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Abstract We consider two natural notions of strategyproofness in random object-
assignment mechanisms based on ordinal preferences. The two notions are stronger
than weak strategyproofness but weaker than strategyproofness. We demonstrate that
the two notions are equivalent, provide a geometric characterization of the new in-
termediate property which we call convex strategyproofness, and then show that the
(generalized) probabilistic serial mechanism is, in fact, convexly strategyproof. We
finish by showing that the property of weak envy-freeness of the random serial dicta-
torship can be strengthened in an analogous manner.

Keywords random assignment · probabilistic serial mechanism · convex strate-
gyproofness · envy-freeness · random serial dictatorship

1 Introduction

We consider some questions of strategyproofness arising in mechanisms for the ran-
dom assignment of heterogeneous indivisible objects among participating agents,
based on their reported ordinal preferences over the objects. The two main (ex-ante
symmetric) such mechanisms considered in the literature are the random serial dicta-
torship (Abdulkadiroğlu and Sönmez 1998), and the probabilistic serial (PS) mecha-
nism (Bogomolnaia and Moulin 2001). The main trade-off between the two mecha-
nisms is that while the PS mechanism satisfies a stronger efficiency property, it fails to
be strategyproof. Instead, it satisfies a weaker condition, called weak strategyproof-
ness. Here, we define two natural intermediate incentive properties that are stronger
than weak strategyproofness but weaker than strategyproofness. We show that these
two concepts are equivalent and call the resulting property convex strategyproofness.
Then, using a simple geometric characterization, we show that the PS mechanism
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and its generalization due to Budish, Che, Kojima, and Milgrom (2013) are convex
strategyproof.

More specifically, weak strategyproofness means that, holding the reports of the
other agents constant, an agent deviating to a false report cannot induce a probability
distribution over the available objects that strictly first-order stochastically dominates
the outcome that a true report would induce.1 Equivalently, for any outcome corre-
sponding to a false report, there exists a utility function compatible with the agent’s
true ordinal preferences, under which the truth-telling outcome has higher expected
utility. Strategyproofness, on the other hand, means that the outcome correspond-
ing to the true report first-order stochastically dominates all outcomes corresponding
to false reports. Equivalently, for any utility function compatible with the agent’s
true ordinal preferences, the agent’s expected utility from the truth-telling outcome is
weakly greater than her expected utility for any other outcome. Note that, by contrast,
weak strategyproofness does not even guarantee the existence of a single utility func-
tion compatible with the agent’s preferences, under which the truth-telling outcome
is the best one (see Example 1 in Section 3).

This observation gives us the first natural candidate for an intermediate property:
requiring the existence of a compatible utility function, such that truth-telling max-
imizes utility. The second one is similar to weak strategyproofness but allows for
mixed strategies: namely, this version of strategyproofness holds if no mixed report-
ing strategy induces a probability distribution that strictly first-order stochastically
dominates the truth-telling outcome. As noted above, we show that these two proper-
ties are equivalent.

This paper is related most closely to Mennle and Seuken (2013) who also study
an intermediate strategyproofness concept, which they call partial strategyproofness,
and apply it to convex combinations (hybrids) of the random serial dictatorship and
the PS mechanism. In particular, they show that the set of utility functions for which
the hybrid mechanism is strategyproof (i.e. truth-telling maximizes utility) is increas-
ing as we increase the weight placed on the random serial dictatorship. We can view
convex strategyproofness as a form of minimal partial strategyproofness. Note that
the two papers are logically unrelated.2 Kojima and Manea (2010) study a different
aspect of the incentive properties of the PS mechanism. They show that it becomes
strategyproof if there are sufficiently many copies of each object. By comparison, we
show that, for markets of all sizes, the PS mechanism satisfies an incentive property
that is stronger than weak strategyproofness.

2 Set-up

In what follows, we present a simplified representation of the strategic situations
that agents participating in object-assignment mechanisms face. At the end of this
section, we further discuss how this set-up pertains to the incentive compatibility of
such mechanisms.

