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ABSTRACT

Techniques based on using principal eigenvectors of matrices repre-
senting binary relations of sets of alternatives are commonly used in
social sciences, bibliometrics, and web search engines. In most applica-
tions the binary relations can be represented by a directed graph and
the question of ranking or scoring the alternatives can be turned into
the relevant question of how to score the nodes of the graph. This pa-
per characterizes the principal eigenvector as a scoring function with
a set of axioms. A zero-sum scoring function based on the difference
of principal right and left eigenvectors is introduced and axiomatized.
Furthermore, a method of assessing individual and group centralities
simultaneously is characterized by a set of axioms. The specific case
of this method is the Hyperlink-Induced Topic Search (HITS) used in
ranking websites.
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1. Introduction

The question of assigning scores to a set of alternatives by using infor-
mation on their bilateral relationships arises in many fields. In sports the
players or teams need to be ranked according to outcomes of their games,
the quality of scientific publications is assessed using their mutual citations,
Internet search engines organize websites according to their link structure, in
social choice theory alternatives are ranked based on voters’ preferences, in
the analysis of social networks the importance of individuals is evaluated ac-
cording to their ties. These situations can be represented by directed graphs
and the question then becomes on scoring the nodes of the graph to assess
their centrality. For an overview on various scoring and ranking methods see
David (1988) and Laslier (1997).

The link structure of a graph can be presented by a matrix which indicates
whether there is a link between any pair of nodes and how strong this link
is. The idea of using the eigenvectors of this matrix, the adjacency matrix
of the graph, first appears in the works of Seeley (1949); Wei (1952) and
Kendall (1955). See also Daniels (1969), Moon and Pullman (1970), and
Pinski and Narin (1976) for early developments of methods based on principal
eigenvectors.

The first step in centrality scoring is to form a matrix representing the
relations of nodes. The scores of the nodes can then be obtained by using the
principal eigenvector; either the right or left eigenvector. There are numerous
ways to form adjacency matrices from underlying data, which may contain
for example the tournament outcomes or the link structure of websites. One
way is to take the components of the matrix directly from the data describing
the binary relations of the nodes in the graph. The other way is to normalize
the matrix, which usually leads to a stochastic matrix.

The normalization can be done in several ways. The two most commonly
used methods, the invariant method and the fair bets method have been ax-
iomatized by Palacios-Huerta and Volij (2004) and Slutzki and Volij (2005,
2006). The celebrated PageRank method of Google (Brin and Page, 1998) is
closely related to the invariant method, and it has been axiomatized by Alt-
man and Tennenholtz (2005). All these methods rely on forming a stochastic
matrix from the original binary relations, and computing its stationary dis-
tribution.

For the non-normalized method—also known as the Kendall-Wei method
or the long path method (Laslier, 1997)—there is no characterization results
in the prior literature. This paper remedies this matter. In essence, the
principal eigenvector of an irreducible matrix is axiomatized: the principal
eigenvector is the unique scoring function that satisfies a set of axioms intro-
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duced in this paper. This result relies on the Perron-Frobenius theorem.
The normalized principal right eigenvector represents the asymptotic pro-

portions of directed walks in the graph that begin from each node of the graph
(Laslier, 1997; Cvetković et al., 1997). A walk between two nodes in a graph
means that it is possible to get from one node to another by following the
edges of the graph. The left eigenvector, on the other hand, tells the same
information on walks terminating to each node. A new zero-sum measure
is defined by taking the difference of the two principal eigenvectors. This
measure gives the net flow of walks to each node. Zero-sum scoring functions
have been previously introduced by David (1987) and Herings et al. (2005).
The Copeland scoring function measuring the differences between number of
successors and predecessors of nodes is another example of a zero-sum scoring
function. It has been axiomatized by Rubinstein (1980); Henriet (1985), and
van den Brink and Gilles (2000).

The zero-sum scoring function defined as the difference of the right and
left principal eigenvectors is axiomatized. Moreover, it is shown that the
zero sum scoring function is obtained as a limit of a weighted index similarly
as the usual eigenvectors scores are the limiting cases of the index by Katz
(1953) and Hubbell (1965).

One of the most widely known methods for discovering relevant web-
pages for a particular topic is the HITS (Hyperlink-Induced Topic Search)
algorithm of Kleinberg (1999). The method is based on computing iteratively
the principal eigenvector of a particular matrix obtained from the one that
describes the link structure of websites. As a scoring function the HITS is
essentially a specific case of the method of Bonacich (1991) for assessing the
centrality of individuals and groups simultaneously. The Bonacich-Kleinberg
method, including the HITS as a specific case, will be axiomatized in this
paper.

The paper is structured as follows. The properties of the usual principal
eigenvector scoring function are studied in Section 2. Section 4 introduces
the zero-sum scoring method. The Bonacich-Kleinberg method for scoring of
groups and individuals is characterized in Section 5.

2. Preliminaries

Let us assume that the purpose is to score the nodes of directed graphs.
Such graphs can be used for example in presenting networks of people or re-
sults of tournaments. In a tournament the nodes of the graph could represent
players and the edges could indicate that a player has won its opponent. The
weight given for an edge could tell the number of times a player has beaten
an opponent.
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Let us assume that there are n nodes in the graph. Let A be an n × n-
matrix with non-negative components. This matrix is the weighted adjacency
matrix of the graph. For a tournament each row represents the wins of a
player over the other players. The component of A in its i’th row and j’th
column, denoted by aij, gives the number of times that i has won j. For
a social network aij = 1 would indicate that the individuals i and j are
connected. In that case A becomes a symmetric matrix. In general, aij can
be any non-negative weight assigned to the relation between two nodes i and
j in the graph. In the following I will denote the identity matrix.

The below example illustrates how a social choice problem can be formu-
lated as a graph.

