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Abstract

We consider the problem of choosing a level of a public good on an inter-
val of the real line among a group of agents. A probabilistic rule chooses a
probability distribution over the interval for each preference profile. We in-
vestigate strategy-proof probabilistic rules in the case where distributions are
compared based on stochastic dominance relations. First, on a “minimally
rich domain”, we characterize the so-called probabilistic generalized median
rules (Ehlers et al., 2002, Journal of Economic Theory 105: 408-434) by
means of stochastic-dominance (sd) strategy-proofness and ontoness. Next,
we study how much we can enlarge a domain to allow for the existence of
sd-strategy-proof probabilistic rules that satisfy ontoness and the no-vetoer
condition. We establish that the domain of “convex” preferences is the unique
maximal domain including a minimally rich domain for these properties.
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1 Introduction

We consider the problem of choosing a level of a public good on an interval of the real
line among a group of agents. Each agent has ordinal preferences over the chosen
level of the public good. We examine this problem in a probabilistic framework to
achieve a “fair” solution. Consider a situation where a group of agents try to choose
one of two public projects, a and b. Assume that half of them prefer a to b, while
the other half prefer b to a. In this case, one of the fair solutions to this problem
would be to use a lottery between the two projects.1 A probabilistic rule, or simply a
rule, chooses a probability distribution over the interval for each preference profile.2

Since preferences are defined over deterministic alternatives and the probabilis-
tic rule selects the probability distribution, we need to explain how agents evaluate
distributions. In this paper, we assume that each agent compares probability distri-
butions based on (first order) stochastic dominance relation derived from his ordinal
preference. That is, for each preference of the agent, and each pair of probability
distributions, say f and g, f stochastically dominates g according to his preference
if to each upper contour set of the preference, f assigns a probability at least as
high as the probability assigned under g. This is equivalent to assuming that for
each von Neumann-Morgenstern utility function that represents the agent’s ordinal
preference, the expected utility under the distribution f is at least as high as the
expected utility under g.

Preferences are usually private information. Agents may strategically misrep-
resent their preferences to obtain the outcome distributions they prefer. As a re-
sult, the chosen outcome may not be socially desirable relative to the agents’ true
preferences. The property called stochastic-dominance (sd) strategy-proofness is of-
ten imposed for a probabilistic rule to give agents the incentive to represent their
preferences truthfully. It requires that for each agent, truth-telling stochastically
dominates lying.

It is well-known that there is no sd-strategy-proof and ex-post efficient proba-
bilistic rule, defined on the unrestricted domain, other than the random dictatorship
rules when there are at least three alternatives (Gibbard, 1977). However, if the
domain is restricted to the class of “single-peaked” preferences, Ehlers et al. (2002)
show that there are sd-strategy-proof probabilistic rules other than random dicta-
torships.3 A preference is single-peaked if there is a unique best alternative, called
the peak, such that its welfare monotonically decreases around the peak. On the
single-peaked domain, they also characterize the class of the so-called probabilistic
generalized median rules by means of sd-strategy-proofness and unanimity.4 Thus,

1Ehlers and Klaus (2001) and Ehlers et al. (2002) also consider a probabilistic approach to
improve “a priori fairness”.

2Note that the probabilistic rules studied in this paper rely on only ordinal preferences of
agents. This approach is usual in the context of voting problems with lotteries. For example, see
Gibbard (1977) and Barberà (1979a,b).

3On the other hand, when the set of alternatives is a convex subset of multi-dimensional Eu-
clidean space, Dutta et al. (2002) show that, on the domain of all strictly convex and single-peaked
preferences, a rule is sd-strategy-proof and unanimous if and only if it is a random dictatorship.

4Ehlers and Klaus (2001) examine the one-dimensional voting problem from the perspective of
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they extend the results of Moulin (1980)5 to the probabilistic model. In this paper,
following the results of Ehlers et al. (2002), we examine the following two questions
on the domain conditions of sd-strategy-proof probabilistic rules.

The first question is how much we can restrict the domain on which the proba-
bilistic generalized median rules are the unique class of sd-strategy-proof and onto
rules. If a rule is sd-strategy-proof on a domain, then it is also sd-strategy-proof
on any subdomain. Thus, the smaller the domain, the weaker the requirement of
sd-strategy-proofness. In this paper, a “minimally rich domain” is defined as a small
subset of the single-peaked domain satisfying the following two conditions: (1) for
each alternative, there is “only one” preference whose peak is equal to the alterna-
tive, and (2) given three distinct alternatives, say x, y, and z with x < z < y, there
is a finite sequence of preferences whose peaks monotonically increase from x to z
(respectively, decrease from y to z) such that for each preference in the sequence,
the previous peak point is preferred to y (respectively, x). The “symmetric single-
peaked domain”6 is an example of the minimally rich domain. We establish that
the probabilistic generalized median rules are the unique class of sd-strategy-proof
and onto rules on a minimally rich domain.

The second question is how much we can enlarge a domain to allow for the
existence of sd-strategy-proof and onto probabilistic rules. Note that the random
dictatorship rules are sd-strategy-proof and onto on the universal domain. Thus, to
rule out such trivial rules, we additionally impose the no-vetoer condition. Agent i is
a vetoer for a rule if the alternative that is best for all agents other than i, and worst
for i, is never chosen with probability one. The no-vetoer condition requires that a
rule should have no vetoer. We establish that the domain of “convex” preferences
is the unique maximal domain including a minimally rich domain for the existence
of probabilistic rules that satisfy sd-strategy-proofness, ontoness, and the no-vetoer
condition.

Our results are closely related to those of Berga and Serizawa (2000). For the
deterministic case, they characterize the class of generalized median rules by means
of strategy-proofness and ontoness on a BS-minimally rich domain,7 and show that
the convex domain is the unique maximal domain including a BS-minimally rich
domain for strategy-proofness, ontoness, and the BS-no-vetoer condition.8 Under
sd-strategy-proofness, the BS-no-vetoer condition implies the no-vetoer condition.

a solidarity property on the single-peaked domain.
5See also Ching (1997) for a detailed analysis of the deterministic model.
6A preference is symmetric single-peaked if there is a unique peak, and its utility representation

is symmetric around the peak.
7Berga-Serizawa (BS)-minimally rich domain is a small subset of the single-peaked domain

satisfying the following two conditions: (a) for each alternative, there is only one preference whose
peak is equal to the alternative, and (b) given two distinct alternatives, say x and y, there is a
preference whose peak is between x and y such that x is preferred to y. Condition (a) is the
same as condition (1) of our minimally rich domain. Condition (b) is weaker than condition (2)
proposed in this paper.

8The BS-no-vetoer condition requires that for each agent, each preference of the agent, and
each alternative, there is a preference profile of the other agents at which the alternative is chosen
with probability one.
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Thus, our results can be interpreted as an extension of those of Berga and Serizawa
(2000) to the probabilistic model.

For the deterministic model, several papers examine the maximal domain for
the existence of strategy-proof rules. Many authors such as Barberà et al. (1991,
1999), Serizawa (1995), and Berga (2002) investigate the maximal domain on which
the generalized median rules are strategy-proof. Their analyses exclude rules other
than the generalized median rules. On the other hand, Berga and Serizawa (2000)
do not restrict the rules a priori, but obtain the maximal domain by only imposing
properties on rules. To the best of our knowledge, our paper is the first to examine
the maximal domain of sd-strategy-proof probabilistic rules. Further, we do not
restrict the rules a priori, and establish the maximal domain result for properties
on rules. Recently, Hatsumi et al. (2011) examine the maximal domain for the
deterministic model with multiple public goods. They establish that the domain
of separable preferences is a maximal domain for strategy-proofness and the BS-
no-vetoer condition. For the allotment problem, Mizobuchi and Serizawa (2006)
investigate the two questions that are parallel to Berga and Serizawa (2000) and
our paper.

As we mentioned above, since the symmetric single-peaked domain is minimally
rich, we also obtain the counterpart of the result of Border and Jordan (1983)9 for
the probabilistic case as a corollary of our result.

This paper is organized as follows. In Section 2, we present the model and
definitions. Section 3 explains the main results. Section 4 provides the concluding
remarks. Section 5 is devoted to the proofs of the results in Section 3.

2 The model and definitions

Let N ≡ {1, . . . , n} be a set of agents. Assume that 2 ≤ n < ∞. The set of
alternatives is a closed interval Z ≡ [z, z] on the real line R.10 A preference is a
complete and transitive binary relation Ri on Z. Let Pi be the strict preference
relation associated with Ri, and Ii the indifference relation. Given a preference Ri

and z ∈ Z, the upper contour set of Ri at z is the set U(Ri, z) ≡ {y ∈ Z : y Ri

z}, and the lower contour set of Ri at z is the set L(Ri, z) ≡ {y ∈ Z : z Ri y}.
A preference Ri is continuous if for each z ∈ Z, U(Ri, z) and L(Ri, z) are closed.
Given a preference Ri, let p(Ri) ≡ {x ∈ Z : for each y ∈ Z, x Ri y} be the
set of the most preferred alternatives according to Ri. We call p(Ri) the peak of
Ri. Let P denote the set of continuous preference relations on Z. A domain is
a subset R of P . A preference profile is a list R ≡ (R1, . . . , Rn) ∈ RN . Let
R−i ≡ (Rj)j∈N\{i} be a list of preferences for all agents except for agent i. We write
the profile (R1, . . . , Ri−1, R̄i, Ri+1, . . . , Rn) as (R̄i, R−i).

A preference Ri on Z is convex if for each z ∈ Z, the set U(Ri, z) is convex.

9For the deterministic case, they establish that on the symmetric single-peaked domain, the
generalized median rules are the unique class of strategy-proof and onto rules.

10Given a, b ∈ R, [a, b], ]a, b[ , [a, b[ , and ]a, b] denote the closed, open, right half open, and left
half open intervals with endpoints a and b, respectively.
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Let Rvex ⊂ P be the domain of convex preferences. A preference Ri on Z is single-
peaked if p(Ri) is a singleton, and for each pair z, z′ ∈ Z, whenever z < z′ ≤ p(Ri)
or p(Ri) ≤ z′ < z, then z′ Pi z. Let Rsin ⊂ P be the domain of single-peaked
preferences. A preference Ri on Z is symmetric single-peaked if p(Ri) is a
singleton, and for each pair z, z′ ∈ Z, (z − p(Ri))

2 > (z′ − p(Ri))
2 if and only if

z′ Pi z. Let Rsym ⊂ P be the domain of symmetric single-peaked preferences. Note
that Rsym ( Rsin ( Rvex.

Let ∆(Z) be the set of probability distributions over Z.11 A probabilistic rule
f is a function from RN to ∆(Z). Throughout the paper, we simply refer to a
probabilistic rule as rule. Given a subset X of Z, f(R)(X) is the probability that
the chosen alternative belongs to X. We will also need to refer to rules that select
degenerate distributions, that is, probability distributions that put weight one on a
single alternative. A deterministic rule F is a function from RN to Z.

Since preferences are defined over deterministic alternatives and the rule selects
probability distribution, we need to explain how agents evaluate distributions. Let
Ri ∈ R. The (first order) stochastic dominance relation (sd) associated with Ri is
defined as follows. For each pair Q, Q′ ∈ ∆(Z), Q stochastically dominates Q′

at Ri if for each z ∈ Z, Q(U(Ri, z)) ≥ Q′(U(Ri, z)), We write this as Q Rsd
i Q′.

Also, Q strictly stochastically dominates Q′ at Ri if Q Rsd
i Q′, and for some

y ∈ Z, Q(U(Ri, y)) > Q′(U(Ri, y)). We write this as Q P sd
i Q′.

Next, we introduce the axioms. Let f be a rule on RN . Following the terminol-
ogy given by Thomson (2010), we use the prefix “sd” in naming the axioms based
on stochastic dominance relations. The next two axioms are related to incentive
compatibility. First, for each agent, truth-telling stochastically dominates lying.