1 First-order stochastic dominance here is defined with respect to the agent’s true preferences.
2 See also Lubin and Parkes (2012) for a survey of other ways of relaxing strategyproofness.
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We assume that an agent with unit demand (the decision maker or the DM) can
take several actions. Each action is associated with some probability distribution over
the available objects which the DM receives. The DM has some strict 3 preference
order over the objects, which, via first-order stochastic dominance, induces a partial
order over the possible probability distributions.

Assume that there are n+ 1 different objects4 (numbered 1,2, . . .) and, without
loss of generality, that the DM prefers objects with smaller indices (i.e. 1 � 2 �
. . .� n+1). We assume that the probability shares of the objects in each probability
distribution sum up to 1. This is also without loss of generality since we can always
add a least-preferred “null object” to the list of objects and assign the rest of the
probability weight to it. Thus we can denote any possible probability distribution as
an element of

P :=

{
x ∈ Rn :

n

∑
i=1

xi ≤ 1,x≥ 0

}
.

Consider all utility vectors compatible with the DM’s preferences, which have
been normalized so that un+1 = 0. Denote them by

U := {u ∈ Rn : u1 > u2 > .. . > un > 0} .

For a given utility vector u ∈U , the von Neumann-Morgenstern expected utility the
DM derives from a probability distribution p ∈ P is u · p = ∑

n
i=1 ui pi.

A probability distribution p ∈ P is said to first-order stochastically dominate a
probability distribution q ∈ P (with respect to �) if ∑

j
i=1 p j ≥ ∑

j
i=1 q j for all j =

1, . . . ,n. We say that p strictly first-order stochastically dominates q if p first-order
stochastically dominates q and p 6= q. We write p %FOSD q and p �FOSD q, respec-
tively. A useful fact is that a probability distribution p ∈ P first-order stochastically
dominates q ∈ P if and only if u · p ≥ u · q for all u ∈ U (Hadar and Russell 1969).
Note that the partial order %FOSD can be extended from P to Rn using the same defini-
tion of first-order stochastic dominance. Abusing notation, we call that order %FOSD

as well.
Let the DM’s set of (finitely many) possible actions (e.g. possible reports of her

preferences) be A = {a,b1, . . . ,bk} and let the function g : A → P associate each
action with a probability distribution. Note that if the DM chooses a mixed action
strategy, she can induce any probability distribution in the convex hull of the set
{g(a),g(b1), . . . ,g(bk)}, which we denote co{g(a),g(b1), . . . ,g(bk)} as usual. The
converse is, naturally, also true—any mixed action strategy induces a probability dis-
tribution in that convex hull. We say that the action a is a dominant strategy if g(a)
first-order stochastically dominates all g(bi)’s. We say that the action a is an un-
dominated strategy if no g(bi) first-order stochastically dominates g(a). We say that
the action a is compatible with utility maximization if there exists u ∈ U such that
u ·g(a)≥ u ·g(bi) for all i. Finally, we say that the action a is convexly undominated

3 We restrict our attention to strict preference orders. The main reason for that is that the version of
the (generalized) PS mechanism which allows for indifferences (Katta and Sethuraman 2006; Budish et al
2013) fails to even be weakly strategyproof. However, the strictness assumption is not crucial. A result
essentially identical to our Proposition 1 can be derived for non-strict preference orders, as well.

4 We allow there to be more than one copy of each object.
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if there doesn’t exist a mixed action strategy that induces a probability distribution
that strictly first-order stochastically dominates g(a). This is equivalent to saying that
there is no p∈ co{g(a),g(b1), . . . ,g(bk)} such that p�FOSD g(a). The preceding four
concepts were defined with respect to particular set A and function g but the definition
of these objects will be always clear from the background and we will suppress their
mention.

