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Is it ever safe to vote strategically?
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Abstract

There are many situations in which mis-coordinated strategic voting can
leave strategic voters worse off than they would have been had they not tried
to strategize. We analyse the simplest of such scenarios, in which the set of
strategic voters all have the same sincere preferences and all cast the same
strategic vote, while all other voters vote sincerely. Most mis-coordinations
in this framework can be classified as instances of either strategic overshoot-
ing (too many voted strategically) or strategic undershooting (too few). If
mis-coordination can result in strategic voters ending up worse off than they
would have been had they all just voted sincerely, we call the relevant strate-
gic vote unsafe. We show that under every onto and non-dictatorial social
choice rule there exist circumstances where a voter has an incentive to cast a
safe strategic vote. We extend the Gibbard-Satterthwaite Theorem by prov-
ing that every onto and non-dictatorial social choice rule can be individually
manipulated by a voter casting a safe strategic vote.
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1. Introduction

1.1. Overview

In this paper we consider strategic behaviour of voters when one candi-
date must be chosen from a set of candidates and voters’ preferences with re-
spect to those candidates are expressed as strict linear orders. The Gibbard-
Satterthwaite Theorem (GST)—arguably one of the most important the-
oretical results in this direction to date—states that under any onto and
non-dictatorial social choice rule there exists a situation where a voter can
do better by casting a strategic vote rather than the sincere one, provided
everyone else votes sincerely. In short, every onto and non-dictatorial social
choice rule is individually manipulable. If only one voter can manipulate the
election, and she is rational, then she will do this unless having some moral
objections towards manipulation. However, it may happen that two voters
with differing preferences each can manipulate the same election. In this
case the result is much less predictable. We illustrate this by the following
example

Example 1. Suppose four people are to choose between three alternatives.
Let the profile of sincere preferences be

1 2 3 4
a b c c
b a a b
c c b a

and the rule used be Plurality with breaking ties in accord with the order
a > b > c. If everybody votes sincerely, then c is elected. Voters 1 and 2
are Gibbard-Satterthwaite manipulators. Voters 3 and 4 are expected to vote
sincerely. Voter 1 can make b to win by voting b > a > c and voter 2 can
make a to win by voting a > b > c. However, if they both try to manipulate,
c will remain the winner. Each of them would prefer that the other one
manipulates.

In general, the situation when voters of different types interact strate-
gically is too complex to analyse. Going from the Gibbard-Satterthwaite
framework, when only one voter can be strategic to the framework where
all voters may be strategic is too big a jump. In this paper we analyse an
intermediate framework, namely the case when only voters of one particular
type may be strategic. Let us see why this framework is interesting.
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If voting is anonymous and one voter can individually manipulate, so can
every other voter present with the same preferences. And in a large profile
there will be many such voters. But it is not in general true that if multi-
ple like-minded voters simultaneously attempt exactly the same individual
manipulation, the outcome will necessarily be (from their perspective) a suc-
cess. To manipulate successfully the strategically-inclined voter may need
to coordinate (intentionally or accidentally) with other voters with whom
she shares the same preferences and, hence, the same incentives. Here is an
example when such coordination is needed.

Example 2. Suppose four people are to choose between three alternatives.
Let the profile of sincere preferences be

1 2 3 4
a a b c
b b c b
c c a a

and the rule used be Borda with breaking ties in accord with the order a > b >
c. If everybody votes sincerely, then b is elected. Voters 1 and 2 are Gibbard-
Satterthwaite manipulators. Voter 1 can make a to win by voting a > c > b
and voter 2 can do the same. However, if they both try to manipulate, their
worst alternative c will become the winner.

We note that in the second example it is easier for the two would-be
manipulators to coordinate since they have the same type, i.e., have identical
sincere preferences, and hence no conflict of interest. The conclusion that we
make from consideration of these two examples is: when a group of voters
involves voters of different types then, for them, manipulation is not purely
coordination problem, negotiation may be also required. This is why in this
paper we will consider only homogeneous groups of voters, that is voters with
identical preferences.

As in the Gibbard-Satterthwaite farmework we assume that voters have
complete information about voters’ sincere preferences and beliefs about their
voting intentions. To extend the Gibbard-Satterthwaite theorem we must
consider the case when several voters of the same type are all pivotal and
can change the result to their advantage by casting the same strategic vote1

1This will be for example the case if the voting rule is anonymous.
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believing that all voters of other types will vote sincerely. In such situation
any of those would-be manipulators may find it unsafe to act on such incen-
tive. Indeed, it may happen that if too many or too few of them act on the
same incentive the result may be worse than the outcome when everyone is
sincere. This is exactly the situation in Example 2. An alternative to this
may be a situation when one or more of those would-be manipulators will
not be worse of no matter how other voters of her type will vote; in such
case we say that she can cast a safe strategic vote. Of course, the term ‘safe’
refers only to situations when voters of all other types vote sincerely. The
question that arises is whether or not under any non dictatorial voting rule
there exist situations when a voter can manipulate and do it safely. In this
paper we will answer this question in the affirmative.

The main result of this paper, just formulated, is about pivotal voters,
however, most of the paper we will work with voters who are not pivotal. Our
starting point will be the concept of an incentive to vote strategically. We
will say that a voter has an incentive to vote strategically if she can become
part of a group of voters of her type who all would benefit if every group
member casts the same strategic vote. The rational for this definition is that
strategic voters despite not being pivotal vote strategically because they hope
or expect that they will be joined by the ‘right’ set of like-minded voters also
casting strategic votes, and a more favourable outcome will be brought about
by their collective effort. For example, at the 2000 US Presidential election,
a voter who preferred Nader to Gore and Gore to Bush, and felt assured that
Nader would not win, would have an incentive to strategically vote Gore.
This incentive would have been shared by every voter of this particular type
but not felt by any voter of another type.

As in the case of pivotal voters, we can distinguish between safe and un-
safe strategic votes. In some situations, all like-minded voters in an election
all share an incentive to vote strategically but mis-coordination can occur:
if the group splits up into those who act on the incentive and those who do
not in the ‘wrong’ way, the social choice outcome can, from their perspective,
deteriorate rather than improve. In such cases we say the strategic vote in
question is unsafe. The most recognisable unsafe strategic votes are those
that can lead to strategic overshooting or strategic undershooting. Strategic
overshooting occurs when ‘too many’ like-minded voters simultaneously act
on a common incentive to vote strategically, and strategic undershooting oc-
curs when ‘too few’ do. When voting is not anonymous, a strategic vote can
be unsafe even though neither over- nor undershooting are possible. In the
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example of the 2000 US Presidential election the strategic vote by the Nader
voters for Gore would have been safe. Despite of this, the number of voters
having this incentive and acting on it was insufficient to bring about Gore’s
presidency2.

It is worthwhile to note that in this framework a sincere vote can be
strategic. Indeed a strategically inclined voter may decide that there is al-
ready sufficiently many voters who will cast a strategic vote so she may end
up submitting her sincere vote after weighing all pros and cons.

Consideration of the difference between a safe and an unsafe strategic
vote reveals an additional reason why a voter might not act on a known to
her incentive to vote strategically: without the ability to coordinate with
their like-minded fellows, the strategic voter may face the risk of making
matters worse rather than better. This adds to the list of impediments to
strategic voting identified elsewhere, which includes (i) the inability to ac-
quire the necessary information (Chopra et al., 2004), (ii) the inability to
process the large amount of information one has (Bartholdi III et al., 1989;
Conitzer et al., 2007), (iii) the possibility of provoking an unfavourable re-
sponse (Pattanaik, 1976a,b; Barberà, 1980), and (iv) lack of familiarity with
the electoral context (Crisp et al., 2012).

