): It will be proved by seeing that a simultaneous occurrence
of the inequalities ϕx > ϕy and rx ≥ ry would entail a contradiction with
the fact that ϕ is the unique maximizer of F (ϕ). More specifically, we will
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see that one would have F (ϕ̃) ≥ F (ϕ) where ϕ̃ is obtained from ϕ by
interchanging the values of ϕx and ϕy , that is

ϕ̃z =


ϕy, if z = x,

ϕx, if z = y,

ϕz, otherwise.

(129)

In fact, ϕ̃ differs from ϕ only in the components associated with x and y ,
so that

F (ϕ̃)

F (ϕ)
=

(
ϕ̃x
ϕx

)vπxy ∏
z 6=x,y

(
ϕ̃x/(ϕ̃x + ϕz)

ϕx/(ϕx + ϕz)

)vπxz (ϕx + ϕz
ϕ̃x + ϕz

)vπzx
×
(
ϕ̃y
ϕy

)vπyx ∏
z 6=x,y

(
ϕ̃y/(ϕ̃y + ϕz)

ϕy/(ϕy + ϕz)

)vπyz (ϕy + ϕz
ϕ̃y + ϕz

)vπzy
.

(130)

More particularly, in the case of (129) this expression becomes

F (ϕ̃)

F (ϕ)
=

(
ϕy
ϕx

)vπxy−vπyx ∏
z 6=x,y

(
ϕy/(ϕy + ϕz)

ϕx/(ϕx + ϕz)

)vπxz−vπyz (ϕy + ϕz
ϕx + ϕz

)vπzy−vπzx
,

(131)
where all of the bases are strictly less than 1, since ϕx > ϕy , and all of the
the exponents are non-positive, because of Lemma 10.1.(c). Therefore, the
product is greater than or equal to 1, as claimed.

Statement (b): Since we are assuming x, y ∈ X , it is a matter of proving
that rx < ry ⇒ ϕx > ϕy . On the other hand, by making use of the contra-
positive of (a), the problem reduces to proving that ϕx = ϕy ⇒ rx = ry .

Similarly to above, this implication will be proved by seeing that a si-
multaneous occurrence of the equality ϕx = ϕy =: ω together with the
inequality rx < ry (by symmetry it suffices to consider this one) would en-
tail a contradiction with the fact that ϕ is the unique maximizer of F (ϕ).
More specifically, here we will see that one would have F (ϕ̃) > F (ϕ) where
ϕ̃ is obtained from ϕ by slightly increasing ϕx while decreasing ϕy , that is

ϕ̃z =


ω + ε, if z = x,

ω − ε, if z = y,

ϕz, otherwise.

(132)

This claim will be proved by checking that

d

dε
log

F (ϕ̃)

F (ϕ)

∣∣∣∣
ε=0

> 0. (133)
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In fact, (130) entails that

log
F (ϕ̃)

F (ϕ)
= C + vπxy log ϕ̃x + vπyx log ϕ̃y

+
∑
z 6=x,y

(
vπxz log

ϕ̃x
ϕ̃x + ϕz

+ vπyz log
ϕ̃y

ϕ̃y + ϕz

)
−
∑
z 6=x,y

(
vπzy log(ϕ̃y + ϕz) + vπzx log(ϕ̃x + ϕz)

)
,

(134)

where C does not depend on ε . Therefore, in view of (132) we get

d

dε
log

F (ϕ̃)

F (ϕ)

∣∣∣∣
ε=0

= (vπxy − vπyx)
1

ω
+
∑
z 6=x,y

(vπxz − vπyz)
ϕz

ω(ω + ϕz)

+
∑
z 6=x,y

(vπzy − vπzx)
1

ω + ϕz
.

(135)

Now, according to Lemma 10.1.(b, c), the assumption that rx < ry implies
the inequalities vπxy > vπyx , vπxz ≥ vπyz and vπzy ≥ vπzx , which result indeed
in (133).

The next proposition establishes property H:

Proposition 12.4. In the case of plumping votes the fraction-like rates
coincide with the fractions of the vote obtained by each option.

Proof. Proposition 9.4 ensures that the projected scores coincide with the
original ones. So we have vπxy = fx and tπxy = fx+fy . In these circumstances
it is obvious that equations (127–128) are satisfied if we take ϕx = fx . So it
suffices to invoke the uniqueness of solution of this system.

13 Continuity

We claim that both the rank-like rates rx and the fraction-like ones ϕx are
continuous functions of the binary scores vxy . The main difficulty in proving
this statement lies in the admissible order ξ , which plays a central role in the
computations. Since ξ varies in a discrete set, its dependence on the data
cannot be continuous at all. Even so, we claim that the final result is still
a continuous function of the data.

In this connection, one can consider as data the normalized Llull ma-
trix (vxy), its domain of variation being the set Ω introduced in § 3.3. Al-
ternatively, one can consider as data the relative frequencies of the possible
votes, i. e. the coefficients αk mentioned also in § 3.3.
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Theorem 13.1. The following objects depend continuously on the Llull ma-
trix (vxy): the projected scores vπxy , the rank-like rates rx , and the fraction-
like rates ϕx .

Proof. Let us begin by considering the dependence of the rank-like rates
and the fraction-like rates on the projected scores. In the case of the rank-
like rates, this dependence is given by formula (8), which is not only con-
tinuous but even linear (non-homogeneous). In the case of the fraction-like
rates, their dependence on the projected scores is more involved, but is is
still continuous. In fact, Theorem 11.2.(c) ensures such a continuity under
the hypothesis that there is a top irreducible component, which hypothesis
is satisfied by virtue of Proposition 12.2.(e).

So we are left with the problem of showing that the projection P : (vxy) 7→
(vπxy) is continuous. As it has been mentioned above, this is not so clear, since
the projected scores are the result of certain operations which are based upon
an admissible order ξ which is determined separately. However, we will see
that, on the one hand, P is continuous as long as ξ remains unchanged, and
on the other hand, the results of § 8, 9 allow to conclude that P is continuous
on the whole of Ω in spite of the fact that ξ can change. In the following we
will use the following notation: for every total order ξ , we denote by Ωξ the
subset of Ω which consists of the Llull matrices for which ξ is an admissible
order, and we denote by Pξ the restriction of P to Ωξ .