Example 1. Let us assume that there are five alternatives (or candidates):
a, b, c, d, and e. Furthermore, let us assume that we have social preference
relations for some of them expressed, e.g. in a vote between two alternatives.
The graph in Figure 1 expresses these relations; the alternatives are the
nodes and the edges between them express the preferences. For example a
is preferred over b. The edges between c and e can be interpreted as the
alternatives being equally good.

a

b

c

d

e

Figure 1: The graph in Example 1.

The adjacency matrix expressing the social preferences, or connection
between the nodes, is

A =













a b c d e

a 0 1 0 0 0
b 0 0 1 1 0
c 0 0 0 1 1
d 1 1 0 0 0
e 0 0 1 1 0













If the preferences over the alternatives were expressed as votes, we could
attach to each edge the number of votes by which an alternative beats an-
other. This would lead to a weighted adjacency matrix.
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Example 1 demonstrates that we can associate an adjacency matrix to
a graph. On the other hand, for a given positive matrix we can find a
corresponding graph in which there is an edge between nodes i and j if
aij > 0. Without loss of generality we may assume that the weight of the
edge is aij. Let G(A) denote the directed graph corresponding to A.

It will be assumed that A is irreducible; nodes that cannot be connected
to each other by some walk in the graph are not compared. A walk of length
k from node i to node j means that there is a sequence of directed edges
leading from i to j in k steps, i.e., there are i0, i1, . . . , ik with i0 = i and
ik = j such that ait,it+1

> 0 for all t = 0, . . . , k − 1. Formally, matrix A is
irreducible if G(A) is strongly connected: for each pair of nodes i, j there is
a walk connecting them. For example, in a voting setup this condition holds
when we have the number of voters who prefer an alternative to another
for all pairs of alternatives, and the resulting matrix is formed from these
numbers.

We can also assign the weight ai0ai1×· · ·×aik to the directed walk between
nodes i and j. In this case the walk is said to be weighted. If there are several
walks of length k between two nodes then we add the weights corresponding
to these walks to obtain akij which is the total weight of all walks of length k
between the two nodes. Note that akij, i, j = 1, . . . , n, are the components of
Ak, i.e., A to power k.

If the components of A tell how many edges there are between two nodes,
then akij is the number of length k walks between i and j. For instance, let
us assume that aij, i, j = 1, . . . , n, are the numbers of voters who prefer one
alternative to another. The number akij tells how many ways there are to get
i indirectly preferred to j by making k pairwise comparisons of alternatives
where in each comparison t = 0, . . . , k − 1 some voter prefers alternative
it to alternative it+1. When the components of A can be any non-negative
numbers, multiplying the weights corresponding to the nodes appearing in
a walk connecting them gives the weight of the length k connection. In
particular, if A is a stochastic matrix, i.e., the rows sum are one, then akij
is the probability of reaching node j in k steps from node i. For general
positive weights, the strength of connections between nodes is multiplicative
along walks between them, and akij is the sum of the strengths of all length
k walks joining the nodes.

In addition to irreducibility it will be assumed thatA is primitive, i.e., Ak

has strictly positive components for some k. Such matrices are irreducible.
It turns out that assuming that A is primitive can be done without loss of
generality. In the following M denotes the set of primitive matrices.

A scoring function F = (F1, . . . , Fn) gives for each i = 1, . . . , n a score
Fi(A), i.e., F : M 7→ R

n. In principle, the score of a node can be any real
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number, positive or negative. As explained earlier, scoring functions have nu-
merous applications in situations where we need to rank a set of alternatives
and are possible interested in choosing the best alternative. For instance,
when the underlying data presents voters preferences over a set alternatives,
the scoring function can be interpreted as a social welfare function which
ranks the different alternatives (Laslier, 1997).

Let R(A) ∈ R
n denote the principal right eigenvector of A, in brief

the principal eigenvector, which is normalized such that
∑

i Ri(A) = 1. The
principal right eigenvector is also known as the Kendall-Wei scoring function.
By definition we have

AR(A) = λ(A)R(A),

where λ(A) ∈ R is the principal eigenvalue, i.e., the largest eigenvalue of A.
Moreover, let L(A) denote the corresponding eigenvector of A⊤, i.e., L(A)
is the principal left eigenvector of A. All vectors in this paper are column
vectors. The vector 1 denotes the n-dimensional vector with all components
equal to one.

The main results of this paper rely on the Perron-Frobenius theorem, see,
e.g., Meyer (2000). For the purposes of axiomatizing eigenvector measures
we need the following results from the Perron-Frobenius theorem.

Theorem 1. For any A ∈ M it holds that

1. λ(A) > 0,

2. the normalized principal eigenvector R(A) is unique and strictly posi-
tive, i.e., R(A) ≫ 0,

3. there are no other non-negative eigenvectors than the positive multiples
of R(A),

4.

lim
k→∞

Ak

λk(A)
=

R(A)L(A)⊤

ρ(A)
, (1)

where ρ(A) = R(A)⊤L(A).

Before proceeding to the axiomatization of the principal eigenvector let
us briefly discuss the restriction that the underlying graph is assumed to be
connected, i.e., A ∈ M. This restriction is common for all methods relying
on principal eigenvectors, because otherwise the principal eigenvector may
not be unique. It is, however, possible to extend the eigenvector based meth-
ods for graphs having non-connected components. Slutzki and Volij (2005)
describe how to obtain an ordinal extension of a method defined for reducible
matrices. Similar approaches are also discussed by Borm et al (2002) and
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Hu and Shapley (2003). Echenique and Fryer (2007) introduce an explicit
formula for extending the principal eigenvector to irreducible matrices by
partitioning the graph into connected components and utilizing the principal
eigenvectors for each component.

Let us assume that that there are m strongly connected components in
the graph G(A). Then the adjacency matrix A corresponds to the adjacency
matrices A1, . . . ,Am of these components. Note that each node belongs to
exactly one component. If node i belongs to the k’th component, the score
of the node is

Fi(A) = λ(Ak)Ri(Ak)|Ak|, (2)

where Ri(Ak) is the eigenvector score of i corresponding to the adjacency
matrix of the k’th strongly connected component, and |A|k is the number
of nodes in the k’th component. Echenique and Fryer (2007) axiomatize a
segregation measure which involves the scores of the individuals, and they
show that the resulting scores are given by Equation (2). One of their axioms
is that each connected component is scored by an eigenvector.