The first main result of this paper will be Theorem 2 that states that un-
der any onto and non-dictatorial social choice rule there can arise a scenario
where a voter has an incentive to cast a safe strategic vote. Our second main
result—which extends the Gibbard-Satterthwaite theorem—states that un-
der any onto and non-dictatorial social choice rule there will exist a situation
where a certain pivotal voter can manipulate safely. This can be deduced
from Theorem 2 rather straightforwardly.

This paper is organised as follows. In Section 1.2 we discuss the literature
related to this article. Section 2 gives our formal definitions and states our
results. Our Section 3 will be entirely devoted to examples of safe and unsafe
strategic votes and their graphical illustration. The main theorems are proven
in Sections 4 - 6. Section 7 concludes with the discission of the results
obtained and formulates some open questions.

This paper is a refinement of our preprints (Slinko and White, 2008a,b).

2In the crucial state Florida Bush got only 537 more votes than Gore while 97,488
voters voted Nader FEC (2001).

5



1.2. Related literature
There are three strands in the literature related to this work: coalitional

manipulability of single-winner social choice rules, manipulability of multi-
winner social choice rules and informational aspects of manipulability.

An election is called coalitionally manipulable Murakami (1968); Pattanaik
(1973); Chamberlin (1985) if a group of voters may change their votes in such
a way that the result of the election becomes more desirable for them. It is
also assumed that the voters outside the coalition are not strategic and vote
sincerely.

The central concept for this strand of literature is the concept of the
average size of minimal manipulating coalition Chamberlin (1985). This pa-
rameter is used to compare the ‘quality’ of voting rules Chamberlin (1985);
Pritchard and Slinko (2006); Pritchard and Wilson (2009). It has been shown
that, if voters are assumed to be independent and the size of the coalition
grows slower than

√
n, where n is the number of voters, then the probability

that a random election is manipulable by the coalition of this size goes to
zero as the number of voters goes to infinity, whereas if the number of ma-
nipulators grows faster than

√
n, then the probability that a random profile

is manipulable goes to one (see, e.g., Slinko (2004); Xia and Conitzer (2008);
Mossel et al. (2012)). If, on the other hand, the voters are not independent,
say under the condition that all voting situations are equiprobable, then the
average size of the minimal manipulating coalition may have order n (Slinko
(2006)).

The early literature on threats and counter-threats should be mentioned
here although it is not on coalitional manipulability but rather on coali-
tional contr-manipulability. (Pattanaik, 1976a,b; Barberà, 1980) assessed
how coalitions (which could potentially be made up of any number of dif-
ferent voter-types) could respond to threats by individuals to manipulate; it
may be interesting to look at situations in which one voter-type threatens to
manipulate and another type then issues a counter-threat.

The main drawback of the concepts of coalitional manipulability and
contr-manipulability is that they assume that coalitions can somehow be
formed without specifying the mechanism. Those voters must find each other,
agree to form a coalition, calculate possible manipulations, negotiate which
one to implement. Negotiation may however be difficult, say in our Example
coalition consisting of voter 1 and voter 2 can manipulate the election, how-
ever, there is no obvious way for them to decide which course of action to
take. This model, however, makes sense when there is an external actor, say
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a briber, who directs the voters she bribed. In contrast our voters assumed
to be independent and have to take their own decisions which makes them
players in a voting manipulation game. We also assume that only voters with
identical preferences may try to a certain extent to coordinate their actions.

The main idea of overshooting came to authors observing the behaviour of
voters during 2005 general election in New Zealand conducted under the sys-
tem of proportional representation Slinko and White (2010). There we gave
examples of how safe and unsafe strategic votes could arise in that frame-
work. To the best of our knowledge, the distinction between safe and unsafe
strategic votes, and the concepts of strategic over/undershooting, were first
introduced (in the context of strategic voting under proportional representa-
tion) in this paper. Parikh and Pacuit (2005) also used the expression ‘safe
vote’, but to mean a vote that is strategically superior to an abstention.

Batto (2008) and Ely and Baliga (2012) have described multi-winner
elections in which strategic desertion of leading candidates appears to have
gone too far, and strategic voters have overshot.

There is an important relationship between the quality and quantity of
information a voter has, and can receive and send via their communication
networks, and a voter’s ability to identify and respond to incentives to vote
strategically. Chopra et al. (2004) made clear the importance of the rela-
tionship. They stressed that the Gibbard-Satterthwaite theorem becomes
‘effective’ only when voters are able to acquire a certain amount of informa-
tion. Although Chopra et al. (2004) made this point particularly thoroughly,
the basic idea goes back much further - Dummett and Farquharson (1961),
for instance, wrote that “[t]he only hypothesis which would make the assump-
tion of uniformly sincere voting plausible would be the absurdly restrictive
one that no voter had any knowledge, before or during the voting, of the
preference scales of others”.

In response to our preprints, certain follow-on research has already be-
gun. On the issue of complexity, Hazon and Elkind (2010) and Ianovski et al.
(2011) presented polynomial time algorithms for finding a safe strategic vote
under particular social choice rules. And Wilson and Reyhani (2010) looked
into the asymptotic probability of a safe manipulation existing for a given
scoring rule.
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2. The model and the results

We consider the situation where a finite set of voters [n] = {1, 2, . . . , n} are
to choose a single alternative from a finite set of alternatives A. Throughout
the paper it will be assumed that |A| ≥ 3 and we will denote the alternatives
A,B,C, . . .. Voters have preferences over alternatives represented by strict
linear orders on A. Voters whose preferences are identical will be referred
to as being of the same type. When |A| = 3, a voter who prefers X to Y
and Y to Z, where {X, Y, Z} = {A,B,C}, will be referred to as an XYZ
type; analogous language will be used when |A| > 3. A profile is a sequence
of linear orders specifying one preference order for each voter. A profile
will often be represented as an n-tuple R = (R1, . . . , Rn); further we will
introduce an alternative notation.

Given a set of alternatives A and a set of voters [n], a social choice rule F
is a mapping from the set of all possible profiles to A. Voter i is the dictator
of F if they would not desire to change the value of F at any profile or,
which is the same, F always selects the most preferred alternative of voter
i. A social choice rule F is anonymous if it does not pay attention to voters’
labels, i.e., if π is a permutationn of (1, 2, . . . , n), then

F (R1, . . . , Rn) = F (Rπ(1), . . . , Rπ(n)).

Let R be a profile, V ⊆ [n] a set of voters of the same type, and L a
preference order over A other than the one representing the preferences of
the voters in V . Then R−V (L) shall denote the profile obtained from R by
replacing, for every i ∈ V , linear order Ri with L, ceteris paribus. R−V (L)
can be read informally as “the profile R, except that the preferences of all
the voters in V have been switched to L”. If X, Y ∈ A and V ⊆ [n] then
X ≻V Y (X �V Y ) will denote that every voter in V ranks X above (no
lower than) Y .

We are now ready to formulate

Theorem 1 (Gibbard-Satterthwaite). Suppose an onto, nondictatorial so-
cial choice rule F is employed to choose one of at least three alternatives.
Then there exists a profile R, a linear order L, and a voter i, such that
F (R−{i}(L)) ≻{i} F (R).

Proofs can be found in the original papers Gibbard (1973) and Satterthwaite
(1975).
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For the next four definitions we fix a set of voters [n], a set of alternatives
A, and a social choice rule F .