Sd-strategy-proofness: For each R ∈ RN , each i ∈ N , and each R̂i ∈ R,
f(R) Rsd

i f(R̂i, R−i).

Second, by misrepresenting his preferences, no agent can ever obtain a distribu-
tion that strictly stochastically dominates truth-telling.

Weak sd-strategy-proofness: For each R ∈ RN , and each i ∈ N , there is no
R̂i ∈ R such that f(R̂i, R−i) P

sd
i f(R).

The next three axioms are related to efficiency. A distribution Q ∈ ∆(Z) is
sd-efficient for R ∈ RN if there is no Q′ ∈ ∆(Z) such that for each i ∈ N ,
Q′ Rsd

i Q, and for some j ∈ N , Q′ P sd
j Q.

Sd-efficiency:12 For each R ∈ RN , f(R) is sd-efficient for R.

Second, if there are alternatives that all agents agree as the best, then these
alternatives should be chosen with probability 1.

Unanimity: For each R ∈ RN such that
∩

i∈N p(Ri) ̸= ∅, f(R)(
∩

i∈N p(Ri)) = 1.

11We consider probability distributions defined on the Borel σ-algebra L on Z. See the Appendix
in Ehlers et al. (2002) for the formal definition. Throughout the paper, we assume that each subset
X of Z belongs to L. Also, we often refer to several definitions and results found in Ehlers et al.
(2002).

12This notion is also referred to as ordinal efficiency.
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Third, for each alternative, there is a preference profile at which the alternative
is chosen with probability 1.

Ontoness: For each z ∈ Z, there is R ∈ RN such that f(R)({z}) = 1.

Note that sd-efficiency implies unanimity, which implies ontoness.
The next three properties pertain to how a rule distributes power across agents.

Agent i ∈ N is a dictator for a rule if the outcome is always chosen from this agent’s
best alternatives. Non-dictatorship requires that a rule should have no dictator.

Non-dictatorship: For each i ∈ N , there is R ∈ RN such that f(R)(p(Ri)) ̸= 1.

Agent i ∈ N is a vetoer for a rule if the alternative that is best for all agents
other than i, and worst for i, is never chosen with probability 1. The no-vetoer
condition requires that a rule should have no vetoer.

No-vetoer condition: For each i ∈ N , each x ∈ Z, and each R ∈ RN , if for each
j ∈ N \ {i}, {x} = p(Rj), and for each z ∈ Z, z Ri x, then f(R)({x}) = 1.

Note that the no-vetoer condition implies non-dictatorship. The following re-
lated condition is imposed in Berga and Serizawa (2000).

BS-no-vetoer condition: For each i ∈ N , each x ∈ Z, and each Ri ∈ R, there is
R−i ∈ RN\{i} such that f(R)({x}) = 1.

Note that under sd-strategy-proofness, the BS-no-vetoer condition implies the
no-vetoer condition.13

The next property says that a rule only depends on the profile of peaks.

Peak-onlyness: For each pair R, R̂ ∈ RN , if for each i ∈ N , p(Ri) = p(R̂i), then
f(R) = f(R̂).

Next is the class of rules introduced by Ehlers et al. (2002). It is central to our
paper as well. The rules are described in the following way. Let D ≡ (DS)S∈2N be a
collection of probability distributions such that (i) D∅({z}) = 1, (ii) DN({z}) = 1,
and (iii) for each S, T ∈ 2N , and each x ∈ Z, DS∪T ([z, x]) − DS([z, x[) ≥ 0. A
unique rule is associated to each collection. We therefore refer to the collection as
the “signature” of the rule. Let ∆ be the set of signatures. As we will see, these
distributions are the choices made by the rule for profiles of extremists. A step in
the proof consists in identifying the collection. We refer to this step as a calibration
step.14

13To see this, let f be a rule satisfying sd-strategy-proofness and BS-no-vetoer condition on
RN . Let i ∈ N , x ∈ Z, and R ∈ RN be such that for each j ∈ N \ {i}, {x} = p(Rj),

and for each z ∈ Z, z Ri x. Then, by BS-no-vetoer condition, there is R̂−i ∈ RN\{i}

such that f(Ri, R̂−i)({x}) = 1. Without loss of generality, let i = 1. By sd-strategy-
proofness, f(R1, R2, R̂−1,2)({x}) = f(R1, R2, R̂−1,2)(U(R2, x)) ≥ f(R1, R̂−1)(U(R2, x)) =

f(R1, R̂−1)({x}) = 1. Also, by sd-strategy-proofness, f(R1, R2,3, R̂−1,2,3)({x}) =

f(R1, R2,3, R̂−1,2,3)(U(R3, x)) ≥ f(R1, R2, R̂−1,2)(U(R3, x)) = f(R1, R2, R̂−1,2)({x}) = 1. Re-
peating this argument for agents j = 4, . . . , n, we have f(R)({x}) = 1.

14This terminology was introduced by Thomson (1999).
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Given R ∈ RN , let n̄(R) be the number of different peaks at R,15 and for each
ℓ ∈ {1, . . . , n̄}, let pℓ(R) be the ℓ-th smallest peak at R, and let Sℓ ≡ {i ∈ N :
p(Ri) ≤ pℓ(R)}, S0 ≡ ∅, p0(R) ≡ z, and pn̄+1(R) ≡ z.

We now define the class of rules.

Probabilistic generalized median rule with signature D ∈ ∆, gmD:16 For
each R ∈ RN , and each X ⊂ Z,

gmD(R)(X) =
n̄∑

ℓ=0

DSℓ
(X∩ ]pℓ(R), pℓ+1(R)[ )

+
n̄∑

ℓ=1

1X(p
ℓ(R))(DSℓ

([z, pℓ(R)])−DSℓ−1
([z, pℓ(R)[)),

where 1X is the indicator function 1X : Z → {0, 1} such that if z ∈ X, 1X(z) = 1,
and otherwise, 1X(z) = 0.17

The following is a description of the probabilistic generalized median rule with
signature D ∈ ∆, gmD. The distribution chosen by gmD coincides with the dis-
tribution D∅ on the interval [z, p1(R)[, with DN on the interval ]pn̄(R), z], and for
each ℓ ∈ {1, . . . , n̄− 1}, with DSℓ

on the interval ]pℓ(R), pℓ+1(R)[. Further, for each
ℓ ∈ {1, . . . , n̄}, the probability assigned to the ℓ-th peak, gmD(R)({pℓ(R)}), is equal
to DSℓ

([z, pℓ(R)])−DSℓ−1
([z, pℓ(R)[).

3 The results

3.1. Characterization

Ehlers et al. (2002) characterize the class of sd-strategy-proof and onto rules on
the domain of single-peaked preferences.

Theorem (Ehlers et al., 2002). A rule defined on the domain of single-peaked
preferences is sd-strategy-proof and onto if and only if it is a probabilistic generalized
median rule.18

This section shows that their results still hold on more restricted domains. We
establish it on a “minimally rich” domain defined as follows. For each pair x, y ∈ Z
with x ̸= y, let R(y, x) ≡ {Ri ∈ R : x Pi y and min{x, y} < p(Ri) < max{x, y}}.

15We simply use n̄ when we can omit R as an argument without confusion.
16We follow the terminology given by Thomson (2010). In Ehlers et al. (2002), this class of

rules is referred to as “fixed-probabilistic-ballots rules”.
17Since a probabilistic generalized median rule gmD is peak-only, we can denote gmD(R) by

gmD(p(Ri)i∈N ) as a function of the profile of peaks.
18More precisely, unanimity is imposed in their paper instead of ontoness. Note that on the

single-peaked preference domain, under sd-strategy-proofness, unanimity coincides with ontoness
(See Fact 5 in the Appendix). They also characterize the class of sd-strategy-proof and peak-
only rules on the single-peaked domain. This class of rules is slightly larger than the class of
probabilistic generalized median rules.
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Definition 1. A domain R ⊂ P is minimally rich if
(i) R is a subclass of the domain Rsin of single-peaked preferences,
(ii) for each z ∈ Z, there is a unique preference R0 ∈ R such that p(R0) = z, and
(iii) for each triple x, y, z ∈ Z with x ̸= y and min{x, y} < z < max{x, y}, there
exist a finite K ∈ N and a sequence

{
R

(k)
0

}K

k=1
of preferences in R such that19

(iii-a) R
(1)
0 ∈ R(y, x),

(iii-b) for each k ∈ {2, . . . , K}, R(k)
0 ∈ R

(
y, p(R

(k−1)
0 )

)
, and

(iii-c) min
{
p(R

(K−1)
0 ), p(R

(K)
0 )

}
≤ z ≤ max

{
p(R

(K−1)
0 ), p(R

(K)
0 )

}
, and z ̸= p(R

(K−1)
0 ).

Conditions (i) and (ii) say that, for each alternative, there is only one single-
peaked preference whose peak is equal to the alternative. Condition (iii) says that,
given three distinct alternatives, say x, y, and z with min{x, y} < z < max{x, y},
there is a finite sequence

{
R

(k)
0

}K

k=1
of preferences satisfying the following three

conditions: (iii-a) the peak of R
(1)
0 is between x and y, and x is preferred to y under

R
(1)
0 , (iii-b) for each k ∈ {2, . . . , K}, the peak of R

(k)
0 is between p(R

(k−1)
0 ) and y,

and p(R
(k−1)
0 ) is preferred to y under R

(k)
0 , and (iii-c) z is between p(R

(K−1)
0 ) and

p(R
(K)
0 ).
The following related condition is imposed in Berga and Serizawa (2000).

Definition 2. A domain R ⊂ P is BS-minimally rich if
(BS-i) R is a subclass of the domain Rsin of single-peaked preferences,
(BS-ii) for each z ∈ Z, there is a unique preference R0 ∈ R such that p(R0) = z,
and
(BS-iii) for each pair x, y ∈ Z with x ̸= y, there is a preference R0 ∈ R(y, x).

Conditions (i) and (ii) of our minimally rich domain are equivalent to conditions
(BS-i) and (BS-ii), respectively. Condition (BS-iii) is weaker than condition (iii)
of our minimally rich domain. Thus, any minimally rich domain is BS-minimally
rich.20

The following are examples of minimally rich domains:

(1) Domain Rsym of symmetric single-peaked preferences,

(2) Domain Ra ⊂ Rsin of preferences such that for each z ∈ Z, there is a unique
preference R0 ∈ Ra with p(R0) = z such that for each pair x, y ∈ Z with x < z < y,
x I0 y if and only if (x− z)2 = 2(y − z)2,

(3) Domain Rb ⊂ Rsin of preferences such that for each z ∈ Z, there is a unique
preference R0 ∈ Rb with p(R0) = z such that for each pair x, y ∈ Z with x < z < y,
x I0 y if and only if (x− z)2 = t(z)(y − z)2, where t is an increasing function from
Z to [1, 2].21

Let RMR be the class of minimally rich domains.

19N denotes the set of natural numbers.
20It is an open question whether the converse implication holds or not. Thus, there could be a

domain that is BS-minimally rich, but not minimally rich. However, note that our minimally rich
domains still cover many important domains in their applications.

21A function t is increasing if for each pair z, z′ ∈ Z with z ≤ z′, t(z) ≤ t(z′).
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A minimally rich domain is much smaller than the single-peaked domain. By
the definition of sd-strategy-proofness, if a rule is sd-strategy-proof on a domain,
then it is sd-strategy-proof on any subdomain. Thus, sd-strategy-proofness on a
minimally rich domain is weaker than sd-strategy-proofness on the single-peaked
domain. Hence, on a minimally rich domain, potentially, there exist more rules
that are sd-strategy-proof and onto. However, our first result, presented below, says
that the probabilistic generalized median rules are still the unique class of rules
satisfying these two properties.

