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Abstract

Individuals care not only about their own survival, but also about the
survival of other persons. However, little attention has been paid so far to
measuring the contribution of longer coexistence time to living standards.
For that purpose, we develop a measure of coexistence time - the joint
life expectancy -, which quantifies the average duration of existence for
a group of persons. Then, using a lifecycle model with risky lifetime,
we construct an equivalent consumption measure incorporating gains in
single and joint life expectancies. An empirical application to France
(1820-2010) shows that, assuming independent individual mortality risks,
the rise in joint life expectancies contributed to improve standards of living
significantly. We examine the robustness of that result to the introduction
of dependent mortality risks using copulas, and we show that equivalent
consumption patterns are robust to introducing risk dependence.
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1 Introduction

During the last decades, economists have paid a large attention to the mea-
surement of the economic performance of nations through time. Following the
pioneer Is growth obsolete? by Nordhaus and Tobin (1972), the concept of "eco-
nomic performance" under study consists in the capacity of nations to overcome
all sources of scarcity (North 1994). Its measurement includes not only the con-
sumption of goods, but also other dimensions of standards of living, such as the
enjoyment of leisure time and of a clean environment.
Among the dimensions of well-being under study, longevity has received a

significant attention. As underlined by Sen (1973, 1998), whatever the goals
and life plans one has, some quantity of time is necessary to achieve those goals.
This makes longevity achievements a central aspect of economic performance.
In some pioneer writings, Usher (1973, 1980) proposed to construct a mea-

sure of economic performance taking longevity achievements into account, by
computing the equivalent income, that is, a hypothetical income such that, if
enjoyed with some survival conditions of reference (usually the ones prevailing
at a base year), this income would make a representative individual indifferent
between that hypothetical situation and his current standards of living. As such,
the equivalent income allows for the incorporation, within monetary measures
of standards of living, of variations in the quantity of life.
Usher’s works gave rise to numerous applications. Williamson (1984) ap-

plied Usher’s method to the measurement of standards of living in England
and Wales (1781-1931). Crafts (1997) provided, on the basis of equivalent in-
comes, a quantitative comparison of standards of living across Europe during
the 19th and 20th centuries. Costa and Steckel (1997) used equivalent incomes
to revisit the measurement of living standards during the early Industrial Rev-
olution in the U.S., a period during which consumption standards improved,
whereas survival conditions temporarily worsened. Other recent applications
include Sandberg and Steckel (1997) on the Industrial Revolution in Sweden,
Nordhaus (2003) on the contribution of health improvements to living standards
in the U.S. during the 20th century, and Becker et al (2005) on inequalities in
living standards around the world in the 20th century. Murphy and Topel (2006)
and Hall and Jones (2007) also used the equivalent income approach to evaluate
the benefits from health expenditures. More recently, Fleurbaey and Gaulier
(2009) constructed equivalent incomes taking into account not only longevity
achievements, but, also, employment, leisure time and inequalities.
Although those studies cast original light on the evolution of standards of

living over the last centuries, these considered longevity gains from a particular
perspective, that is, from the perspective of individuals concerned only with
their own survival. In those studies, the construction of an equivalent income
is based on a life cycle model where individuals derive utility only from their
own survival, independently from the survival of other persons. Whereas that
assumption is analytically convenient, it constitutes a strong simplification of
reality. In the real world, individuals care not only about their own survival,
but also about the survival of other persons (spouse, children, parents, etc.).
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This concern for joint survival or coexistence is far from marginal. Empirical
studies reveal that coexistence matters a lot for life satisfaction. For instance,
Blanchflower and Oswald (2004) showed that not less than $100,000 per year
would be necessary to compensate, in welfare terms, a person having lost his/her
spouse. In the light of such a high compensation, one can expect that individuals
have strong concerns for joint survival with other persons, and that the value
of coexistence time is large.1 But existing studies - such as Usher (1973, 1980)
and the other studies mentioned above - focused on a representative individual
only concerned with his own survival, and, therefore, could not take concerns
for joint survival into account.
The goal of this paper is to quantify the contribution of improved joint sur-

vival conditions to the measurement of living standards. For that purpose, we
explore how existing monetary equivalent measures can be extended to incor-
porate the value of joint survival. Taking coexistence into account raises two
main challenges. First, the question of the measurement of coexistence time:
how can one measure coexistence? Second, how can one construct a monetary
equivalent taking into account the value of improved joint survival?
In order to quantify coexistence time, we develop measures of joint life ex-

pectancy. The joint life expectancy is the mathematical expectation of the du-
ration of life for a group of persons (the death of a single member of the group
leading to the end of the whole group), conditionally on the survival conditions
prevailing at a given period of time. As such, joint life expectancies extend the
widely used concept of (single) life expectancy, i.e. the mathematical expecta-
tion of the duration of life for a single person, also conditionally on the survival
conditions prevailing at a given period of time. Joint life expectancies measure
the coexistence phenomenon under the exclusive prism of joint survival, without
capturing the impact of other phenomena (such as divorce, separation, spatial
mobility, etc.) on the quantity of time actually lived together by some persons.
Regarding the measurement of standards of living, we develop a life cy-

cle model with risky lifetime, and we construct a constant consumption profile
equivalent incorporating the monetary value of variations not only in the dura-
tion of existence (measured by single life expectancies), but also in the duration
of coexistence (measured by joint life expectancies). That constant consump-
tion profile equivalent is constructed in such a way as to make a representative
individual indifferent between, on the one hand, his current situation (with his
current consumption profile, current single and joint life expectancies), and,
on the other hand, a hypothetical situation with the constant equivalent con-
sumption profile, and with the single and joint life expectancies of a period of
reference.
Our empirical application on France (1820-2010) is developed in two stages.

First, we construct joint life expectancies using life tables from the Human
Mortality Database, while assuming, as a first approximation, that individual

1Note that the existence of coexistence concerns in real life can be represented by means
of various microeconomic models, depending on what motivates coexistence concerns (either
self-oriented concerns or altruism) and on how coexistence time is perceived/quantified by
individuals. See Section 3 on this.
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mortality risks are independent within groups. We show that the improvement
of survival conditions over time is associated with a large rise in single life ex-
pectancies, and with an even larger rise in joint life expectancies. We also show
that the inclusion of monetized gains in coexistence time affects substantially
the measurement of economic performance over time. Then, in a second stage,
we relax the independence assumption and allow for dependent individual mor-
tality risks using the copula approach (Nelsen 2007). We calculate joint life
expectancies using Frank’s copula (Frank 1979), and we show that equivalent
consumption patterns are robust to introducing risk dependence, since these
depend not on the level, but on the variation of joint life expectancy over time.
On the economic side, this paper complements the articles mentioned above

(Usher 1973, 1980, and following papers), which developed equivalent income
measures, but without taking coexistence time into account. The present study
shows that taking coexistence concerns into account contributes to raise the
value of improved survival conditions. On the demographic side, some articles,
such as Le Bras (1973), studied coexistence by means of probabilities of having
a surviving parent or a surviving child, while assuming independent individual
mortality risks. More recently, several articles focused on the relation between
univariate and multivariate survival (see Frees et al 1996, Denuit et al 2001,
Spreeuw and Owadaly 2013). Our paper complements that demographic liter-
ature by studying how improvements of joint survival conditions can be taken
into account into a measure of standards of living.
The main contribution of this paper is to provide an alternative view on the

contribution of improved survival conditions to living standards. Most existing
studies aimed at measuring standards of living presupposed that individuals
only care about their own survival, and not about the survival of others. Once
that strong assumption is relaxed, it appears that the presence of a concern for
coexistence with other persons makes the improvement of survival conditions
much more valuable. Thus existing studies ignoring concerns for joint survival
may have, from that perspective, underestimated the contribution of improved
survival conditions to standards of living.
This paper is organized as follows. Section 2 considers an economy where in-

dividuals face risk about the duration of their own life, as well as risk about the
duration of life of other persons, and proposes joint life expectancy as a measure
of the expected coexistence time. Then, Section 3 focuses on the valuation of
coexistence, and derives an equivalent consumption measure incorporating the
monetized value of variations in coexistence time. As an illustration, Section
4 presents equivalent consumption measures for France (1820-2010), while as-
suming, as a first approximation, independent individual mortality risks. Then,
Section 5 uses the copula approach to examine the robustness of our results to
the introduction of dependent individual mortality risks. Section 6 concludes.
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2 Measuring coexistence time

Let us consider an economy where individuals face risk about the duration of
their life. Individuals know that they will die one day. But they do not know
when they will die. The maximal duration of life is denoted by the natural
number T > 1. Each life can take T + 1 possible durations, from a duration of
0 period to a duration of T periods.

2.1 Standard life expectancy

Although the duration of life is, for each individual, unknown, it is possible, at
the level of the society as a whole, to calculate the average duration of life for
an individual, conditionally on the age-specific probabilities of death prevailing
during a particular period. That statistics is the period life expectancy indi-
cator: it consists of the mathematical expectation of the duration of one life,
conditionally on the survival probabilities prevailing during a given period.
Figure 1 illustrates the lottery of life faced by a representative individual who

faces T + 1 possible scenarios regarding the duration of his life. Each scenario
is characterized by a distinct duration of life. Life expectancy is computed
by adding all possible durations of life, each of these being weighted by the
probability of occurrence of each duration of life.

Durations

of (remaining) life

0

1

2

3

individual … .

… .

… .