Definition 1 (An incentive to vote strategically). Let R be a profile, i be a
voter, and V be the set of all voters with preferences identical to those of i
at R. If there exists a linear order L 6= Ri and a subset V1 ⊆ V containing i
such that

F (R−V1
(L)) ≻V F (R)

then we will say that, at R, voter i has an incentive to vote strategically.

A voter with an incentive to vote strategically cannot necessarily change
the social choice by themselves. They may, however, hope that if they do
cast the strategic vote, they will be joined in that act by the ‘right’ set of
like-minded fellow voters. In some circumstances, if the ‘wrong’ set of like-
minded voters act on a shared incentive they can inadvertently make the
outcome worse rather than better (from their perspective, of course). In
such circumstances we call the strategic vote in question unsafe.

Definition 2 (Unsafe strategic vote). Suppose that at the profile R, voter i
has an incentive to strategically vote L 6= Ri. Define V ⊆ [n] to be the set of
all voters with preferences identical to those of i at R. The strategic vote L
is unsafe for voter i if there exists V2 ⊆ V such that i ∈ V2, all the voters in
V2 have an incentive to strategically vote L, but F (R) ≻V F (R−V2

(L)).

A strategic vote that is not unsafe will be referred to as safe. During our
examples and proofs we will refer to a particular kind of safe manipulation
as an escape. Let R be a profile, and suppose F maps R to (say) A. Let
L be one particular order that has A last, and let V be the entire set of all
voters who at R are of type L. If any voter in V has an incentive to vote
strategically then voters in V will be said to be able to escape at (or from)
R.

The most readily identifiable unsafe strategic votes arise when it is possi-
ble to get a result worse than the status quo when either ‘too many’ or ‘too
few’ voters of a particular type act on a shared incentive to vote strategically.

Definition 3 (Strategic overshooting). Let R be a profile, i a voter, and L
a linear order over A other than Ri. Define V to be the set of all voters
with preferences identical to those of i at R. If we can find two subsets
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V2 ( V1 of V , both containing i, such that every voter in V2 has an incentive
to strategically vote L but

F (R−V1
(L)) ≻V F (R) ≻V F (R−V2

(L)),

then we say that at R voter i can strategically overshoot by voting L.

Strategic overshooting occurs when too many voters act strategically. Strate-
gic undershooting occurs when too few do. More generally, strategic under-
shooting occurs when the inclusion relation between V1 and V2 is reversed.

Definition 4 (Strategic undershooting). Let R be a profile, i be a voter,
and L be a linear order over A other than Ri. Define V to be the set of all
voters with preferences identical to those of i at R. If we can find two subsets
V2 ( V1 of V , both containing i, such that every voter in V2 has an incentive
to strategically vote L but

F (R−V1
(L)) ≻V F (R) ≻V F (R−V2

(L)),

then at R voter i can strategically undershoot by voting L.

Under anonymous social choice rules, unsafe strategic votes arise when
and only when strategic voters face the prospect of over- or undershooting.
Under non-anonymous social choice rules it is not necessarily the case that
voters with an incentive to cast an unsafe strategic vote can strategically
over- or undershoot. Since such rules are exotic we omit this example.

The distinction between safe and unsafe strategic votes leads naturally to
the idea of a choice rule being safely manipulable.

Definition 5 (Safe manipulability). A social choice rule is safely manipulable
if, under it, a voter can have an incentive to cast a safe strategic vote.

The concepts we have formally defined enable us to broaden the Gibbard-
Satterthwaite framework in the direction sought. In Section 3 we demon-
strate that our concepts are merited precisely because the situations to which
they apply are not unusual. In the subsequent sections we will prove the fol-
lowing theorem.

Theorem 2. Every onto and non-dictatorial social choice rule facing at least
three alternatives is safely manipulable.
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The proof of Theorem 2 invokes the Gibbard-Satterthwaite Theorem, but
it is not a straightforward extension. This theorem implies our main result
which extends the Gibbard-Satterthwaite theorem.

Theorem 3. Suppose an onto, nondictatorial social choice rule F is em-
ployed to choose one of at least three alternatives. Then there exists a profile
R, a linear order L, and a voter i, such that F (R−{i}(L)) ≻{i} F (R), and L
is a safe strategic vote for i.

3. Geometry of overshooting. Further examples

In this section we aim to achieve the following. Firstly, we give a geomet-
ric interpretation of safe and unsafe manipulation (overshooting) for scoring
rules. Then we give an example of undershooting. It is a bit more trickier
to construct than examples of overshooting and we need at least four alter-
natives for this. Finally we will present a profile which is unsafely but not
safely manipulable.

Example 3 (The Borda rule; safe and unsafe manipulations). Suppose 94
voters are choosing one of A, B, or C. Let the table below give the distribution
of sincere preferences.

Preference order ABC ACB BAC BCA CAB CBA
Number of voters 17 15 18 16 14 14

If all voters are sincere then A will score 96, B 99, and C 87, and B would
win. If between four and eight ABC types vote ACB, ceteris paribus, A would
win. If 10 or more ABC types vote ACB, ceteris paribus, C would win. So
the profile of sincere preferences is prone to unsafe strategic voting. We can
express these outcomes using the terminology introduced in Definition 2. Let
R denote the profile of sincere preferences, V the set of 17 ABC types, and
let V1 ( V2 ⊆ V be such that 4 ≤ |V1| ≤ 8 and 10 ≤ |V2|. Then (compare
Definition 2) every voter in V2 has an incentive to strategically vote ACB,
and

F (R−V1
(ACB)) ≻V F (R) ≻V F (R−V2

(ACB)).

The profile of sincere preferences is also prone to safe strategic voting (by
voters of a different type): if 13 or more ACB voters vote CAB, ceteris
paribus, then C (rather than their least favorite B) will win.
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We will build on the ideas of Saari (1994) to illustrate this example ge-
ometrically. Firstly, we normalise the Borda scores of A,B,C so that the
sum of normalised scores is 1. Let scn(X) denote the normalised score of
alternative X . Consider the three-dimensional simplex S2 with vertices la-
beled A,B,C. A ballot outcome can be represented by the point x of S2 for
which x1 = scn(A), x2 = scn(B) and x3 = scn(C), and where x1, x2, and
x3 are the lengths of perpendiculars dropped from x onto BC, AC, and AB,
respectively (i.e., x1, x2, x3 are the barycentric coordinates of x):
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Figure 1: Scores as homogeneous barycentric coordinates

The points of S2 realisable as vectors of normalised Borda scores must lie
within the region shaded in Figure 2 (below). That shaded region is divided
into three pentagons. Whenever the vector of normalised scores falls into the
pentagon closest to the vertice labelled Y , alternative Y wins.
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Figure 2: Unsafe and safe manipulations
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We return to Example 3. The vector of scores arising from the profile of
sincere preferences is represented in Figure 2 by the point x. That point
lies in the pentagon in which B wins. If some ABC types vote ACB then
they move the outcome northwest, parallel to BC (the score of A remains
unchanged), and into the region where A wins. If too many ABC types
vote ACB, the outcome moves all the way into the region where C wins. If,
instead, all the ABC types report their sincere preferences while some ACB
types vote CAB then the outcome moves northeast from x, parallel to AC
(the score of B is unchanged), and, possibly, into the region where C is the
winning alternative.

To construct an example of strategic undershooting under a social choice
rule, we need to have at least four alternatives present.