We claim that the mapping Pξ is continuous for every total order ξ .
In order to check the truth of this statement, one has to go over the dif-
ferent mappings whose composition defines Pξ (see § 2.8), namely: (vxy) 7→
(v∗xy) 7→ (mν

xy), (vxy) 7→ (txy), (mν
xy) 7→ (mσ

xy), Ψ : ((mσ
xx′), (txy)) 7→ (tσxy),

and finally ((mσ
xx′), (t

σ
xx′)) 7→ (vπxy). Quite a few of these mappings involve

the max and min operations, which are certainly continuous. For instance,
the last mapping above can be written as vπxy = max { (tσpp′ + mσ

pp′)/2 | x �−
ξ

p �ξ y} and vπyx = min { (tσpp′ −mσ
pp′)/2 | x �−

ξ p �ξ y} for x �ξ y . Concerning
the operator Ψ, let us recall that its output is the orthogonal projection
of (txy) onto a certain convex set determined by (mσ

xx′); a general result of
continuity for such an operation can be found in [10 ].

Finally, the continuity of P (and the fact that it is well-defined) is a con-
sequence of the following facts (see for instance [27 : §2-7 ]): (a) Ω =

⋃
ξ Ωξ ;

this is true because of the existence of ξ (Corollary 8.3). (b) Ωξ is a closed
subset of Ω; this is true because Ωξ is described by a set of non-strict inequal-
ities which concern quantities that are continuous functions of (vxy) (namely
the inequalities mν

xy ≥ 0 whenever xy ∈ ξ ). (c) ξ varies over a finite set.
(d) Pξ coincides with Pη at Ωξ ∩ Ωη , as it is proved in Theorem 9.2.
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Corollary 13.2. The rank-like rates, as well as the fraction-like ones,
depend continuously on the relative frequency of each possible content of
an individual vote.

Proof. It suffices to notice that the Llull matrix (vxy) is simply the center of
gravity of the distribution specified by these relative frequencies (formula (43)
of § 3.3).

14 Decomposition

Properties E and G are concerned with having a partition of A in two sets
X and Y such that the rates for x ∈ X can be obtained by restricting the
attention to VXX , i. e. the vxx̄ with x, x̄ ∈ X (and similarly for y ∈ Y in the
case of property E).

More specifically, property E considers the case where the following equal-
ities are satisfied:

rx = r̃x, for all x ∈ X, (136)

ry = r̃y + |X|, for all y ∈ Y , (137)

where r̃x and r̃y denote the rank-like rates which are determined respectively
by the matrices VXX and VY Y . Property E states that in the complete case
these equalities are equivalent to having

vxy = 1 (and therefore vyx = 0) whenever xy ∈ X × Y . (138)

In the following we will continue using a tilde to distinguish between hom-
ologous objects associated respectively with the whole matrix V and with its
submatrices VXX and VY Y .

First of all we explore the implications of condition (138).

Lemma 14.1. Given a partition A = X∪Y in two disjoint nonempty sets,
one has the following implications:

vxy = 1

∀xy ∈ X × Y

}
=⇒

{
mν
xy=1

∀xy ∈ X × Y

}
⇐⇒

{
vπxy = 1

∀xy ∈ X × Y
(139)

If the individual votes are complete, or alternatively, if they are transitive
relations, then the converse of the first implication holds too.
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Proof. Assume that vxy = 1 for all xy ∈ X × Y . Then vyx = 0, for all
such pairs, which implies that vγ vanishes for any path γ which goes from Y
to X . This fact, together with the inequality v∗xy ≥ vxy , entails the following
equalities for all x ∈ X and y ∈ Y : v∗yx = 0, v∗xy = 1, and consequently
mν
xy = 1.

Assume now that mν
xy = 1 for all xy ∈ X × Y . Let ξ be an admissible

order. As an immediate consequence of the definition, it includes the set
X × Y . Let ` be the last element of X according to ξ . From the present
hypothesis it is clear that mσ

``′ = 1, i. e. γ``′ = [0, 1], which entails that
γxy = [0, 1], i. e. vπxy = 1, for every xy ∈ X × Y .

Assume now that vπxy = 1 for all xy ∈ X × Y . Let ξ be an admissible
order. Here too, we are ensured that it includes the set X × Y ; this is so
by virtue of Theorem 9.3.(a). Let ` be the last element of X according
to ξ . From the fact that mσ

``′ = mπ
``′ = 1, one infers that mν

xy = 1 for all
xy ∈ X × Y .

Finally, let us assume again that mν
xy = 1 for all xy ∈ X × Y . Since

mν
xy = v∗xy − v∗yx and both terms of this difference belong to [0, 1], the only

possibility is v∗xy = 1 and v∗yx = 0, which implies that vyx = 0. In the
complete case, this equality is equivalent to vxy = 1. In the case where the
individual votes are transitive relations, one can reach the same conclusion
in the following way: The equality v∗xy = 1 implies the existence of a path
x0x1 . . . xn from x to y such that vxixi+1

= 1 for all i . But this means that
all of the votes include each of the pairs xixi+1 of this path. So, if they are
transitive relations, all of them include also the pair xy , i. e. vxy = 1.

Lemma 14.2. Condition (138) implies, for any admissible order, the fol-
lowing equalities:

mσ
xx′ = m̃σ

xx′ , whenever x, x′ ∈ X, (140)

mσ
yy′ = m̃σ

yy′ , whenever y, y′ ∈ Y , (141)

tπxx̄ = 1, for all x, x̄ ∈ X. (142)

Proof. As we saw in the proof of Lemma 14.1, condition (138) implies the
vanishing of vγ for any path γ which goes from Y to X . Besides the
conclusions obtained in that lemma, this implies also the following equalities:

v∗xx̄ = ṽ∗xx̄, mν
xx̄ = m̃ν

xx̄, for all x, x̄ ∈ X, (143)

v∗yȳ = ṽ∗yȳ, mν
yȳ = m̃ν

yȳ, for all y, ȳ ∈ Y . (144)

Let us fix an admissible order ξ . The second equality of (139) ensures not
only that ξ includes the set X × Y , but it can also be combined with (143)
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and (144) to obtain respectively (140) and (141). On the other hand, the
third equality of (139) implies that tπxy = 1 for all xy ∈ X × Y , from
which the pattern of growth of the projected turnovers —more specifically,
equation (83.2)— allows to obtain (142).

Theorem 14.3. In the complete case one has the following equivalences:
(136) ⇐⇒ (137) ⇐⇒ (138).