Theorem 1. A rule defined on a minimally rich domain is sd-strategy-proof and
onto if and only if it is a probabilistic generalized median rule.

The proof of Theorem 1 is in the Appendix. For the deterministic model,
Berga and Serizawa (2000) characterize the generalized median rules22 by strategy-
proofness and ontoness on a BS-minimally rich domain. Our result can be inter-
preted as a counterpart of theirs for the probabilistic model.

As we mentioned above, the domain of symmetric single-peaked preferences is
minimally rich. Thus, we obtain the following corollary of Theorem 1.

Corollary 1. A rule defined on the domain of symmetric single-peaked preferences
is sd-strategy-proof and onto if and only if it is a probabilistic generalized median
rule.

For the deterministic model, Border and Jordan (1983) characterize the gen-
eralized median rules by strategy-proofness and ontoness on the symmetric single-
peaked domain. Corollary 1 is an extension of their result to the probabilistic
model.

3.2. Maximal domain

Next, we ask how much we can enlarge a domain to allow for the existence
of sd-strategy-proof rules that satisfy ontoness and the no-vetoer condition. The
definition of a maximal domain is as follows.

Definition 3. A domain R ⊂ P is maximal for a list of properties if
(i) there is a rule on R satisfying the properties, and
(ii) for each domain R̂ with R ⊂ R̂ ⊂ P , no rule on R̂ satisfies the same properties.

Note that a maximal domain for a list of properties may not be unique. We
consider domains that include a minimally rich domain.

22The generalized median rules are defined as follows. Let a ≡ (aS)S∈2N be a collection of points
in Z such that (i) a∅ = z, (ii) aN = z, and (iii) for each S, T ∈ 2N , aS∪T ≤ aS . This collection is
the signature of the deterministic rule. Let A be the set of signatures.

Generalized median rule with signature a ∈ A, GMa: for each R ∈ RN , GMa(R) =
minS⊆N{max{p(Ri)i∈S , aS}}.

Let D ≡ (DS)S∈2N ∈ ∆ be such that for each S ∈ 2N , DS is a degenerate distribution. Let
a ≡ (aS)S∈2N be such that for each S ∈ 2N , aS is the point at which DS places probability
one. Then, the probabilistic generalized median rules gmD with signature D coincides with the
generalized median rule GMa with signature a ≡ (aS)S∈2N .

In Berga and Serizawa (2000), this class is referred to as “generalized median voter schemes”.
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Theorem 2. Assume that there are at least three agents, and let R ∈ RMR. The
domain of convex preferences is the unique maximal domain including R for sd-
strategy-proofness, ontoness, and the no-vetoer condition.

The proof of Theorem 2 is in the Appendix.

Remark 1. Assume that there are only two agents. No rule defined on a minimally
rich domain satisfies sd-strategy-proofness, ontoness, and the no-vetoer condition.23

Thus, in Theorem 2, we require that there be at least three agents.

Remark 2. Note that the random dictatorship rules24 satisfy sd-strategy-proofness
and ontoness on the universal domain, but not the no-vetoer condition. Thus, in
order to rule out such trivial rules, we impose the no-vetoer condition in Theorem 2.
We remark that this condition also excludes some rules other than the random dic-
tatorship rules. Furthermore, if we do not impose the no-vetoer condition, there are
sd-strategy-proof and onto rules other than the random dictatorships on domains
that include non-convex preferences. Thus, the no-vetoer condition is crucial to
obtain convex preferences as a maximal domain. Example 1 below illustrates that,
on a domain that include non-convex preferences, there is a non-random dictator-
ship rule that satisfies sd-strategy-proofness and ontoness, but not the no-vetoer
condition.25

Example 1. A preferenceRi is outside convex if there are two intervals [a−(Ri), a
+(Ri)]

and [b−(Ri), b
+(Ri)] of Z such that (1) a+(Ri) ≤ b−(Ri), (2) p(Ri) ≡ [a−(Ri), a

+(Ri)]∪
[b−(Ri), b

+(Ri)], and (3) for each X ∈ {[z, a+(Ri)], [b
−(Ri), z]} and each z ∈ X,

U(Ri, z) ∩ X is convex. Let Rovex be the domain of outside convex preferences.
Note that the domain Rovex includes non-convex preferences and minimally rich
domains. Let f̂ : (Rovex)N → ∆(Z) be the rule such that for each R ∈ R̂N , and
each X ⊂ Z,

f̂(R)(X) =
1

2
· 1X({min

i∈N
a+(Ri)}) +

1

2
· 1X({max

i∈N
b−(Ri)}).

Then, f̂ is sd-strategy-proof and onto, but violates the no-vetoer condition. However,
it is not the random dictatorship rules.

For the deterministic model, Berga and Serizawa (2000) prove that the convex
domain is the unique maximal domain including a BS-minimally rich domain for

23To see this, suppose that there is a rule f on R ∈ RMR satisfying these three properties.
Let N ≡ {1, 2}. Let R1 ∈ R be such that p(R1) < z, and for each z ∈ Z, z R1 z. Let
R2 ∈ R be such that p(R2) ≡ z. Then, by the no-vetoer condition, f(R)({z}) = 1. Let R̂1 ∈ R
be such that p(R̂1) ≡ z. Then, by uncompromisingness (see Proposition 1 in Subsection 3.3),
f(R̂1, R2)({z}) = 1. Thus, f(R̂1, R2)({z}) ̸= 1. This contradicts the no-vetoer condition.

24Let W be the set of weights w such that w ≡ (w1, . . . , wn) ∈ [0, 1]N and
∑

i∈N wi = 1.
Random dictatorship rule with weight w ∈ W, RDw: for each R ∈ RN and each X ⊂ Z,

RDw(R)(X) =
∑
i∈N

wi · 1X(p(Ri)).

25For the deterministic model, similar arguments are found in Berga and Serizawa (2000).
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strategy-proofness, ontoness, and the BS-no-vetoer condition. For the probabilistic
model, it is easy to check if there is a rule that satisfy these three properties on the
convex domain. Furthermore, the BS-no-vetoer condition together with sd-strategy-
proofness implies the no-vetoer condition. Thus, as a corollary of Theorem 2, we
obtain a counterpart of their result for the probabilistic case.

Corollary 2. Assume that there are at least three agents. The domain of convex
preferences is the unique maximal domain including a minimally rich domain for
sd-strategy-proofness, ontoness, and the BS-no-vetoer condition.

Since each minimally rich domain is a subclass of the single-peaked domain,
each domain that includes the single-peaked domain also includes a minimally rich
domain. Thus, the class of domains that include the single-peaked domain is a
subclass of the class of domains that include a minimally rich domain. We obtain
the following as a corollary of Theorem 2.

Corollary 3. Assume that there are at least three agents. The domain of convex
preferences is the unique maximal domain including the single-peaked domain for
sd-strategy-proofness, ontoness, and the no-vetoer condition.

Since the symmetric single-peaked domain is a minimally rich domain, we also
obtain the following corollary.

Corollary 4. Assume that there are at least three agents. The domain of convex
preferences is the unique maximal domain including the symmetric single-peaked
domain for sd-strategy-proofness, ontoness, and the no-vetoer condition.

Remark 3. A deterministic alternative can be regarded as a degenerate probability
distribution. Also, each of the properties introduced in our paper, when imposed on
deterministic rules, reduces to the property of the same name for the deterministic
model. Thus, as a byproduct of our results, for the deterministic model, we also
obtain results that are close to the results of Berga and Serizawa (2000).

3.3. Technical discussions: uncompromisingness and richness of domains

We now discuss some key points of our results and proofs. First, we introduce
a property that plays an important role in the proof of the uniqueness part of
Theorem 1. This notion was first introduced by Ehlers et al. (2002): when an
agent’s preference changes, the chosen distribution does not change outside the
interval whose endpoints are his initial peak and new peak.26

Given Ri, R̂i ∈ R, let E(Ri, R̂i) ≡ [min{p(Ri), p(R̂i)},max{p(Ri), p(R̂i)}].

Uncompromisingness: For each R ∈ RN , each i ∈ N , each R̂i ∈ R, and each
X ⊂ Z such that X ∩ E(Ri, R̂i) = ∅, f(R)(X) = f(R̂i, R−i)(X).

The next proposition is key to Theorem 1.

Proposition 1. On a minimally rich domain, sd-strategy-proofness and ontoness
imply uncompromisingness.

26This property is an extension to the probabilistic model of a property introduced for the
deterministic model by Border and Jordan (1983).
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The proof is in the Appendix. Ehlers et al. (2002) establish that on the
single-peaked domain, sd-strategy-proofness and peak-onlyness imply uncompromis-
ingness.27 Note that, by the definition of a minimally rich domain, any rule defined
on a minimally rich domain is peak-only. Thus, the assumption of our Proposition 1
is stronger than theirs. However, we cannot directly apply their result and proof
techniques to prove Proposition 1. As we explain below, there is a crucial difference
between the single-peaked domain and a minimally rich domain.

We now introduce a new property of rules. This property is implied by uncom-
promisingness. Hereafter, we only focus on this property to simplify our subsequent
argument.

Invariance property: For each R ∈ RN , each i ∈ N , each R̂i ∈ R, and each pair
a, b ∈ Z such that a < p(Ri) < p(R̂i) < b, f(R)([a, b]) = f(R̂i, R−i)([a, b]).

Next, we introduce another richness condition on a domain. A domain R ⊂ P is
rich∗ if for each Ri ∈ R, and each pair a, b ∈ Z with a < p(Ri) < b, there is R′

i ∈ R
such that (i) p(Ri) = p(R′

i), and (ii) U(R′
i, b) = [a, b]. Note that the single-peaked

domain is rich∗. Under this richness condition, we can directly apply the proof
techniques developed by Ehlers et al. (2002) to obtain the invariance property, as
shown in the following fact.

Fact 1. Let R ⊆ Rsin be a rich∗ domain. If a rule f on RN is sd-strategy-proof
and peak-only, then it satisfies the invariance property.

Proof.28 Let R ∈ RN , i ∈ N , R̂i ∈ R, and a, b ∈ Z be such that a < p(Ri) <
p(R̂i) < b. Since R is rich∗, there are R′

i, R̄i ∈ R such that (i) p(Ri) = p(R′
i),

p(R̂i) = p(R̄i), and (ii) U(R′
i, b) = [a, b] = U(R̄i, b). Then, by sd-strategy-proofness,

f(R′
i, R−i)(U(R′

i, b)) ≥ f(R̄i, R−i)(U(R′
i, b)). Similarly, by sd-strategy-proofness,

f(R′
i, R−i)(U(R̄i, b)) ≤ f(R̄i, R−i)(U(R̄i, b)). Since U(R′

i, b) = [a, b] = U(R̄i, b), we
have f(R′

i, R−i)([a, b]) = f(R̄i, R−i)([a, b]). Finally, by peak-onlyness, f(R)([a, b]) =
f(R′

i, R−i)([a, b]) and f(R̂i, R−i)([a, b]) = f(R̄i, R−i)([a, b]). Thus, f(R)([a, b]) =
f(R̂i, R−i)([a, b]). �

On the other hand, since no two distinct preferences have the same peak on
any minimally rich domain, no minimally rich domain is rich∗. Thus, we cannot
apply the argument used in the proof of Fact 1 to obtain the invariance property
on a minimally rich domain. This is the main difference between the single-peaked
domain and a minimally rich domain, and the reason the proof techniques of Ehlers
et al. (2002) cannot be applied to prove Proposition 1.

We develop two lemmas to overcome this difficulty. These lemmas give us vari-
ants of the invariance property. Lemma 1 says that under sd-strategy-proofness and
ontoness, if a group of agents with the lowest peak, say p1, changes their peaks,
and their new peak point, say p̄, is still less than the second lowest peak, then the
outcome distribution does not change outside the interval with endpoints p1 and p̄.
A similar statement applies to a group of agents with the highest peaks.