Example 4 (The Borda rule; strategic undershooting). Suppose 41 voters
are using the Borda rule to select one of five alternatives. Let sincere prefer-
ences be distributed as follows.

Preference order ABCDE CEBAD EBCAD EDACB
Number of voters 10 15 14 2

When all voters state their sincere preferences, A scores 59, B 102, C 110, D
30, and E 109; C wins. If between two and six ABCDE types vote BADCE,
ceteris paribus, then E wins. If eight or more ABCDE types vote BADCE,
ceteris paribus, then B wins.

Example 5 (Anti-plurality/2-approval; a profile that is unsafely but not
safely manipulable). Let the distribution of sincere preferences over the three
alternatives on offer be as follows.

Preference order ABC ACB BAC BCA CAB CBA
Number of voters 8 4 7 5 4 5

If none of the 33 voters are strategic then A scores 23, B 25, and C 18, and
B wins. At the profile of sincere preferences, only voters of type ABC have
an incentive to vote strategically. If either 3 or 4 of them vote ACB, ceteris
paribus, then A will win. If 6 or more of them vote ACB, ceteris paribus, C
will win.
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4. Proof of Theorem 2: the road map and the building blocks

The proof of Theorem 2 is split over three sections, so a road map may be
helpful. Here in Section 4 we collect technical statements that will be used
frequently later on. In Section 5 we prove Theorem 2 for the case of three
alternatives. In Lemma 1 we deal first with the case of two voters, then the
general case will be dealt with in Lemma 3. Section 6 looks at the situation
when three or more alternatives are present. At this stage of the proof we
pay a special attention to completely agreed profiles, i.e., those profiles in
which all linear orders coincide. There, we first prove our theorem for the
case that at least two alternatives are missing from the set of alternatives
that can be elected at completely agreed profiles (Proposition 7). Two short
Propositions 8 and 9, prepair us for the final thrust in the proof by induction
dealing with two particular cases of Theorem 2. Then, in a series of six short
claims, we complete the proof of Theorem 2. Section 6 finishes with a proof
of Theorem 3.

We now need the following definition. Let F be a social choice rule, R
a profile, L a preference order over the alternatives, and V the entire set of
voters having some particular preference order at R, common for all of them
and different from L. Then a subset V1 ( V will be classified as L-inferior if

F (R−V (L)) ≻V F (R−V1
(L)).

In other words, V1 is L-inferior if voters from V will be strictly better off if
all of them switch to voting L rather than only voters from V1 do this.

Proposition 1. Let F be a social choice rule. Fix a profile R and a pref-
erence order L, both over the set of alternatives A. Suppose V is the entire
set of voters who at R have some preference order other than L. If V has an
L-inferior subset then F is safely manipulable.

Proof. Let V1 be a maximal element of the set of L-inferior subsets of V
partially ordered by inclusion. We claim that were R−V1

(L) the profile of
sincere preferences then it would be safely manipulable by the voters in V −
V1. At the profile R−V1

(L), the voters in V − V1 are the sole voters present
with their particular preferences. If ∅ 6= V2 ⊆ V − V1, then V1 ∪ V2 is not
L-inferior (as V1 was maximal with this property) and one has

F (R−V1
(L)−V2

(L)) = F (R−(V1∪V2)(L)) �V F (R−V (L)) ≻V F (R−V1
(L)).

This implies voters in V −V1, at R−V1
(L), have incentive to strategically vote

L and can do it safely.

14



Proposition 2. Let F be a social choice rule. Suppose that, at a profile R,
voter i has an incentive to strategically vote L 6= Ri. Let V be the entire set
of voters with preferences identical to voter i at R. If F (R−V (L)) �V F (R)
then F is safely manipulable.

Proof. If R is not safely manipulable, there exists a nonempty subset V1 (

V such that F (R) ≻V F (R−V1
(L)). We have F (R−V (L)) �V F (R) ≻V

F (R−V1
(L)). So V1 is an L-inferior subset of V , and by Proposition 1, F is

safely manipulable.

The following proposition will be of great help each time we need to show
some social choice rule is safely manipulable; it allows not to consider cases
of undershooting.

Proposition 3. Let F be a social choice rule. Suppose that at the profile R
voter i has an incentive to cast the strategic vote L and it is unsafe. Then
either F is safely manipulable or at some profile a voter can strategically
overshoot.

Proof. Let V = {j | Rj = Ri}. Let V1 ⊆ V be any subset such that i ∈ V1

and F (R−V1
(L)) ≻V F (R). Such subset exists since i has incentive to vote

strategically. Partially order the subsets of V1 by inclusion. Let us consider
the set of subsets U ⊂ V1 such that F (R) �V F (R−U(L)). Such set is
nonempty since the empty set belongs to it. Let V2 be a maximal subset in
this set. The subset V2, then must be a proper subset of V1. So we can find
j ∈ V1 − V2, and for this voter,

F ((R−V2
(L))−{j}(L)) = F (R−V2∪{j}(L)) ≻V F (R).

Now either voting L is safe for j at R−V2
(L) or it is unsafe; if the latter it

must be because, at R−V2
(L), voter j could strategically overshoot.

We will call a social choice rule F antagonistic if there exists a profile at
which every voter ranks a particular alternative X ∈ A last, yet the value of
F at that profile is precisely X .

Proposition 4. A non-constant antagonistic social choice rule F is safely
manipulable.

15



Proof. Let R be the profile at which A (without loss of generality) is last in
every order Ri but F (R) = A. The rule F is not constant, so let Q be a
profile such that F (Q) 6= A. Take R and for i = 1, 2, . . ., one by one change
Ri to Qi. Were it a profile of sincere preferences, the last profile encountered
for which F does not take the value A will clearly be safely manipulable.

The following construction, which reduces an arbitrary social choice rule
F to a two-voter rule, will be frequently used. Let V1 and V2 be two non-
empty non-intersecting subsets that partition the set of voters, i.e., V1∪V2 =
[n]. The value of the two-voter social choice rule FV1,V2

at the two-voter
profile (R1, R2) shall be the value of F when all voters in V1 report their
preferences to be R1 and all voters in V2 report their preferences to be R2.
We now have to aggregate voters for FV1,V2

. To distinguish them from those
in the original full set [n] they shall be denoted V1 and V2.

Proposition 5. Let F be a social choice rule. Let V1 and V2 form a non-
trivial partition of [n]. If FV1,V2

is safely manipulable then so is F .

Proof. If FV1,V2
is safely manipulable there exists a linear order L and a

two-voter profile R = (R1, R2) such that, either R1 6= R2 and

FV1,V2
(L,R2) ≻{V1} FV1,V2

(R1, R2), (1)

or R1 = R2 and

FV1,V2
(L,R2) �{V1} FV1,V2

(R1, R2), FV1,V2
(L, L) �{V1} FV1,V2

(R1, R2) (2)

with one of the two relations in (2) being strict. Thus, at the two-voter
profile R, voter V1 can safely strategically vote L. Let Q be the n-voter
profile for which Qv = R1 when v ∈ V1 and Qv = R2 when v ∈ V2. Without
loss of generality suppose 1 ∈ V1. At Q, voter 1 has an incentive to vote
strategically; with that incentive in mind, we can finish by appealing to
Proposition 2 using (1), when R1 6= R2, or (2), when R1 = R2.

A profile R is completely agreed if all voters have identical preferences
at R. When the social choice rule F is clearly fixed, C will denote the
set of values that F takes on completely agreed profiles. A social choice
rule is weakly unanimous if it selects every voter’s favorite alternative at all
completely agreed profiles (‘weakly’ because such a rule will not necessarily
select X when all voters report they rank X first).