.…

T

Figure 1: Life as a lottery (I)

If one denotes by pix the probability of a (remaining) life of duration x for
a person i, the mathematical expectation of the duration of (remaining) life for
a person i, denoted by E(Li), can be written as:

E(Li) =

T∑
x=0

pix × x (1)
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The probability of a life of duration x periods for person i can be written as:

pix =

x−1∏
s=0

(1− dis)dix (2)

where dis is the probability of death at age s for person i, conditionally on
survival until age s. Substituting for pix in equation (1) allows us to rewrite life
expectancy E(Li) as:

E(Li) =

T−1∑
x=0

Six+1 (3)

where Six ≡
∏x−1

s=0
(1−dis) is the unconditional probability of survival until age

x for person i. Life expectancy can be interpreted as a measure of the surface
under the survival curve (which plots Six as a function of x).2

There exist several types of life expectancy. Period life expectancies rely on
age-specific probabilities of death prevailing at a particular period (usually one
year). On the contrary, cohort life expectancy rely on age-specific probabilities
of death prevailing during the entire life of a cohort. Period life expectancy is
the most widely used because it can be computed year after year without having
to wait for the death of all members of a given cohort.
At this stage, it is important to underline a key feature of period life ex-

pectancy statistics. These measure the expected duration of life for some hypo-
thetical "average" person. In reality, the actual duration of life may depend on
lots of factors such as, among other things, the genetic background, lifestyles
(sleeping patterns, physical activity, etc.), consumption patterns (smoking, drink-
ing, etc.), risk-taking behaviors, preventive behaviors, environmental quality,
etc. Period life expectancy statistics only provide some global picture of the
survival conditions prevailing on average in a given population.
The major virtue of life expectancy indicators consists in their capacity to

synthesize the prevailing survival conditions in one single number. However,
life expectancies reflect only a single source of risk in human societies: the risk
about one’s own survival. Besides that individual longevity risk, humans face
many other sources of risk concerning, in particular, the survival of the persons
they care about (spouse, children, parents, friends, etc.). The next subsection
proposes an indicator taking that alternative source of risk into account.

2.2 Joint life expectancy

Recent empirical studies, such as Blanchflower and Oswald (2004), suggest that
individuals care a lot about the survival of their spouse. The regressions carried

2As usual, we assume Si0 = 1. Note that expression (3) presupposes that a person dying
during a year dies at the beginning of that year. Alternatively, if one supposes that a person
dying during a year dies, on average, in the middle of that year, (3) becomes:

E (Li) =

T−1∑
x=0

Six+1 + 0.5
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out by those authors show that an amount of not less than $100,000 per year is
necessary to compensate someone for widowhood. Such a large compensation
reveals that individuals care not only about their own survival, but, also, about
the survival of other persons.
Once individuals have a strong concern for others’ survival, the represen-

tation of life as a lottery in Figure 1 becomes incomplete. Actually, for each
scenario concerning one’s survival, there exist lots of possible scenarios regarding
the survival of other persons. For instance, it is not the same, for an individual,
to survive until age 85 with his spouse, or to survive until age 85 while becoming
a widow at the age of 70. Hence the representation of life as a lottery must be
modified, in such a way as to account for the various scenarios regarding others’
survival. To illustrate this, Figure 2 shows the lottery of life faced by a repre-
sentative individual i who cares not only about his own survival, but also about
the survival of another individual j. That alternative representation treats life
as a double lottery: for any possible duration of life for person i, there exist
various possible durations of life for person j.3

We can, for each scenario in Figure 2, compute the duration of coexistence
between the two individuals. The duration of coexistence for a particular sce-
nario of life equals the minimum of the durations of life for the two individuals.
One can regard that duration of coexistence of two individuals as the duration
of life for the group of two persons, provided a group disappears as soon as one
of its members dies.
Once durations of coexistence are computed under each scenario of the dou-

ble lottery, we can compute the mathematical expectation of the duration of
coexistence. For that purpose, we aggregate all possible durations of coexis-
tence for the two individuals, and we weight each of these by the probability
of occurrence of that scenario. The outcome of that calculation consists of the
period joint life expectancy of individuals i and j. This is the mathematical ex-
pectation of the duration of their coexistence, or the average duration of life for
that group, conditionally on the survival conditions prevailing during a period.
To illustrate this, let us take for instance two persons i and j of age 25. Each

scenario of the lottery involves one duration of remaining life for person i and one
duration of remaining life for person j. For each scenario of the lottery, one can
compute the duration of remaining coexistence. This is equal to the minimum of
the durations of remaining life for the two persons. If, for instance, both persons
die at age 28, the remaining coexistence time equals min {28− 25, 28− 25} = 3
years. If, on the contrary, person i dies at age 45, but person j dies at age 42,
the duration of remaining coexistence equals min {45− 25, 42− 25} = 17 years.
Then, once the duration of remaining coexistence is computed for each scenario
of the lottery, we can use the probabilities of occurrence of each scenario to
calculate the mathematical expectation of the duration of remaining coexistence,
that is, the joint life expectancy of individuals i and j (of current age 25).4

3Note that we restrict ourselves here to a double lottery, in which one person cares about
his survival and about the survival of another person. But in the real world individuals may
care about the survival of more than one other person, implying a more complex lottery.

4Similar calculations could be carried out for other groups of different size, including per-
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Life duration for i Life duration for j Coexistence (i, j)

0

0 1

2 0

…

T

Person i 0 0

1 1

2 1

…

T

0 0

2 1 1

2

… 2

… . T

0 0

T 1 1

2 2

… …

T T

Figure 2: Life as a lottery (II)

More formally, if one denotes by pijx the probability of (remaining) coexis-
tence of duration x for two persons i and j, the joint life expectancy for those
two persons, denoted by E(Lij), can be written as:5

E (Lij) =

T∑
x=0

pijx × x (4)

pijx depends on the survival conditions faced by persons i and j, and on how
those survival conditions are related to each other. Alternatively, one can rewrite

sons of unequal ages.
5While that formula concerns the coexistence of two persons, joint life expectancies can

also be defined for a larger number of individuals.
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the joint life expectancy as the surface under the joint survival curve (which plots
Sijx as a function of x):

E (Lij) =

T−1∑
x=0

Sijx+1 (5)

where Sijx+1 is the unconditional probability of joint survival until x periods
from now, for persons i and j. Sijx+1 is the probability that both persons i and
j are still alive x periods from now.
As for period (single) life expectancies, period joint life expectancies do not,

in general, coincide with the actual duration of coexistence for some individuals
in reality. It consists, here again, of a statistical object, which measures some
aspect of the survival conditions prevailing at a particular period. Period joint
life expectancy statistics measure the expected duration of a group of individu-
als, given the average survival conditions prevailing at a given period.6 It tells
us, for instance, how many years two persons can expect, given the prevailing
survival conditions, to coexist. In real life, coexistence may vary significantly
across groups, depending on the characteristics of each group. Hence, what joint
life expectancy statistics give us is a global picture of the average joint survival
perspectives at some period, in the same way as single life expectancies give us
a global picture of survival perspectives at the individual level.
It is also important to stress that the joint life expectancy only measures

"coexistence" in a particular sense: it measures "coexistence" only from the
perspective of joint survival. If, alternatively, one defined "coexistence" as the
quantity of time lived together by two persons in the same spatial neighborhood,
then there would exist many other factors than joint survival conditions that
would also affect the actual amount of so-defined “coexistence”. To illustrate
this, take, for instance, the case of a couple. The number of life-years shared
by the two members of a couple depends on lots of factors, and not only on
the prevailing joint survival conditions. Actually, how long two members of a
couple live together depends on the age at marriage, the divorce rates, profes-
sional mobility, etc. Similarly, the so-defined "coexistence" between parents and
children depends on many other things than joint survival conditions, such as
the living arrangements, the duration of education degrees, the age at marriage,
the unemployment rate for young people, etc.
Joint life expectancy statistics measure coexistence time in a different sense:

they measure how many years two individuals can expect to remain both alive,
conditionally on the prevailing average survival conditions. Those measures do
not tell us whether those individuals will live in the same house or not, will
divorce or not, etc. All those aspects, which contribute to determine "coexis-
tence" in the sense defined above, are not captured by the joint life expectancy,
which focuses only on joint survival, independently from the circumstances un-
der which this joint survival will take place. Similarly, single life expectancy
statistics do not tell us whether the expected lifetime of an individual will be

6Alternatively, one may compute cohort joint life expectancies, on the basis of the survival
conditions faced within a given cohort.
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enjoyed under some particular circumstances, but only how many years one can
expect to live. Thus, our joint life expectancy statistics only capture the pure
joint survival component of the broad idea of "coexistence".
Having clarified the sense in which joint life expectancies measure the coex-

istence phenomenon, let us now focus on the relationship between the survival
probability of a group and the survival probabilities of its members. The joint
survival probability for two individuals i and j Sijx+1 (i.e. the probability that
both individuals i and j are still alive x periods from now) depends on the
survival conditions faced by each individual separately, that is, survival proba-
bilities Six+1 and Sjx+1. But the relationship between the joint survival prob-
ability and individual survival probabilities may take various forms, depending
on whether individual mortality risks are dependent or not, and, if so, on the
sign (positive or negative) and extent of the dependence.
Positive dependence of individual mortality risks occurs when the premature

death for a member of the group raises the probability of premature death for
another member of the group. On the contrary, negative dependence prevails
when the happening of premature death for a group member reduces the proba-
bility of premature death for another member of the group. In those two cases,
the relation between joint survival and individual survival is quite complex, and
requires specific conceptual tools for the modelling of risk dependence.7

Besides those cases, there exists another case: the case of independent mor-
tality risks. When mortality risks are independent, the duration of life for an
individual i is unaffected by the duration of life for an individual j. Hence,
given that the survival chances of a person do not affect the survival chances of
any other person in that case, the joint survival probability Sijx+1 is equal to
the product of the probability that individual i is still alive x periods from now
times the probability that individual j is still alive x periods from now:

Sijx+1 = Six+1 × Sjx+1 (6)

Hence, in that case, the joint life expectancy takes the form:

E (Lij) =
T−1∑
x=0

(Six+1 × Sjx+1) (7)

Thus, when individual mortality risks are independent, the mathematical expec-
tation of the coexistence time between two persons i and j is a sum of products
of unconditional survival probabilities until different ages for those two persons.
Assuming that individual mortality risks are independent tends to simplify

the analysis of coexistence. This explains why this assumption was made in some
demographic studies of joint survival, as in Le Bras (1973 p. 11). Note, however,
that this constitutes a significant simplification: in the real world, mortality
risks faced by related individuals can be, to some extent, dependent, so that
the joint survival probability is not equal to the product of individual survival

7Section 5 is dedicated to the measurement and valuation of coexistence gains when mor-
tality risks are dependent.
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probabilities, but takes a more complex form. Hence, when developing our
empirical application, we will, in a first stage, consider the case of independent
individual mortality risks as a first approximation (Section 4). Then, in Section
5, we will relax that assumption and introduce risk dependence.