Proof. Since we are considering the complete case, we can make use of the
margin-based procedure (§ 2.6). The proof is organized in two parts:

Part (a): (138) =⇒ (136) and (137). As a consequence of the equali-
ties (140) and (141), the margin-based procedure —more specifically, steps
(13) and (14)— results in the following equalities:

mπ
xx̄ = m̃π

xx̄, for all x, x̄ ∈ X, (145)

mπ
yȳ = m̃π

yȳ, for all y, ȳ ∈ Y . (146)

On the other hand, the third equality of (139) is equivalent to saying that

mπ
xy = 1, for all xy ∈ X × Y . (147)

When the projected margins are introduced in (9) these equalities result in
(136) and (137).

Part (b): (136) ⇒ (138); (137) ⇒ (138). On account of formula (9),
conditions (136) and (137) are easily seen to be respectively equivalent to
the following equalities:∑

y∈A
y 6=x

mπ
xy =

∑
x̄∈X
x̄ 6=x

m̃π
xx̄ + |Y |, for all x ∈ X, (148)

∑
x∈A
x 6=y

mπ
yx =

∑
ȳ∈Y
ȳ 6=y

m̃π
yȳ − |X|, for all y ∈ Y . (149)

Let us add up respectively the equalities (148) over x ∈ X and the equalities
(149) over y ∈ Y . Since mπ

pq +mπ
qp = m̃π

pq + m̃π
qp = 0, we obtain∑

x∈X
y∈Y

mπ
xy = |X| |Y |, (150)

∑
y∈Y
x∈X

mπ
yx = −|X| |Y |. (151)
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Since the projected margins belong to [−1, 1], the preceding equalities imply
respectively

mπ
xy = 1, for all x ∈ X and y ∈ Y , (152)

mπ
yx = −1, for all x ∈ X and y ∈ Y , (153)

(which are equivalent to each other since mπ
xy + mπ

yx = 0). Finally, either
of these equalities implies that vπxy = 1 for all xy ∈ X × Y , from which
Lemma 14.1 allows to obtain (138).

The following propositions do not require the votes to be complete, but
they require them to be rankings, or, more generally, in the case of Proposi-
tion 14.6, to be transitive relations.

Lemma 14.4. In the case of ranking votes, condition (138) implies that
txy = 1 for any x ∈ X and y ∈ A.

Proof. In fact, even if we are dealing with truncated ranking votes, the
rules that we are using for translating them into binary preferences —namely,
rules (a–d) of § 2.1— entail the following implications: (i) vxy = 1 for some
y ∈ A implies that x is explicitly mentioned in all of the ranking votes;
and (ii) x being explicitly mentioned in all of the ranking votes implies that
txy = 1 for any y ∈ A .

Proposition 14.5. In the case of ranking votes, condition (138) implies (136).

Proof. Let us fix an admissible order. According to Lemma 14.2, we have
tπxx̄ = 1 for all x, x̄ ∈ X . On the other hand, Lemma 14.4 ensures that
txx̄ = 1 for all x, x̄ ∈ X , from which it follows that t̃πxx̄ = 1 for all x, x̄ ∈ X
(since t̃πxx̄ are the turnovers obtained from the restriction to the matrix VXX ,
which belongs to the complete case). In particular, we have tσxx′ = t̃σxx′ = 1
whenever x, x′ ∈ X . On the other hand, Lemma 14.2 ensures also that
mσ
xx′ = m̃σ

xx′ whenever x, x′ ∈ X . These equalities entail that vπxx̄ = ṽπxx̄ for
all x, x̄ ∈ X . By Lemma 14.1 we know also that vπxy = 1 for all xy ∈ X×Y .
Therefore,

rx = N −
∑
y 6=x
y∈A

vπxy = |X| −
∑
x̄ 6=x
x̄∈X

ṽπxx̄ = r̃x, ∀x ∈ X.
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Proposition 14.6. Assume that the individual votes are transitive rela-
tions. In this case, the equality∑

x∈X

rx = |X|(|X|+ 1)/2 (154)

implies (138) (with Y = A \X ).

Proof. Let us introduce formula (8) for rx into (154). By using the fact
that vπxx̄ + vπx̄x ≤ 1, one obtains that∑

x∈X
y∈Y

vπxy ≥ |X| |Y |. (155)

The only possible way to satisfy this inequality is having vπxy = 1 for all
xy ∈ X × Y . Finally, (138) follows by virtue of Lemma 14.1 since we are
assuming that the individual votes are transitive relations.

Corollary 14.7. Assume that the votes are rankings. Then rx = 1 if and
only if all voters have put x into first place.

Proof. It suffices to apply Propositions 14.5 and 14.6 with X = {x} .

The next theorem establishes property G.

Theorem 14.8. (a) In the complete case, or alternatively, under the hy-
pothesis that the individual votes are rankings, one has the following impli-
cation: Assume that X ⊂ A has the property that vxy = 1 whenever x ∈ X
and y ∈ Y = A \X , and that there is no proper subset with the same prop-
erty. In that case, the fraction-like rates satisfy ϕx = ϕ̃x > 0 for all x ∈ X
and ϕy = 0 for all y ∈ Y . (b) In the complete case the converse implication
holds too.

Proof. Statement (a). Let us fix an admissible order ξ . By Lemma 14.1,
the hypothesis that vxy = 1 for all xy ∈ X × Y implies the following facts
for all xy ∈ X × Y : mν

xy = 1, xy ∈ ξ , vπxy = 1, vπyx = 0. On the other
hand, we can see that under the present hypothesis one has

vπxx̄ = ṽπxx̄, for any x, x̄ ∈ X . (156)

In the complete case this follows from Lemma 14.2. Under the alternative
hypothesis that the individual votes are rankings, it can be obtained as in
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the proof of Proposition 14.5 as a consequence of Lemma 14.2 and the fact
that in this case tπxx̄ = t̃πxx̄ = 1 for any x, x̄ ∈ X .

Now, according to Lemma 12.1, the matrix (vπxy) has a top dominant
irreducible component X̂ . Since vπyx = 0 for all xy ∈ X × Y , it is clear
that X̂ ⊆ X . However, a strict inclusion X̂ ⊂ X would imply vπxx̂ = 0 and
therefore vπx̂x = 1 for any x ∈ X \ X̂ and x̂ ∈ X̂ . Since we also have vπxy = 1
for x ∈ X and y 6∈ X , we would get vπx̂ŷ = 1 for all x̂ ∈ X̂ and ŷ 6∈ X̂ , which
would imply, by Lemma 14.1, that vx̂ŷ = 1 for all such pairs. This would
contradict the supposed minimality of X . So, X itself is the top dominant
irreducible component of the matrix (vπxy).

