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Abstract We study the problem of evaluating whether the selection from a set is
close to the ordering of the set determined by an exogenously given measure. Our
main result is that three axioms, two naturally capturing “dominance”, and a stronger
one imposing a form of symmetry in the comparison of selections, are sufficient to
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evaluate how close any selection from any set is to the given ordering of the set. This
closeness is given by a very simple index, which is a linear function of the sum of the
ranks of the selected elements. The paper ends by relating this index to the existing
literature on distance between orderings, and also offers a practical application of the
index.

1 Introduction

Selections are typically made according to a varying blend of objective measures
and subjective judgments. A sport coach might base her team choice on the recent
performance of individuals in her squad (batting and bowling/pitching averages, tennis
rankings, trial results for track and field, and so on), and on her sense of who is the
best person for each given role, given the expected conditions. Many universities do
not strictly follow SATs results and school grades when choosing whom to admit,
but take into account a student’s social background and his potential contribution to
desirable characteristics of the student body, like diversity. Applicants for academic
jobs might be ranked according to bibliometric measures, but the appointment panel’s
judgment often leads to decision that do not map precisely into the ranking.1 Large
and complex procurement contracts often demand the subtle evaluation of complex
qualitative elements, and lowest price is seldom the only criterion used to award these
contracts.2 And so forth and so on.

Observers and decisionmakersmight be interested in somemeans of comparing the
choices of different selectors. If the property of following the measurable dimension
is labelled “orderliness”, someone might want to compare the orderliness of different
selections, for example to determine which is more “orderly”.

We can think of at least three conceptually distinct situations where this comparison
is meaningful.3 First, we may want to compare different selections from the same set.
For example, the public may want to know how close the proposed shortlists of the
different judges of a book or film prize are to a market-determined (sales, box office
earnings) ordering. Second, the comparison might be of selections from altogether
different sets. A cricket fan may want to know whether Australia’s selection for the
Ashes team is closer to the players’ current rankings than England’s. A university
whose admission policies are under scrutiny in court may want to argue that its admis-
sion policy is as based on SATs as those of comparable institutions. Or a government
minister concerned about corruption in procurement contracts or personnel hiringmay

1 An example from recent implementation of policy which some readers will be familiar with is the extent
by which bibliometric criteria should be used in the evaluation of university research departments. Unlike
in Italy, the UK funding body was persuaded to allow panels not to adhere strictly to bibliometric measures
of departmental output, but allow the latitude afforded by peer review. We reprise this theme in Sect. 5.
2 As, for instance, the 1991 auctions for the 16 regional television franchises in the UK, when only half
the franchises were awarded to the highest bidder; see Cabizza and De Fraja (1998), especially Table 1, pp
11–12.
3 Selection is of course a broader concept than full ordering: choosing the all-time best 20 in a list of 1000
footballers is different and less demanding than naming the best 20. The relation between selection and
ordering is explored in Sect. 4.
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want to compare the orderliness of various commissioning boards or hiring panels, to
identify and perhaps investigate atypical behaviour. On a broader scale, orderliness is
a helpful yardstick when assessing inequality of opportunity: it can serve as a measure
of nepotism, telling how close selection into society’s elite is to the pecking order
determined by family history, or of plutocracy, measured for example by the closeness
of membership of Parliament to a person’s position in the income distribution. The
third kind of potential comparisons is for situations where both the selection and the
selectors are the same, but there are two or more ways of ordering the elements of a
set. In these cases, which are close to the topic of some related literature considered
below (Kemeny 1959; Klamler 2008), the focus is on their relative importance in the
selection. For example, a rugby analyst may want to know whether weight or speed
is more important to be selected as a three-quarter for the Springboks. Or an exter-
nal funder may want to know which of teaching and research is more important for
promotion in a given university.

Comparing selections is straightforward only in the starkest cases. Sure, the selec-
tion of the best ranked is unquestionably more orderly than selections that do not.
But is a university which, from its 102 applicants, admits as students those ranked
according to their SAT scores second to 5th, 8th, 11th, 12th, 24th, 25th, 38th, and 47th
more orderly than one that chooses the first 20, the 57th, and those ranked between
170 and 180 out of 500 applicants? Or, in an even simpler example, is picking the
second ranked out of ten candidates for a job more orderly than selecting the third
ranked out of 19?4

This paper takes an axiomatic approach to comparing selections. The axioms are
requirements of orderliness: a decision maker who is called to opine which is more
orderly of two selections from different sets, that is which selection is in her opinion
closer to the order—determined by a given measure—of the set fromwhich it is taken,
should only make judgements that obey these axioms. This is conceptually similar to
the approach taken by Sen (1976) andCowell andKuga (1981) in regard to judgements
on which of two groups of individuals poverty or inequality, respectively, is greater.