3. The eigenvector scoring function

3.1. Axiomatization of the principal eigenvector

In this section it is assumed that the purpose is to score the nodes of
a directed graph, and the adjacency matrix of the graph is irreducible and
has non-negative components, i.e., belongs to M. In particular, all matrices
mentioned in this section belong to M.

Let us now introduce a set of axioms for a scoring function F : M 7→ R
n.

(A1) F(A) ≫ 0,

(A2) F(βA) = F(A) for all β > 0.

(A3) F(A+ βI) = F(A) for all β ≥ 0.

(A4) F(Ak) = F(A) for all k = 1, 2, . . ..

(A5) If F(A) = F(B), then AF(A) = βBF(B) for some β > 0.

(A6)
∑

i Fi(A) = 1.

The first axiom means that all the scores are positive. When dealing with
an irreducible matrix A all nodes are connected to at least one other node.
Hence, it makes sense that all nodes get positive scores.

The second axiom, the homogeneity of degree zero, means that F is in-
variant for multiplying all the weights of the edges of the graph by the same
constant. This property holds for all commonly used scoring methods. The
axiom can be interpreted as the invariance to the unit in which the strength of
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connections in the network are measured. It is a reasonable assumption that
the unit or scale does not matter. For instance, in a social choice problem
it should not matter whether we express the comparisons of two alternatives
as absolute values, e.g., numbers of votes, or percentages of voters preferring
one alternative to another.

It should be noticed that scaling the matrix with a positive constant
should not be confused with normalizing it. A normalization means that we
manipulate the relative weights given by the nodes. For example, we may
turn the comparison of i and j into a probability of i beating j. Let us
consider a graph with nodes 1, 2, 3 and a12 = 2, a21 = 1, and a23 = 4 and
a32 = 2. We can normalize the matrix by giving the edge from i to j the
weight âij = aij/(aij + aji). This gives â12 = â23 = 2/3. This normalization
cannot be expressed as a change of scale, i.e., as multiplication of A by a
scalar. Note, however, that when there is c > 0 such that aij + aji = c for all
i 6= j, and aii = 0 for all i = 1, . . . , n, such as in voting or in tournaments,
then the above normalization is equivalent with multiplying A with 1/c.

The third axiom means that the score remains the same if we add each
node an edge to itself with equal weight. This means that the results of the
scoring function cannot be manipulated by multiplying the self-connections
by the same number. However, this does not mean that self-connections were
not relevant at all. What matter are the relative strengths of self-connections,
not their absolute values. This property holds for all methods were self-
connections are removed, which is rather common, e.g., in bibliometrics or
in assessing the authoritativeness of webpages. The motive for removing the
self-connections such as self-citations or self-links is to prevent manipulation
of the scores.

The fourth axiom means that if we consider the k-length weighted walks
from each node to other nodes, the scores remain the same. Hence, F is
invariant to the strength of connections corresponding to any length of walks
between the nodes. For instance in a voting situation a walk of length k
between two nodes can be interpreted as an alternative being indirectly pre-
ferred to another. Recall, however, that the walks of any given length are
given the weights corresponding to Ak. The axiom (A4) then means that it
does not matter whether we use the information on votes between all pairs
of alternatives or information on indirect preferences with weights Ak of any
fixed length k of walks. Hence, the axiom can be interpreted as the invari-
ance to weighted indirect comparisons of nodes. If F is a continuous scoring
function that satisfies (A3), we can define another scoring function F∗(A) as
the limit of F(Ak), which by Equation 1 is

F
(

R(A)L(A)⊤
)

,

7



and the resulting function F∗ satisfies (A4).
In the fifth axiom we multiply the scores of two matrices A and B with

these matrices. This gives us v1 = AF(A) and v2 = BF(B). The axiom
says that if the scores of two matrices are the same, the vectors v1 and v2

are scalar multiples of each other. To clarify the axiom let us assume that
we give each node i = 1, . . . , n in a network an initial mass of power Fi(A).
The vector AF(A) gives the distribution of power after we share the initial
vector of power F(A) by computing the net outflow of power from each node
to the whole network. The outflow from node i to node j is assumed to be
aij multiplied with the power of node j.

The axiom (A5) says that if the initial power vectors are the scores and
they are the same for two matrices, then the distributions on net flows of
power are scalar multiples of each other. Hence, the relative flows, i.e., flows
from each node compared to any other node or the total flow of the network,
remain the same for matrices with equal scores. This property, the equality
of relative flows for matrices with the same scores, is the most distinguishing
feature of principal eigenvectors. No other commonly used scoring function
satisfies it for all vectors having the same score. However, the usual points
method where the scores are equal to the out-degrees of the nodes has this
property for any two matrices for which all the nodes get equal scores.

The last axiom is only the normalization of scores. Note that the nor-
malization of scores is a different operation than the normalization of the
original data, e.g., by forming a stochastic matrix from the initial adjacency
matrix describing the binary relations of the nodes.

We can observe that R satisfies the aforementioned axioms. This fol-
lows directly from the standard results for eigenvectors. Adding a matrix βI
changes only the principal eigenvalue, while the normalized principal eigen-
vector remains the same. Same holds when the matrix is multiplied by a
scalar. Moreover, eigenvectors are unaffected by taking any positive power
of the matrix.

Remark 1. R(A) satisfies axioms (A1)–(A6).

An important implication of (A3) is that we can assume that aii > 0 for
all i without the loss of generality. Recall that a non-negative matrix with a
positive component on its diagonal is primitive. Hence, we can always turn
an irreducible matrix into a primitive matrix by adding components on the
diagonal without affecting the scores.

The main result of this paper is that R is the only scoring function that
satisfies the axioms (A1)–(A6).