Assume that f is a random object-assignment mechanism; i.e. f is a map between
the reported preferences of a set of participating agents and a profile of probability-
share distributions for each agent. Each element of the action set of each agent cor-
responds to some possible preference order over the objects. Each possible report by
an agent i is mapped into a probability-share distribution by the function fi(·,�−i),
where�−i denotes the fixed preference profile of the other agents participating in the
mechanism. A mechanism is strategyproof (resp. weakly strategyproof ) at a given
profile (�i,�−i) if for every participating agent i reporting truthfully is a dominant
strategy (resp. an undominated strategy) with respect to fi(·,�−i)). Furthermore, a
mechanism is (weakly) strategyproof if it is (weakly) strategyproof at all possible
preference profiles.

2.1 Convex Cones and Polyhedra

We provide another useful characterization of first-order stochastic dominance using
convex cones. A convex cone C ⊆ Rn is a set such that for all x,y ∈C we have αx+
βy ∈C for all α,β ≥ 0. For every partial order % on Rn compatible with the vector-
space operations5 on Rn, there exists a convex cone C% such that p % q if and only
if p ∈ {q}+C%, where {q}+C% := {q+ x : x ∈ C%} is the usual Minkowski set
summation. In fact, one can show C% = {x ∈ Rn : x % 0} (e.g. see Aliprantis and
Border 2006, Section 8.1). The convex cone C :=C%FOSD then satisfies C = {x ∈Rn :

x %FOSD 0} or, in other words, C = {x ∈ Rn : ∑
j
i=1 xi ≥ 0 for all j = 1, . . . ,n}. Using

the convex cone C, we can easily give a geometric characterization of an undominated
strategy directly from its definition: given a set A = {a,b1, . . . ,bk} and a function
g : A→ P, the action a is undominated if and only if

({g(a)}+C)∩{g(a),g(b1), . . . ,g(bk)}= {g(a)}.

In this section, we also state a result due to McLennan (2002). Before we do
that, we introduce a couple of additional convex-analysis concepts. Any subset of Rn

that is a finite intersection of closed half-spaces is called a polyhedron. It is easy to
verify that the convex hull of any finite set is a polyhedron, as is the convex cone C
corresponding to %FOSD. The set of all finite affine combinations of elements of a set
S⊆ Rn is called the affine hull of S and we denote it by aff(S):

aff(S) :=

{
k

∑
i=1

αisi : s1, . . . ,sk ∈ S,α ∈ Rk,
k

∑
i=1

αi = 1

}
.

5 That is to say, whenever x % y for some x,y ∈ Rn then αx+ z % αy+ z for all z ∈ Rn and α ≥ 0.
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It is easy to verify that if p · s is constant for some p ∈ R\{0} and all s ∈ S, then
p ·s′ = p ·s for all s∈ S and all s′ ∈ aff(S). In other words, if a set is entirely contained
within a hyperplane, then so is its affine hull.

Given a polyhedron P, the empty set, P itself, and any set of the form P∩H
for a hyperplane H, one of whose closed half-spaces contains P, are called faces
of P. Finally, McLennan (2002, Lemma 2) shows that for any convex subset S of a
polyhedron P, there exists a smallest face of P that contains S. That Lemma permits
us to state the following theorem, which is also due to McLennan (2002).

Theorem 1 (The Polyhedral Separating Hyperplane Theorem) For two polyhe-
dra P1,P2 ⊂ Rn, let F1 and F2 be the smallest faces of, respectively, P1 and P2 that
contain P1∩P2. Let also aff(F1∪F2) 6= Rn. Then there exists u ∈ Rn,u 6= 0 such that
u · p1 > u · f1 = u · f2 > u · p2 for all pi ∈ Pi \Fi, fi ∈ Fi for i = 1,2.

3 The Characterization Result

Proposition 1 Given a set A = {a,b1, . . . ,bk} and a function g : A→ P, the following
are equivalent:

(i) action a is compatible with utility maximization;
(ii) action a is convexly undominated;

(iii) ({g(a)}+C)∩co{g(a),g(b1), . . . ,g(bk)}= {g(a)}, where C is the convex cone
corresponding to the partial order induced by first-order stochastic dominance.