27See Ehlers et al. (2002, Lemma 3.1). They also establish that peak-onlyness is implied by
sd-strategy-proof and unanimity (see Ehlers et al., 2002, Proposition 5.2).

28Indeed, in this proof, we use the proof techniques developed by Ehlers et al. (2002).
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Lemma 2 says that under sd-strategy-proofness and ontoness, for each point
p̄ ∈ Z, if a group of agents whose peaks are less than p̄ changes their peaks to p̄,
then the outcome distribution does not change outside the interval with endpoints
p1 and p̄. Also, a similar statement applies to a group of agents whose peaks are
greater than p̄.

Furthermore, on a minimally rich domain, ontoness is indispensable to obtain
uncompromisingness,29 while it is not required on the single-peaked domain. This
is also one of the differences between the single-peaked domain and minimally rich
domains.

Since the characterization result of the class of sd-strategy-proof and onto rules
on a minimally rich domain is utilized in the proof of our maximal domain theorem,
proving Proposition 1 and Theorem 1 is also key to Theorem 2.

4 Concluding remarks

We established that, on a minimally rich domain, the probabilistic generalized me-
dian rules are the unique class of sd-strategy-proof and onto rules. Recently, by
using the characterization result of Berga and Serizawa (2000), Massó and Moreno
de Barreda (2011) characterize the class of strategy-proof deterministic rules on the
symmetric single-peaked domain.30 It is an interesting question whether a result
parallel to theirs can be obtained for the probabilistic model.

Next, we examined how much we can enlarge a domain to allow for the existence
of rules that satisfy sd-strategy-proofness, ontoness, and the no-vetoer condition. We
established that the domain of convex preferences is the unique maximal domain
including a minimally rich domain for these properties. For the deterministic model,
Berga and Serizawa (2000) establish that the unique maximal domain including a
BS-minimally rich domain for strategy-proofness, ontoness, and the BS-no-vetoer
condition is the convex domain. Our result can be interpreted as an extension of
theirs to the probabilistic model.

In this paper, we focused on the analysis of the probabilistic rules defined on the
set of ordinal preferences of agents. Another possible formulation of probabilistic
rules is to define a rule on the set of von Neumann-Morgenstern utility functions,
and assume that agents compare probability distributions based on their expected
utilities. Note that the notion of sd-strategy-proofness is different from that of
strategy-proofness based on the expected utility. To see the difference between the
two notions of strategy-proofness for probabilistic rules, it is also interesting to
examine the conditions on the domains of rules that satisfy strategy-proofness based
on the expected utility.

29For example, for the deterministic model, strategy-proofness alone does not imply uncompro-
misingness on the symmetric single-peaked domain (Border and Jordan, 1983). Since the class of
probabilistic rules includes deterministic rules as a special case, their example also holds for the
probabilistic model.

30This class of rules is much larger than the class of generalized median rules.
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5 Appendix: Proofs

5.1. Preliminary results

Let R ∈ RMR, and let R be a domain such that R ⊆ R ⊆ Rsin. Given Ri ∈ R
and z ∈ Z, the strict upper contour set of Ri at z is the set SU(Ri, z)
≡ {y ∈ Z : y Pi z}. Fact 2 says that the stochastic dominance relation Rsd

i is
equivalent to that defined in terms of strict upper contour sets.

Fact 2 (Ehlers et al., 2002, Lemma 2.1). For each Ri ∈ R, and each pair Q,
Q′ ∈ ∆(Z), Q Rsd

i Q′ if and only if for each z ∈ Z, Q(SU(Ri, z)) ≥ Q′(SU(Ri, z)),
and Q P sd

i Q′ if and only if Q Rsd
i Q′ and for some z ∈ Z, Q(SU(Ri, z)) >

Q′(SU(Ri, z)).

Given R ∈ RN , let p(R) ≡ mini∈N{p(Ri)}, and p(R) ≡ maxi∈N{p(Ri)}, and let
E(R) ≡ [p(R), p(R)], that is, E(R) is the set of ex-post efficient outcomes for R.
Fact 3 says that sd-efficiency is equivalent to ex-post efficiency.

Fact 3 (Ehlers et al., 2002, Lemma 2.2). Let f be a rule on RN . Then, f is
sd-efficient if and only if for each R ∈ RN , f(R)(E(R)) = 1.

Fact 4 says that sd-strategy-proofness and unanimity imply ex-post efficiency.

Fact 4 (Ehlers et al., 2002, Proposition 5.1). Let f be an sd-strategy-proof
and unanimous rule on RN . Then, for each R ∈ RN , f(R)(E(R)) = 1.

Fact 5 says that sd-strategy-proofness and ontoness imply unanimity.

Fact 5. Let f be an sd-strategy-proof and onto rule on RN . Then, it is unanimous.

Proof of Fact 5. Let y ∈ Z. Let R̄ ∈ RN be such that for each i ∈ N ,
p(R̄i) ≡ y. We show that f(R̄)({y}) = 1. By ontoness, there is R ∈ RN such that
f(R)({y}) = 1. By sd-strategy-proofness, f(R̄1, R−1)(U(R̄1, y)) ≥ f(R)(U(R̄1, y)).
Since U(R̄1, y) = {y} and f(R)({y}) = 1, then f(R̄1, R−1)({y}) = 1. Similarly,
by sd-strategy-proofness, f(R̄1,2, R−1,2)(U(R̄2, y)) ≥ f(R̄1, R−1)(U(R̄2, y)). Since
U(R̄2, y) = {y} and f(R̄1, R−1)({y}) = 1, f(R̄1,2, R−1,2)({y}) = 1. Repeating this
argument for agents j = 3, . . . n, we have f(R̄)({y}) = 1. �
Remark 4. From facts 3, 4, and 5, if a rule f on RN is sd-strategy-proof and onto,
then it is sd-efficient.

5.2. Proof of Theorem 1.

First, we prove two lemmas. Next, we prove Proposition 1. Then, we prove
Theorem 1. Let R ∈ RMR. Given R ∈ RN and ℓ ∈ {1, . . . , n̄(R)}, let N ℓ(R) be
the set of agents whose peak is equal to the ℓ-th smallest peak amount at R, that
is N ℓ(R) ≡ {i ∈ N : p(Ri) = pℓ(R)}.
Lemma 1. Let f be an sd-strategy-proof and onto rule on RN . Let R ∈ RN , N̄ ⊆
N1(R), R̄N̄ ∈ RN̄ , and p̄, x ∈ Z be such that (1-1) for each i ∈ N̄ , p(R̄i) = p̄, (1-2)
p̄ < x, and (1-3) p1(R) < p̄ ≤ p2(R). Then, f(R)([p1(R), x[) = f(R̄N̄ , R−N̄)([p

1(R), x[).

Proof of Lemma 1. Let x0 ≡ p1(R). By condition (iii) of the minimally rich

domain in Definition 1, there exist a finite K ∈ N and a sequence {R(k)
0 }Kk=1 of
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preferences in R such that (i) x0 P
(1)
0 x and x0 < p(R

(1)
0 ) < x, (ii) for each k ∈

{2, . . . , K}, p(R(k−1)
0 ) P

(k)
0 x, and p(R

(k−1)
0 ) < p(R

(k)
0 ) < x, and (iii) p(R

(K−1)
0 ) <

p̄ ≤ p(R
(K)
0 ). For each k ∈ {2, . . . , K}, let xk ≡ p(R

(k)
0 ).

Step 1. For each k ∈ {1, . . . , K}, each R̄ ∈ RN , each N̄ ⊆ N1(R̄), and each

R̃N̄ ∈ RN̄ , if (a) p1(R̄) = x0, (b) for each i ∈ N̄ , R̃i ≡ R
(k)
0 , and (c) xk−1 ≤ p2(R̄),

then, f(R̄)([x0, x[) = f(R̃N̄ , R̄−N̄)([x
0, x[).

Proof of Step 1. We prove Step 1 by induction on k. Assume that k = 1. Let
R̄ ∈ RN , N̄ ⊆ N1(R̄), and R̃N̄ ∈ RN̄ be such that (a) p1(R̄) = x0, (b) for each i ∈
N̄ , R̃i ≡ R

(1)
0 , and (c) x0 ≤ p2(R̄). Without loss of generality, let N̄ ≡ {1, . . . , n̄1}.

First, we replace the preference R̄i of agent i ∈ N̄ with the preference R̃i, inductively.
Note that, by sd-efficiency, f(R̄)([z, x0[) = f(R̃1, R̄−1)([z, x

0[) = 0. Then,31

f(R̄)([x0, x[) = f(R̄)(SU(R̄1, x)) by sd-E

≥ f(R̃1, R̄−1)(SU(R̄1, x)) by sd-SP and Fact 2

= f(R̃1, R̄−1)([x
0, x[) by sd-E .

Conversely,

f(R̃1, R̄−1)([x
0, x[) = f(R̃1, R̄−1)(SU(R̃1, x)) by sd-E and x0 P̃1 x

≥ f(R̄)(SU(R̃1, x)) by sd-SP and Fact 2

= f(R̄)([x0, x[) by sd-E and x0 P̃1 x.

Thus, f(R̄)([x0, x[) = f(R̃1, R̄−1)([x
0, x[). Since R̃1 = R̃2, by applying the same ar-

gument to the profile (R̃1, R̄−1), we obtain f(R̃1, R̄−1)([x
0, x[) = f(R̃1,2, R̄−1,2)([x

0, x[).
Repeating this argument for agents j = 3, . . . , n̄1, f(R̄)([x0, x[) = f(R̃N̄ , R̄−N̄)([x

0, x[).
Thus, Step 1 holds if k = 1.

Next, we assume that k ≥ 2. Let R̄ ∈ RN , N̄ ⊆ N1(R̄), and R̃N̄ ∈ RN̄ be such

that (a) p1(R̄) = x0, (b) for each i ∈ N̄ , R̃i ≡ R
(k)
0 , and (c) xk−1 ≤ p2(R̄). Without

loss of generality, let N̄ ≡ {1, . . . , n̄k}.
As the induction hypothesis, we assume that

A: For each R̂ ∈ RN , each N̂ ⊆ N1(R̂), and each R′
N̂
∈ RN̂ , if (A-a) p1(R̂) = x0,

(A-b) for each i ∈ N̂ , R′
i = R

(k−1)
0 , and (A-c) xk−2 ≤ p2(R̂), then, f(R̂)([x0, x[) =

f(R′
N̂
, R̂−N̂)([x

0, x[).

We show that f(R̄)([x0, x[) = f(R̃N̄ , R̄−N̄)([x
0, x[). For each i ∈ N1(R̄), let

R′
i ≡ R

(k−1)
0 . Then, by induction hypothesis (A),32

f(R̄)([x0, x[) = f(R′
N1(R̄), R̄−N1(R̄))([x

0, x[). (1)

31Hereafter, we occasionally abbreviate sd-efficiency and sd-strategy-proofness as sd-E and sd-
SP, respectively.

32Since (a) p1(R̄) = x0 and (c) xk−1 ≤ p2(R̄), all the assumptions (A-a), (A-b), and (A-c) of
induction hypothesis (A) are satisfied.
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Next, we replace the preferenceR′
i of agent i ∈ N̄ with the preference R̃i, inductively.