Proposition 1. The unique scoring function F that satisfies (A1)–(A6) for
any primitive matrix is F = R.
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Proof. Let F : M 7→ R
n be a function that satisfies the assumptions of the

proposition. By (A2) the vector Fk = F(Ak/λk(A)) equals F(A) for all
k = 1, 2, . . .. Hence, the limit of the sequence {Fk}k is F(A). By (A5) we
have

AkF(A)/λk(A) = βkAF(A), (3)

where βk > 0 for all k. According to the Perron-Frobenius theorem, i.e.,
Equation (1)

Ak/λk(A) → R (A)L(A)⊤ /α(A),

where α(A) = R(A)⊤L(A) > 0. Moreover, both sides of (3) are bounded,
which implies that the sequence {βk}k is a bounded sequence of positive num-
bers. Hence, it has a convergent subsequence with a limit β̄ ≥ 0. By taking
the limit of both sides of (3) corresponding to the convergent subsequence of
{βk}k gives

R (A)L (A)⊤ F(A)/α(A) = β̄AF(A).

We can write this as

ρ(A)R (A) /α(A) = β̄AF(A), (4)

where ρ(A) = L (A)⊤ F(A).
If ρ(A) = 0 or β̄ = 0, then F(A) would be orthogonal to L(A), which

cannot be the case since L(A),F(A) ≫ 0. Hence, ρ(A), β̄ > 0.
By (A3) we can assume thatA is invertible. Namely, if it was not, then we

could add βI to A to get a diagonally dominant matrix with the same scores
as A. Diagonally dominant matrix is non-singular by the Levy-Desplanques
theorem. Because R(A) is an eigenvector we have R(A) = AR(A)/λ(A).
If we plug in AR(A)/λ(A) in place of R(A) and multiply both sides of
Equation (4) with A−1 we observe that F(A) is parallel to R(A). The
axiom (A6) guarantees that F(A) = R(A).

Let us next discuss the independence of the axioms characterizing the
principal eigenvector. First, if F(A) is allowed to be non-positive, then any
eigenvector, e.g., the eigenvectors corresponding to the second largest eigen-
value would satisfy the axioms.

To see that (A2) is independent of other axioms, let us define a scoring
function F(A) for stochastic matrices such that it satisfies all other axioms
except for (A2). We can extend the function outside of the domain of stochas-
tic matrices (or matrices for which row sums are equal) by defining it as the
usual principal eigenvector. Let R1(A) denote the principal eigenvector and
let R2(A) denote the eigenvector corresponding to the second largest eigen-
value. Let us also denote γ(A) = maxi |R

2
i (A)|/mini R

1
i (A), and let β(A)
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be the largest column sum of A. The function F(A) is now obtained by nor-
malizing β(A)γ(A)R1(A) +R2(A) such that (A6) holds. By assuming that
A and B in the axioms are stochastic matrices such that Ri(A) = Ri(B),
i = 1, 2, we can observe that (A3)–(A6) hold. However, (A2) need not hold.

To show that the third axiom is independent of the other axioms, let
us define F(A) for matrices with non-empty null-space by normalizing the
vector R(A)−ρ(A)v(A), such that (A6) holds. Here v(A) is a vector in the
null space of A, and ρ(A) ≥ 0 is chosen such that R(A) − ρ(A)v(A) ≫ 0.
Then for A and B having the same null-space with positive dimension (there
is v(A) 6= 0) all the other axioms except for (A3) hold. We can extend
the function outside of the domain of matrices with non-empty null-space by
defining at the usual principal eigenvector if the null-space is empty.

If we dropped (A4), then any F(A) = R(Ak), k ≥ 1, would satisfy the
rest of the axioms. If the axiom (A5) was not assumed, then the rest of the
axioms hold for any F(A) = g(R(A)) where g(x) ≥ 0 for all x ≥ 0 and
∑

gi(x) = 1. Finally, it can directly be seen that (A6) cannot be omitted.
Otherwise, any scalar multiple of R(A) would satisfy the other axioms.

3.2. Interpretation and properties

Before proceeding to other scoring functions that can be derived from
the principal right and left eigenvectors, let us briefly go through some prop-
erties of the eigenvector scoring function. Let us begin from the intuitive
interpretation of the meaning of R(A). First of all, we can interpret each
component of A as the number of ways to get from one node of a graph
to another. Recall also that if we want to know the how many ways, i.e.,
total sum of weighted walks, there are to get from one node into another
by going through k nodes, we get this information from the components of
Ak. The total number of walks originating from each node is given by Ak1.
The asymptotic growth rate of the total number of walks is equal to λ(A),
and the asymptotic proportions of walks from each node are given by the
components of R(A), see Cvetković et al. (1997). More specifically, if R∗ is
a (non-normalized) principal eigenvector, then Ri(A) = R∗

i (A)/
∑

i R
∗

i (A)
tells the proportion of all walks that begin from node i in the limit when k
goes to infinity.

For stochastic matrices and tournament matrices the principal eigenvec-
tor has additional interpretations. For a stochastic matrix R(A) gives the
stationary distribution of the corresponding Markov chain. When A is a
tournament matrix with aij + aji = 1 for all i 6= j, the principal eigenvec-
tor expresses the probabilities of playing against each team in a sequential
tournament where the winner gets to play against against randomly cho-
sen opponent. Namely, when the prior probability of playing against each
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team is given by R(A), then the probabilities of being a winner are AR(A).
When the probability of playing against any team is proportional to the win-
ning probability of the team we get R(A) from AR(A) by scaling the latter
probabilities.

One desirable property of R(A) is that the scores of nodes are unaffected
by the way they are labeled. This property is known as anonymity. Formally,
for any permutation π of nodes with matrix Pπ it holds that

Fi(A) = Fπ(i)

(

PπAP⊤

π

)

for all i = 1, . . . , n.