16



5. Proof of Theorem 2: three alternatives

In this section we always assume that |A| = 3. We will find it convenient
to depict profiles over A as 6-tuples of sets: R = (X1, X2, X3, X4, X5, X6),
where the six sets in the sequence are the set of voters of types ABC, ACB,
BAC, BCA, CAB, and CBA, respectively.

Proposition 6. Let F be a social choice rule. If, at a profile R, ABC types
can strategically overshoot by voting BAC, BCA, or CBA, then F is safely
manipulable.

Proof. Let R be a profile and L ∈ {BAC,BCA,CBA} a linear order such
that, if V is the entire set of all voters with preferences ABC at R, firstly

F (R) = B, and F (R−V (L)) = C

and, secondly,
F (R−V1

(L)) = A

for some V1 ⊂ V . Then ABC types, at R, can overshoot by voting L. If
L = BAC then if R−V (L) were the profile of sincere preferences, BAC voters
could escape by voting ABC. If L equals BCA then if R−V1

(L) were the
profile of sincere preferences, BCA voters could escape by voting ABC. If L
equals CBA then, similarly, if R−V1

(L) were the profile of sincere preferences,
CBA voters could escape by voting ABC.

We now prove our theorem for the two-voter-three-alternative case.

Lemma 1. Let F be an onto and non-dictatorial social choice rule. If n = 2
then F is safely manipulable. If n ≥ 2 and V1 and V2 form a non-trivial
partition of [n] for which FV1,V2

is onto and non-dictatorial, then F is safely
manipulable.

Proof. By Proposition 5 the second statement follows from the first. We
now prove the first statement. By the Gibbard-Satterthwaite theorem, we
can suppose (without loss of generality) voter 1 can individually manipulate
a profile R with a vote of L 6= R1. If this manipulation is not safe then
R1 = R2 and at R both voters have an incentive to strategically vote L.
Assume (Proposition 3) that the lack of safety arises from the prospect of an
overshoot. Without any loss of generality, let R1 = R2 = ABC. Then

B = F (ABC,ABC), A = F (L,ABC), and C = F (L, L).

17



By Proposition 6 we only need to consider L ∈ {ACB,CAB}.

Case 1: L = ACB. It may be convenient to refer to the table below while
reading the proof. Rows represent voter 1’s vote, columns voter 2’s vote.
Cell entries indicate the value of F at the relevant vote pairing.

voter 2
ABC ACB BAC

voter 1
ABC B
ACB A C
CAB

If F (CAB,ACB) 6= C then voter 1 can safely manipulate from (CAB,ACB)
to (ACB,ACB). So suppose F (CAB,ACB) = C. If F (CAB,ABC) = B
then voter 1 can escape from (CAB,ABC) to (ACB,ABC); if F (CAB,ABC) =
A then voter 2 can safely manipulate from (CAB,ACB) to (CAB,ABC). So
suppose F (CAB,ABC) = C. Then F (CAB,BAC) = C, for if not, voter 2
can escape from (CAB,ABC) to (CAB,BAC). Next consider (ACB,BAC).
If F (ACB,BAC) = B then voter 1 can escape from (ACB,BAC) to (CAB,BAC).
If F (ACB,BAC) = C then voter 2 can escape from (ACB,BAC) to (ACB,ABC).
So let F (ACB,BAC) = A. Then F (ABC,BAC) = A, otherwise voter 1 can
safely manipulate from (ABC,BAC) to (ACB,BAC). But now voter 2 can
safely manipulate from (ABC,BAC) to (ABC,ABC).

Case 2: L = CAB.

voter 2
ABC ACB

voter 1
ABC B
ACB
CAB A

If F (ACB,ABC) 6= A then voter 1 can safely manipulate (ACB,ABC)
by voting CAB. So let F (ACB,ABC) = A. If F (CAB,ACB) 6= A then
voter 2 can safely manipulate (CAB,ACB) by voting ABC. So assume
F (CAB,ACB) = A. If F (ABC,ACB) 6= A then voter 1 can safely ma-
nipulate (ABC,ACB) by voting CAB. So let F (ABC,ACB) = A. If

18



F (ACB,ACB) = A orB then a safe manipulation is possible at (ABC,ABC).
If F (ACB,ACB) = C then voter 1 can safely manipulate from (CAB,ACB)
to (ACB,ACB).

Lemma 2. A social choice rule F that is onto but not weakly unanimous is
safely manipulable.

Proof. Assume F isn’t antagonistic (Proposition 4). In this case there will
be a profile S at which every voter reports ABC (say) but F (S) is B rather
than A. If there is any completely agreed profile Q such that F (Q) = A then
at S all voters have an incentive to vote Q1; if this strategic vote isn’t safe
then we can apply Proposition 2. So assume A 6∈ C. Given F is onto we can
find a profile

R0 = (X1, X2, X3, X4, X5, X6)

such that F (R0) = A. Let

R1 = R0
−X3

(ABC) = (X1 ∪X3, X2, ∅, X4, X5, X6).

If F (R1) = B then at R0 voters of type BAC have an incentive to vote ABC,
and this strategic vote is such that we may apply Proposition 2 to conclude
F is safely manipulable. If F (R1) = C then at R1 some ABC types can
escape by voting BAC. This leaves us with the case that F (R1) = A, which
we now assume. Consider

R2 = R1
−X4

(ABC) = (X1 ∪X3 ∪X4, X2, ∅, ∅, X5, X6).

If F (R2) 6= A then at R1 voters of type BCA can escape by voting ABC.
So assume F (R2) = A. Let

R3 = R2
−X5

(ACB) = (X1 ∪X3 ∪X4, X2 ∪X5, ∅, ∅, ∅, X6).

If F (R3) = B then at R3 some voters of type ACB can escape by voting
CAB. If F (R3) = C then at R2 voters of type CAB have an incentive to
vote ABC, and this strategic vote is such that we may apply Proposition 2
to conclude F is safely manipulable. So assume F (R3) = A, and consider

R4 = R3
−X6

(ABC) = (X1 ∪X3 ∪X4 ∪X6, X2 ∪X5, ∅, ∅, ∅, ∅)

If F (R4) 6= A then at R3 voters of type CBA can escape by voting ABC.
So assume F (R2) = A.
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We are left in a situation in which FX1∪X3∪X4∪X6,X2∪X5
is well-defined;

moreover, it maps (ABC,ACB) to A, (ABC,ABC) to B, and (ACB,ACB)
to C, and so Lemma 1 applies.

Lemma 3. If F is an onto and nondictatorial social choice rule then it is
safely manipulable.

Proof. Throughout this proof we may assume that three or more voters are
present. Lemma 2 allows us to assume that F is weakly unanimous.

Due to the Gibbard-Satterthwaite theorem it suffices to show that F
being unsafely manipulable implies F is also safely manipulable. By Propo-
sition 3, and without any loss of generality, suppose that some ABC types
may strategically overshoot at a profile R. By Proposition 6 we may assume
that they may overshoot voting ACB or CAB.

Case 1: Suppose that, at R, some ABC types can strategically overshoot
by voting ACB. Let V be the set of ABC types at R. Then F (R) = B
and there must exist some V1 ⊂ V such that F (R−V1

(ACB)) = A while
F (R−V (ACB)) = C. Let

R1 = R−V1
(ACB) = (X1, X2, X3, X4, X5, X6).