3 Valuing coexistence time

In order to measure the value of coexistence time, we will, in the rest of this
paper, rely on equivalent consumption measures, in line with the equivalent
income approach. That method, which has become increasingly used in the
literature aimed at valuing gains in life expectancy over time, is presented in
Section 3.1. Section 3.2 extends it to the valuation of gains in coexistence time.

3.1 An equivalent consumption approach

A major diffi culty raised by the inclusion of life-years in indicators of economic
performance consists in the selection of adequate weights to represent the con-
tribution of longevity gains relative to other determinants of well-being. This
weighting problem arises because living standards are multidimensional. The
equivalent income/consumption approach deals with the weighting problem by
starting from (representative) preferences on hypothetical situations defined
in terms of all dimensions of well-being under study. Those preferences are
then used to construct an equivalent income/consumption aimed at measuring,
in monetary terms, the well-being associated to some particular living condi-
tions. The equivalent income/consumption is defined as the hypothetical in-
come/consumption such that, if combined with reference levels for the other
dimensions of well-being under study, it would bring the same well-being level
as under the current income/consumption and the current living conditions.
In the context of the valuation of longevity gains, one can include longevity

gains in a monetary measure of welfare by defining a constant consumption
profile equivalent, that would, by construction, make a representative agent in-
different between, on the one hand, his current situation (with current constant
consumption profile and life expectancy), and, on the other hand, a hypotheti-
cal situation with the equivalent consumption profile and the life expectancy of
reference (usually the one prevailing at a base year).
Denoting by U (ci,Si) the utility function representing individual i’s pref-

erences over lotteries of life defined as a pair (ci,Si), where ci is a vector of
dimension T + 1, whose entries consist of constant consumption levels at each
(potential) period of life, while Si is a vector of dimension T + 1, whose entries
consist of unconditional survival probabilities to the different ages of life, one
can define the constant consumption profile equivalent ĉi in the following way:

U (ci,Si) = U
(
ĉi, S̄i

)
(8)

where S̄i represents the reference survival conditions.
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The constant consumption profile equivalent ĉi captures, by construction,
the welfare gains associated with an improvement in survival conditions. To see
this, note first that if the actual survival conditions are equal to the reference
survival conditions (i.e. if Si = S̄i), then the current consumption profile and
the equivalent consumption profiles are equal: ĉi = ci. However, if the actual
survival conditions are better than the reference survival conditions, i.e. if
S̄i � Si, we have ci � ĉi, reflecting the improvement in the quality of life.
Assuming that (i) individual preferences satisfy the expected utility hypoth-

esis (i.e. preferences on lotteries are represented by a weighted sum of utilities
associated to the scenarios of those lotteries, with weights corresponding to the
probability of occurrence of each scenario), (ii) lifetime welfare is a discounted
sum of temporal welfare levels (with some constant pure time preference factor

β), (iii) temporal welfare takes the form c1−γi

1−γ + α, we can represent individual
i’s preferences by:

U (ci,Si) =

T−1∑
s=0

βsSis+1

(
c1−γi

1− γ + α

)
(9)

From which we can write the equivalent consumption flow ĉi (i.e. the entry of
the constant equivalent profile ĉi) as satisfying the following equality:

T−1∑
s=0

βsSis+1

(
c1−γi

1− γ + α

)
=

T−1∑
s=0

βsS̄is+1

(
ĉ1−γi

1− γ + α

)
(10)

From which it follows that the equivalent consumption flow ĉi is:

ĉi =

(1− γ)



∑T−1

s=0
βsSis+1

(
c1−γi

1−γ + α
)

∑T−1

s=0
βsS̄is+1

− α



1
1−γ

(11)

The equivalent consumption flow ĉi is such that, if enjoyed every year while
facing the survival conditions of reference, this would make the representative
agent indifferent between that hypothetical situation and his current situation
(with current consumption profile and survival probabilities). The equivalent
consumption flow allows us to incorporate, within an extended monetary mea-
sure of economic performance, variations in survival conditions with respect to
reference survival conditions. Expression (11) shows how preferences, through
the parameters α, β and γ, affect the shape of the constant equivalent con-
sumption level ĉi. The gap between the actual and the equivalent consumption
levels depends on the differential between the existing survival conditions and
the survival conditions of reference.
The monerary equivalent method was used, with several amendments, in

Williamson (1984), Crafts (1997), Costa and Steckel (1997), Sandberg and
Steckel (1997), Nordhaus (2003), Becker et al (2005), Murphy and Topel (2006),
Hall and Jones (2007) and Fleurbaey and Gaulier (2009). Those studies high-
lighted that the measurement of economic performance over time is strongly
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affected by the inclusion of variations in survival conditions. In the following,
we propose to extend that approach to the inclusion of variations in joint sur-
vival conditions.

3.2 Equivalent consumption under coexistence concerns

When an individual cares about coexistence with M > 0 other individuals, his
utility function depends not only on his consumption and on his own survival
chances, but also on how long he expects to coexist with each of those M
individuals. This latter determinant of his well-being can be measured by the
joint life expectancies with those persons. Since joint life expectancies depend
on the survival conditions faced by each of those persons (because Sijx+1 is a
function of Six+1 and Sjx+1), the well-being of our representative individual
depends now on the survival conditions faced by the M persons of interest.8

In that context, we can redefine the constant consumption profile equivalent,
as the hypothetical constant consumption profile that would, by construction,
make a representative agent indifferent between, on the one hand, his current
situation, with his current consumption and the current survival conditions
(both for himself and for the M persons he cares about), and, on the other
hand, a hypothetical situation with the constant equivalent consumption profile
and the survival conditions of reference (both for himself and the M persons).
If one denotes by Ũ (ci,Si,S1, ...,SM ) the utility function of individual i that

represents his preferences over lotteries involving different durations of life for
him as well as for the M other persons, the constant equivalent consumption
profile ĉi now satisfies the condition:

Ũ (ci,Si,S1, ...,SM ) = Ũ
(
ĉi, S̄i, S̄1, ..., S̄M

)
(12)

where S̄i, S̄1, ..., S̄M are the unconditional survival probabilities of reference for
persons i and for the M persons. Under that formulation, the constant equiv-
alent consumption profile captures not only the variations, with respect to the
survival conditions of reference, in the survival conditions faced by individual i,
but also the variations in the survival conditions faced by the M other persons.
Assuming that individual i’s preferences satisfy conditions (i) and (ii), and

replacing (iii) by assumption (iv), according to which temporal welfare equals
c1−γi

1−γ +α+
∑N

q=1
δq in case of coexistence with N persons (out of theM persons

he cares about), the utility function Ũ (ci,Si,S1, ...,SM ) can be written as:

Ũ (ci,Si,S1, ...,SM ) =

T−1∑
s=0

βsSis+1

(
c1−γi

1− γ + α

)
+

M∑
q=1

δq

T−1∑
s=0

βsSiqs+1 (13)

where δq is the intensity of individual i’s coexistence concerns with person q.
The function Ũ (ci,Si,S1, ...,SM ) can be decomposed in two components: on

8The form of the relation between the probabilities of joint survival (and, hence, the joint
life expectancy) and individual survival probabilities may vary, depending on how dependent
individual survival processes are. See Section 5 on this.
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the one hand, the expected welfare from consumption of goods and services
(first sum of terms), which depends on individual i’s survival probabilities; on
the other hand, the expected welfare from coexistence with the M persons of
interest (second sum of terms), which depends on the joint life expectancy of
individual i with each of those persons of interest.9

The additive structure of Ũ (ci,Si,S1, ...,SM ) implies that the welfare gain
from coexisting with one person is independent from the welfare gain from coex-
isting with other persons. Note that, in the real world, it may be the case that
the welfare derived from coexistence with a person depends on the presence of
some other person. However, there is, in general, no obvious way to relate the
welfare gains from coexistence with different persons. In that context, assuming
an additive structure is a plausible first-order approximation.
On the basis of Ũ (ci,Si,S1, ...,SM ), we can write the equivalent consump-

tion flow c̃i (i.e. the entry of the constant equivalent profile ĉi) as satisfying:

T−1∑
s=0

βsSis+1

(
c1−γi

1− γ + α

)
+

M∑
q=1

δq

T−1∑
s=0

βsSiqs+1

=

T−1∑
s=0

βsS̄is+1

(
c̃1−γi

1− γ + α

)
+

M∑
q=1

δq

T−1∑
s=0

βsS̄iqs+1 (14)

Isolating the equivalent consumption flow c̃i, one obtains:

c̃i =

(1− γ)



∑T−1

s=0
βsSis+1

(
c1−γi

1−γ + α
)

+
∑M

q=1
δq∆q∑T−1

s=0
βsS̄is+1

− α



1
1−γ

(15)

where ∆q ≡
∑T−1

s=0
βsSiqs+1 −

∑T−1

s=0
βsS̄iqs+1.

As in the baseline model, c̃i depends on individual i’s survival chances, and
on preference parameters α, β and γ. However, under coexistence concerns,
c̃i depends also on the joint survival chances of individual i with each of the
M persons of interest, and on the preference parameters δq, which capture the
welfare gains from coexistence with each of those persons. As a consequence,
c̃i captures not only the variations in life expectancy for person i, but also the
gains in joint life expectancy with the persons of interest.