Proof (i)⇒(ii) We know that there exists some u ∈ U such that u · g(a) ≥ u · g(bi)
for all i. This implies u · g(a) ≥ u · x for all x ∈ co{g(a),g(b1), . . . ,g(bk)}. Assume
toward contradiction that there exists some y∈ co{g(a),g(b1), . . . ,g(bk)} that strictly
first-order stochastically dominates g(a). As remarked above, however, this implies
u · y > u ·g(a) for all u ∈U , which is a contradiction since u ∈U .

(ii)⇒(iii) This follows from the facts that the set co{g(a),g(b1), . . . ,g(bk)} equals
the set of elements in P that can be induced by a mixed action strategy, and that the
set of points that strictly first-order stochastically dominates g(a) is the set ({g(a)}+
C)\{g(a)}.

(iii)⇒(i) For notational simplicity, denote the convex hull co{g(a),g(b1), . . . ,g(bk)}
by D. First, note that {g(a)}+C (a translation of the polyhedron C) and D (a convex
hull of a finite set) are both polyhedra. Additionally, it is clear that the smallest face
of {g(a)}+C containing {g(a)} is the singleton F1 := {g(a)}. Now consider F2—the
smallest face of D that contains {g(a)}. Note that we have F1 = {g(a)} ⊆ F2. So, in
order to invoke McLennan’s theorem, it suffices to show that aff(F2) 6= Rn.

Note that g(a) is on the boundary of D (since g(a)+ ε(1, . . . ,1) ∈ {g(a)}+C for
all ε > 0). Then there exists a hyperplane H separating g(a) and D: i.e. g(a) ∈ H
and D is entirely contained in one of the closed half-spaces defined by H. Therefore,
H ∩D is a face of D containing g(a), and the smallest such face F2 must satisfy
F2 ⊆ H ∩D ⊂ H. As noted above, if a set is entirely contained within a hyperplane
H, then so is its affine hull. Therefore, aff(F2) ⊆ H ( Rn. Thus the two sets satisfy
the conditions of the Polyhedral Separating Hyperplane Theorem and there exists
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u ∈ Rn,u 6= 0 such that u · x > u · g(a) ≥ u · y for all x ∈ ({g(a)}+C) \ {g(a)} and
y ∈ D.6

Now, it suffices to show that u1 > u2 > · · ·> un > 0. Indeed, denoting the standard
basis vectors by e1, . . . ,en, note that g(a)+ ei− e j ∈ ({g(a)}+C)\{g(a)} for i < j
and g(a)+ en ∈ ({g(a)}+C) \ {g(a)}. Hence, we have the inequalities u · (g(a)+
ei−e j)> u ·g(a) for i < j and u ·(g(a)+en)> u ·g(a). They imply ui > u j whenever
i < j and un > 0, respectively. ut

We say that a mechanism is convexly strategyproof at a given preference profile if
for every agent reporting truthfully is either convexly undominated or, equivalently,
compatible with utility maximization. As above, we also say that a mechanism is con-
vexly strategyproof if it is convexly strategyproof at all possible preference profiles.
It is obvious that convex strategyproofness is strictly weaker than strategyproofness
and that it implies weak strategyproofness. The converse is not true, as the following
example demonstrates.

Example 1 Consider a set A =
{

a,b1,b2
}

and g : A→ P, such that for n = 2:

g(a) = (.3, .3)

g(b1) = (.29, .7)

g(b2) = (.41,0) .

The action a is undominated since g(a) is not first-order stochastically dominated by
either g(b1) (because g(b1)1 < g(a)1) or g(b2) (because ∑g(b2)i < ∑g(a)i). How-
ever, a is not convexly undominated (or, equivalently, not compatible with utility
maximization) because the convex combination

1
2

g(b1)+
1
2

g(b2) = (.35, .35)

first-order stochastically dominates g(a). Since weak strategyproofness is defined
via undominatedness and convex strategyproofness via convex undominatedness, this
also implies that convex strategyproofness is strictly stronger than weak strategyproof-
ness. Furthermore, it is straightforward to check that this example can be generalized
to show that convex strategyproofness is strictly stronger than weak strategyproofness
as long as n > 1.