The intent now is to either directly show that F is safely manipulable or to
demonstrate that the two-voter social choice rule generated by X1∪X2 ∪X3

and X4 ∪X5 ∪X6 is well-defined, onto, and nondictatorial. This will imply
safe manipulability by Proposition 5. We know that F (R1) = A, and that
both X1 and X2 are not empty (and therefore that X1 ∪X2 ∪X3 6= ∅). Let

R2 = R−V (ACB) = (∅, X1 ∪X2, X3, X4, X5, X6).

We know F (R2) = C. Next let

R3 = (X1 ∪X2, ∅, X3, X4, X5, X6).

If F (R3) = A or C then consider the manipulation of R2 by some ACB types
voting ABC; if this is unsafe we may then use Proposition 2 to deduce F is
safely manipulable. So suppose F (R3) = B. Let

R4 = (X1, X2, X3, ∅, X4 ∪X5, X6),
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If F (R4) 6= A and X4 6= ∅, then BCA types can escape (to R4) at R1. So
suppose F (R4) = A (if X4 = ∅ this is immediate as then R4 = R1). Let us
consider now

R5 = (X1, X2, X3, ∅, X4 ∪X5 ∪X6, ∅).

If F (R5) 6= A and X6 6= ∅, then CBA types can escape (to R5) at R4. So
suppose F (R5) = A (if X6 = ∅ this is immediate as then R5 = R1).

Let

R6 = (X1 ∪X3, X2, ∅, ∅, X4 ∪X5 ∪X6, ∅).

Suppose, for now, X3 6= ∅. If F (R6) = B then consider the manipulation of
R5 by BAC types voting ABC; if this is unsafe we may then use Proposition 2
to deduce F is safely manipulable. If F (R6) = C then some ABC types can
escape from R6 (to R5). So suppose F (R6) = A (ifX3 = ∅ this is immediate).

Consider now

R7 = (X1 ∪X2 ∪X3, ∅, ∅, ∅, X4 ∪X5 ∪X6, ∅).

If X2 = ∅, then F (R7) = F (R6) = A 6= C. If X2 6= ∅ and F (R7) = C, some
ABC types can escape R7 (to R6). So suppose F (R7) 6= C. This implies
that in the event X4 ∪ X5 ∪ X6 6= ∅, the second voter is not a dictator for
FX1∪X2∪X3,X4∪X5∪X6

.
We now show (assuming F is not safely manipulable) that X4∪X5∪X6 6=

∅. We will then show (again assuming F is not safely manipulable) the
first voter is not a dictator for FX1∪X2∪X3,X4∪X5∪X6

. Given that F is weakly
unanimous, hence onto, we will then have enough to use Proposition 5. We
need just three more profiles:

R8 = (∅, X1 ∪X2 ∪X3, ∅, X4, X5, X6),

R9 = (∅, X1 ∪X2 ∪X3, ∅, ∅, X5, X4 ∪X6),

R10 = (∅, X1 ∪X2 ∪X3, ∅, ∅, ∅, X4 ∪X5 ∪X6).

If X3 = ∅, then F (R8) = F (R2) = C. Suppose X3 6= ∅. If F (R8) 6= C,
then BAC types can escape from R2 (to R8). So assume F (R8) = C. Since
F (R7) 6= C, by the weak unanimity of F , this implies X4 ∪X5 ∪X6 6= ∅.

If X4 = ∅ then F (R9) = F (R8) = C. Suppose X4 6= ∅. If F (R9) = A,
then some CBA types can escape from R9 (to R8). So (regardless of whether
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X4 is empty or not) let F (R9) 6= A. If X5 = ∅ then F (R10) 6= A. Suppose
X5 6= ∅. If F (R10) = A, then some CBA types can escape from R10 (to
R9). So let F (R10) 6= A. This implies that the first voter is not a dictator
for FX1∪X2∪X3,X4∪X5∪X6

. This function inherits weak unanimity from F and
hence is onto. Then by Proposition 5, F is safely manipulable.

Case 2: overshooting by voting CAB. Suppose that, at R, some ABC types
can strategically overshoot by voting CAB. This implies F (R) = B. Let V
be the set of ABC types at R. There must exist some V1 ⊂ V such that
F (R−V1

(CAB)) = A. Let

R1 = R−V1
(CAB) = (X1, X2, X3, X4, X5, X6).

The intent now is to either directly show that F is safely manipulable or to
demonstrate that the two-voter social choice rule generated by X1∪X2 ∪X5

and X3 ∪ X4 ∪ X6 is onto, and nondictatorial. We know F (R1) = A, and
X1, X5 6= ∅ (and hence X1 ∪X2 ∪X5 6= ∅). Let

R2 = R−V (CAB) = (∅, X2, X3, X4, X1 ∪X5, X6).

If F (R2) = A or B then we may apply Proposition 2 to deduce F is safely
manipulable. So suppose F (R2) = C. Next let

R3 = (X1 ∪X5, X2, X3, X4, ∅, X6).

If there are no CAB types present at R then R = R3, and F (R3) = B.
Now suppose that there are CAB types present at R, and F (R3) 6= B; given
F (R) = B, CAB types are then capable of escaping from R to R3. So let us
suppose F (R3) = B. Let

R4 = (X1 ∪X2 ∪X5, ∅, X3, X4, ∅, X6),

R5 = (X1 ∪X2 ∪X5, ∅, ∅, X4, ∅, X3 ∪X6),

R6 = (X1 ∪X2 ∪X5, ∅, ∅, ∅, ∅, X3 ∪X4 ∪X6).

If X2 = ∅, then F (R4) = F (R3) = B. Suppose X2 6= ∅. If F (R4) 6= B
then ACB types can escape from R3 to R4. So let F (R4) = B. We note
that by weak unanimity this implies X3 ∪ X4 ∪ X6 6= ∅. If X3 = ∅, then
F (R5) = F (R4) = B. Suppose X3 6= ∅; if F (R5) = A then some CBA types
can escape from R5 to R4. So, regardless of whether X3 is empty or not, to
proceed we let F (R5) 6= A. If X4 = ∅, F (R6) 6= A. If X4 6= ∅ then in the
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event F (R6) = A, some CBA types can escape fromR6 to R5. So F (R6) 6= A.
This implies the first voter is not a dictator for FX1∪X2∪X5,X3∪X4∪X6

.
It remains to show that the second voter is not a dictator for FX1∪X2∪X5,X3∪X4∪X6

.
For this purpose we will need four more profiles:

R7 = (X1, X2, X3 ∪X4, ∅, X5, X6),

R8 = (X1, X2, X3 ∪X4 ∪X6, ∅, X5, ∅),
R9 = (∅, X2, X3 ∪X4 ∪X6, ∅, X1 ∪X5, ∅),
R10 = (∅, ∅, X3 ∪X4 ∪X6, ∅, X1 ∪X2 ∪X5, ∅).

If X4 = ∅, then F (R7) = F (R1) = A. Suppose X4 6= ∅. If F (R7) 6= A then
BCA types can escape from R1 to R7. So let F (R7) = A. If X6 = ∅, then
F (R8) = F (R7) = A. Suppose X6 6= ∅. If F (R8) 6= A then CBA types
can escape from R7 to R8. So let F (R8) = A. If F (R9) = B then some
CAB types can escape from R9 to R8. So let F (R9) 6= B. If X2 = ∅, then
F (R10) = F (R9) 6= B. Suppose X2 6= ∅. If F (R10) = B then some CAB
types can escape from R10 to R9. So let F (R10) 6= B. But then the second
voter is not a dictator for FX1∪X2∪X5,X3∪X4∪X6

.
The rule FX1∪X2∪X5,X3∪X4∪X6

inherits weak unanimity from F . Hence this
rule is onto. Then by Proposition 5, F is safely manipulable.