The second feature of R(A), which is common for many other scoring
functions, is that if nodes are in a symmetric position their scores are equal.
Nodes i and j are symmetric when there is a permutation π such that π(i) = j
and π(j) = i, and A = PπAP⊤

π . The property that symmetric nodes get the
same score will be called symmetry.

The third property is that adding a node linked to itself with any non-
negative weight and to other nodes with the number of edges to both direc-
tions being F(A), does not affect the relative scores of the original nodes.
Formally, if we create a new matrix

A∗ =

(

A R(A)
R(A)⊤ α

)

,

where α > 0, i.e., we add an ”average”node into the graph, then Fi(A
∗)/Fj(A

∗),
i, j = 1, . . . , n remain the same. This property is called as invariance to
adding an average node.

Proposition 2. The scoring functions R(A) and L(A) satisfy anonymity,
symmetry, and invariance to adding an average node.

Proof. Permuting the order of players affects only the order of components
of eigenvectors. Hence, anonymity holds for R. Symmetry nodes is evident.
The last property follows by observing that there is an eigenvector of the
form (R(A), f(α)) ≫ 0 for

(

A R(A)
R(A)⊤ α

)

corresponding to the eigenvalue which is the positive root of

(x− α)[x− λ(A)]− ‖R(A)‖2 = 0. (5)

This quadratic equation is obtained from the eigenvalue equation
(

A R(A)
R(A)⊤ α

)(

R(A)
f(α)

)

= x

(

R(A)
f(α)

)
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by utilizing the fact that AR(A) = λ(A)R(A). Namely, this condition gives
(λ(A)+f(α))R(A) = xR(A), i.e., f(α) = x−λ(A), and ‖R(A)‖2+αf(α) =
xf(α).

It can be seen that Equation (5) has a positive root for any α ≥ 0. Let

β(α) =
λ(A) + α +

√

[λ(A)− α]2 + 4‖R(A)‖2

2

denote this root. Then we have f(α) = β(α) − λ(A). Because β(α) >
(λ(A) + α + |λ(A) − α|)/2, it holds that β(α) > λ(A) for all α ≥ 0, i.e.,
f(α) > 0. By the Perron-Frobenius theorem there are no other positive
eigenvectors than the principal one. Since all the components of (R(A), f(α))
are positive it is the principal eigenvector. The deduction goes through for
L(A) the same way.

4. Zero-sum scoring with principal eigenvectors

In this section it will be assumed that the graph presenting the binary
relations is directed. Consequently, A is not necessarily a symmetric matrix.
This is typically the case for tournament matrices, where a link between two
nodes reflects the wins (or losses). Especially, in tournaments we may want
to utilize the information on both wins and losses to assess the players. For
example, a player may have a significant number of both wins and losses.
Hence, a centrality measure that is based only on wins may give a biased
view on the actual strength of a player. The following example demonstrates
this.

Example 2. Let us assume that there are four players. Player a has beaten
players b and d but is defeated by player c, who has lost to the other two
players. Player b has beaten player d. Hence, the tournament matrix is

A =









a b c d

a 0 1 0 1
b 0 0 1 1
c 1 0 0 0
d 0 0 1 0









.

The corresponding graph is illustrated in Figure 2.
The usual points method would given equal score to players a, b, and c,

and ranks them best. The eigenvector ranking is a, b, c, and d. Both players
a and b have one loss; a has been beaten by c, and b has been beaten by
a. It is worth noticing that a has lost to a relatively weaker player than c.

12



a

b c

d

Figure 2: The graph in Example 2.

Hence, if we take into account also the losses in the scoring we would expect
b to be higher ranked than a. This is also what will happen when ranking
the players according to the zero-sum method; the ranking is b, a, c, and d.

4.1. Definition and interpretation

By utilizing the left and right eigenvectors it is possible to define a zero-
sum scoring function as their difference. It will be called zero-sum spectral
scoring function.

Definition 1. Let A be non-negative and irreducible. Zero-sum spectral
scoring function is

F(A) = R(A)− L(A).

Let us now derive the zero-sum spectral scoring function by considering
walks originating from a node and terminating to the same node. Again we
can consider the components of A as numbers of ways to get from one node
to another. Recall that the number of walks of length k that start from i and
terminate to j are obtained by taking the component akij of Ak. Moreover,
the number of walks originating from j and terminating to i are given by the
component a

(k⊤)
ij of A⊤ to power k, i.e., Ak⊤. The difference

akij − ak⊤ij

reflects the net flow of walks from i to j. Observe that the corresponding
difference for node j is simply

ak⊤ij − akij.

To assess the relative importance of node i we can simply sum over the
differences

akij − ak⊤ij .

In matrix notation we get the scores
[

Ak −Ak⊤
]

1.
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The following result is a direct consequence of the Perron-Frobenius theorem,
see, e.g., Meyer (2000).

Proposition 3. Let A be a primitive matrix and let

α(A) =
[

R(A)⊤L(A)
]−1/2

.

Then
[

Ak −Ak⊤
]

1

λk(A)
→ α2(A)F(A) as k → ∞.

Proof. The matrices A and A⊤ have the same principal eigenvalue λ(A). By
the Perron-Frobenius theorem

Ak

λk(A)
→ R∗(A)L∗(A)⊤ and

Ak⊤

λk(A)
→ L∗(A)R∗(A)⊤

as k → ∞. It is assumed that R∗(A)⊤L∗(A) = 1, and R∗(A) is parallel
to R(A) and L∗(A) is parallel to L(A). If we take R∗(A) = α(A)R(A)
and L∗(A) = α(A)L(A) we get the result because then R∗(A)L∗(A)⊤1 =
R∗(A)α(A) = α2(A)R(A) and L∗(A)R∗(A)⊤1 = α2(A)L(A).

If A is not primitive, it is still possible to find the eigenvectors but the
above explanation in terms of walks no longer works.

Recall from the previous section that R(A) gives the asymptotic propor-
tion of length k walks that start from each node of the graph. The vector
L(A) on the other hand gives the asymptotic proportions of walks that end
to each node. Hence, the scores are simply differences of these proportions.