9The utility function is assumed to exhibit self-oriented coexistence concerns: according
to that function, individuals care about the survival of other persons only for themselves,
without caring about the well-being of those other persons. It should be stressed here that
this utility function does not constitute the only way to represent coexistence concerns. As
an alternative to self-oriented coexistence concerns, we could have represented coexistence
concerns by means of a utility function exhibiting altruism (individuals would be interested
in the well-being of others, and, hence, in the survival of others).
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4 An illustration with French data (1820-2010)

Let us now illustrate the above discussions in the light of the example of France
(1820-2010). For that purpose, we will proceed in two stages. Section 4.1
presents joint life expectancy statistics for France, and discusses the evolution
of the generational overlap over time. Section 4.2 proposes to quantify the
contribution of improved joint survival conditions to living standards, under
different scenarios regarding the structure of coexistence concerns.
Throughout this section, we will first focus, for the sake of simplicity, on

the case where individual mortality risks are independent, so that the joint life
expectancies can be written as a sum of products of individual unconditional
survival probabilities. Then, Section 5 will examine the robustness of our results
to introducing mortality risk dependence by means of the copula approach.

4.1 Joint life expectancies

The demographic data that we use are the lifetables from the Human Mortality
Database for France (1816-2010).10 In order to give a general view of the evo-
lution of survival conditions over that period, Figure 3 presents the patterns of
life expectancy at birth for men and women over that period. Life expectancy
has strongly grown: the expected duration of life was, in 1816, about 39 years
for men and about 41 years for women, it is nowadays about 78 years for men
and 85 years for women. The three drops coincide with the French Commune
(1871), the First and the Second World War.
Given the observed improvement of survival conditions, one expects that the

duration of coexistence between individuals must have increased too. However,
without any further calculations, it is hard to know to what extent coexistence
time has grown over time. Actually, as we will show below, the precise extent
to which coexistence has grown depends on the particular age of the individuals
whose coexistence is considered.
Let us take, as a first case, the coexistence of a man and a woman of age 25

years in France (Figure 4). During the 19th century, the joint life expectancy
of a man and a woman of age 25 was relatively stable, and equal to about 28
years. However, there has been a strong growth in coexistence time during the
20th century. In 2010, a man and a woman of age 25 can expect to coexist
about half a century. Note also, still on Figure 4, that the expected coexistence
has decreased strongly during the French Commune, the First and the Second
World Wars. If one interprets the pair of a man and a woman as a couple, those
drops show that, in times of conflict, a significant part of the population falls in
widowhood, implying a decline in the average coexistence time for couples.11

10Sources: The Human Mortality Database (2013), University of California, Berkeley
(U.S.), Max Planck Institute for Demographic Research (Germany). Available online at:
http://www.mortality.org. Note that Section 4.1 presents demographic data over 1816-2010,
whereas our income data only cover the period 1820-2010. Hence, demographic data for years
1816-1819 will not be used when computing consumption equivalents (Section 4.2).
11Note that, if one carries out the same computation exercise for a pair composed of a

man and a woman of age 50 years, one finds a similar pattern: stagnation of the joint life
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Figure 3: (Period) life expectancy at birth in
France, 1816-2010, women and men

When interpreting Figure 4, it should be stressed that joint life expectancies
quantify coexistence only from the perspective of joint survival. Those measures
quantify the expected time during which both a male and a female of some ages
will remain alive. But there is no concern here for divorce, living arrangements,
or other factors affecting coexistence in a broader sense.
Joint life expectancies can also be used to measure the duration of coex-

istence for persons who belong to different generations, that is, the overlap
between generations. Figure 5 shows the joint life expectancy of a woman of
age 25 with a newborn boy over 1816-2010. The expected duration of coex-
istence for those persons has been multiplied by a factor (almost) equal to 3,
from about 22 years in 1816 to about 60 years in 2010. The rise in the joint
life expectancy is here larger than the rise in the life expectancy of the two per-
sons taken separately. Actually, life expectancy has, over that period, doubled
(approximately), whereas the joint life expectancy was multiplied by 3. If one
interprets Figure 5 as showing the expected duration of coexistence for a young
mother with her newborn boy, it follows that the average size of the overlap
between two successive generations has grown strongly during the 20th century.

expectancy during the 19th century, and strong growth during the second part of the 20th
century. While a man and a woman of age 50 could expect to coexist about 15 years in the
19th century, their expected duration of coexistence is now equal to 28 years.
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Figure 4: (Period) joint life expectancy for a
woman and a man of age 25, France (1816-2010)

Figure 5: (Period) joint life expectancy for a
woman of age 25 and a newborn boy, France

(1816-2010)

In a similar vain, Figure 6 shows the joint life expectancy for a woman of age
50 with a newborn boy. Whereas coexistence between them was about 15 years
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during the 19th century, this is today above 35 years. If one assumes generations
of 25 years, that joint life expectancy can be interpreted as the average size of
the overlap between two generations separated by an intermediate generation.
Coexistence with a grandmother lasted, on average, less than 15 years during
the 19th century. Nowadays, it lasts more than 35 years.
Note, here again, that joint life expectancy measures coexistence only in a

particular sense, that is, from the perspective of joint survival. Many other
factors can affect the size of the overlap between generations. For instance, the
recent tendency towards the postponement of births starting in the 1970s (see
Gustafsson 2001) may tend to reduce, to some extent, the contribution of the
rise in joint life expectancies to the overlap between generations. However, if we
consider the overlap of two successive generations (Figure 5), the postponement
of births affects the overlap in a way that is, over the entire period considered,
likely to be far less sizeable than the impact of improved joint survival conditions.
It is only for the overlap of non successive generations, as on Figure 6, that the
postponement of births could have a more significant impact on the generational
overlap (in case of repeated postponement of births at each generation).

Figure 6: (Period) joint life expectancy for a
woman of age 50 and a newborn boy, France

(1816-2010)

An alternative way to measure the evolution of coexistence time consists
of joint survival curves. Those curves are the equivalent, for the measure of
coexistence time, of standard survival curves focusing on the lifetime of a single
individual. A joint survival curve indicates the probability that a group of
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individuals of some particular age and gender achieves a particular duration of
existence, conditionally on age-specific probabilities of survival.

Figure 7: Joint survival curves (period) for a man
and a woman aged 25.

Figure 8: Joint survival curves (period) for a
woman aged 25 and a newborn boy.

As an illustration, Figure 7 shows the evolution of joint survival curves in
the case of groups composed of a man and a woman of age 25. On the basis of
age-specific mortality rates prevailing in 1816, only 23.5 % of pairs composed of
a man and a woman of age 25 would still be complete 40 years later, whereas
76.5 % of those pairs would have, during the next 40 years, suffered from the
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death of at least one of their members. But if we focus on the survival conditions
prevailing in 2010, the proportion of pairs still complete 40 years later is equal
to 77.5 %, that is, more than three times larger than in 1816. The evolution
of coexistence time over the last two centuries appears even stronger once one
focuses on the proportion of pairs of individuals still complete after a period of
60 years. That proportion has grown from 2 out of 1000 on the basis of 1816
survival conditions, to 245 out of 1000 on the basis of 2010 survival conditions.
In a similar vein, Figure 8 shows the evolution of joint survival curves for a

pair composed of a woman of age 25 and a new-born boy. Here again, the gains
in terms of coexistence time are substantial. Whereas only 25.5 % of those pairs
remained complete 40 years later on the basis of 1816 survival conditions, that
proportion grew to 33 % in 1900, to 69 % in 1950, and reaches 90 % in 2010.
If one interprets those pairs as pairs composed of a mother and her child, the
latter number means that, conditionally on age-specific probabilities of death
prevailing in 2010, 90 % of children will coexist at least 40 years with their
mother. That figure is about 4 times larger than in 1816.
Note that Figure 8 shows the evolution of joint survival under a given, fixed

age gap between the woman and the boy, equal to 25 years. This fixed age gap
constitutes a simplification of reality. In particular, the recent tendency towards
the postponement of births has increased the average age gap between mothers
and sons (Gustafsson 2001). However, this trend is recent in comparison with
the long-lasting improvement in survival conditions. Moreover, the rise in the
age gap does not suffi ce to fully counterbalance the large gains achieved in terms
of joint survival.

4.2 Equivalent consumptions

In this section, we calculate the value of coexistence years by using the method
of consumption equivalents that was presented in Section 3. That method can
hardly be illustrated geometrically, since the number of dimensions under study
(i.e. consumption per year and survival conditions per year) is too large. How-
ever, for the sake of illustration, we can represent geometrically the construction
of monetary equivalents by focusing on a simple two-dimensional case, involving
only income and life expectancy. That case is illustrated on Figure 9, with the
example of France (1820-2010).12 Figure 9 shows the evolution of France in the
(income, life expectancy) space. Provided one draws an indifference map in that
space, it is possible to compute an equivalent income for each year, under some
particular baseline survival conditions.13

If, for instance, one chooses the life expectancy prevailing in 1950 as a refer-
ence, one can, for each year under study, compute the hypothetical income level

12The income figures are GDP per capita expressed in International Geary-Khamis dol-
lars (1990). Sources: The Maddison Project: http://www.ggdc.net/maddison/maddison-
project/home.htm. Life expectancy figures come from the Human Mortality Database (2013).
13The indifference map on Figure 9 is drawn in an arbitrary way. The next subsection

explores the construction of a more realistic indifference map on the basis of the empirical
literature on money/risk and risk/risk trade-offs.
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that would maintain the representative agent on the same indifference curve,
while facing the 1950 survival conditions.14 Figure 9 illustrates the computa-
tion of the equivalent income for year 1972. The equivalent income is obtained
by moving along the indifference curve passing through the 1972 point, until
one reaches the 1950 life expectancy level.

Figure 9: Construction of the equivalent income for year 1972 in
France.

This section, which computes constant consumption profile equivalents, car-
ries out the same kind of computation of monetary equivalents, but in a different
14The reference survival conditions - here the ones prevailing in 1950 - were chosen ar-

bitrarily. A similar construction could be carried out under alternative reference survival
conditions.
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space, including more dimensions (consumption per year and survival conditions
per year), as presented in Section 3. The major diffi culty raised by the equivalent
consumption approach consists of drawing the indifference map in the space un-
der study. Obviously, given that both consumptions and survival conditions are
in general desirable goods, indifference curves must be decreasing. Moreover,
one expects also that very short lives with high consumptions and very long
lives with low consumptions must be dominated, in welfare terms, by lives with
intermediate duration and intermediate consumptions. As a consequence, it is
also reasonable to expect that indifference curves are convex. Having stressed
this, one needs additional information to be able to draw the indifference map.
The next subsection shows how one can draw such indifference maps on the
basis of empirical studies on money-risks and risks-risks trade-offs.