6. Proof of Theorem 2: three or more alternatives

Proposition 7 shows Theorem 2 holds when |C| < |A| − 1. The two
subsequent short propositions set up a proof-by-induction of the whole thing.

Proposition 7. Let F be an onto social choice rule. If at least two alterna-
tives are missing from C then F is safely manipulable.

Proof. Suppose that neither A nor B belong to C. Let LAB be a fixed but
otherwise arbitrary linear order of the alternatives that has A first and B
second. Let LBA be the linear order formed by taking LAB and reversing
the spots of A and B, ceteris paribus. Let m ≥ 2 be the minimum possible
number of voter types present when the value of F is in the set {A,B}. Let
S denote the set of profiles that have exactly m voter types present and are
mapped by F to either A or B.

Firstly, suppose no profile in S has an LAB type voter present. Pick
R ∈ S. Let V be the entire set of voters having the preference order R1 at R.
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Consider the profile R−V (L
AB); F cannot map this profile to A or B because

it has m voter types present, and one of those types is LAB. However,

F (R) = F ((R−V (L
AB))−V (R1)) ∈ {A,B}

and so, at R−V (L
AB), a voter of type LAB has an incentive to strategically

vote R1. If such a strategic vote would be unsafe then we may apply Propo-
sition 2 to deduce F is safely manipulable. In the event that no R ∈ S has
LBA type voters, the analysis proceeds similarly.

Secondly, suppose that some profile in S has an LAB type voter present,
another has an LBA type voter present, but no profile in S has voters of
both types present. Let R ∈ S have LAB types present. Since R cannot be
completely agreed there must be an i such that Ri 6= LAB. Let V = {j|Rj =
Ri}. Since F (R−V (L

BA)) /∈ {A,B} (the profile R−V (L
BA) features both LAB

and LBA types), the profile R−V (L
BA) is manipulable by LBA voters voting

R1. If this manipulation is unsafe, we can apply Proposition 2.
Thirdly and finally, suppose R ∈ S has both LAB and LBA types present.

Let U and W be, respectively, the set of all voters with preferences LAB

and LBA at R. Then F (R−U(L
BA)) /∈ {A,B} and F (R−W (LAB)) /∈ {A,B}

as both the relevant profiles have only m − 1 types present. Define a new
relation on A as follows: �U&W if and only if �U and �W . Without loss of
generality we assume

F (R−U(L
BA)) �U&W F (R−W (LAB)).

Now
F (R) = F ((R−W (LAB))−W (LBA)) ≻U&W F (R−W (LAB))

because F (R) ∈ {A,B} and F (R−W (LAB)) /∈ {A,B}. So voters in W ⊂
U ∪W can manipulate at R−W (LAB) (by insincerely voting LBA rather than
sincerely voting LAB). If this manipulation is safe we are done; if not then
notice that the manipulation is such that we may apply Proposition 2.

Proposition 8. Let F be a social choice rule. If Y ∈ C but Y is not in the
range of F−Z for some Z 6= Y then F is safely manipulable.

Proof. Let R be a unanimous profile at which all voters rank Y first and Z
last, but F (R) 6= Y . Given Y is in C, there is a completely agreed profile Q
mapped by F to Y . At R every voter i has an incentive to switch from Ri

to Q1. If this strategic vote is unsafe, we can apply Proposition 2.
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Many parts of the remainder of our proof will utilise ‘subrules’ derived
from the main rule F . Given any alternative X , the subrule F−X is designed
to pick alternatives from A − {X}, and operates as follows. Let R be an
arbitrary profile of preferences over the set A − {X}. Let R′ be the profile
of preferences over the original set of alternatives A formed by appending an
X to the bottom of every preference order in R. Then the value of F−X at
R shall be the value of F at R′. Provided F is not antagonistic, F−X will
not select X at R′ and will therefore be sensibly defined. We will say F−X is
proper if it is non-dictatorial and has image A− {X}.

Proposition 9. Let F be a social choice rule. If there is an A ∈ A for which
F−A is proper and safely manipulable then F itself is safely manipulable.

Proof. Suppose that when the proper rule F−A is in operation, voter i has
an incentive to safely strategically vote L at the profile R on A− {A}. Let
V be the set of indices j such that Rj = Ri. Then

F−A(R−U(L)) ≻V F−A(R)

for one particular subset U ⊆ V and F−A(R−W (L)) �V F−A(R) for every
subset W ⊆ V . Let R̄ = (R̄1, . . . , R̄n) be the profile of preferences over A
formed by appending an A to the bottom of every preference order Ri in
R. Let L̄ be L with A appended to the bottom. Then V = {j | R̄j = R̄i}.
Furthermore,

F (R̄−U(L̄)) = F−A(R−U(L)) ≻V F−A(R) = F (R̄)

and for any W ⊆ V

F (R̄−W (L̄)) = F−A(R−W (L)) �V F−A(R) = F (R̄).

Hence voter i can safely manipulate at R̄ with a vote of L̄.

We can now prove Theorem 2:

Proof. Lemma 3 provides a base case for an inductive proof. Assume |A| ≥ 4
and the statement holds when the number of alternatives is |A|− 1. Assume
F is not anatagonistic (Proposition 4). Assume |C| ≥ |A|−1 (Proposition 7).
Find an alternative A as follows: if |C| = |A|−1, let A be the single alternative
in A− C; if |C| = |A| let A be an arbitrary alternative; either way, we note,
A−{A} ⊆ C. The rule F−A is either dictatorial or it is not. Suppose it is not:
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if F−A is proper then (by the induction hypothesis) Proposition 9 applies; if
F−A isn’t proper then there is some Y ∈ C (Y 6= A) it cannot reach, and
Proposition 8 applies. Suppose F−A is dictatorial: then the following chain
of claims shows F has to be safely manipulable.

Note that the alternative A has been fixed. For convenience, let voter 1
be the dictator of F−A. In all of the following statements and proofs, X will
represent an alternative different from A, and V1 and V2 will denote {1} and
[n] − {1} respectively. Recall Proposition 5 showed that if FV1,V2

is safely
manipulable then so is F .

Claim 1. If F−X is non-dictatorial and can reach A then F is safely manip-
ulable.

Proof. If F−X is proper then Proposition 9 applies, otherwise there is some
Y ∈ C (Y 6= A) it cannot reach, and we can appeal to Proposition 8.

Claim 2. Either F is safely manipulable or FV1,V2
returns X whenever voter

1 ranks X first.

Proof. We try to avoid concluding F is safely manipulable.
Voter 1 dictates F−A, so FV1,V2

maps (X · · ·A, · · ·XA) toX . If that profile
is not safely manipulable by voter V2 then FV1,V2

(X · · ·A, · · ·AX) ∈ {X,A}.
Suppose (X · · ·A, · · ·AX) is mapped to A rather than X . If voter V1

cannot safely manipulate that latter profile then FV1,V2
(· · ·AX, · · ·AX) = A,

and Claim 1 applies.
So say FV1,V2

(X · · ·A, · · ·AX) = X . If voter V2 has no safe manipu-
lations, FV1,V2

(X · · ·A,L) = X for all L. And if neither does voter V1,
FV1,V2

(X · · · , L) = X for all L.

Claim 3. Either F is safely manipulable or F returns X whenever voter 1
ranks X first.