See also Figure 1 for a geometric illustration of the difference between undomi-
nated and convexly undominated actions and thus between weak and convex strate-
gyproofness. The Figure illustrates two possible scenarios with n = 2 and 5 possible
actions, which are then mapped into probability-share distributions via the function
g. In both panels, taking action a is undominated since none of the other actions result
in first-order stochastic dominance improvement. In other words, none of the other
actions result in a probability-share distribution that lies in the set {g(a)}+C. How-
ever, the action a is convexly undominated only in panel (a), where no element of the

6 The reason we use the Polyhedral Separating Hyperplane Theorem, as opposed to a weaker separating
result, is that it gives us the strict inequality in this sentence. In the next paragraph, it becomes apparent
that the strict inequality is crucial in showing that u is compatible with the preference order.
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g(a)

0 Good 1

Good 2

g(b1)

g(b2)

g(b3)g(b4)

{g(a)}+C

1

1

(a) Action a is UD and cUD

g(a)

0 Good 1

Good 2

g(b1)

g(b2)

g(b3)g(b4)

{g(a)}+C

1

1

(b) Action a is UD but not cUD

Fig. 1 Undominated (UD) vs. convexly undominated (cUD) actions

convex hull co{g(b1),g(b2),g(b3),g(b4)} lies in {g(a)}+C. In panel (b), however,
it is clear that a convex combination of the actions b1 and b2 can result in first-order
stochastic dominance improvement over a.

4 The Probabilistic Serial Mechanism

We start this section with a brief description of the PS mechanism. While being exe-
cuted, it treats each object as one unit of infinitely divisible probability shares. Time
runs continuously, starting at t = 0. The mechanism then allows each agent to contin-
uously claim probability shares of her favorite object among those that have not been
entirely claimed yet. The speed with which each agent claims probability shares is
equal to 1. The mechanism runs until t = 1, when each agent will have claimed a total
of one unit of probability shares. The probability shares claimed by each agent rep-
resent the probability-share distribution induced by the PS mechanism for that agent.
For a more detailed and formal definition, see Bogomolnaia and Moulin (2001).

Bogomolnaia and Moulin (2001) show that the PS mechanisms is weakly strate-
gyproof. 7 In this section, we extend their arguments to show that the PS mechanism
is also convexly strategyproof. As above, we will call the agent of interest the DM
and we will assume that her true preferences (denoted by�) are as above: she strictly
prefers objects with lower indices over those with higher ones. We will denote the
fixed preference profile of the other agents by �− and PS(·) will be a function that
maps a preference profile to the probability distribution that the PS mechanism as-
signs to the DM for that preference profile.

7 Budish et al (2013) generalize the mechanism by adding group-specific quotas and show that it re-
mains weakly strategyproof. The results in this paper hold for their Generalized Probabilistic Serial mech-
anism as well.
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Let us first briefly examine the idea behind the proof of weak strategyproofness in
Bogomolnaia and Moulin (2001). The authors show that if the DM reports a prefer-
ence �′ (which is potentially different from �) that yields a probability-share distri-
bution q=PS(�′,�−) such that q1≥ p1 for p=PS(�,�−), then this is possible only
if q1 = p1. The authors then iterate this argument to establish weak strategyproofness.
The iterated argument can be summarized in the following lemma.8

Lemma 1 Let p := PS(�,�−) and q := PS(�′,�−) and let some j = 1, . . . ,n be
given. If pi = qi for all i < j and if q j ≥ p j, then q j = p j.

The implicit understanding in the statement of Lemma 1 is that if j = 1, the only
condition is q1 ≥ p1. We omit the proof of Lemma 1 as it can be straightforwardly
derived from arguments in Bogomolnaia and Moulin (2001) as outlined above.

Proposition 2 The PS mechanism is convexly strategyproof.

Proof Consider an agent (our decision maker) with true preference�. Let some pos-
sible preferences over the objects be �1, . . . ,�k (not necessarily different from each
other or from �). Finally, let p = PS(�,�−) and qi = PS(�i,�−) for i = 1, . . . ,k.
Assume toward contradiction that the truthful report of DM’s preferences (i.e. report-
ing �) is not convexly undominated, which would imply that the PS mechanism is
not convexly strategyproof.