By making use of Theorem 11.2, it follows that ϕx = ϕ̃x > 0 for all
x ∈ X and ϕy = 0 for all y ∈ Y . In principle, ϕ̃x are here the fraction-
like rates computed from the restriction of (vπxy) to the set X . However,
(156) allows to view them also as the fraction-like rates computed from the
matrix (ṽπxy), which by definition has been worked out from the restriction
of (vxy) to x, y ∈ X .

Statement (b). Let us begin by noticing that the hypothesis that ϕx >
0 for all x ∈ X and ϕy = 0 for all y ∈ Y = A \ X implies that X
is the top dominant irreducible component of the matrix (vπxy). In fact,
otherwise Theorem 11.2 would imply the existence of some x ∈ X with
ϕx = 0 or some y ∈ Y with ϕy > 0. In particular, we have vπyx = 0 for all
xy ∈ X × Y . Because of the completeness assumption, this implies that
vπxy = 1 and —by Lemma 14.1— vxy = 1 for all those pairs. Finally, let us
see that X is minimal for this property: If we had X̂ ⊂ X satisfying vx̂ŷ = 1
for all x̂ŷ ∈ X̂ × Ŷ with Ŷ = A \X , then Lemma 14.1 would give vπx̂ŷ = 1
and therefore vπŷx̂ = 0 for all such pairs, so X could not be the top dominant
irreducible component of the matrix (vπxy).

15 The majority principle

Theorem 15.1. The relation µ(v∗) complies with the majority principle:
Let A be partitioned in two sets X and Y with the property that vxy > 1/2
whenever x ∈ X and y ∈ Y ; in that case, µ(v∗) includes any pair xy with
x ∈ X and y ∈ Y .

Proof. Assume that x ∈ X and y ∈ Y . Since v∗xy ≥ vxy , the hypothesis
of the theorem entails that v∗xy > 1/2. On the other hand, let γ be a path
from y to x such that v∗yx = vγ ; since it goes from Y to X , this path must
contain at least one link yiyi+1 with yi ∈ Y and yi+1 ∈ X ; now, for this
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link we have vyiyi+1
≤ 1 − vyi+1yi < 1/2, which entails that v∗yx = vγ < 1/2.

Therefore, we get v∗yx < 1/2 < v∗xy , i. e. xy ∈ µ(v∗).

Corollary 15.2. The social ranking determined by the rank-like rates com-
plies with the majority principle: Let A be partitioned in two sets X and Y
with the property that vxy > 1/2 whenever x ∈ X and y ∈ Y ; in that case,
the inequality rx < ry holds for any x ∈ X and y ∈ Y .

Proof. It follows from Theorem 15.1 by virtue of part (c) of Theorem 10.2.

Corollary 15.3. In the complete case the social ranking determined by the
rank-like rates complies with the Condorcet principle: If x has the property
that vxy > vyx for any y 6= x, then rx < ry for any y 6= x.

Proof. In the complete case vxy > vyx implies vxy > 1/2. So, it suffices to
apply the preceding result with X = {x} and Y = A \X .

16 Clone consistency

The notion of a cluster (of clones) was defined in §5 in connection with a
binary relation: A subset C ⊆ A is said to be a cluster for a relation ρ
when, for any x 6∈ C , having ax ∈ ρ for some a ∈ C implies bx ∈ ρ for any
b ∈ C , and similarly, having xa ∈ ρ for some a ∈ C implies xb ∈ ρ for any
b ∈ C .

Here we will extend the notion of a cluster in the following way: C ⊆ A
is said to be a cluster for a system of binary scores (vxy) when

vax = vbx, vxa = vxb, whenever a, b ∈ C and x 6∈ C . (157)

This definition can be viewed as an extension of the preceding one because
of the following obvious fact:

Lemma 16.1. C is a cluster for a relation ρ if and only if C is a cluster
for the corresponding system of binary scores, which is defined in (42).

In particular, the extended notion allows the following results to include the
case where the individual votes belong to the general class considered in § 3.3.

In this section we will prove the clone consistency property J: If a set of
options is a cluster for each of the individual votes, then: (a) it is a cluster
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for the social ranking; and (b) contracting it to a single option in all of the
individual votes has no other effect in the social ranking than getting the
same contraction.

In the remainder of this section we assume the following standing
hypothesis:

C is a cluster for all of the individual votes.

Since the collective binary scores are obtained by adding up the individual
ones (equation (43)), the preceding hypothesis immediately implies that

C is a cluster for the collective binary scores vxy .

In the following we will see that this property of being a cluster is maintained
throughout the whole procedure which defines the social ranking.

Lemma 16.2. Assume that either x or y , or both, lie outside C . In this case

v∗xy = max { vγ | γ contains no more than one element of C }

Proof. It suffices to see that any path γ = x0 . . . xn from x0 = x to xn = y
which contains more than one element of C can be replaced by another
one γ̃ which contains only one such element and satisfies veγ ≥ vγ . Con-
sider first the case where x, y 6∈ C . In this case it will suffice to take γ̃ =
x0 . . . xj−1xk . . . xn , where j = min { i | xi ∈ C } and k = max { i | xi ∈ C } ,
which obviously satisfy 0 < j < k < n . Since xj−1 6∈ C and xj, xk ∈ C ,
we have vxj−1xj = vxj−1xk , so that

vγ = min
(
vx0x1 , . . . , vxn−1xn

)
≤ min

(
vx0x1 , . . . , vxj−1xj , vxkxk+1

, . . . , vxn−1xn

)
= min

(
vx0x1 , . . . , vxj−1xk , vxkxk+1

, . . . , vxn−1xn

)
= veγ.

The case where x 6∈ C but y ∈ C can be dealt with in a similar way
by taking γ̃ = x0 . . . xj−1xn , and analogously, in the case where x ∈ C and
y 6∈ C it suffices to take γ̃ = x0xk+1 . . . xn .