4.2.1 Calibration of preference parameters

In our model, the knowledge of preference parameters α, β, γ and δK would
allow us to draw an indifference map in a space including, as dimensions, con-
sumptions at different ages as well as individual and joint survival probabilities.
For the sake of presentation, we will focus on the case of a representative

agent of age 25.15 When considering the calibration of preferences, it is clear
that there exists a strong heterogeneity in real life, concerning both the strength
and direction of coexistence concerns. We will consider here four distinct cali-
brations, each of these corresponding to a more or less dense network of welfare
interdependencies (i.e. a more or less high number M of persons of interest):

1. Case M0: Absence of welfare interdependencies (M = 0)

2. Case M3: Weak interdependencies (M = 3)

3. Case M6: Strong interdependencies (M = 6)

4. Case M9: Extended interdependencies (M = 9)

Case M0, where individuals only care about their own survival, is implausi-
ble, but will be used as a benchmark. Regarding cases M3 to M9, we assume
that social interdependencies are uniformly distributed in terms of generations.
In other words, the persons whose survival matters for an individual of age 25
will be supposed to be of ages 0, 25 and 50 years in equal proportions.16

The calibration of parameters β and γ can be based on the existing literature.
The parameter β, which reflects pure time preferences, takes in general a value

15The reason why we do not consider lower ages is that our consumption data do not cover
ages inferior to 25 years (see the Appendix).
16 In the case of society M3, it is assumed that the representative individual cares about the

survival of a spouse, of a child and of a parent. In the case of society M6, it is assumed that
the representative agent cares about the survival of one spouse, of two parents and of two
children. Finally, in the case of society M9, it is assumed that the representative individual
cares about the survial of one spouse, two parents and two children, as well as of one person of
his generation, one person of the previous generation and one person of the next generation.
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that is consistent with a quarterly discount factor equal to 0.99 (see de la Croix
and Michel 2002). In our model, where each period lasts one year, the adequate
value of β is equal to (0.99)

4
= 0.96. As far as the calibration of γ is concerned,

empirical studies surveyed in Browning et al (1999) lead to values close to 0.85.
Following Blundell et al (1994), we will use γ = 0.83.

Regarding the calibration of parameters α and δK , we will rely on the liter-
ature on money/risk trade-offs. The literature on the value of a statistical life
(VSL) - i.e. the shadow price of a reduction of the risk of death per unit of
risk - is broad, and includes studies of two distinct types: revealed preferences
studies (focusing on how individuals solve the money/risk trade-off on existing
markets) and stated preferences studies (asking to individuals their willingness
to pay - WTP - or their willingness to accept - WTA - for small variations in
the risk of death).17 Despite significant variations across methods (the WTA
being generally larger than the WTP for an equal variation of risk), VSL studies
all showed that reductions of the risk of death are highly valued (see Aldy and
Viscusi 2003). According to Miller (2000), the VSL amounts to between 120 and
180 times the GDP per capita. This indicates that individuals strongly value
reductions in the risk of death, even though VSL estimates vary according to
variables such as income, health status and age (see Cropper et al 2011).
Empirical estimates of the VSL can be used to calibrate parameters α and

δK . For that purpose, let us assume, as a first approximation, that individual
mortality risks are independent.18 If one defines, like Jones-Lee (1991), the VSL
as the average marginal rate of substitution between consumption and the risk
of death within the population, the VSL can be written, in our model with
homogeneous population, as:

∂c0t
∂dI0t

∣∣∣∣
U(·)=Ū

= −
∂U(·)
∂dI0t
∂U(·)
∂c0t

=

 ∑T−1

i=0

βiSIi+1t

(
c
1−γ
i
1−γ +α

)
(1−dI0t)

+
∑M

K=1
δK
∑T−1

i=0

βiSIKi+1t
(1−dI0t)


(1− dI0t)(c0t)−γ

(16)

where SIi+1t denotes the probability of survival for the representative agent I
until period i+1 on the basis of mortality tables prevailing at time t, dI0t denotes
the probability of death in the first period for the representative individual I
on the basis of mortality tables prevailing at time t, while SIKi+1t denotes the
probability of joint survival for the representative individual I with individual
K until period i+ 1 on the basis of mortality tables prevailing at time t.19

In the case M0, where there is no interest for coexistence (i.e. δK = 0 for

17On revealed preferences studies, see the survey by Viscusi (1998). On stated preferences
studies, see Johansson (1995). Stated preferences studies are subject to framing effects (see
Andersson et al 2013 for recent evidence of time framing effects).
18The calibration of preference parameters under dependent mortality risks is examined in

Section 5.
19Survival probabilities are taken from the Human Mortality Database. For simplicity, we

take survival probabilities for the total population (men and women).

23



all K), the above expression can be simplified to:

∂c0t
∂dI0t

∣∣∣∣
U(·)=Ū

= −
∂U(·)
∂dI0t
∂U(·)
∂c0t

=

∑T−1

i=0

βiSIi+1t

(
c
1−γ
i
1−γ +α

)
(1−dI0t)

(1− dI0t)(c0t)−γ
(17)

From that expression, it is possible, for empirical estimates of parameters
β and γ and for empirical estimates of the VSL, to extrapolate a value for
preference parameter α from mortality tables and consumption profiles.20 To
see this, note that isolating α yields:

α =
V SL× (1− dI0t)(c0t)−γ −

∑T−1

i=0

βiSIi+1t
(1−dI0t)

(
c1−γi

1−γ

)
∑T−1

i=0

βiSIi+1t
(1−dI0t)

(18)

According to Miller (2000), the VSL amounts to between 127 and 184 times
the real GDP per capita, that is, between 2466928 and 3574132 euros (2000).
Substituting for those estimates in the above expression, as well as for β = 0.96
and γ = 0.83, one obtains α = 7.007 under the lower bound for VSL and
α = 24.013 for the upper bound.21

Those values for α presuppose the absence of coexistence concerns, i.e. δK =
0 for all K. Once individuals are interested in other individuals’survival (as
in cases M3, M6 and M9), one needs to calibrate α and δK jointly. Such a
calibration requires to know how individuals value the survival of others.
While studies measuring the value of variations in individual survival prospects

are numerous, the same is not true for studies measuring the value of variation
in joint survival prospects. One exception is the study by Needleman (1976),
which uses data on kidney transplant in order to identify "coeffi cients of con-
cerns", which are marginal rates of substitution between the risk of death for
a given person and the risk of death for another person.22 Kidney transplant
situations are most relevant for the valuation of coexistence gains, since these
are cases where individuals must make a trade-off between the survival of an-
other person (the potential receiver) and their own survival. Hence Needleman’s
estimated coeffi cient of concerns based on kidney donations are most relevant
for calibrating a lifecycle model with coexistence concerns.
Needleman’s estimated coeffi cients of concern vary depending on the link

between the potential donor and the potential receiver. Needleman found that
the coeffi cient of concern for a person and his spouse is equal to about 0.1. This
means that, in order to increase the survival chances of his spouse, a person is
willing to sacrifice, in terms of his own survival chances, at most one tenth of
that variation. When considering other links, coeffi cients of concerns are even

20See the Appendix for data on consumption profiles.
21Given that Miller’s study covers the period 1974-1999, we use, for the calibration, the

average levels of the variables (consumptions, survival probabilities) over that period.
22Other studies on the interest of individuals for others’survival include Jones-Lee (1991),

Araya and Leon (2002) and Strand (2005).
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lower: the coeffi cient of concern of children for their parents equals 0.03, that
is, one third of the coeffi cient of concern of parents for their children.
Needleman’s findings can be used to calibrate parameters α and δK . In

our model, the marginal rate of substitution between the risk of death for the
representative person I and the risk of death for another person K is equal to:23
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
(19)

One can rewrite that expression as:

∂dI0t
∂dK0t

∣∣∣∣
U(·)=Ū

=

∂U(·)
∂dK0t

∂U(·)
∂dI0t

=
δK
∑T−1

i=0

βiSIKi+1t
(1−dK0t)

V SL× (1− dI0t)(c0t)−γ
(20)

Hence, for a given value of the VSL, it is possible to calibrate the parameter
δK , since the LHS of that expression is known: it is equal to 0.1 in the case of
the survival of a spouse or a child, and equal to 0.03 in the case of the survival
of a parent or another person of interest (see Needleman 1976). Thus, the value
of the parameter δK depends on the kind of welfare interdependency. This
depends also on the levels of probabilities of joint survival. Those probabilities
obviously depend on the age of the persons under study.
Substituting for the coeffi cient of concern, for the VSL and for the consump-

tion levels and probabilities of joint survival, one can rewrite δK as:

δK =

∂U(·)
∂dK0t
∂U(·)
∂dI0t

× (1− dI0t)(c0t)−γ × V SL∑T−1

i=0

βiSIKi+1t
(1−dK0t)

(21)

If one takes, for instance, the case of joint survival with children (for which
the coeffi cient of concern equals 0.1), one obtains that δK = 3.869 (under the
lower bound for VSL) and δK = 5.606 (under the upper bound for VSL). In
the case of joint survival with a spouse (belonging to the same generation), one
obtains δK = 4.301 (under the lower bound for VSL) and δK = 5.841 (under
the upper bound for VSL). Finally, in the case of joint survival with a parent
(i.e. previous generation), one obtains δK = 1.515 (under the lower bound for
VSL) and δK = 2.195 (under the upper bound for VSL).
Given the additive structure of the individual utility function, the above ex-

pression for δK is independent from the perspectives of joint survival with other
individuals. Therefore, the values obtained for parameters δK are independent
from the number of persons whose survival matters for the representative in-
dividual. Actually, the unique difference induced by the number of persons of