By the definition, this means that there exist some α1, . . . ,αk ≥ 0 with ∑
k
i=1 α i = 1

such that
k

∑
i=1

α
iqi �FOSD p (1)

In fact, without loss of generality, we can assume α1, . . . ,αk > 0. Then note that
(1) implies

k

∑
i=1

α
iqi

1 ≥ p1.

This is possible only if there exists i such that qi
1 > p1 or if qi

1 = p1 for all i. By
Lemma 1, the first case is impossible. Therefore we have qi

1 = p1 for all i.
We can extend the argument inductively. Consider the induction step: assume that

pl = qi
l for all l ≤ j. Now (1) implies

k

∑
i=1

α
iqi

j+1 ≥ p j+1.

Analogously to the above, this implies either qi
j+1 > p j+1 for some i or qi

j+1 = p j+1
for all i. Using the inductive hypothesis, Lemma 1 implies that the first case is im-
possible. Therefore, qi

j+1 = p j+1 for all i.
We conclude that p = q1 = · · ·= qk. But then (1) doesn’t hold. Contradiction! ut

8 Budish et al (2013) use a similar arguments so the following Lemma would hold in their setting as
well.
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We end by considering a related question regarding envy-freeness and the random
serial dictatorship mechanism. The random serial dictatorship mechanism (Abdulka-
diroğlu and Sönmez 1998) starts by drawing from a uniform distribution over all
possible strict priority orders over the participating agents. Then the first agent in
the resulting priority order is assigned her most preferred object, the second agent in
the order is assigned her most preferred object among the remaining objects etc. The
mechanism clearly induces a profile of probability-share allocations.

As above, we denote the probability-share allocation of agent i under a random-
assignment mechanism f and a preference profile � by fi(�). Then f is said to be
envy-free if we have fi(�) %FOSD

i f j(�) for all i, j and �. We say that f is weakly
envy-free if there is no pair of agents i and j such that f j(�) �FOSD

i fi(�). Anal-
ogously to the way we define convex strategyproofness, we can also define convex
envy-freeness by saying that f is convexly envy-free if for all agents i and �, there
exists a utility vector u ∈Rn that is compatible with �i such that u · fi(�)≥ u · f j(�)
for all agents j. Proposition 1 implies that this is equivalent to saying that there is no
convex combination of elements in { f j(�)} j 6=i that strictly first-order stochastically
dominates fi(�). Bogomolnaia and Moulin (2001) show that while the random serial
dictatorship is strategyproof, it is only weakly envy-free. The method of their proof
can be summarized in a statement that is essentially identical to Lemma 1, except in
that it concerns the probability-share allocations of the other agents rather than the
probability-share allocations an agent can induce by misreporting. The method used
in the proof of Proposition 2 can then be applied to show that the random serial dicta-
torship is in fact convexly envy-free.9 We can summarize the results of this section in
the following stronger version of Bogomolnaia and Moulin (2001)’s Proposition 1:

Proposition 3

(i) The PS mechanism is only convexly strategyproof but envy-free;
(ii) The random serial dictatorship is strategyproof but only convexly envy-free.

Acknowledgements I am grateful to Timo Mennle, Hervé Moulin, the anonymous referees of this paper,
and, in particular, to Haluk Ergin for helpful comments and suggestions.

9 Note that Example 1 can be used to show that convex envy-freeness is strictly stronger than weak
envy-freeness. Namely, let g(a),g(b1), and g(b2) instead refer to the probability-share distributions of
three agents dividing three objects among themselves (note that the probability shares for each object sum
up to 1), and let their preferences be identical: they all prefer objects with smaller indices over objects
with larger indices. Then that allocation would satisfy weak envy-freeness. However, it would not satisfy
convex envy-freeness since the agent corresponding to g(a) would envy a convex combination of the other
two agents’ allocations as shown in the example.
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