Proposition 16.3. C is a cluster for the indirect scores v∗xy .
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Proof. Consider a, b ∈ C and x 6∈ C . Let γ = x0x1x2 . . . xn be a path from
a to x such that v∗ax = vγ . By Lemma 16.2, we can assume that a is the only
element of γ that belongs to C . In particular, x1 6∈ C , so that vax1 = vbx1 ,
which allows to write

v∗ax = vγ = min
(
vax1 , vx1x2 , . . . , vxn−1x

)
= min

(
vbx1 , vx1x2 , . . . , vxn−1x

)
≤ v∗bx.

By interchanging a and b , one gets the reverse inequality v∗bx ≤ v∗ax and there-
fore the equality v∗ax=v∗bx . An analogous argument shows that v∗xa=v∗xb .

Proposition 16.4. C is a cluster for the indirect comparison relation ν =
µ(v∗).

Proof. This is an immediate consequence of the preceding proposition.

Proposition 16.5. There exists an admissible order ξ such that C is
a cluster for ξ .

Proof. This result is given by Theorem 8.4 of p. 43.

Theorem 16.6. C is a cluster for the ranking defined by the rank-like rates
(i. e. for the relation σ = {xy ∈ Π | rx < ry}).

Proof. We must show that, for any x 6∈ C and any a, b ∈ C , ra < rx implies
rb < rx and rx < ra implies rx < rb (from which it follows that ra = rx
implies rb = rx ). Equivalently, it suffices to show that: (a) ra < rx implies
rb ≤ rx ; (b) rx < ra implies rx ≤ rb ; and (c) ra = rx implies rb = rx .
The proof will make use of an admissible order ξ with the property that
C is a cluster for ξ (whose existence is ensured by Proposition 16.5).

Parts (a) and (b) are then a straightforward consequence of part (a) of
Lemma 10.1.(a). In fact, by combining this result, and its contrapositive,
with the fact that C is a cluster for ξ , we have the following implications:
ra < rx ⇒ ax ∈ ξ ⇒ bx ∈ ξ ⇒ rb ≤ rx , and similarly, rx < ra ⇒ xa ∈ ξ ⇒
xb ∈ ξ ⇒ rx ≤ rb .

Part (c): ra = rx implies rb = rx (for x 6∈ C and a, b ∈ C ). Since ξ is
a total order, we must have either ax ∈ ξ or xa ∈ ξ ; in the following we
assume ax ∈ ξ (the other possibility admits of a similar treatment). In order
to deal with this case we will consider the last element of C according to ξ ,
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which we will denote as ` , and its immediate successor `′ , which does not
belong to C . Since a �−

ξ ` �ξ `′ �−
ξ x and ra = rx , we must have r` = r`′ . Now,

according to part (b) of Lemma 10.1, mπ
``′ = 0; in other words, mσ

``′ = 0.
By the definition of mσ

``′ , this means that there exist p and q with p �−
ξ ` �ξ q

such that mν
pq = v∗pq − v∗qp = 0. Obviously, q 6∈ C , whereas p either belongs

to C or it precedes all elements of C . In the latter case, we immediately get
mσ
cc′ = 0 for all c ∈ C (by the definition of mσ

cc′ ). If p ∈ C , we arrive at the
same conclusion thanks to Proposition 16.3, which ensures that mν

cq = mν
pq .

So, the intervals γcc′ with c ∈ C are all of them reduced to a point. Since
C is a cluster for the total order ξ , this implies that γab is also reduced
to the same point (this holds for any a, b ∈ C ). According to part (b) of
Lemma 10.1, this implies that ra = rb , as it was claimed.

Finally, we consider the effect of contracting C to a single element.
So we consider a new set Ã = (A \ C) ∪ {c̃} together with the scores
ṽxy (x, y ∈ Ã) defined by the following equalities, where p, q ∈ A \ C
and c is an arbitrary element of C : ṽpq = vpq , ṽpec = vpc and ṽecq = vcq
(the definition is not ambiguous since C is a cluster for the scores vxy ). In
the following, a tilde is systematically used to distinguish between homolo-
gous objects associated respectively with (A, v) and (Ã, ṽ). We will also
make use of the following notation: for every x ∈ A , x̃ denotes the element
of Ã defined by x̃ = c̃ if x ∈ C and by x̃ = x if x 6∈ C ; in terms of this
mapping, the preceding equalities say simply that ṽexey = vxy whenever x̃ 6= ỹ .

Theorem 16.7. The ranking σ̃ = {xy ∈ Π̃ | r̃x < r̃y} coincides with the
contraction of σ = {xy ∈ Π | rx < ry} by the cluster C .

Proof. We begin by noticing that the indirect scores ṽ∗xy (x, y ∈ Ã) coincide
with those obtained by contraction of the v∗xy (x, y ∈ A), i. e. ṽ∗exey = v∗xy
whenever x̃ 6= ỹ . This follows from the analogous equality between the
direct scores because of Lemma 16.2. As a consequence, ν̃ = µ(ṽ∗) coincides
with the contraction of ν = µ(v∗) by C . From this fact, parts (a) and (b)
of Theorem 10.2, allow to derive that rx < ry implies r̃ex ≤ r̃ey whenever
x̃ 6= ỹ , and that r̃ex < r̃ey implies rx ≤ ry .

In order to complete the proof, we must check that rx = ry is equivalent
to r̃ex = r̃ey whenever x̃ 6= ỹ . According to part (b) of Lemma 10.1, it suffices
to see that mπ

xy = 0 is equivalent to m̃πexey = 0 whenever x̃ 6= ỹ . In order to
prove this equivalence, we need to look at the way that mπ

xy and m̃πexey are ob-
tained, which requires certain admissible orders ξ and ξ̃ ; in this connection,
it will be useful that ξ be one of the admissible orders for which C is a clus-
ter (Proposition 16.5), and that ξ̃ be the corresponding contraction, which is
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admissible as a consequence of Proposition 16.3. Now, that proposition en-
tails not only that C is a cluster for the indirect margins mν

pq , but also that
their contraction by C coincides with the margins of the contracted indirect
scores, i. e. m̃νepeq = mν

pq whenever p̃ 6= q̃ . Moreover, by the definition of the
intermediate projected margins, namely equation (21.1), it follows that C
is also a cluster for the intermediate projected margins mσ

pq and that their
contraction by C coincides with the homologous quantities obtained from the
contracted indirect margins, i. e. m̃σepeq = mσ

pq whenever p̃ 6= q̃ . On the other
hand, it is also clear from equation (21.1) that the intermediate projected
margins behave in the following way:

mσ
pq ≤ mσ

ab whenever a �−
ξ p �ξ q �−

ξ b. (158)