23We assume, here again, the independence of individual mortality risks.
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interest M lies in the calibration of the parameter α. To see this, let us isolate
α from the definition of the VSL in our economy. We obtain:

α =

 V SL× (1− dI0t)(c0t)−γ −
∑T−1

i=0

βiSIi+1t
(1−dI0t)

(
c1−γi

1−γ

)
−
∑M

K=1
δK
∑T−1

i=0

βiSIKi+1t
(1−dI0t)


∑T−1

i=0

βiSIi+1t
(1−dI0t)

(22)

That expression gives a unique value for α conditionally on parameters β, γ and
δK , the latter ones being calibrated on the basis of (21). The level of α derived
from that formula depends on the number M of individuals of interests.
Table 1 summarizes the calibration of the preference parameters α, β, γ and

δK for societies M0, M3, M6 and M9, under the lower and the upper bounds
for the value of a statistical life. Those values will be used, in the rest of this
section, to compute the consumption equivalent taking variations in survival
conditions into account.24

Parameters Society M0 Society M3 Society M6 Society M9
VSL low high low high low high low high

α 7.007 24.013 -1.708 11.387 -7.771 2.603 -11.181 -2.338

β 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960

γ 0.830 0.830 0.830 0.830 0.830 0.830 0.830 0.830

δchild - - 3.869 5.606 3.869 5.606 3.869 5.606

δspouse - - 4.031 5.841 4.031 5.841 4.031 5.841

δparent - - 1.515 2.195 1.515 2.195 1.515 2.195

δother - gen +1 - - - - - - 1.161 1.682

δother - gen 0 - - - - 1.209 1.752 1.209 1.752

δother - gen -1 - - - - - - 1.515 2.195

Table 1: Calibration of preference parameters.

The value assigned to the parameter α decreases, for a given VSL, when one
shifts from a society without coexistence concerns (societyM0) to a society with
coexistence concerns (society M3 to M9). The intuition goes as follows. When
an individual cares only about his own survival, the parameter α alone captures
the importance of survival for that individual (independently from the level
of consumption). However, once joint survival with other individuals matters,
the importance of survival for a person is spread on parameters α and δK , since
individual survival matters also for the joint survival with other persons. Hence,
for a given value of the MRS between money and survival for the individual,

24Note that, as stressed by Costa and Kahn (2004), the VSL has grown during the 20th
century. In the light of this, one may compute an equivalent consumption on the basis of
several - instead of one - sets of preference parameters. Such a measure of standards of living
would incorporate both the improvement in survival conditions and the change in preferences.
In this paper, we rely on a fixed set of preference parameters, to capture only the gain in
survival conditions.
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the introduction of coexistence concerns under the form of parameters δK > 0
implies that the level of α must decrease. This explains why, for a given VSL,
the level of α decreases when coexistence concerns become stronger.

4.2.2 Results

Before considering the inclusion of gains in coexistence time within an equivalent
consumption measure, let us first focus on the special case of a society where
individuals care only about their own survival, and not about the survival of
others. That case is actually the one that received the largest attention in the
literature, following Usher’s (1973, 1980) pioneer contributions.
Figure 10 compares, in the case of a representative agent of age 25 with no

concern for coexistence (society M0), unadjusted consumption with adjusted
consumption incorporating the gains in survival conditions with respect to the
base year (1820).25

Figure 10: Unadjusted and adjusted consumption for
France, 1820-2010 (Society M0, VSL lower bound).

25Unadjusted consumption is here defined as the constant equivalent consumption level on
the life cycle, that is, the hypothetical constant consumption level such that, if enjoyed at all
periods of life, this would make the representative agent indifferent with his actual lifetime
consumption profile.
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During the longest part of the 19th century, adjusted and unadjusted con-
sumption curves are quite close. However, at the end of the 19th century,
the two curves start diverging. That divergence becomes much stronger after
World War Two. That sizeable gap reflects the high value assigned to gains
in life expectancy over the last two centuries. To interpret the large size of
the adjustment, let us take the example of year 2000. In 2000, the unadjusted
consumption is equal to 21,523 euros, while the adjusted consumption equals
87,694 euros. This means that an annual compensation of 87,694 - 21,523 euros
= 66,171 euros would be needed to allow an individual facing the survival con-
ditions of 1820 to benefit from the same welfare level as the one enjoyed under
the survival conditions of 2000. That gap, equal to 66,171 euros annually, is the
monetary equivalent of life expectancy gains over 1820-2000.
Let us now consider the value of gains in coexistence time. In order to

incorporate the value of coexistence time, we compute equivalent consumptions
taking into account not only variations in individual survival prospects, but,
also, in joint survival prospects.

Figure 11: Unadjusted and adjusted
consumption for France (1820-2010), societies
M0, M3, M6 and M9 (VSL lower bound).

Figure 11 compares the equivalent consumption in the case of, respectively,
weak, strong and extended coexistence concerns (i.e. societies M3, M6 and
M9) with the equivalent consumption without coexistence concerns (i.e. society
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M0) and the unadjusted consumption.26 Note that all equivalent consumptions
curves on Figure 11 rely on exactly the same empirical estimates of the value
of a statistical life. The unique difference concerns how parameters α and δK
are calibrated on the basis of money-risk trade-offs, depending on the strength
of coexistence concerns.
Undoubtedly, the incorporation of gains in joint life expectancies raises the

equivalent consumption levels. One can, for instance, interpret the gap between
the adjusted consumption curves under casesM3 andM0 as reflecting the value,
measured in monetary terms, of the improvement of joint survival conditions
over the period considered. That value is substantial. For instance, for year
2010, the gap between those two curves is equal to about 31,000 euros. That
amount reflects both the strong rise in joint life expectancies over the period
1820-2010, as well as the large weight assigned by individuals to coexistence.
Gaps are even larger when considering strong or extended interdependencies
(cases M6 and M9).

The inclusion of coexistence concerns into the lifecycle model tends to modify
significantly the contribution of longevity gains to the measurement of standards
of living. The reason why taking coexistence concerns into account affects the
picture lies in the fact that joint life expectancies have, over the period consid-
ered, grown more strongly than single life expectancies, which leads to larger
adjustments.
Finally, let us now calculate consumption equivalents under the upper bound

of the VSL. As shown on Figure 12, equivalent consumption curves are now
much higher than under the lower bound VSL, whatever coexistence concerns
are taken into account or not. This does not constitute a surprise: since Usher’s
(1973) pioneer works, it is well known that changes in the VSL also affect the
level and pattern of equivalent consumption measures incorporating variations
in survival conditions. But it should be stressed that, here again, taking coex-
istence concerns into account affects significantly the contribution of improved
survival conditions to living standards.
In sum, the comparison of equivalent consumptions with and without co-

existence concerns shows that incorporating coexistence concerns affects the
measurement of economic performance significantly. True, even if we focus on
the case where there is no coexistence concern, the comparison of the equiv-
alent consumption curve with the unadjusted consumption curve reveals that
the improvement of survival conditions contributed a lot to the improvement
of standards of living over the last two centuries. However, as shown on Fig-
ures 11 and 12, the contribution of improved survival conditions to standards
of living is even larger once coexistence concerns are also taken into account.
This suggests that shifting from a lifecycle model without interest for others’
survival to a more general model with coexistence concerns definitely affects the
measurement of the evolution of living standards over the last two centuries.

26The joint life expectancies taken into account when considering the M3, M6 and M9
cases are those between persons of age 25 and 0, ages 25 and 25, as well as between persons
of ages 25 and 50 years.
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Figure 12: Unadjusted and adjusted
consumption for France (1820-2010), societies
M0, M3, M6 and M9 (VSL upper bound).

5 Dependent mortality risks

Up to now, our analyses were based on the postulate of independent individual
mortality risks. Although most convenient for analytical purposes, this assump-
tion simplifies the picture, in particular when considering survival within pairs
of related individuals. As emphasized by Clayton (1978), related individuals are
subject to some common influences, which can make individual mortality risks
dependent. The sources of dependent mortality risks within pairs of related
individuals are numerous. Members of the same family, such as fathers and
sons, share some common influences (i.e. genes and lifestyles), which are likely
to lead to some dependence of individual mortality risks.
When considering mortality within couples, a well-known source of depen-

dence consists of the broken heart syndrome. The broken heart syndrome was
first illustrated by Parkes et al (1969), who showed, on the basis of a data set
including 4,486 55-year-old widowers, that, during the first few months following
the death of their wives, widowers face a 40 % increase in mortality risk. This
phenomenon, which is an occurrence of positive dependence (in the sense that
the survival of the two members of the couple are positively correlated) was also
studied by Jagger and Sutton (1991) and by Spreeuw and Owadally (2013).
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Assuming risk independence simplifies the picture too much when consider-
ing related individuals. This section explores the impact of relaxing the inde-
pendence assumption on the measure and valuation of coexistence gains.