Note that, by sd-efficiency and xk−1 ≤ p2(R̄), f(R′
N1(R̄)

, R̄−N1(R̄))([z, x
k−1[) =

f(R̃1, R
′
N1(R̄)\{1}, R̄−N1(R̄))([z, x

k−1[) = 0. Then,

f(R′
N1(R̄), R̄−N1(R̄))([x

0, x[)

= f(R′
N1(R̄), R̄−N1(R̄))([x

k−1, x[) by sd-E

= f(R′
N1(R̄), R̄−N1(R̄))(SU(R′

1, x)) by sd-E

≥ f(R̃1, R
′
N1(R̄)\{1}, R̄−N1(R̄))(SU(R′

1, x)) by sd-SP and Fact 2

= f(R̃1, R
′
N1(R̄)\{1}, R̄−N1(R̄))([x

k−1, x[) by sd-E

= f(R̃1, R
′
N1(R̄)\{1}, R̄−N1(R̄))([x

0, x[) by sd-E .

Conversely,

f(R̃1, R
′
N1(R̄)\{1},R̄−N1(R̄))([x

0, x[)

= f(R̃1, R
′
N1(R̄)\{1}, R̄−N1(R̄))([x

k−1, x[) by sd-E

= f(R̃1, R
′
N1(R̄)\{1}, R̄−N1(R̄))(SU(R̃1, x)) by sd-E and xk−1 P̃1 x

≥ f(R′
N1(R̄), R̄−N1(R̄))(SU(R̃1, x)) by sd-SP and Fact 2

= f(R′
N1(R̄), R̄−N1(R̄))([x

k−1, x[) by sd-E and xk−1 P̃1 x

= f(R′
N1(R̄), R̄−N1(R̄))([x

0, x[) by sd-E .

Thus, f(R′
N1(R̄)

, R̄−N1(R̄))([x
0, x[) = f(R̃1, R

′
N1(R̄)\{1}, R̄−N1(R̄))([x

0, x[). Since R̃1 =

R̃2, by applying the same argument to the profile (R̃1, R
′
N1(R̄)\{1}, R̄−N1(R̄)), we have

f(R̃1, R
′
N1(R̄)\{1}, R̄−N1(R̄))([x

0, x[) = f(R̃1,2, R
′
N1(R̄)\{1,2}, R̄−N1(R̄))([x

0, x[). Repeat-

ing this argument for agents j = 3, . . . , n̄k,

f(R′
N1(R̄), R̄−N1(R̄))([x

0, x[) = f(R̃N̄ , R
′
N1(R̄)\N̄ , R̄−N1(R̄))([x

0, x[). (2)

Therefore, if N̄ = N1(R̄), then Step 1 follows from (1) and (2). Thus, we assume
that N̄ ̸= N1(R̄), that is, N1(R̄) \ N̄ ̸= ∅. Next, we consider the profile (R̃N̄ , R̄−N̄).
Then, p2(R̃N̄ , R̄−N̄) = min{xk, p2(R̄)}. Thus, xk−2 < xk−1 ≤ p2(R̃N̄ , R̄−N̄). Note
that N1(R̃N̄ , R̄−N̄) = N1(R̄) \ N̄ ̸= ∅, and p1(R̃N̄ , R̄−N̄) = p1(R̄) = x0. Thus, the
assumptions of induction hypothesis (A) also hold for the profile (R̃N̄ , R̄−N̄). Then,
by induction hypothesis (A),

f(R̃N̄ , R̄−N̄)([x
0, x[) = f(R̃N̄ , R

′
N1(R̄)\N̄ , R̄−N1(R̄))([x

0, x[). (3)

Thus, from (1), (2), and (3),

f(R̄)([x0, x[) = f(R̃N̄ , R̄−N̄)([x
0, x[).

�
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Step 2. For each k ∈ {1, . . . , K}, each R̄ ∈ RN , each N̄ ⊆ N1(R̄), each p̂ ∈
]xk−1, xk], and each R̂N̄ ∈ RN̄ , if (a) p1(R̄) = x0, (b) for each i ∈ N̄ , p(R̂i) = p̂,
and (c) p̂ ≤ p2(R̄), then, f(R̄)([x0, x[) = f(R̂N̄ , R̄−N̄)([x

0, x[).

Proof of Step 2. Let k ∈ {1, . . . , K}, R̄ ∈ RN , N̄ ⊆ N1(R̄), p̂ ∈ ]xk−1, xk], and
R̂N̄ ∈ RN̄ be such that (a) p1(R̄) = x0, (b) for each i ∈ N̄ , p(R̂i) = p̂, and (c)
p̂ ≤ p2(R̄). Without loss of generality, let N̄ ≡ {1, . . . , n̄k}. If p̂ = xk, then the
desired conclusion follows from Step 1. Thus, we assume that xk−1 < p̂ < xk.

For each i ∈ N1(R̄), let R̃i ≡ R
(k)
0 . Then, by Step 1,

f(R̄)([x0, x[) = f(R̃N1(R̄), R̄−N1(R̄))([x
0, x[). (4)

Next, we replace the preference R̃i of agent i ∈ N̄ with the preference R̂i, inductively.
Note that, by sd-efficiency and p̂ ≤ p1(R̃N1(R̄), R̄−N1(R̄)), f(R̃N1(R̄), R̄−N1(R̄))([z, p̂[) =

f(R̂1, R̃N1(R̄)\{1}, R̄−N1(R̄))([z, p̂[) = 0. Then,

f(R̃N1(R̄), R̄−N1(R̄))([x
0, x[)

= f(R̃N1(R̄), R̄−N1(R̄))([p̂, x[) by sd-E

= f(R̃N1(R̄), R̄−N1(R̄))(SU(R̃1, x)) by sd-E and xk−1 P̃ 1 x

≥ f(R̂1, R̃N1(R̄)\{1}, R̄−N1(R̄))(SU(R̃1, x)) by sd-SP and Fact 2

= f(R̂1, R̃N1(R̄)\{1}, R̄−N1(R̄))([p̂, x[) by sd-E and xk−1 P̃ 1 x

= f(R̂1, R̃N1(R̄)\{1}, R̄−N1(R̄))([x
0, x[) by sd-E .

Conversely,

f(R̂1, R̃N1(R̄)\{1}, R̄−N1(R̄))([x
0, x[)

= f(R̂1, R̃N1(R̄)\{1}, R̄−N1(R̄))([p̂, x[) by sd-E

= f(R̂1, R̃N1(R̄)\{1}, R̄−N1(R̄))(SU(R̂1, x)) by sd-E

≥ f(R̃N1(R̄), R̄−N1(R̄))(SU(R̂1, x)) by sd-SP and Fact 2

= f(R̃N1(R̄), R̄−N1(R̄))([p̂, x[) by sd-E

= f(R̃N1(R̄), R̄−N1(R̄))([x
0, x[) by sd-E .

Thus, f(R̃N1(R̄), R̄−N1(R̄))([x
0, x[) = f(R̂1, R̃N1(R̄)\{1}, R̄−N1(R̄))([x

0, x[). Similarly,

applying the same argument to the profile (R̂1, R̃N1(R̄)\{1}, R̄−N1(R̄)), we obtain

f(R̂1, R̃N1(R̄)\{1}, R̄−N1(R̄))([x
0, x[) = f(R̂1,2, R̃N1(R̄)\{1,2}, R̄−N1(R̄))([x

0, x[). Repeat-
ing this argument for agents j = 3, . . . , n̄k, we have

f(R̃N1(R̄), R̄−N1(R̄))([x
0, x[) = f(R̂N̄ , R̃N1(R̄)\N̄ , R̄−N1(R̄))([x

0, x[). (5)

If N1(R̄) \ N̄ = ∅, then Step 2 follows from (4) and (5). Thus, we assume that
N1(R̄)\ N̄ ̸= ∅. Consider the profile (R̂N̄ , R̄−N̄). Then, p

1(R̂N̄ , R̄−N̄) = p1(R̄) = x0,

and xk−1 ≤ p̂ = p2(R̂N̄ , R̄−N̄). It follows from Step 1 that

f(R̂N̄ , R̄−N̄)([x
0, x[) = f(R̂N̄ , R̃N1(R̄)\N̄ , R̄−N1(R̄))([x

0, x[). (6)
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Thus, from (4), (5), and (6),

f(R̄)([x0, x[) = f(R̂N̄ , R̄−N̄)([x
0, x[).

�
Finally, we complete the proof of Lemma 1. Note that (a) p1(R) = x0, (b) for

each i ∈ N̄ , p(R̄i) = p̄, (c) p̄ ≤ p2(R), and (d) xK−1 < p̄ ≤ xK . Then, it follows
from Step 2 that f(R)([x0, x[) = f(R̄N̄ , R−N̄)([x

0, x[). �
Remark 5. If the strict upper contour set SU(Ri, x) is replaced by the upper
contour set U(Ri, x) in the proof of Lemma 1, then the result of Lemma 1 also holds
for the closed interval, that is, we obtain f(R)([p1(R), x]) = f(R̄N̄ , R−N̄)([p

1(R), x]).

Remark 6. The following statements also hold by applying the argument in the
proof of Lemma 1 symmetrically. Let f be an sd-strategy-proof and onto rule on
RN . Let R ∈ RN , N̄ ⊆ N n̄(R), R̄N̄ ∈ RN̄ , and x, p̄ ∈ Z be such that (1-1*) for
each i ∈ N̄ , p(R̄i) = p̄, (1-2*) pn̄−1(R) ≤ p̄ < pn̄(R), and (1-3*) x < p̄. Then,
f(R)(]x, pn̄(R)]) = f(R̄N̄ , R−N̄)(]x, p

n̄(R)]). Similarly to Remark 5, we also obtain
f(R)([x, pn̄(R)]) = f(R̄N̄ , R−N̄)([x, p

n̄(R)]).

Lemma 2. Let f be an sd-strategy-proof and onto rule on RN . For each R ∈ RN ,
each k ∈ {1, . . . , n̄(R) − 1}, each N̄ ⊆

∪k
h=1N

h(R), each R̄N̄ ∈ RN̄ , and each
p̄, x ∈ Z, if (2-1) for each i ∈ N̄ , p(R̄i) = p̄, (2-2) pk(R) < p̄ ≤ pk+1(R), and (2-3)
p̄ < x, then, f(R)([p1(R), x[) = f(R̄N̄ , R−N̄)([p

1(R), x[).

Proof of Lemma 2. Let R ∈ RN , k ∈ {1, . . . , n̄(R) − 1}, N̄ ⊆
∪k

h=1N
h(R),

R̄N̄ ∈ RN̄ , and p̄, x ∈ Z be such that (2-1) for each i ∈ N̄ , p(R̄i) = p̄, (2-2) pk(R) <
p̄ ≤ pk+1(R), and (2-3) p̄ < x. Without loss of generality, let N̄ ≡ {1, . . . , |N̄ |}.33
Let x0 ≡ p1(R). We prove Lemma 2 by induction on k. Let k = 1. Then, the
desired conclusion follows from Lemma 1. Thus, we assume that k ≥ 2. As the
induction hypothesis, we assume that

B: For each R̃ ∈ RN , each k̂ ∈ {1, . . . , k − 1}, each N ′ ⊆
∪k̂

h=1N
h(R̃), each

R̂N ′ ∈ RN ′
, and each p̂, x̂ ∈ Z, if (2-1b) for each i ∈ N ′, p(R̂i) = p̂, (2-2b) pk̂(R̃) <

p̂ ≤ pk̂+1(R̃), and (2-3b) p̂ < x̂, then, f(R̃)([p1(R̃), x̂[) = f(R̂N ′ , R̃−N ′)([p1(R̃), x̂[).

Let N̄k−1 ≡
∪k−1

h=1N
h(R). Let R

(k)

N̄k−1 ∈ RN̄k−1
be such that for each i ∈ N̄k−1,

p(R
(k)
i ) ≡ pk(R). Then, by induction hypothesis (B),

f(R)([x0, x[) = f(R
(k)

N̄k−1 , R−N̄k−1)([x0, x[). (7)

Let N̄k ≡
∪k

h=1 N
h(R). Let (N̂ , Ñ) be a partition of N̄ such that N̂ ∪ Ñ = N̄ ,

N̂ ∩ Ñ = ∅, N̂ ⊂ N̄k−1, and Ñ ⊂ Nk(R). Note that for each i ∈ N̄ , i ∈ Nk(R) or
i ∈ N̄k−1.