After these remarks, we proceed with showing that mπ
xy = 0 is equivalent

to m̃πexey = 0 whenever x̃ 6= ỹ . By symmetry, we can assume that xy ∈
ξ , which entails that x̃ỹ ∈ ξ̃ . In view of (22–24), the equality mπ

xy = 0
is equivalent to saying that mσ

hh′ = 0 for all h such that x �−
ξ h �ξ y ,

and similarly, the equality m̃πexey = 0 is equivalent to m̃σ
ηη′ = 0 for all η such

that x̃ �−
ξ η �ξ ỹ . By considering a path x0x1 . . . xn from x0 = x to xn = y

with xixi+1 consecutive in ξ , it is clear that the problem reduces to proving
the following implications, where ` denotes the last element of C by ξ ,
f denotes the first one, and ′h denotes the element that immediately precedes
h in ξ : (a) mσ

``′ = 0 ⇒ m̃σec`′ = 0; (b) m̃σec`′ = 0 ⇒ mσ
cc′ = 0 for any c ∈ C ;

(c) mσ
′ff = 0 ⇒ m̃σ

′fec = 0; and (d) m̃σ
′fec = 0 ⇒ mσ

′cc = 0 for any c ∈ C .
Now, (a) and (c) are immediate consequences of the fact that m̃σepeq = mσ

pq

whenever p̃ 6= q̃ . On the other hand, (b) and (d) follow from the same
equality together with the inequality (158). In fact, these facts allow us to
write mσ

cc′ ≤ mσ
c`′ = m̃σec`′ , which gives (b), and similarly, mσ

′cc ≤ mσ
′fc = m̃σ

′fec ,
which gives (d).

17 Approval voting

In approval voting, each voter is asked for a list of approved options, without
any expression of preference between them, and each option x is then rated
by the number of approvals for it [6 ]. In the following we will refer to this
number as the approval score of x , and its value relative to V will be
denoted by αx .

From the point of view of paired comparisons, an individual vote of ap-
proval type can be viewed as a truncated ranking where all of the options
that appear in it are tied. In this section, we will see that the margin-based
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variant orders the options exactly in the same way as the approval scores.
In other words, the method of approval voting agrees with ours under inter-
pretation (d ′ ) of § 3.2, i. e. under the interpretation that the non-approved
options of each individual vote are tied.

Having said that, the preliminary results 17.1–17.3 will hold not only un-
der interpretation (d ′ ) but also under interpretation (d), i. e. that there is
no information about the preference of the voter between two non-approved
options, and also under the analogous interpretation that there is no informa-
tion about his preference between two approved options. Interpretation (d ′ )
does not play an essential role until Theorem 17.4, where we use the fact
that it always brings the problem into the complete case.

In the following, λ(α) denotes the relation defined by

xy ∈ λ(α) ≡ αx > αy. (159)

Proposition 17.1. In the approval voting situation, the following equality
holds:

vxy − vyx = αx − αy. (160)

In particular, µ(v) = λ(α).

Proof. Obviously, the possible ballots are in one-to-one correspondence with
the subsets X of A . In the following, vX denotes the relative number of votes
that approved exactly the set X . With this notation it is obvious that

αx =
∑
X3x

vX =
∑
X3x
X 63 y

vX +
∑
X3x
X3 y

vX . (161)

On the other hand, one has

vxy =
∑
X3x
X 63 y

vX

(
+ 1

2

∑
X3x
X3 y

vX + 1
2

∑
X 63x
X 63 y

vX

)
, (162)

where the terms in brackets are present or not depending on which inter-
pretation is used. Anyway, the preceding expressions, together with the
analogous ones where x and y are interchanged with each other, result in
the equality (160) independently of those alternative interpretations.

Corollary 17.2. In the approval voting situation, a path x0x1 . . . xn is con-
tained in µ(v) (resp. µ̂(v)) if and only if the sequence αxi (i = 0, 1, . . . n)
is decreasing (resp. non-increasing).
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Proposition 17.3. In the approval voting situation, one has µ(w∗) = λ(α).

Proof. Let us begin by proving that

αx > αy =⇒ w∗xy > w∗yx. (163)

We will argue by contradiction. So, let us assume that w∗yx ≥ w∗xy . According
to Proposition 17.1, the hypothesis that αx > αy is equivalent to vxy > vyx ,
which entails that wxy > 0 (by the definition of wxy together with the strict
inequality vxy > vyx ). Now, since w∗xy ≥ wxy and we are assuming that
w∗yx ≥ w∗xy , it follows that w∗yx > 0. This implies the existence of a path
from y to x which is contained in µ̂(v) (by the definitions of w∗yx and wpq ).
Finally, Corollary 17.2 produces a contradiction with the present hypothesis
that αx > αy .

Let us see now that

αx = αy =⇒ w∗xy = w∗yx. (164)

Again, we will argue by contradiction. So, let us assume that w∗xy 6= w∗yx .
Obviously, it suffices to consider the case w∗xy > w∗yx . Now, this inequal-
ity implies that w∗xy > 0, which tells us that w∗xy = wγ for a certain
path γ : x0x1 . . . xn which goes from x0 = x to xn = y and is contained
in µ̂(v). According to Corollary 17.2, we are ensured that the sequence
αxi (i = 0, 1, . . . n) is non-increasing. However, the hypothesis that αx = αy
leaves no other possibility than αxi being constant. So, the reverse path
γ′ : xnxn−1 . . . x1x0 is also contained in µ̂(v). Besides, Proposition 17.1 en-
sures that vxi+1xi = vxixi+1

, so that wγ′ = wγ . Since w∗yx ≥ wγ′ , it follows
that w∗yx ≥ w∗xy , which contradicts the hypothesis that w∗xy > w∗yx .

Finally, one easily checks that the preceding implications entail that
sgn (αx − αy) is always equal to sgn (w∗xy − w∗yx). This is equivalent to the
equality of the relations λ(α) and µ(w∗).

Theorem 17.4. In the approval voting situation, the margin-based variant
results in a full compatibility relation between the rank-like rates rx and the
approval scores αx : rx < ry ⇔ αx > αy .