We begin with three natural axioms, which extend the dominance principle in the
comparison of sets (Barberà et al. 2004, BBP in what follows). The first requires that
when an element is replaced in the selection with a better one, then the selection is
deemed to be more orderly. In the next two axioms we depart from the set-up of the
literature reviewed in BBP, and in some of its extensions, such as Rubinstein and
Salant (2006). The departure is that we consider elements that are not in the original
set, thus allowing the comparison of selections from different sets, as in many of the
examples given above. These axioms require that if a new element appears which is
better than all the selected (non-selected) ones, then the selection is considered more
(less) orderly if the new element is selected. Analogously for the appearance of a
worse element. Extending the axioms to different sets implies that we cannnot, like
the literature cited, take the rank of the elements as the starting point of the analysis,
since a new elements change the ranks of all the elements below it. Instead, we need

4 According to our paper, it turns out that these four selections are equally orderly.
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to make formally explicit the mapping from the measured performance to the rank of
the elements ordered by this measure.

These three axioms, which we show to be independent, are not characterising:
there are different orderings of selections from sets which satisfies them. In our main
result we show that characterisation is achieved by replacing the first axiom with a
stronger one, which we label “mirror invariance”. This requires that if a change makes
a selection more orderly, then the mirror image of the selection—that is the selection
of only the non-selected elements—is made less orderly by the mirror image of the
change. This is equivalent to requiring that the importance attributed to changes in
the ordering be independent of where they occur: departures from the ranking are
as important if they occur among the best or the worst ranked elements. This result
is established in Theorem 1, which shows that the orderliness relation characterised
by Axioms 2–4 is represented, in close analogy to the representation of a consumer’s
preference by a utility function, by an “index of orderliness”, given by a simple function
of the number of elements in the set, the number of selected elements, and the sum of
the ranks of the selected elements.

The paper continues by showing that our index of orderliness has a simple relation
with the concept of distance between rankings originally proposed by Kendall (1938),
and given an axiomatic foundation by Kemeny (1959). This distance compares dif-
ferent selections from the same set, and, in this case, Proposition 4 shows that if a
selection is more orderly than another selection from the same set, then the ranking of
the set naturally induced by the first selection is nearer, in the sense of the Kendall-Tau
distance, to the ordering of the set.

The paper is organised as follows: the dominance axioms and some preliminary
results are in Sect. 2. The core of the paper is Sect. 3, which presents the index of
orderliness, and strengthens one of the axioms to obtain a complete ordering of all
selected sets. The relation with existing literature is explored in Sect. 4, and the paper
ends with Sect. 5, which shows how the index can be used to assess the evaluation
mechanism for promotion to professorship in Italian universities. A brief conclusion
follows.

2 Axioms of “orderliness”

Let N � R contain N ∈ N\ {1} distinct elements: x, y ∈ N implies x �= y .5

The inequality relation in R induces a transitive, complete and antisymmetric relation
between the members of N . This relation is naturally defined as the rank in N , ρN ,
a bijective mapping of the elements of N into the set of the first N natural numbers
ρN : N −→ {1, 2, . . . , N }, which satisfies ρN (x) < ρN (y) if and only if x < y.
We choose this convention, that x has a better6 rank in N than y if it is smaller, for
definiteness. It would refer for example, to a situation where the real numbers are

5 We therefore rule out ties between elements, consideration of which is important for practical purposes,
but not straightforward. We remark briefly in Sect. 5 below on possible approaches when some elements of
the set are ranked equally, otherwise we restrict our attention to antisymmetric relations.
6 We use the terminology “best” and “worst” ranked element, rather than highest and lowest, given the
potential linguistic ambiguity due to the lowest number being attached to the highest ranked element.
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marathon runners’ personal best times; the changes needed to apply the framework
to situations where a larger real number is better, such as cricketers’ career runs or
scientists’ citation counts, are obvious.

We next define a selectionK as a proper and non-empty subset ofN , that isK � N ,
and K �= ∅. Let K ∈ {1, . . . , N − 1} be the number of elements of K. We define the
pair (N ,K) a “selected set”.7 Let S be the family of selected sets.