Let R′ ≡ (R
(k)

N̄k−1 , R−N̄k−1). Next, we replace the preference R′
i of agent i ∈ N̄

33|A| denotes the cardinality of the set A.
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with the preference R̄i, inductively. Then, by p1(R′) = pk(R) and N̄ ⊂ N1(R′),

f(R′)([x0, x[) = f(R′)([pk(R), x[) by sd-E

= f(R̄N̄ , R
′
−N̄)([p

k(R), x[) by Lemma 1

= f(R̄N̄ , R
′
−N̄)([x

0, x[) by sd-E .

Since R′ ≡ (R
(k)

N̄k−1 , R−N̄k−1),

f(R
(k)

N̄k−1 , R−N̄k−1)([x0, x[) = f(R̄N̄ , R
(k)

N̄k−1\N̂ , RNk(R)\Ñ , R−N̄k)([x0, x[). (8)

If N̄k−1 \ N̂ = ∅, then Lemma 2 follows from (7) and (8). Thus, we assume that
N̄k−1 \ N̂ ̸= ∅.

Next, consider the profile (R̄N̄ , R−N̄). Note that pk(R) ≤ pk(R̄N̄ , R−N̄). Then,
by induction hypothesis (B),34

f(R̄N̄ , R−N̄)([x
0, x[) = f(R̄N̄ , R

(k)

N̄k−1\N̂ , RNk(R)\Ñ , R−N̄k)([x0, x[). (9)

Thus, from (7), (8), and (9),

f(R)([p1(R), x[) = f(R̄N̄ , R−N̄)([p
1(R), x[).

�
Remark 7. If the result of Remark 5 is applied to the proof of Lemma 2 instead
of Lemma 1, the result of Lemma 2 also holds for the closed interval, that is, we
obtain f(R)([p1(R), x]) = f(R̄N̄ , R−N̄)([p

1(R), x]).

Remark 8. The following statements also hold by applying the argument in the
proof of Lemma 2 symmetrically. Let f be an sd-strategy-proof and onto rule on RN .
For each R ∈ RN , each k ∈ {2, . . . , n̄(R)}, each N̄ ⊆

∪n̄(R)
h=k Nh(R), each R̄N̄ ∈ RN̄ ,

and each x, p̄ ∈ Z, if (2-1*) for each i ∈ N̄ , p(R̄i) = p̄, (2-2*) pk−1(R) ≤ p̄ < pk(R),
and (2-3*) x < p̄, then, f(R)(]x, pn̄(R)]) = f(R̄N̄ , R−N̄)(]x, p

n̄(R)]). Similarly to
Remark 7, we also obtain f(R)([x, pn̄(R)]) = f(R̄N̄ , R−N̄)([x, p

n̄(R)]).

Proof of Proposition 1. Let R ∈ RN , i ∈ N , and R̂i ∈ R. Let [x, y[ ⊂ Z be such
that [x, y[ ∩ E(Ri, R̂i) = ∅. We show that f(R)([x, y[) = f(R̂i, R−i)([x, y[).

35 If
p(Ri) = p(R̂i), then, by condition (ii) of the minimally rich domain in Definition 1,
Ri = R̂i. Thus, we consider the case where p(Ri) ̸= p(R̂i). Assume that p(Ri) <
p(R̂i). The opposite case can be treated symmetrically.
Case 1. p(R̂i) < x.

If p(R̂i) ≥ pn̄(R)(R), then, by sd-efficiency, f(R)([x, y[) = 0 = f(R̂i, R−i)([x, y[).
Thus, assume that p(R̂i) < pn̄(R)(R). Then, there is k ∈ {1, . . . , n̄(R)−1} such that
pk(R) < p(R̂i) ≤ pk+1(R). Since p(Ri) < p(R̂i), i ∈

∪k
h=1N

h(R). Then, it follows

34By letting R̃ ≡ (R̄N̄ , R−N̄ ), N ′ ≡ N̄k−1\N̂ , p̂ ≡ pk(R), and x̂ ≡ x, all the assumptions (2-1b),
(2-2b), and (2-3b) of induction hypothesis (B) are satisfied.

35To show the equivalence of two distributions g and h over Z, it is sufficient to prove that for
each [x, y[ ⊂ Z, g([x, y[) = h([x, y[). See Ehlers et al. (2002, Remark A.3. in the Appendix).
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from Lemma 2 that f(R)([p1(R), x[) = f(R̂i, R−i)([p
1(R), x[). Similarly, by x < y,

f(R)([p1(R), y[) = f(R̂i, R−i)([p
1(R), y[). Thus,

f(R)([x, y[) = f(R)([p1(R), y[)− f(R)([p1(R), x[)

= f(R̂i, R−i)([p
1(R), y[)− f(R̂i, R−i)([p

1(R), x[)

= f(R̂i, R−i)([x, y[).

Case 2. y ≤ p(Ri).
If p(Ri) = p1(R), then, by sd-efficiency, f(R)([x, y[) = 0 = f(R̂i, R−i)([x, y[).

Thus, assume that p1(R) < p(Ri). Consider the profile R̂ ≡ (R̂i, R−i). Then, there
is k̄ ∈ {2, . . . , n̄(R̂)} such that pk̄−1(R̂) ≤ p(Ri) < pk̄(R̂). Since p(Ri) < p(R̂i),

i ∈
∪n̄(R̂)

h=k̄
Nh(R̂). Let p̂ ≡ pn̄(R̂)(R̂). First, we assume that y < p(Ri). Then, it

follows from Remark 8 that f(R)([y, p̂]) = f(R̂i, R−i)([y, p̂]). Similarly, by x < y,
f(R)([x, p̂]) = f(R̂i, R−i)([x, p̂]). Thus, f(R)([x, y[) = f(R̂i, R−i)([x, y[). Next, we
assume that y = p(Ri). Let {yk}k∈N be a sequence in Z such that for each k ∈ N,
yk < y, [x, yk[ ⊆ [x, yk+1[ , and

∪
k∈N[x, yk[ = [x, y[ .36 Then, for each k ∈ N,

yk < p(Ri). Thus, by applying the above argument again, for each k ∈ N, we have
f(R)([x, yk[) = f(R̂i, R−i)([x, yk[). Since distributions are continuous from below,37

f(R)([x, y[) = f(R̂i, R−i)([x, y[). �
Proof of Theorem 1. It is easy to show that each probabilistic generalized median
rule is sd-strategy-proof and onto. The proof of the uniqueness part of Theorem 1
is similar to that of Ehlers et al. (2002), but we provide it for completeness. Let f
be an sd-strategy-proof and onto rule defined on RN .

Step 1. Construction of a collection (DS)S∈2N of probability distributions.

For each i ∈ N , let Rz
i , R

z
i ∈ R be such that p(Rz

i ) ≡ z and p(Rz
i ) ≡ z. For each

S ∈ 2N , let DS ≡ f(Rz
S, R

z
−S).

Step 2. The collection D ≡ (DS)S∈2N satisfies the following properties:
(i) D∅({z}) = 1, (ii) DN({z}) = 1, and (iii) for each S, T ∈ 2N and each x ∈ Z,
DS∪T ([z, x])−DS([z, x[) ≥ 0.

By unanimity, (i)D∅({z}) ≡ f(Rz
N)({z}) = 1, and (ii)DN({z}) ≡ f(Rz

N)({z}) =
1. We show property (iii) of Step 2. Let S, T ∈ 2N and x ∈ Z. Without loss of
generality, assume that S ∩ T ̸= ∅ and T ≡ {1, 2, . . . , t̂}. Then,

DS∪{1}([z, x]) ≡ f(Rz
S, R

z
1, R

z
−(S∪{1}))([z, x])

≥ f(Rz
S, R

z
1, R

z
−(S∪{1}))([z, x[)

= f(Rz
S, R

z
1, R

z
−(S∪{1}))(SU(Rz

1, x))

≥ f(Rz
S, R

z
−S)(SU(Rz

1, x)) by sd-SP and Fact 2

= f(Rz
S, R

z
−S)([z, x[)

= DS([z, x[).
36For each k ∈ N, set yk ≡ y − y−x

2k . Then, the sequence {yk}k∈N satisfies these properties.
37A probability distribution g is continuous from below if for each sequence {Ak}k∈N such that

for each k ∈ N, Ak ⊆ Ak+1 and
∪

k∈N Ak = A, g(A) = limk→∞ g(Ak). See Ehlers et al. (2002,
Theorem A.1. in the Appendix).
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Repeating this argument for agents j = 2, . . . , t̂, we getDS∪T ([z, x])−DS([z, x[) ≥ 0.

Step 3. For each R ∈ RN , f(R) = gmD(R).38

Let R ∈ RN . By sd-efficiency, f(R)([z, p1(R)[) = 0 = D∅([z, p
1(R)[), and

f(R)(]pn̄(R), z]) = 0 = DN(]p
n̄(R), z]). Let ℓ ∈ {1, . . . , n̄(R)− 1}.

First, we show that f(R)(]pℓ(R), pℓ+1(R)[) = gmD(R)(]pℓ(R), pℓ+1(R)[). By un-
compromisingness,

f(R)(]pℓ(R), pℓ+1(R)[) = f(Rz
Sℓ
, Rz

−Sℓ
)(]pℓ(R), pℓ+1(R)[) ≡ DSℓ

(]pℓ(R), pℓ+1(R)[).

Let ℓ ∈ {1, . . . , n̄(R)}. Next, we show that f(R)({pℓ(R)}) = gmD(R)({pℓ(R)}).
First,

f(R)(]pℓ(R), z]) = f(Rz
Sℓ
, R−Sℓ

)(]pℓ(R), z]) by uncompromisingness

= 1− f(Rz
Sℓ
, R−Sℓ

)([z, pℓ(R)])

= 1− f(Rz
Sℓ
, Rz

−Sℓ
)([z, pℓ(R)]) by uncompromisingness

= f(Rz
Sℓ
, Rz

−Sℓ
)(]pℓ(R), z]).

Similarly,

f(R)([z, pℓ(R)[) = f(RSℓ−1
, Rz

−Sℓ−1
)([z, pℓ(R)[) by uncompromisingness

= 1− f(RSℓ−1
, Rz

−Sℓ−1
)([pℓ(R), z])

= 1− f(Rz
Sℓ−1

, Rz
−Sℓ−1

)([pℓ(R), z]) by uncompromisingness

= f(Rz
Sℓ−1

, Rz
−Sℓ−1

)([z, pℓ(R)[).

Thus, we have

f(R)({pℓ(R)}) = 1− f(R)(]pℓ(R), z])− f(R)([z, pℓ(R)[)

= 1− f(Rz
Sℓ
, Rz

−Sℓ
)(]pℓ(R), z])− f(Rz

Sℓ−1
, Rz

−Sℓ−1
)([z, pℓ(R)[)

= f(Rz
Sℓ
, Rz

−Sℓ
)([z, pℓ(R)])− f(Rz

Sℓ−1
, Rz

−Sℓ−1
)([z, pℓ(R)[)

≡ DSℓ
([z, pℓ(R)])−DSℓ−1

([z, pℓ(R)[).

�
5.3. Proof of Theorem 2.

Next, we prove Theorem 2. The proof structure is similar to that of Berga and
Serizawa (2000), and we borrow some of their techniques. However, the class of
probabilistic rules is much larger than that of deterministic rules, and the notion
of sd-strategy-proofness is different from strategy-proofness for deterministic rules.