Proof. Recall that the margin-based variant amounts to using interpreta-
tion (d ′ ), which always brings the problem into the complete case (when
the terms in brackets are included, equation (162) has indeed the property
that vxy + vyx = 1). So we can invoke Theorem 7.3. By combining it with
Proposition 17.3 we see that the inequality αx > αy is equivalent to say-
ing that xy ∈ ν . In the following we will keep this equivalence in mind.
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The implication rx < ry ⇒ αx > αy is then an immediate consequence of
part (b) of Theorem 10.2. The converse implication αx > αy ⇒ rx < ry
can be proved in the following way: Let ξ be an admissible order. By def-
inition, it contains ν . So, the inequality αx > αy implies xy ∈ ξ . On the
other hand, that inequality implies also the existence of a consecutive pair
hh′ with x �−

ξ h and h′ �−
ξ y such that αh > αh′ . As a consequence, one has

αp > αq whenever p �−
ξ h and h′ �−

ξ q . So, the sets X = {p | p �−
ξ h} and

Y = {q | h′ �−
ξ q} are in the hypotheses of part (c) of Theorem 10.2, which

ensures the desired inequality rx < ry .

Remark

So in this case we get a converse of Theorem 10.2.(b). By following the
same arguments as in the preceding proof, one can see that such a converse
holds whenever there exists a function s : A 3 x 7→ sx ∈ R , such that
xy ∈ ν ⇔ sx < sy .

Summing up, the standard approval voting procedure is always in full
agreement with the margin-based variant of the CLC method. In the ap-
proval voting situation, this variant amounts to treat all of the candidates
which are missing in an approval ballot as equally ‘unpreferred’ (in the same
way that all approved candidates are treated as equally preferred). This is
quite reasonable if one can assume that the voters are well acquainted with
all of the options.

18 About monotonicity

In this section we consider the effect of raising a particular option a to a
more preferred status in the individual ballots without any change in the
preferences about the other options. More generally, we consider the case
where the scores vxy are modified into new values ṽxy such that

ṽay ≥ vay, ṽxa ≤ vxa, ṽxy = vxy, ∀x, y 6= a. (165)

In such a situation, one would expect the social rates to behave in the fol-
lowing way, where y is an arbitrary element of A \ {a} :

r̃a < ra, (166)

ra < ry =⇒ r̃a < r̃y, ra ≤ ry =⇒ r̃a ≤ r̃y, (167)

where the tilde indicates the objects associated with the modified scores.
Unfortunately, the rating method proposed in this paper does not satisfy
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these conditions, but generally speaking it satisfies only the following weaker
ones:

ra < ry =⇒ r̃a ≤ r̃y. (168)

(ra < ry, ∀y 6= a) =⇒ (r̃a < r̃y, ∀y 6= a). (169)

In particular, (169) is saying that if a was the only winner for the scores
vxy , then it is still the only winner for the scores ṽxy .

Let us remark that in the case of ranking votes, situation (165) includes
the following ones: (a) the option a is raised to a better position in some of
the ranking votes without any change in the preferences between the other op-
tions; (b) the option a is appended to some ballots which did not previously
contain it; (c) some ballots are added which plump for option a . However,
the third part of (165) leaves out certain situations which are sometimes
considered the matter of other “monotonicity” conditions [39 ].

In the terminology of [3 ], property (168) is saying that the method that
we are using is “very weakly monotonic” as a ranking procedure, whereas
property (169) is related to what [3 ] calls “proper monotonicity” of a choice
procedure. In this connection, it is interesting to remark that the method of
ranked pairs enjoys the choice - monotonicity property (169) [38 : p. 221–222 ],
but it lacks the ranking - monotonicity property (168). A profile which ex-
hibits such a failure of the ranking - monotonicity for the method of ranked
pairs is given in http://mat.uab.cat/~xmora/CLC calculator/ (number 9 of
“Example inputs”).

18.1 This section is devoted to giving a proof of properties (168) and (169).

Theorem 18.1. Assume that (vxy) and (ṽxy) are related to each other in
accordance with (165). In this case, the following properties are satisfied for
any x, y 6= a:

ṽ∗ay ≥ v∗ay, ṽ∗xa ≤ v∗xa, (170)

Pa(ν̃) ⊆ Pa(ν), Sa(ν̃) ⊇ Sa(ν), (171)

(168) ra < ry =⇒ r̃a ≤ r̃y, (172)

where ν = µ(v∗) and ν̃ = µ(ṽ∗)

Proof. Let us begin by seeing that (172) will be a consequence of (171).
In fact, we have the following chain of implications: ra < ry ⇒ y ∈ Sa(ν) ⇒
y ∈ Sa(ν̃) ⇒ r̃a ≤ r̃y , where the central one is provided by (171.2) and the
other two are guaranteed by Theorem 10.2.
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The proof of (170–171) is organized in three steps. In the first one, we look
at the special case where one increases the score of a single pair ab . After this,
we will consider the case where an increase in the score of ab is combined
with a decrease in the score of ba . Finally, the third step deals with the
general situation (165).

Special case 1. Assume that

ṽab > vab, ṽxy = vxy, ∀xy 6= ab. (173)

In this case, the following properties are satisfied:

ṽ∗xy ≥ v∗xy, ∀x, y (174)

ṽ∗xa = v∗xa, ∀x 6= a (175)

ṽ∗by = v∗by, ∀y 6= b (176)

(171) Pa(ν̃) ⊆ Pa(ν), Sa(ν̃) ⊇ Sa(ν), (177)

Pb(ν̃) ⊇ Pb(ν), Sb(ν̃) ⊆ Sb(ν). (178)

In fact, under the hypothesis (173) it is obvious that ṽγ ≥ vγ and that
the strict inequality happens only when the path γ = x0 . . . xn contains
the pair ab and the latter realizes the minimum of the scores vxixi+1

. As a
consequence, the indirect scores satisfy the inequality (174). Furthermore,
a strict inequality in (174) implies that the maximum which defines ṽ∗xy is
realized by a path γ which satisfies ṽγ > vγ and therefore contains the
pair ab .

Now, in order to obtain the indirect score for a pair of the form xa
it is useless to consider paths involving ab , since such paths contains cycles
whose omission results in paths not involving ab and having a better or equal
score. So, the maximum which defines ṽ∗xa is realized by a path which does
not involve ab . According to the last statement of the preceding paragraph,
this implies (175). An entirely analogous argument establishes (176).