If A is a matrix corresponding to results of a tournament, then its compo-
nents could represent points that a player has gained from other players. In
case of tournaments the components of F are proportional to the asymptotic
growth rates of the net of incoming and outgoing points for each player.

4.2. Properties of the zero-sum scoring function

Let us consider an arbitrary zero-sum scoring function F. It is additive
if F(A) = Fi(A) − Fo(A). Intuitively, Fi(A) represents the inflows of con-
nections to each node while Fo represents the outflows. For instance, when
considering a tournament Fi contains the inflows of points due to victories
while Fo is composed of the outflows of points due losses. Recall that if A
contains the data on wins for each pair, i.e., aij > 0 indicates that i has
beaten j, then AT contains the losses. Hence, it is reasonable to assume that
Fi(A) = Fo(A⊤). Consequently, nodes are equally scored if and only if their
scores are all zeros.

14



It follows immediately from the definition of the zero-sum spectral scoring
function that it is additive and the inflow and outflow components are related
to each other as described above, i.e., by setting Fi(A) = R(A) and Fo(A) =
L(A) it holds that Fi(A) = Fo(A⊤). As a consequence we can make the
following observation.

Remark 2. For any irreducible A it holds that
∑

j Fj(A) = 0. The players
scores are equal if and only if Fj(A) = 0 for all j = 1, . . . , n.

The zero-sum scoring function obviously inherits most of the properties
of the principal eigenvector. In particular, it has the properties (A2)–(A4).
Moreover, due to its zero-sum nature it gives zero scores, when A is symmet-
ric. For a tournament matrix this would mean that each player has equally
many wins and losses from each player. This result is a direct corollary of
the above remark. Moreover we can add any symmetric matrix to A without
affecting the scores, which follows from Remark 1. Namely, left and right
eigenvectors are the same for symmetric matrices. More generally, when we
add another symmetric matrix to A the scores remain the same. For a tour-
nament matrix this would mean that players cannot improve their positions
by agreeing to play pairs of matches where wins and losses are equal for each
player.

Remark 3. If A is symmetric, then it holds that Fi(A+B) = Fj(A) for all
i, j = 1, . . . , n, and for all symmetric non-negative matrices B.

By utilizing Proposition 1 for R it is possible to characterize the zero-
sum spectral scoring function. By definition F(A) is F(A) = R(A)−L(A).
The functions R(A) and L(A) are vectors with strictly positive components
for all irreducible non-negative matrices A, which follows from the Perron-
Frobenius theorem. As seen in the previous section R satisfies the axioms
(A1)–(A6). Consequently, these properties fully characterize the zero-sum
spectral scoring function.

Proposition 4. The zero-sum spectral scoring function is the unique scoring
function which satisfies the following properties for any non-negative irre-
ducible matrix A.

1. F(A) = Fi(A)− Fo(A),
2. Fi(A) = Fo(A⊤),
3. Fi(A) satisfies (A1)–(A6).

Proof. The last assumption implies that Fi(A) is uniquely defined as R(A).
The second assumption on the other hand assures that Fo(A) is the left
eigenvector L(A). Hence, the unique scoring function having additive struc-
ture and components that satisfy the second and third assumptions is the
zero-sum spectral scoring function.
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4.3. Other zero-sum scoring functions

The idea of zero-sum scoring functions has been previously utilized in
defining scoring functions. For instance, the point method, or the Copeland
scoring function, gives each player scores equal to the out degree minus the
in degree, i.e., the scores are given by

[

A−A⊤
]

1.

Rubinstein (1980) characterizes this scoring function for tournaments. In the
David’s method the scores are given by

[

A2 −A2⊤ +A−A⊤
]

1.

More generally we can define a whole family Fk, k = 1, 2, . . ., of scoring
functions of this kind. Let us first denote

Gk(A) =
k

∑

i=1

[

Ai −Ai⊤
]

1.

For each k ≥ 1 we can define a scoring function

Fk(A) =
Gk(A)

maxi Gk
i (A)

,

when maxi G
k
i (A) 6= 0. This normalization guarantees that maxi F

k
i (A) =

1. Moreover, multiplying A with a scalar does not affect the scoring. If
maxi G

k
i (A) = 0 we can set Fk(A) = 0.

A zero-sum scoring function called the net power function (Herings et al.,
2005) is defined as

F(A) = Fp(A)− Fp
(

A⊤
)

,

where the power function Fp is

Fp(A) =
1

n

[

I−
1

n
A

]−1

A1.

The zero-sum spectral scoring function can be related to a weighted scor-
ing function in a similar fashion as principal eigenvector relates to the Katz-
Hubbell index: the principal eigenvector is the limit of Katz-Hubbell index.
Analogously it can be shown that the zero-sum spectral scores are obtained
as a limit of a weighted zero-sum scoring function defined below.

Definition 2. Let w < 1/|λ(A)|. The weighted zero-sum scoring function is
defined as

Fw(A) = [I− wA]−1
1−

[

I− wA⊤
]−1

1. (6)
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Another way to define the weighted zero-sum scoring function is to set

Fw(A) =
∞
∑

k=0

[

wk
(

Ak −Ak⊤
)]

. (7)

The weight w is called the damping factor, and when 1/|λ(A)| the infinite
sum is well defined. Moreover, it holds that

∞
∑

k=0

(

wkAk
)

= [I− wA]−1,

when w < 1/|λ(A)|. Hence, Equation (7) leads to exactly the same scores as
Equation (6).

The weighted scoring function

F(A) =
∞
∑

k=0

(

wkAk
)

= [I− wA]−1
1

is known as the Katz-Hubbell index (Katz, 1953; Hubbell, 1965), see also
Bonacich and Lloyd (2001) for a related measure where the vector 1 is re-
placed with a vector reflecting the exogenous sources of status. Bonacich
(1987) defines a family of related measures where the damping factor may
be negative.