38Recall that the distribution of gmD is equal to the distribution D∅ on the interval [z, p1(R)[,
DN on the interval ]pn̄(R), z], and for each ℓ ∈ {1, . . . , n̄−1}, DSℓ

on the interval ]pℓ(R), pℓ+1(R)[.
Further, for each ℓ ∈ {1, . . . , n̄}, the probability assigned to the ℓ-th peak, gmD(R)({pℓ(R)}), is
equal to DSℓ

([z, pℓ(R)])−DSℓ−1
([z, pℓ(R)[).
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Furthermore, in the proof of Theorem 2, we use our characterization result of sd-
strategy-proof and onto rules on a minimally rich domain (Theorem 1). Thus, we
cannot directly apply their proofs.

Lemma 3 (Berga and Serizawa, 2000, Lemma 3). Let g be a continuous real-
valued function defined on Z such that for some x, y, z ∈ Z, x < y < z, g(x) > g(y)
and g(z) > g(y). Then,
(a) there exists a triple a, b, r ∈ Z, and for any ε > 0, there exists c such that
c ∈ ]r, r + ε[ which satisfy the following four conditions: (i) x ≤ a < b < r < c ≤ z,
(ii) g(a) = g(r), (iii) if x′ ∈ ]a, r[ , g(a) > g(x′), and (iv) if x′ ∈ [a, c[ , g(c) > g(x′),
and
(b) there exists a triple r′, b′, c′ ∈ Z, and for any ε > 0, there exists a′ such that
a′ ∈ ]r′ − ε, r′[ which satisfy the following four conditions: (i) x ≤ a′ < r′ < b′ <
c′ ≤ z, (ii) g(r′) = g(c′), (iii) if x′ ∈ ]r′, c′[ , g(c′) > g(x′), and (iv) if x′ ∈ ]a′, c′],
g(a′) > g(x′).

Let R ∈ RMR. Let R ⊂ P be a domain that includes R.

Lemma 4. Let f be a rule on RN satisfying sd-strategy-proofness, ontoness, and
the no-vetoer condition. Let z, z′ ∈ Z with z ≤ z′, i ∈ N , R0

i ∈ R, and R−i ∈
RN\{i} be such that for each j ∈ N \ {i}, either p(Rj) = z or p(Rj) = z′. Then,
f(R0

i , R−i)([z, z
′]) = 1.

Proof of Lemma 4. By contradiction, suppose that f(R0
i , R−i)([z, z

′]) < 1. With-
out loss of generality, assume that f(R0

i , R−i)([z, z[) > 0. Let Rz
i ∈ R be such that

p(Rz
i ) ≡ z. Then,

f(Rz
i , R−i)([z, z[) = f(Rz

i , R−i)(SU(Rz
i , z))

≥ f(R0
i , R−i)(SU(Rz

i , z)) by sd-SP and Fact 2

= f(R0
i , R−i)([z, z[)

> 0.

For each j ∈ N \ {i}, let Rz
j ∈ R be such that p(Rz

j ) ≡ z. By Proposition 1, any sd-

strategy-proof and onto probabilistic rule f defined on RN is uncompromising, and
so, f(Rz

i , R
z
−i)([z, z[) = f(Rz

i , R−i)([z, z[) > 0. Thus, f(Rz
i , R

z
−i)({z}) ̸= 1, which

contradicts the no-vetoer condition. �
Lemma 5. Let f be an sd-strategy-proof rule on RN . Let a, b ∈ Z with a ̸= b and
X ≡ [a, b[, [a, b], ]b, a], or [b, a]. Let Ra

0 ∈ R be such that p(Ra
0) = a. Let N̄ ⊂ N ,

R0
N̄
∈ RN̄ , and Ra

N̄
∈ RN̄ be such that for each i ∈ N̄ , Ra

i = Ra
0. Let R−N̄ ∈ RN\N̄ .

Assume that f(R0
N̄
, R−N̄)(X) > 0. Then,

(a) if X = [a, b[ or ]b, a], then f(Ra
N̄
, R−N̄)(SU(Ra

0, b)) > 0, and
(b) if X = [a, b] or [b, a], then f(Ra

N̄
, R−N̄)(U(Ra

0, b)) > 0.

Proof of Lemma 5. We prove (a) of Lemma 5. Let X ≡ [a, b[ . (The same argu-
ment applies to the other case.) Without loss of generality, let N̄ ≡ {1, 2, . . . , |N̄ |}.
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Note that [a, b[ ⊂ SU(Ra
0, b). Then,

f(Ra
1, R

0
N̄\{1}, R−N̄)(SU(Ra

1, b)) ≥ f(R0
N̄ , R−N̄)(SU(Ra

1, b)) by sd-SP and Fact 2

≥ f(R0
N̄ , R−N̄)([a, b[) by [a, b[ ⊂ SU(Ra

0, b)

> 0.

Since Ra
1 = Ra

0 = Ra
2,

f(Ra
1,2, R

0
N̄\{1,2}, R−N̄)(SU(Ra

2, b))

≥ f(Ra
1, R

0
N̄\{1}, R−N̄)(SU(Ra

2, b)) by sd-SP and Fact 2

= f(Ra
1, R

0
N̄\{1}, R−N̄)(SU(Ra

1, b)) by Ra
1 = Ra

2

> 0.

Repeating this argument for agents j = 3, . . . , |N̄ |, f(Ra
N̄
, R−N̄)(SU(Ra

0, b)) > 0.
By replacing the strict upper contour set SU(Ra

0, b) by the upper contour set
U(Ra

0, b) in the proof of (a), we can also prove (b) of Lemma 5. �
Proof of Theorem 2. First, we show condition (i) in the definition of maximal
domain.39 For each R ∈ (Rvex)N and each i ∈ N , define p̂(Ri) ≡ min{x : x ∈
p(Ri)}. Let D ≡ (DS)S∈2N be a collection of probability distributions such that for
each S1 ∈ 2N with |S1| ≤ 1, DS1({z}) = 1, and for each Sn−1 ∈ 2N with |Sn−1| ≥
n − 1, DSn−1({z}) = 1, and for each S, T ∈ 2N , and each x ∈ Z, DS∪T ([z, x]) −
DS([z, x[) ≥ 0. For each R ∈ (Rvex)N , define f(R) ≡ gmD((p̂(Ri))i∈N) . Then, the
rule f satisfies sd-strategy-proofness, ontoness, and the no-vetoer condition.

Next, we show condition (ii) in the definition of maximal domain. Let R ⊂ P be
such that R ⊂ R. Assume that there is a rule f on R satisfying the three axioms
in Theorem 2. Let f |R be the restriction of f to RN . Then, by Theorem 1, there is
D ∈ ∆ such that for each R ∈ RN , f |R(R) = gmD(p(R)). We show that R ⊆ Rvex.
By contradiction, suppose that there is a non-convex preference R0 ∈ R \ Rvex.
Then, by non-convexity of R0, there is a triple x, y, z ∈ Z such that x < y < z and
x P 0 y and z P 0 y.

We introduce some notations. Let Z(R0) be the set of triples (a, b, r) ∈ Z3 such
that a I0 r, a P 0 b, z0 ≡ min{a, r} < b < max{a, r} ≡ z0, and for each x′ ∈ ]z0, z0[,
a P 0 x′.

Let (a, r) ∈ Z2 with a ̸= r. Define R(a, r) ≡ {R̄ ∈ R : r P̄ a, and min{a, r} <
p(R̄) < max{a, r}}. Note that, by condition (iii-a) of the minimally rich domain in
Definition 1, for each pair (a′, r′) ∈ Z2 with a′ ̸= r′, R(a′, r′) ̸= ∅.

Let R̄ ∈ R(a, r). Let E(R̄, a) ≡ {e ∈ Z : e Ī a, and e ̸= a}. Let e(R̄, a) ∈ Z
be such that (i) if E(R̄, a) ̸= ∅, then e(R̄, a) ∈ E(R̄, a),40 (ii) if E(R̄, a) = ∅ and
a < p(R̄), then e(R̄, a) = z, and (iii) if E(R̄, a) = ∅ and p(R̄) < a, then e(R̄, a) = z.

Let C(R0, a) ≡ {c ∈ Z : for each x̂ ∈ [min{a, c},max{a, c}] with x̂ ̸= c, c P 0

x̂}, and C(R0, (a, r), R̄) ≡ {c ∈ Z : c ∈ C(R0, a) and min{r, e(R̄, a)} < c <
max{r, e(R̄, a)}}.

39Since any deterministic rule is included in the class of probabilistic rules as a special case,
condition (i) also follows from the result of Berga and Serizawa (2000).

40Note that if E(R̄, a) ̸= ∅, then E(R̄, a) is a singleton.
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Given x ∈ Z, we denote by R(x) ∈ R the preference relation whose peak p(R(x))
is equal to the alternative x.

Claim 1. For each k ∈ {1, 2, . . . , n}, each (a, b, r) ∈ Z(R0), each R̄ ∈ R(a, r), each

c ∈ C(R0, (a, r), R̄), and each N ′ ⊆ N with |N ′| = k, f(R
(c)
N ′ , R

(a)
−N ′)({c}) = 0.

Proof of Claim 1. Let k ∈ {1, 2, . . . , n}, (a, b, r) ∈ Z(R0), R̄ ∈ R(a, r), c ∈
C(R0, (a, r), R̄), and N ′ ⊆ N with |N ′| = k. Without loss of generality, assume
that a < r < c. Let k = 1. Then, the desired conclusion follows from Lemma 4.
Assume that k ≥ 2. We prove Claim 1 by induction on k. Let k = 2. Without loss of
generality, let N ′ ≡ {1, 2}. We show that f(R

(c)
1,2, R

(a)
−1,2)({c}) = 0. By contradiction,

suppose that f(R
(c)
1,2, R

(a)
−1,2)({c}) > 0.

By Lemma 4, f(R
(a)
1 , R̄2, R

(a)
−1,2)({a}) = 1. Then,

f(R0
1, R̄2, R

(a)
−1,2)(U(R0

1, a)) ≥ f(R
(a)
1 , R̄2, R

(a)
−1,2)(U(R0

1, a)) by sd-SP

≥ f(R
(a)
1 , R̄2, R

(a)
−1,2)({a}) by {a} ⊂ U(R0

1, a)

= 1.

Also, by Lemma 4, f(R0
1, R̄2, R

(a)
−1,2)([a, p(R̄2)]) = 1. Since ]a, r[ * U(R0

1, a), we

have f(R0
1, R̄2, R

(a)
−1,2)({a}) = 1, and so, f(R0

1, R̄2, R
(a)
−1,2)(U(R̄2, c)) = 0.

However, since f(R
(c)
1,2, R

(a)
−1,2)({c}) > 0,

f(R0
1, R

(c)
2 , R

(a)
−1,2)(U(R0

1, c)) ≥ f(R
(c)
1 , R

(c)
2 , R

(a)
−1,2)(U(R0

1, c)) by sd-SP

≥ f(R
(c)
1 , R

(c)
2 , R

(a)
−1,2)({c}) by {c} ⊂ U(R0

1, c)

> 0.

By Lemma 4, f(R0
1, R

(c)
2 , R

(a)
−1,2)([a, c]) = 1. Then, f(R0

1, R
(c)
2 , R

(a)
−1,2)({c}) > 0.

Thus, f(R0
1, R

(c)
2 , R

(a)
−1,2)(U(R̄2, c)) > 0 = f(R0

1, R̄2, R
(a)
−1,2)(U(R̄2, c)), which contra-

dicts sd-strategy-proofness. Thus, Claim 1 holds if k = 2.
Let k ≥ 3. As the induction hypothesis, we assume that

C: For each k′ ∈ {1, 2, . . . , k−1}, each (a′, b′, r′) ∈ Z(R0), each R̄′ ∈ R(a′, r′), each

c′ ∈ C(R0, (a′, r′), R̄′), and each N̂ ⊂ N with |N̂ | = k′, f(R
(c′)

N̂
, R

(a′)

−N̂
)({c′}) = 0.