5.1 The survival copula approach

In the actuarial and epidemiological literatures, a major theoretical tool used
for the representation of dependent mortality risks is the copula.27 Consider
two random variables X and Y . Let us denote the distribution function of the
random variable X by F (x) ≡ Pr(X ≤ x), and the distribution function of the
random variable Y by G(y) ≡ Pr(Y ≤ y). Let us denote the joint distribution of
those variables by H(x, y) ≡ Pr (X ≤ x, Y ≤ y). Sklar’s Theorem (Sklar 1959)
states that there must exist a copula C such that:

H(x, y) = C (F (x), G(y))

and that, if F (x) and G(y) are continuous, the copula C is unique. The copula
(in dimension 2) is a function C : [0, 1]

2 → [0, 1] that satisfies the following three
conditions (see Charpentier 2014, p. 153):

• Grounded function: C (u1, 0) = C (0, u2) = 0 for all u1, u2 ∈ [0, 1],

• Uniform margins: C(u1, 1) = u1 and C (1, u2) = u2 for all u1, u2 ∈ [0, 1],

• C is a 2-increasing function, that is, for all 0 ≤ ui ≤ vi ≤ 1,

C (v1, v2)− C (v1, u2)− C (u1, v2) + C (u1, u2) ≥ 0

When considering the joint survival of individuals, the random variables of
interest correspond to the lifetimes of individuals. The relevant representation
is based on survival functions. Taking X as the remaining lifetime of some
individual i and Y as the remaining lifetime of some individual j, the associated
survival functions are F̄ (x) ≡ Pr(X > x) = 1− F (x) and Ḡ (y) ≡ Pr(Y > y) =
1−G(y), and the joint survival function is H̄ (x, y) ≡ Pr (X > x, Y > y).
As shown by Nelsen (2007), there exists a relationship between univariate

and joint survival functions analogous to the one between univariate and joint
distribution functions stated in Sklar’s Theorem. Actually, any joint survival
function H̄ (x, y) with univariate survival functions F̄ (x) and Ḡ (y) admits a
copula representation by means of a survival copula C̆:

H̄(x, y) = C̆
(
F̄ (x), Ḡ(y)

)
To see this, let us follow Nelsen (2007 p. 32) and rewrite the joint survival
function as:

H̄(x, y) = Pr (X > x, Y > y)

= 1− Pr (X ≤ x)− Pr (Y ≤ y) + Pr (X ≤ x, Y ≤ y)

= F̄ (x) + Ḡ(y)− 1 + C
(
1− F̄ (x), 1− Ḡ(y)

)
27On the properties and applications of copulas, see Frees and Valdez (1998), Nelsen (2007),

and Charpentier (2014).

31



Hence, if one defines C̆ (u1, u2) ≡ u1 + u2 − 1 + C (1− u1, 1− u2), we have:
H̄(x, y) = C̆

(
F̄ (x), Ḡ(y)

)
. It is straightforward to show that C̆ (u1, u2) is a

copula, since it is a grounded function with uniform margins, which is also 2-
increasing.28 It is thus possible to represent a joint survival function in terms
of the univariate survival functions by means of a survival copula C̆. That rep-
resentation is analytically convenient, since this makes joint survival conditions
depend on two separate things: first, the survival conditions faced by each per-
son individually; second, the structure of dependence between their mortality
risks, which is captured by the survival copula.
There exist various kinds of copulas, whose formal properties are studied in

Nelsen (2007) and Charpentier (2014). The analysis carried out in the previous
sections, which presupposed independent individual mortality risks, relied on a
particular copula, called the independent copula, which is denoted by C⊥:

C⊥ (u1, u2) = u1 × u2 (23)

and its associated survival copula is:

C̆⊥ (u1, u2) = u1 + u2 − 1 + C⊥ (1− u1, 1− u2) = u1 × u2 = C⊥ (u1, u2)

Hence, under the independent copula, the bivariate survival probability Sij(xi, xj)
is equal to the product Si(xi)× Sj(xj).
In order to account for the dependence of individual mortality risks, we will,

in the rest of this section, rely on another copula, proposed by Frank (1979).
Frank’s copula is defined as follows:

Cz (u1, u2) =
1

θ
ln

[
1 +

(
eθu1 − 1

) (
eθu2 − 1

)
eθ − 1

]
(24)

It is easy to show that the survival copula associated to Cz (u1, u2) is equal
to Cz (u1, u2). The parameter θ captures the degree of dependence between
individual mortality risks. The special case of independent mortality risks arises
when θ tends towards 0. When θ differs from 0, the mortality risks faced by the
individuals under study are dependent. Positive dependence occurs when θ < 0,
and means that the probability of premature death for one member of the couple
is increased by the occurrence of premature death for the other member of the
couple.29 On the contrary, the case where θ > 0 corresponds to a situation of
negative dependence: the probability of premature death for one member of the
couple is reduced when the other member of the couple dies prematurely.
The reason why we rely here on Frank’s copula is that this copula has been

widely used in the literature in order to estimate the strength of the dependence
of mortality risks within couples. The next subsection uses those estimates to
recalibrate our model, in the case of joint survival within couples.

28For a detailed proof of this, see George et al (2001).
29When θ tends to −∞, Frank’s copula reflects the maximal positive dependence between

the survival of the two individuals.

32



5.2 Joint life expectancies under dependent risks

In order to examine the robustness of our results to the introduction of depen-
dent mortality risks, we need first to construct measures of coexistence time
under dependent mortality risks. This task is complex, since the structure of
dependence between mortality risks among related individuals is likely to vary
with the particular relation between those individuals.
This section focuses on the case of coexistence between two spouses. The

reason is merely that researchers paid lot of attention to the measurement of the
broken heart syndrome. Empirical studies aimed at estimating the structure of
dependence between individual mortality risks within a couple follow the same
general procedure. On the basis of a panel of males and females living in a
couple, those studies estimate survival laws for males and females separately, as
well as the bivariate survival law. Then, a particular structure of dependence
(i.e. a copula) is assumed, and its parameters are estimated on the basis of
univariate and bivariate survival laws. Examples of those studies include Frees
et al (1996), who estimate the parameter θ in Frank’s copula using longitudinal
data from a large Canadian insurer, including about 15,000 couples. The same
data were used by Youn and Shemyakin (2001) and by Luciano et al (2007,
2012). Denuit et al (2001) estimated the dependence of mortality risks within
couples under other copulas, while relying on data from Brussels cemeteries.
Unlike those articles, our study relies on aggregate life tables from the Human

Mortality Database. We only have univariate survival statistics, but we have no
statistics for joint survival. Moreover, we do not have, within that database,
survival data by marital status, but only for "representative" individuals. For
our purpose, we would ideally need data on survival by marital status and on
joint survival over the period 1820-2010, but those data are not available.
Despite the limitations of our data, we can introduce dependent mortality

risks by means of the following procedure. In order to account for the depen-
dence of mortality risks, our method consists first of reconstructing, on the basis
of survival conditions for each member of a hypothetical couple, and under a
particular dependence structure, joint survival data. To do this, we use the
study of Frees et al (1996), which provided an estimate for the parameter θ
in Frank’s copula (θ̂ = −3.367). This negative value indicates that, within a
couple, men and women exhibit a significant positive risk dependence, meaning
that the happening of premature death for one member of the couple increases
the probability of occurrence of premature death for the other member.
Assuming that the structure of dependence of mortality risks within couples

has remained stable over the period under study, we can use our lifetables for
males and females over that period, as well as the formula for Frank’s copula
with θ = −3.367, in order to compute probabilities of joint survival to different
ages, for a man and a woman of some initial age.30 Then, those probabilities
are used to compute the associated joint life expectancy.

30Assuming a constant structure of dependence simplifies the picture. As shown by Luciano
et al (2010), the degree of dependence of mortality risks within couples tends to diminish across
generations. Relying on a constant dependence structure is thus a simplification.
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Figure 13 shows, for the period 1820-2010, the evolution of the joint life
expectancy for a man and a woman of age 25 in France, under independent
mortality risks (i.e. θ is close to 0) and under the dependence of mortality
risks estimated by Frees et al (1996) (i.e. θ is equal to -3.367). The level of
the joint life expectancy under positively dependent mortality risks is, for each
year, higher than the joint life expectancy under independent mortality risks.
Hence, assuming independent mortality risks made us underestimate the average
duration of coexistence. Note, however, that the gap between the two joint life
expectancies is - except in war times - inferior to 10 %. Moreover, the size of
the gap decreased during the 20th century, to represent about 3 % in 2010.

Figure 13: Joint life expectancy for a man
and a woman aged 25, under θ → 0 and

θ = −3.367.

Whereas the gap between the two joint life expectancy curves (under depen-
dent and independent mortality risks) is non negligible, the difference between
the two curves concerns mainly the levels, but not the slope, of the curves. Given
that the slopes of the joint life expectancy curves are quite close, one can expect
that the differences in the associated equivalent consumption profiles are also
likely to be minor, since these depend on the variation of joint life expectancy
with respect to the reference level, and not on their absolute levels. The rest of
this section will confirm that intuition.

5.3 Equivalent consumptions under dependent risks

We consider here a representative couple, composed of a man and a woman
of age 25. Coexistence concerns are thus here oriented, for the representative
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male, towards a unique person (i.e. the representative female), so that we
consider here a case that could be called M1. For that particular case, we will
compare equivalent consumptions under two distinct specifications: independent
mortality risks and dependent mortality risks (using Frank’s copula).
In order to calibrate the preference parameters, remind first that the ex-

pected lifetime well-being for an agent I who cares about joint survival with an
agent K can, under Frank’s copula, be rewritten as:

T−1∑
s=0

βsSIs+1

(
c1−γi

1− γ + α

)
+δspouse

T−1∑
s=0

βs

 SIs+1 + SKs+1 − 1

+ 1
θ ln

[
1 +

(eθ(1−SIs+1)−1)(eθ(1−SKs+1)−1)
eθ−1

] 
Hence the coeffi cient of concern can now be written as:

∂U(·)
∂dK0t

∂U(·)
∂dI0t

=

δspouse

T−1∑
i=0

βiSKi+1t
(1−dK0t)

[
−eθ+1+(eθ(1−SIi+1t)−1)

eθ−1+(eθ(1−SIi+1t)−1)(eθ(1−SKi+1t)−1)

]

−
T−1∑
i=0

βiSIi+1t

(
c
1−γ
i
1−γ +α

)
(1−dI0t) + δspouse

T−1∑
i=0

βiSIi+1t
(1−dI0t)

[
−eθ+1+(eθ(1−SKi+1t)−1)

eθ−1+(eθ(1−SKi+1t)−1)(eθ(1−SIi+1t)−1)

]
Given that the VSL is here:

∂c0t
∂dI0t

∣∣∣∣
U(·)=Ū

= −
∂U(·)
∂dI0t
∂U(·)
∂c0t

= −


−
T−1∑
i=0

βiSIi+1t

(
c
1−γ
i
1−γ +α

)
(1−dI0t)

+δspouse

T−1∑
i=0

βiSIi+1t
(1−dI0t)