Proposition 5. When w converges to 1/λ(A) from below, Fw(A) converges
to F(A).

Proof. It is well-known that R(A) is the limit of

[I− wA]−11,

when w goes to 1/λ(A), see, e.g., Thompson (1958) and Bonacich (1987,
1991). The analogous result holds for A⊤. Hence, the result follows.

5. Axiomatization of the Bonacich-Kleinberg scoring function

5.1. The HITS method and simultaneous scoring of groups and individuals

Assessing the authoritativeness of webpages is an important task of In-
ternet search engines. Kleinberg (1999) has proposed the notion of authori-
tativeness of a webpage based on the relationship between the webpages and
the hub pages that join them together in the network structure. To clarify
the idea of the HITS method let us consider the graph in example 1 and
reinterpret the nodes as websites.
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Example 3. In this case we have five websites; a, b, c, d, e. Each node
corresponds to a website while an edge corresponds to hyperlink between
two websites. The question is now how to assess the authoritativeness of
a website. Each website serves also as a hub that connects other websites.
Hence, we may also want to assess the importance of a website as a hub that
connects links to other webpages. The more a website has links the more
relevant it is as a hub. In principle we can define five groups corresponding
to each hub. For example, website b belongs to the group corresponding to a
because it is a neighbor of a. Respectively, each row of the adjacency matrix
corresponds to a hub while the columns correspond to websites.

Let A be the adjacency matrix of the network. The authoritativeness of
nodes and hubs are obtained in a consistent manner from the principal eigen-
vectors of A⊤A and AA⊤, respectively. Observe that the authoritativeness
of a webpage is related to how relevant hubs it is connected to. This method
of assessing the authoritativeness of webpages is known as the HITS (hy-
pertext induced topic search) and it has become rather popular in ranking
web-pages among another eigenvector based technique known as the Page
Rank (Brin and Page, 1998).

The HITS method can be seen as a special case of the method introduced
by Bonacich (1991) for assessing individual and group rankings simultane-
ously. Let us assume that there are m groups and n individuals who are the
possible members of the groups. The m × n matrix A contains the weights
associated with each individual in each group. In the Bonacich’s method
the scores of individuals are given by R(A⊤A) and the scores of groups are
given by R(AA⊤). Evidently, HITS corresponds to the specific case where
the groups are simply the neighbors of each node. In the following we call
the method as the Bonacich-Kleinberg method. Its main feature is that the
group scores are a weighted sum of the scores of the members of the group.

The Bonacich-Kleinberg method can be used for preference aggregation
in a social choice setup. In this case a number of agents have preferences over
a set of alternatives and the question is on aggregating these preferences into
a social welfare order. Now the rows of the matrixA represent the agents and
columns represent the alternatives. The elements aij describes the preference
of agent i for alternative j. Another application of the Bonacich-Kleinberg
method in the social choice context is to use it to assess a set of alternatives
together with a set of characteristics related to them. Let us demonstrate
this with a simple example.

Example 4. Let us assume that in Example 1, the vertices represent alter-
natives, and the edges represent binary relations over them. Moreover, let us
assume that alternatives a and b involve a certain decision D1 to be made,
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while b and d require decision D2 and the alternative c requires decision D3

and D1, the alternative e requires decision D3. The question is now on rank-
ing both the alternatives and the decisions simultaneously. Basically, we can
divide the alternatives into groups corresponding to D1, D2, and D3. An
alternative belongs to a group if it involves the decision corresponding to a
group.

Let us now create a matrix M where each row corresponds to a decision
and each column corresponds to an action. Let us also give a weight to
each alternative as follows. An alternative gets one point from each edge to
another node. For instance, a gets one point from b, b gets one point from
e, and so on. Since an alternative may belong to several groups, i.e., require
several decisions, we give an alternative the weight as a member of one group
by dividing the points by the number of groups it belongs to. This gives us

M =





a b c d e

D1 1 1/2 1.5/2 0 0
D2 0 1/2 0 2 0
D3 0 0 1.5/2 0 1.5



.

Now we are ready to score both the decisions and the alternatives simultane-
ously. The Bonacich-Kleinberg method would give the ranking of decisions
D2, D1, D3, and the ranking of alternatives d, b, c, a, e.

5.2. Axiomatization

To define the axioms for the Bonacich-Kleinberg scoring function we need
the operations of adding groups and the power of m× n matrix. Recall that
the rows of A represent groups and the columns represent individuals.

Let A be a matrix corresponding to m groups and n individuals. If B is
a matrix corresponding to k groups and n individuals we can append A with
B to obtain

(

A

B

)

.

We denote this operation as A⊞B.
The powers of A are defined as follows: A(1) = A, A(2) = A⊤A, A(3) =

AA⊤A, . . .. Note that for k even A(k) is n× n matrix and for k odd A(k) is
m× n matrix.

We are now ready to describe the axioms needed in characterizing the
Bonacich-Kleinberg scoring function. Below a scoring function F maps any
m× n matrix for which A⊤A belongs to M into R

n.

(A1’) F(A⊞ βP) = F(A) for any β ≥ 0 and n× n permutation matrix P,

(A2’) F(A(2k)) = F(A) for all k = 1, 2, . . ..
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(A3’) LetA andB have the same dimensions. If F(A) = F(B) thenAF(A) =
βBF(B) for some β > 0.

The first axiom means that the scores are invariant for adding dummy groups,
i.e., adding groups corresponding to each individual with only that individual
as the member. This means that the scores cannot be manipulated by adding
identical groups for each individual. The second axiom says that we get
the same score when we form an adjacency matrix A⊤A to individuals and
consider the resulting walks of any fixed length. The product A⊤A means
that the strength of the connection between two individuals is set equal to the
sum of products of the weights in which the two individuals belong to each
group. The last axiom is analogous to (A5) in Section 2. The difference to
(A5) is that A and B should have the same dimensions. The interpretation
of is that if the scores of individuals corresponding to two matrices with
same dimensions are the same, then we get the same scores for the groups
if we compute them by summing the weight-score products of all individuals
belonging to each group and normalize the resulting vectors. As will be seen
later, this is indeed how the scores of the groups and individuals are related
in the Bonacich-Kleinberg method.