Proof. If there is a profile Q such that Q1 = X · · · but F (Q) 6= X then (we
show) an escape can be found. Let S be the profile at which S1 = Q1 = X · · · ,
and for all i, j > 1 we have Si = Sj = · · ·X . If F isn’t already safely
manipulable then by Claim 2 it must be that F (S) = X . Therefore, at
S every voter other than voter 1 sees their least welcome outcome realised.
Starting at S, for i = 2, 3, 4, . . . sequentially change Si to Qi (we do not imply
n ≥ 2 necessarily). At some stage the value of F will shift away from X ; an
escape is therefore possible under F .
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Corollary 1. Either F is safely manipulable or F (R) = A implies voter 1
is ranking A first.

Corollary 2. Either F is safely manipulable or F always returns either the
first or the second choice of voter 1.

In the next two proofs we will repeatedly use Corollary 2 without explic-
itly saying so.

F is onto, so F (R) = A for some R. If F is not yet safely manipulable
then (by Corollary 1) R1 = AB · · ·C (with B second and C last without any
loss of generality). The objects represented by R, A, B, and C shall remain
fixed for the remainder of these claims.

Claim 4. Either F is safely manipulable or F−C is non-dictatorial.

Proof. Assume no previous result shows F is safely manipulable. Voter 1 does
not dictate F (no-one does), so there exists a profileQ for which Q1 = AX · · ·
but F (Q) equals X rather than A.

Let S be the profile arising when S1 = Q1 = AX · · · and Si = Sj = · · ·A
for all i, j > 1. If F (S) = A then by sequentially changing Sk, k ≥ 2, to Qk

we can find an escape. So set F (S) = X .
Now consider the two-voter profile (R1, S2) = (AB · · ·C, · · ·A). If FV1,V2

maps this profile to A then voter 1 (1 ∈ [n]) can safely manipulate S with
R1 = AB · · ·C. So set FV1,V2

(AB · · ·C, · · ·A) = B.
Finally, consider the profile (AB · · ·C, · · ·BAC). If FV1,V2

maps this pro-
file to A, voter V2 can safely manipulate it with S2 = · · ·A; if the profile is
mapped to B, F−C has no dictator.

Claim 5. Either F is safely manipulable or F−C can reach A.

Proof. Again assume no previous result shows F is safely manipulable. Con-
struct the profile S by setting S1 = R1 = AB · · ·C and for i, j ≥ 2 setting
Si = Sj = · · ·ABC. If F (S) = A then F−C can reach A. Suppose F (S) = B.
For k ≥ 2, one by one change Sk to Rk. One of these changes must induce
the value of F to change from B to A; this manipulation will be safe because
F will never return C while voter 1’s report remains AB · · ·C.

Claim 6. We cannot avoid concluding F is safely manipulable.

Proof. If no earlier result has directly shown F is safely manipulable then
F−C is non-dictatorial and can reach A, and Claim 1 applies.
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We now prove Corollary 3 from Section 2.

Proof. By Theorem 2, there exists a profile R and a voter j such that, at R,
j has an incentive to safely strategically vote L 6= Rj . If

F (R−{j}(L)) ≻{j} F (R)

then we are done. If not, then F (R−{j}(L)) = F (R). If F is not anonymous
then we cannot guarantee the voter we’ve identified as j can be the same as
the voter we identify as i in the statement of this corollary. Let V ∗ be the
set of all voters that, at R, are of type Rj and have an incentive to (safely
or unsafely) strategically vote L. Then let V1 be a maximal element of V ∗

satisfying both j ∈ V1 and

F (R−V2
(L)) = F (R)

whenever j ∈ V2 ⊆ V1. Such a set exists because {j} meets the two criteria.
Now V ∗ 6= V1 for if not, at R the voter j would have no incentive to strate-
gically vote L. So we can find i ∈ V ∗ − V1, and for this voter it will be the
case that

F (R−V1∪{i}(L)) ≻{i} F (R−V1
(L)) = F (R)

and
F (R−V1∪V3

(L)) �{i} F (R−V1
(L)) = F (R)

whenever i ∈ V3 ⊆ V ∗ − V1. The first line above follows from the properties
of V1, and implies i can manipulate alone at R−V1

(L). The second line follows
because j ∈ V1 ∪ V3 and L is a safe vote for j at R. Let V ′ comprise of those
voters who at R−V1

(L) are of type Rj and have an incentive to strategically
vote L. Necessarily, V ′ ⊆ V ∗. More specifically, V ′ ⊆ V ∗ − V1, because
at R−V1

(L) the voters in V1 are reporting L. The second relation therefore
implies L is a safe strategic vote for i at R−V1

(L).

7. Discussion

We summarise our paper, then identify directions future research might
take.

We broadened the framework in which Gibbard and Satterthwaite worked
so we could look into what can transpire when a group of like-minded vot-
ers vote strategically and in unison (while all other voters vote sincerely).
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The notion of an incentive to vote strategically was our starting point. We
then distinguished between safe and unsafe strategic votes, the latter be-
ing (primarily) those that could potentially lead to strategic overshooting
or undershooting. After providing examples to illustrate and motivate our
definitions, we proved our main theoretical result, then used it to extend the
Gibbard-Satterthwaite Theorem as follows: we showed that under any onto
and non-dictatorial social choice rule, employed to choose one of at least
three alternatives, there can arise a situation where a voter can do strictly
better by casting a safe strategic vote than an unstrategic one, provided all
other voters are sincere.

Despite being broader than that of Gibbard and Satterthwaite our frame-
work is still rather narrow. If we extend our framework further a strategic
vote which is safe in our framework may become unsafe. Firstly, voters of
other types may not all be sincere. Secondly, and more importantly, voters
of the strategic type may have several conflicting safe manipulating moves
and again may face inability to coordinate which safe manipulating vote to
choose. This can be illustrated by the following hypothetical example. Sup-
pose that in a profile there are only two voters 1 and 2 with sincere preference
ABC. Suppose that they have two safe manipulating moves L and L′ and
depending on how they vote the results are shown in the following table.

voter 2
ABC L L′

voter 1
ABC B B B
L B A C
L′ B C A

We see that if voters 1 and 2 vote sincerely, then the result is B, their sec-
ond best alternative. However if they choose the same manipulating move—
either both L or both L′—then the outcome is A, their most preferred al-
ternative. If they mis-coordinate and choose different manipulating moves,
then the outcome is C which is their least desirable alternative. Again for
a success of manipulation coordination is necessary. One particular scenario
in which such coordination may occur is when a particular voter (perhaps a
public figure) is capable of sending a single message to the whole electorate
(say through the media) calling upon his followers to vote in a certain way. It
is reasonable to suggest that only voters who share his views might respond
and join this loosely formed coalition. However, not all of them will respond;
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some of them might consider voting strategically unethical, some just will
not get the message. Obviously, to make such a call the public figure must
have an incentive to vote strategically and be sure that it is safe to act on
it. Our study implies that if voters have little ability to communicate with
each other then many incentives for voting strategically are relatively weak
being unsafe.

Chamberlin (1985) wrote that “increasingly sophisticated communica-
tions technology” may increase the “threat” of manipulations. Nowadays we
live in a much more interconnected world than 25 years ago with many voters
being connected by social networks and with a few individuals (mosty celebri-
ties) having millions of followers. Have online communication technologies
improved the ability of strategic voters to identify and respond appropri-
ately to incentives to vote strategically? In particular, do such technologies
aid like-minded strategic voters attempting to coordinate? These questions
are yet to be studied.
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