Finally, (177) is obtained in the following way: x ∈ Pa(ν̃) means that
ṽ∗xa > ṽ∗ax , from which (175) and (174) allow to derive that v∗xa = ṽ∗xa >
ṽ∗ax ≥ v∗ax , i. e. x ∈ Pa(ν). Similarly, x ∈ Sa(ν) implies x ∈ Sa(ν̃) because
one has ṽ∗ax ≥ v∗ax > v∗xa = ṽ∗xa . An analogous argument establishes (178).

Special case 2. Properties (170–171) are satisfied in the following situation:

ṽab ≥ vab, ṽba ≤ vba, ṽxy = vxy, ∀xy 6= ab, ba. (179)
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This result will be obtained from the preceding one by going through an
intermediate Llull matrix ˜̃v defined in the following way

˜̃vab = vab˜̃vba = ṽba˜̃vxy = ṽxy = vxy, ∀xy 6= ab, ba

(180)

If the hypothesis ṽab ≥ vab is satisfied with strict inequality, then ṽ and ˜̃v
are in the hypotheses of the special case 1 (they play respectively the roles
of ṽ and v ). In particular, we get

ṽ∗xy ≥ ˜̃v∗xy, ṽ∗xa = ˜̃v∗xa, Pa(ν̃) ⊆ Pa(˜̃ν), Sa(ν̃) ⊇ Sa(˜̃ν). (181)

On the other hand, if ṽab = vab then ˜̃v = ṽ and the preceding relations hold
as equalities.

Similarly, if the hypothesis ṽba ≤ vba is satisfied with strict inequality,
then v and ˜̃v are in the hypotheses of the special case 1 with ab replaced
by ba (they play respectively the roles of ṽ and v ). In particular, we get

v∗xy ≥ ˜̃v∗xy, v∗ay = ˜̃v∗ay, Pa(ν) ⊇ Pa(˜̃ν), Sa(ν) ⊆ Sa(˜̃ν). (182)

As before, if ṽba = vba then ˜̃v = v and the preceding relations hold as
equalities.

Finally, (170–171) are obtained by combining (181) and (182):

ṽ∗ay ≥ ˜̃v∗ay = v∗ay,

ṽ∗xa = ˜̃v∗xa ≤ v∗xa,

Pa(ν̃) ⊆ Pa(˜̃ν) ⊆ Pa(ν),

Sa(ν̃) ⊇ Sa(˜̃ν) ⊇ Sa(ν).

General case. In the general situation (165), properties (170–171) are a di-
rect consequence of the successive application of the special case 2 to every
pair ay .

Corollary 18.2. Under the hypothesis of Theorem 18.1 one has also

ϕa > ϕy ⇒ ϕ̃a ≥ ϕ̃y. (183)

Proof. It suffices to combine (172) with Theorem 12.3.
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Corollary 18.3 (2). Under the hypothesis of Theorem 18.1 one has also the
property (169).

Proof. According to Theorem 10.2.(b), the left-hand side of (169) implies
the strict inequality v∗ay > v∗ya for all y 6= a . Now, this inequality can
be combined with (170) to derive that ṽ∗ay > ṽ∗ya for all y 6= a . Finally,
Theorem 10.2.(c) with X = {a} and Y = A \ {a} guarantees that the
right-hand side of (169) is satisfied.

18.2 The statements (166) and (167) can fail even in the complete case.
Next we give an example of it, with 5 options (it seems to be the minimum
for the failure of (167) ) and 10 voters. The only change from left to right is
one inversion in one of the votes; more specifically, the eighth ballot changes
from the order d � b � c � a � e to the new one b � d � c � a � e . In spite
of this change, favourable to b and disadvantageous to d , the rank-like rate
of b is worsened from 2.90 to 3.00, whereas that of d is improved from 3.10
to 3.00. This contradicts (166) for a = b , as well as (167.1) for a = b and
y = d, c , and also (167.2) for a = d and y = a, b (when one goes from
right to left). However, it complies with (168).

x

a

b

c

d

e

Ranking votes
1 2 2 2 2 3 3 4 4 5
3 1 3 5 5 1 5 2 1 1
5 3 4 3 3 2 2 3 3 2
2 5 1 4 4 4 4 1 5 3
4 4 5 1 1 5 1 5 2 4

x

a

b

c

d

e

Ranking votes
1 2 2 2 2 3 3 4 4 5
3 1 3 5 5 1 5 1 1 1
5 3 4 3 3 2 2 3 3 2
2 5 1 4 4 4 4 2 5 3
4 4 5 1 1 5 1 5 2 4

x

a

b

c

d

e

Vxy
a b c d e

∗ 5 5 7 5
5 ∗ 7 4 7
5 3 ∗ 7 5
3 6 3 ∗ 5
5 3 5 5 ∗

x

a

b

c

d

e

Ṽxy
a b c d e

∗ 5 5 7 5
5 ∗ 7 5 7
5 3 ∗ 7 5
3 5 3 ∗ 5
5 3 5 5 ∗

2We thank Markus Schulze for pointing out this fact.
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x

a

b

c

d

e

V ∗xy
a b c d e

∗ 6 6 7 6
5 ∗ 7 7 7
5 6 ∗ 7 6
5 6 6 ∗ 6
5 5 5 5 ∗

x

a

b

c

d

e

Ṽ ∗xy
a b c d e

∗ 5 5 7 5
5 ∗ 7 7 7
5 5 ∗ 7 5
5 5 5 ∗ 5
5 5 5 5 ∗

x

a

b

c

d

e

Mν
xy

a b c d e

∗ 1 1 2 1
∗ ∗ 1 1 2
∗ ∗ ∗ 1 1
∗ ∗ ∗ ∗ 1
∗ ∗ ∗ ∗ ∗

x

a

b

c

d

e

M̃ν
xy

a b c d e

∗ 0 0 2 0
∗ ∗ 2 2 2
∗ ∗ ∗ 2 0
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗

x

a

b

c

d

e

Mπ
xy

a b c d e

∗ 1 1 1 1
∗ ∗ 1 1 1
∗ ∗ ∗ 1 1
∗ ∗ ∗ ∗ 1
∗ ∗ ∗ ∗ ∗

rx

2.80
2.90
3.00
3.10
3.20

x

a

b

c

d

e

M̃π
xy

a b c d e

∗ 0 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗

r̃x

3.00
3.00
3.00
3.00
3.00

As one can see, the multiple zeroes present in M̃ν
xy force a complete tie

of the rank-like rates r̃x in spite of the fact that ν̃ is not empty. Not only
the latter contains the pair bd, but in fact M̃ν

bd = 2 > 1 = Mν
bd .
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