[
−eθ+1+(eθ(1−SKi+1t)−1)

eθ−1+(eθ(1−SKi+1t)−1)(eθ(1−SIi+1t)−1)

]


(1− dI0t)(c0t)−γ

we can, from the previous expression, rewrite δspouse as:

δspouse =

∂U(·)
∂dK0t
∂U(·)
∂dI0t

× (1− dI0t)(c0t)−γ × V SL

T−1∑
i=0

βiSKi+1t
(1−dK0t)

[
eθ−1−(eθ(1−SIi+1t)−1)

eθ−1+(eθ(1−SIi+1t)−1)(eθ(1−SKi+1t)−1)

]
Using, as above, empirical estimates of the MRS between one’s survival and

the spouse’s survival from Needleman (1976), as well as β = 0.96 and γ = 0.83,
we find, under dependent mortality risks, that δspouse = 4.465 in case of joint
survival with the spouse (assuming the lower bound of the VSL). Alternatively,
we have, under independent mortality risks, δspouse = 3.947.31

31That value differs from the one appearing in Table 1 (equal to 4.031), for which calculations
were based on representative agents without gender differenciation (unlike here, where the two
members of the couple are modeled as a woman and a man).
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Using that new estimate for δK , we can now derive the associated value of
the parameter α using the above formulation for the VSL:

α =


V SL× (1− dI0t)(c0t)−γ −

T−1∑
i=0

βiSIi+1t
(1−dI0t)

(
c1−γi

1−γ

)
+δspouse

T−1∑
i=0

βiSIi+1t
(1−dI0t)

[
−eθ+1+(eθ(1−SKi+1t)−1)

eθ−1+(eθ(1−SKi+1t)−1)(eθ(1−SIi+1t)−1)

]


T−1∑
i=0

βiSIi+1t
(1−dI0t)

We obtain, under dependent mortality risks, that α = 7.129. In the absence of
dependence, we have α = 7.105.
Having calibrated α, β, γ, and δspouse , we compute, for the two cases under

study (independent and dependent mortality risks), the equivalent consumption
taking into account changes in survival conditions (at the individual and joint
levels) since 1820. The associated patterns for adjusted consumptions are quite
similar, whatever one relies on independent or on dependent mortality risks.
To illustrate this, Figure 14 shows the relative gap between the two equivalent
consumption measures. The gap remains lower than 2 %, except in war times.32

Figure 14: Relative gap between
adjusted consumptions under dependent

and independent mortality risks.

32The relative gap is defined as the ratio: [equivalent consumption under dependent risks
minus equivalent consumption under independent risks] / equivalent consumption under de-
pendent risks. The higher relative gaps in war times are due to the lowest levels of joint life
expectancy for those years.
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Our calculations are thus robust to the introduction of dependent individual
mortality risks. Robustness holds because introducing risk dependence does not
affect the general shape of joint life expectancy, but mainly its level. Hence, since
equivalent consumption levels depend on the change in survival conditions with
respect to the baseline year (1820), those measures remain almost unchanged
when risk dependence is introduced.
Having stressed this, it should be emphasized that our non-exhaustive analy-

sis focused here only on a particular form of mortality risk dependence, between
males and females in a couple. Further calculations - as well as more data -
would be needed to be able to draw a general conclusion on the robustness of
equivalent consumption measures to dependent mortality risks.

6 Concluding remarks

In the recent years, several studies quantified the contribution of improved sur-
vival conditions to living standards by using an equivalent income approach
(see Usher 1973, 1980, Williamson 1984, Crafts 1997, Costa and Steckel 1997,
Nordhaus 2003, Becker et al 2005, Murphy and Topel 2006; Hall and Jones
2007; Fleurbaey and Gaulier 2009). The goal of this paper was to complement
those studies, by focusing on a - so far largely neglected - aspect: coexistence
concerns, i.e. interests for the survival of other persons.
For that purpose, we first developed a measure of coexistence time: the joint

life expectancy, which is the mathematical expectation of the duration of life for
a group of individuals (instead of a single individual). Then, we constructed an
equivalent consumption taking into account variations in single and in joint life
expectancies. Our application to France (1820-2010) showed that gains in joint
life expectancy have been substantial. Moreover, the inclusion of gains in joint
life expectancy was shown to affect significantly the measurement of standards of
living. Finally, we examined the robustness of our findings to the introduction of
dependent mortality risks within couples, and we showed that our consumption
equivalent measure is robust to the introduction of risk dependence, since this
depends not on the level but on the variation of joint life expectancy over time.
Having summarized our main results, it is worth mentioning some limita-

tions of our approach. First, our analysis supposed that the economy can be
represented by means of a representative agent with fixed preferences. That
assumption is widespread in the literature on equivalent incomes in a historical
perspective (see, among others, Crafts 1997 and Costa and Steckel 1997). How-
ever, this assumption constitutes a main limitation of our analysis: a population
is composed of individuals with various preferences in terms of consumption pro-
files and fertility choices. The composition of the population in terms of prefer-
ences is also likely to change across generations. Our framework, which involves
no heterogeneity and no preference dynamics, cannot take those phenomena
into account. Note, however, that the introduction of heterogenous and varying
preferences would raise additional diffi culties regarding the construction of an
equivalent consumption measure. We leave this extension for further research.
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Second, our study focused on the measurement and the valuation of coexis-
tence time from the exclusive perspective of joint survival. As a consequence,
we neglected other determinants of coexistence. This constitutes a simplifica-
tion, since, over the last two centuries, significant changes occurred regarding
the age-matching of spouses, the marriage/divorce rates, as well as the number
and the spacing of children.33 For instance, births postponement implies that
the potential duration of coexistence of children with their parents and their
grand-parents is reduced. The resulting rise in the parent/children age gap may
thus reduce, to some extent, the rise in coexistence time induced by increasing
joint life expectancies.34 Taking those limitations into account would require
to build a lifecycle model with several fertility periods, in such a way as to
be able to model changes in the age gap between parents and children. Such
models exist in the literature, but the construction of equivalent consumption
measures in that extended framework is complex, and would definitely invite
another paper.35

All in all, although our calculations suggest that the rise in coexistence time
has constituted a major source of improvement in living standards, it should be
stressed that incorporating coexistence concerns within lifecycle analysis raises
diffi culties at the level of concepts and data. Hence, it cannot be overemphasized
that much work remains to be done, in the future, in order to fully quantify the
contribution of coexistence time to the improvement of standards of living.
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8 Appendix

Demographic data On the demographic side, we use data from the lifeta-
bles of the Human Mortality Database. In order to compute the equivalent in-
come incorporating the value of changes in global survival conditions, we use
individual probabilities of survival at all ages of life, for all years under study
(from 1820 to 2010). We also use the probabilities of joint survival, for different
pairs of individuals (varying with the age and the sex of the members of the
pair), also for the period 1820-2010.

Consumption profiles As far as consumption statistics are concerned,
we use consumption profiles by age (between age 25 and age 80) estimated for
France by Boissinot (2007). Those lifetime consumption profiles were estimated
on the basis of 5 successive waves of the INSEE Survey on Household Budgets.36

Each wave includes about 10000 households, which implies a total sample size
of between 25000 and 30000 individuals. On the basis of that pseudo-panel,
consumption profiles were estimated on an age interval between 25 years and
80 years. Figure A1 below shows the consumption profile obtained by Boissinot
on the basis of 15 cohorts, born between 1960 and 1975. That consumption
profile has been normalized, a unitary value being assigned to consumption at
the beginning of the lifecycle (i.e. at age 25).
The consumption profile estimated by Boissinot exhibits the standard inverted-

U shape.37 The maximum consumption is achieved around age 45. After age

36Consumption profiles are estimated by regressing the logarithm of consumption on a
constant, on age, (age)2, (age)3, (age)4 and (age)5, as well as on dummy variables for the
different years of birth. The latter control variables are used to neutralize the impact of cohort
effects.
37See Poterba (1994), Lee and Tuljapurkar (1997), Gourinchas and Parker (2002), Borsch-

Suspan (2003), Japelli and Modigliani (2005).
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50, consumption starts falling continuously, to reach, at age 80, a level equal to
about 70 % of the consumption at age 25. The consumption profile on Figure
A1 stops at age 80. This is problematic for the monetization of longevity gains,
since a significant part of those gains concern ages higher than 80. This is the
reason why we extended the consumption profile estimated by Boissinot until
the age of 110. For that purpose, we calculated the growth rate of consumption
between ages 75 and 80, and we extrapolated the rest of the consumption profile
by applying that growth rate to the age interval 80-110 (see Figure A2).

Fig. A1: Normalized
consumption profile (age

25-80).

Fig. A2: Extended
consumption profile (age

25-110).

Fig. A3: Lifetime
consumption profiles,

1820-2010 (in 2000 euros).

The lifetime consumption profile on Figure A2 was then used to derive,
by extrapolation, lifetime consumption profiles for all years considered in this
study (1820-2010). For that purpose, we started from the lifetime consump-
tion profile estimated by Boissinot (2007) for year 2000, and we used the levels
of income per head for all years between 1820 and 2010 (sources: the Angus
Maddison Project), in such a way as to derive the corresponding lifetime con-
sumption profiles associated to those years. For each year, the consumption
profile is assumed to keep the same general shape, which is characterized by
the proportionality coeffi cients appearing on Figure A2. Figure A3 shows some
extrapolated lifetime consumption profiles, for years between 1820 and 2010.
This extrapolation amounts to assuming that intertemporal trade-offs did

not change significantly over time, and that differentials in income per head ex-
plain all differences observed, year after year, in consumption levels at a given
age. Obviously, that assumption can only be regarded as a first proxy. On a
period as large as two centuries, the strong improvement of survival conditions
may have affected savings behaviors, and, thus, the shape of the lifetime con-
sumption profile.38 However, this extrapolation is required given the lack of
historical data on lifetime consumption profiles over that period.
38On the link between life expectancy and the propensity to save, see Chakraborty (2004).

42