The main result for the Bonacich-Kleinberg scoring function is that it
is the unique scoring function that satisfies the above axioms together with
(A1), (A2), and (A6).

Proposition 6. F(A) = R(A⊤A) is the unique function that satisfies ax-
ioms (A1’)–(A3’), (A1), (A2), and (A6).

Proof. The proof is similar to the proof of Proposition 1. By (A2) and (A2’)
we have

Fk = F
(

A(2k)/λ
(

A⊤A
))

= F(A),

for all k = 1, 2, . . ., which implies that the limit of the sequence {Fk}k is
F(A). By (A3’) we have

A(2k)F(A)/λ(A⊤A) = βkA
⊤AF(A) (8)

for βk > 0 for all k = 1, 2, . . .. The Perron-Frobenius theorem, i.e., Equation
(1) gives

A(2k)/λ
(

A⊤A
)

→ α2
(

A⊤A
)

R
(

A⊤A
)

L
(

A⊤A
)⊤

when k goes to infinity. In particular both sides of Equation (8) are bounded
which guarantees that {βk}k is a bounded sequence that has a convergent
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subsequence. Taking the limit of both sides of Equation (8) corresponding
to this subsequence we get

α2
(

A⊤A
)

R
(

A⊤A
)

L
(

A⊤A
)⊤

F(A) = β̄A⊤AF(A),

for β̄ ≥ 0. If either β̄ = 0 or L
(

A⊤A
)⊤

F(A) = 0, then L
(

A⊤A
)

and F(A)
would be orthogonal which cannot be the case since L

(

A⊤A
)

,F(A) ≫ 0.
Hence, there is γ > 0 such that R

(

A⊤A
)

= γA⊤AF(A), which can also be
written as

A⊤AR
(

A⊤A
)

/λ
(

A⊤A
)

= γA⊤AF(A),

because R
(

A⊤A
)

is an eigenvector of A⊤A. By (A1’) we can assume
that A⊤A is invertible. If it was not we could add βP, to A to make
(A ⊞ βP)⊤(A ⊞ βP) = A⊤A + β2I an invertible matrix. Because β2I is a
diagonal matrix, it follows that (A ⊞ βP)⊤(A ⊞ βP) can be turned into a
diagonally dominant matrix by choosing sufficiently large β. Such matrices
are invertible. Hence, we obtain that R

(

A⊤A
)

is parallel to F(A). Axiom
(A6) gives F(A) = R

(

A⊤A
)

, which concludes the proof.

The Bonacich-Kleinberg scoring function has some additional properties
which are worth mentioning. First, the Bonacich-Kleinberg function is anony-
mous in the sense that the order of individuals, i.e., permutation of the rows
only change the order of the scores. Moreover, changing the order of groups
does not affect the scores of individuals. It is also symmetric in the sense
that if a permutation of rows keeps the matrix the same, the scores re-
main the same. In other words, symmetric individuals have the same scores.
Anonymity and symmetry follow directly from the properties of the principal
eigenvector.

A natural consistency requirement for scoring groups and individuals is
that the scores of groups are obtained from the scores of individuals by sum-
ming the scores with weights given by A. This is property holds for the
Bonacich-Kleinberg function. If we append the matrix A with F(A), i.e., we
add a group where each individuals weight is F(A), the scores remain un-
changed. On the other hand, if we add an individual with weight AF(A) to
each group, the relative scores of the original individuals remain unchanged.
Intuitively, adding an ”average group” or an ”average individual” does not
affect the scores. The Bonacich-Kleinberg function is not, however, the only
one having this property. For example the function that assigns a vector
(1/n, . . . , 1/n) to a matrix has this property as well. The latter two proper-
ties are shown below.

Proposition 7. The Bonacich-Kleinberg scoring function has the following
properties:
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1. AF(A) = ρ(A)F(A⊤) for some ρ(A) > 0,

2. F (A⊞ F(A)) = F(A), and

3. Fi

((

A AF(A)
))

/Fj

((

A AF(A)
))

= Fi(A)/Fj(A) for all i, j =
1, . . . , n.

Proof. The principal eigenvector of AA⊤ satisfies

AA⊤R
(

AA⊤
)

= λ
(

AA⊤
)

R
(

AA⊤
)

. (9)

If we replace R(AA⊤) with AR(A⊤A) and use the fact that R(A⊤A) is an
eigenvector of A⊤A we see that the right hand side of Equation (9) becomes
λ(A⊤A)AR(A⊤A), which implies that AR(A⊤A) is an eigenvector of AA⊤

corresponding to the eigenvalue λ(A⊤A). Because A has only non-negative
components and R(A⊤A) ≫ 0 we have AR(A⊤A) ≫ 0. Perron-Frobenius
theorem assures that AR(A⊤A) is the principal eigenvector of AA⊤. Hence,
the scores of the groups are obtained by scaling AR(A⊤A) with a scalar such
that the resulting vector satisfies (A6). This proves the first result.

The second result follows by verifying that F(A) is the eigenvector of
(A⊞ F(A))⊤ (A⊞ F(A)) corresponding to the eigenvalue (λ(A⊤A)+‖F(A)‖2).
By the Perron-Frobenius theorem there are no other positive eigenvectors for
A⊞F(A) than the principal eigenvector. Hence, F(A) is the principal eigen-
vector.

The third result follows by verifying that the vector

(

F(A), ‖AF(A)‖2/λ(A⊤A)
)

is an eigenvector of the matrix
(

A AF(A)
)

corresponding to the eigenvalue
‖AF(A)‖2 + λ(A⊤A). Again, we can argue that the aforementioned vector
is the principal eigenvector. Normalizing the vector does not change the
relative scores of first n individuals, i.e., the original individuals.
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