We show that f(R
(c)
N ′ , R

(a)
−N ′)({c}) = 0. By contradiction, suppose that

f(R
(c)
N ′ , R

(a)
−N ′)({c}) > 0. (10)

Let j ∈ N ′. Without loss of generality, let j ≡ 1. We establish two steps to derive
a contradiction.

Step 1 of Claim 1. For each h ∈ {0, 1, . . . , k − 1}, and each Nh ⊆ N ′ \ {1} such

that |Nh| = h, f(R̄1, R
0
Nh

, R
(a)
−({1}∪Nh)

)({a}) = 1.

We prove Step 1 by induction on h. If h = 0, by Lemma 4, f(R̄1, R
(a)
−1)({a}) = 1.
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Next, let h ∈ {1, . . . , k− 1} and Nh ⊆ N ′ \ {1} be such that |Nh| = h. Without
loss of generality, let Nh ≡ {2, 3, . . . , h+1}. As the induction hypothesis, we assume
that

D: For each N̄ ⊂ N ′ \ {1} with |N̄ | = h− 1, f(R̄1, R
0
N̄
, R

(a)

−({1}∪N̄)
)({a}) = 1.

Let i ∈ Nh and N̄ ≡ Nh \ {i}. Without loss of generality, let i ≡ 2. Let R̂−Nh
≡

(R̄1, R
(a)

−({1,2}∪N̄)
). By contradiction, suppose that f(R0

2, R
0
N̄
, R̂−Nh

)({a}) < 1. There

are three cases.

Case 1. f(R0
2, R

0
N̄
, R̂−Nh

)(]a, r[) > 0.

By induction hypothesis (D), f(R
(a)
2 , R0

N̄
, R̂−Nh

)({a}) = 1. Then,

f(R0
2, R

0
N̄ , R̂−Nh

)(U(R0
2, a)) ≥ f(R

(a)
2 , R0

N̄ , R̂−Nh
)(U(R0

2, a)) by sd-SP

= 1 by {a} ⊂ U(R0
2, a).

Thus, f(R0
2, R

0
N̄
, R̂−Nh

)(]a, r[) = 0, which is a contradiction.

Case 2. f(R0
2, R

0
N̄
, R̂−Nh

)([r, z]) > 0.

By Lemma 3,41 there is (a′, b′, r′) ∈ Z(R0), and for each ε > 0, there is c′ ∈
]r′, r′ + ε[ such that a ≤ a′ < b′ < r′ < c′ ≤ r, and for each x′ ∈ [a′, c′[, c′ P 0 x′. Let
R̄′ ∈ R(a′, r′) and c′ ∈ C(R0, (a′, r′), R̄′) be such that c′ ≤ r. Then, by induction

hypothesis (C), f(R
(c′)
Nh

, R
(a′)
−Nh

)({c′}) = 0.

Since f(R0
2, R

0
N̄
, R̂−Nh

)([r, z]) > 0, by Lemma 5, f(R
(z)
Nh

, R̂−Nh
)(U(R(z), r)) > 0.

Thus, by [r, z] = U(R(z), r), f(R
(z)
Nh

, R̂−Nh
)([r, z]) > 0. Since f |R is uncompromising,

by a ≤ a′ < r and p(R̄1) < r, we have

f(R
(z)
Nh

, R
(a′)
−Nh

)([r, z]) = f(R
(z)
Nh

, R̂−Nh
)([r, z]) > 0.

By [r, z] ⊆ [c′, z], f(R
(z)
Nh

, R
(a′)
−Nh

)([c′, z]) > 0.
However, since f |R = gmD,

f(R
(z)
Nh

, R
(a′)
−Nh

)([c′, z]) = D−Nh
([c′, z])

= 1−D−Nh
([z, c′[)

= DN([z, c
′])−D−Nh

([z, c′[) by DN({z}) = 1

= f(R
(c′)
Nh

, R
(a′)
−Nh

)({c′})
= 0,

which is a contradiction.

Case 3. f(R0
2, R

0
N̄
, R̂−Nh

)([z, a[) > 0.

By Lemma 3, there is (a′, b′, r′) ∈ Z(R0), and for each ε > 0, there is c′ ∈
]r′ − ε, r′[ such that a ≤ c′ < r′ < b′ < a′ ≤ r, and for each x′ ∈ ]c′, a′], c′ P 0 x′. Let

41Note that, since each preference relation R0 in P is continuous, there is a continuous function
g on Z that represents R0.
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R̄′ ∈ R(a′, r′) and c′ ∈ C(R0, (a′, r′), R̄′) be such that a ≤ c′. Then, by induction

hypothesis (C), f(R
(c′)
Nh

, R
(a′)
−Nh

)({c′}) = 0.

Since f(R0
2, R

0
N̄
, R̂−Nh

)([z, a[) > 0, by Lemma 5, f(R
(z)
Nh

, R̂−Nh
)(SU(R(z), a)) > 0.

By [z, a[ = SU(R(z), a), f(R
(z)
Nh

, R̂−Nh
)([z, a[) > 0. Since f |R is uncompromising, by

a < p(R̄1) and a < a′, we have

f(R
(z)
Nh

, R
(a′)
−Nh

)([z, a[) = f(R
(z)
Nh

, R̂−Nh
)([z, a[) > 0.

However, since f |R = gmD and a ≤ c′, we have

f(R
(z)
Nh

, R
(a′)
−Nh

)([z, a[) = DNh
([z, a[)

≤ DNh
([z, c′])

= DNh
([z, c′])−D∅([z, c

′[) by D∅({z}) = 1

= f(R
(c′)
Nh

, R
(a′)
−Nh

)({c′})
= 0,

which is a contradiction.

Since we derive a contradiction for each of the above three cases, we conclude
that f(R0

2, R
0
N̄
, R̂−Nh

)({a}) = 1. Thus, Step 1 of Claim 1 holds. �
Step 2 of Claim 1. For each h ∈ {0, 1, . . . , k − 1}, and each Nh ⊆ N ′ \ {1} such

that |Nh| = h, f(R
(c)
1 , R0

Nh
, R

(c)
N ′\({1}∪Nh)

, R
(a)
−N ′)({c}) > 0.

We show Step 2 by induction on h. If h = 0, the desired conclusion follows from
the inequality (10).

Next, let h ∈ {1, . . . , k− 1} and Nh ⊆ N ′ \ {1} be such that |Nh| = h. Without
loss of generality, let Nh ≡ {2, 3, . . . , h+1}. As the induction hypothesis, we assume
that

E: For each N̄ ⊂ N ′\{1} with |N̄ | = h−1, f(R
(c)
1 , R0

N̄
, R

(c)

N ′\({1}∪N̄)
, R

(a)
−N ′)({c}) > 0.

Let i ∈ Nh and N̄ ≡ Nh \ {i}. Without loss of generality, let i ≡ 2. Let

R̃−Nh
≡ (R

(c)
1 , R

(c)

N ′\({1,2}∪N̄)
, R

(a)
−N ′). We show that f(R0

2, R
0
N̄
, R̃−Nh

)({c}) > 0. First,

by induction hypothesis (E), f(R
(c)
2 , R0

N̄
, R̃−Nh

)({c}) > 0. Then,

f(R0
2, R

0
N̄ , R̃−Nh

)(U(R0
2, c)) ≥ f(R

(c)
2 , R0

N̄ , R̃−Nh
)(U(R0

2, c)) by sd-SP

> 0 by {c} ⊂ U(R0
2, c).

Thus, f(R0
2, R

0
N̄
, R̃−Nh

)([z, a[ ∪ [c, z]) > 0. By contradiction, suppose that

f(R0
2, R

0
N̄
, R̃−Nh

)({c}) = 0. There are two cases.

Case 1. f(R0
2, R

0
N̄
, R̃−Nh

)(]c, z]) > 0.

By Lemma 5, f(R
(z)
Nh

, R̃−Nh
)(SU(R(z), c)) > 0. Thus, f(R

(z)
Nh

, R̃−Nh
)(]c, z]) > 0.
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However, by induction hypothesis (C), f(R
(c)
Nh

, R
(a)
−Nh

)({c}) = 0. Since f |R =
gmD and Nh = {2} ∪ N̄ ,

f(R
(z)
Nh

, R̃−Nh
)(]c, z]) = D−Nh

(]c, z])

≤ D−Nh
([c, z])

= 1−D−Nh
([z, c[)

= DN([z, c])−D−Nh
([z, c[) by DN({z}) = 1

= f(R
(c)
Nh

, R
(a)
−Nh

)({c})
= 0,

which is a contradiction.

Case 2. f(R0
2, R

0
N̄
, R̃−Nh

)([z, a[) > 0.

By Lemma 3, there is (a′, b′, r′) ∈ Z(R0), and for each ε > 0, there is c′ ∈
]r′ − ε, r′[ such that a ≤ c′ < r′ < b′ < a′ ≤ r, and for each x′ ∈ ]c′, a′], c′ P 0 x′. Let
R̄′ ∈ R(a′, r′), and c′ ∈ C(R0, (a′, r′), R̄′) be such that a ≤ c′. Then, by induction

hypothesis (C), f(R
(c′)
Nh

, R
(a′)
−Nh

)({c′}) = 0.

Since f(R0
2, R

0
N̄
, R̃−Nh

)([z, a[) > 0, by Lemma 5, f(R
(z)
Nh

, R̃−Nh
)(SU(R(z), a)) > 0.

Thus, f(R
(z)
Nh

, R̃−Nh
)([z, a[) > 0. Since f |R is uncompromising, by a < a′ < c,

f(R
(z)
Nh

, R
(a′)
−Nh

)([z, a[) = f(R
(z)
Nh

, R̃−Nh
)([z, a[) > 0.

However, since f |R = gmD, a ≤ c′, and Nh = {2} ∪ N̄ ,

f(R
(z)
Nh

, R
(a′)
−Nh

)([z, a[) = DNh
([z, a[)

≤ DNh
([z, c′])

= DNh
([z, c′])−D∅([z, c

′[) by D∅({z}) = 1

= f(R
(c′)
Nh

, R
(a′)
−Nh

)({c′})
= 0,

which is a contradiction.

Since we derive a contradiction for each of the above two cases, we conclude that
f(R0

2, R
0
N̄
, R̃−Nh

)({c}) > 0, and so, Step 2 of Claim 1 holds. �
Next, we complete the proof of Claim 1. By Step 1 of Claim 1 for Nh ≡ N ′\{1},

f(R̄1, R
0
N ′\{1}, R

(a)
−N ′)({a}) = 1. Since c P̄1 a, f(R̄1, R

0
N ′\{1}, R

(a)
−N ′)(U(R̄1, c)) = 0.

By Step 2 of Claim 1 for Nh ≡ N ′ \ {1}, f(R(c)
1 , R0

N ′\{1}, R
(a)
−N ′)({c}) > 0. Thus,

f(R
(c)
1 , R0

N ′\{1}, R
(a)
−N ′)(U(R̄1, c)) > 0 = f(R̄1, R

0
N ′\{1}, R

(a)
−N ′))(U(R̄1, c)),

which contradicts sd-strategy-proofness. �
Finally, we complete the proof of Theorem 2. By Lemma 3, there is (a, b, r) ∈

Z(R0), and for each ε > 0, there is c ∈ ]r, r + ε[ such that x ≤ a < b < r < c ≤ z,
and for each x′ ∈ [a, c[, c P 0 x′. Let Rd ∈ R(a, r) and c ∈ C(R0, (a, r), Rd). Then,

by Claim 1 for N ′ ≡ N , f(R
(c)
N )({c}) = 0. However, since f |R = gmD and gmD is

unanimous, f(R
(c)
N )({c}) = 1, which is a contradiction. �
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