Given a selected set (N ,K) ∈ S , there is a natural mapping induced by ρN from
S into the set S defined as

S =
⎛
⎝ ⋃

N∈N\{1}
(N , 2{1,...,N }\{1, . . . , N })

⎞
⎠ \∅,

that is as the union, over the natural numbers greater than 1, of the cartesian product
between N and the power set of {1, . . . , N } , with the set {1, . . . , N } itself removed.
The generic element of the setS is therefore (N , {i1, . . . , iK }), where ik ∈ {1, . . . , N }.
Define this map as:

m : S −→ S,

such that for (N ,K) ∈ S , where N is a set with N elements, from which K are
selected,m(N ,K) is the pair given by the cardinality ofN and the subset of {1, . . . , N }
which are the ranks in N of the elements of K:

m : (N ,K) �−→ (N , {i ∈ {1, . . . , N }|ρ−1
N (i) ∈ K}).

Recall that, because the elements ofN are different, ρN is invertible. Given a selected
set (N ,K) such that m(N ,K) = (15, {2, 3, 8, 12}), implying that the second, the
third, the 8th and the 12th ranked out of the set’s 15 elements are selected, we may
represent its image under m as follows:

(N ,K) −→ 011000010001000. (1)

Elements are ranked from best to the left, to worst to the right, and a “1” in the j-th
position indicates that the j-th element is selected.

We single out the situations where the selection follows exactly the ranking.

Definition 1 Given a selected set (N ,K) ∈ S , the selection K is “perfect ” if
x ∈ K and y ∈ N \K implies x < y. The selectionK is “antiperfect” if x ∈ K and
y ∈ N \K implies y < x .

7 Selecting members of a set is related but different from the administration of a test. In the former, the
number of available places is usually fixed, or at least within a given range; whereas the important feature
of a test, such as a school leaving exam, or the rejection of potentially faulty items from a production line, is
the minimisation of errors, possibly weighted by the relative importance of type I and type II errors. Loosely
speaking, one can think of selection according to a rank and testing as inverse operations: in the former, the
number of slots is fixed, and the distribution in the population of the metric on which the ranks are based
determines the threshold for selection; in the latter, the pass/fail threshold is fixed, and the distribution
determines the number of successful elements.
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In words, the selection K is perfect if no selected element has a rank worse than
a non-selected element, and it is antiperfect if every selected element has a worse
rank than every non-selected element.

LetS P ⊆ S be the set of all perfect selections, and conversely, letS A ⊆ S be
the set of all antiperfect selections. Note that since K is a proper non-empty subset
ofN ,S P∩S A = ∅: no selection is simultaneously both perfect and antiperfect.

We want to compare selections, that is order the set S , in the following sense:
consider two ranked sets NA with NA elements, and NB with NB elements, and
selectionsKA andKB fromNA andNB , respectively.Wewant to answer the question:
is the selection KA from NA closer to or farther from the ranking of set NA than the
selection KB from NB is to the ranking of set NB? In terms of the examples given
above, we want to know whether, say, a journalist’s choice of the “all time England
cricket test team” is more based on the players’ record than an Italian chemistry
academy’s choice of themembers of its scientific committee is based on the academics’
citation count.

To formalise this question we define a binary relation M ⊆ S×S, which we
interpret as “orderliness”: orderliness is the property of being close to the ordering of
the set.

Definition 2 Given two selected sets (NA,KA), (NB,KB) ∈ S , (NA,KA) is at least
as orderly as (NB,KB) if and only if (m(NA,KA),m(NB,KB)) ∈ M.

We are thus defining equivalence classes in S : two selected sets (NA,KA),

(NB,KB) ∈ S are in the same equivalence class if and only if m(NA,KA) =
m(NB,KB), that is if the sets NA and NB have the same number of elements, and
the ranks of the selected elements are the same in the selected sets (NA,KA) and
(NB,KB). In particular, the image of ({x1, . . . , xN }, {xi1 , . . . , xiK }) is the same as the
image of any set where x j is replaced by any x in an interval of the real line contain-
ing x j but no other element of {x1, . . . , xN }. Thus Definition 2, accordingly, defines
orderliness as a relation on the classes of equivalence inS .

We follow the standard convention used to describe preferences, and write
(NA,KA) �M (NB,KB) when (NA,KA) is at least as orderly as (NB,KB). “Strict
orderliness”, �M, and “equal orderliness”, ∼M, are naturally defined: (NA,KA)

is strictly more orderly than (NB,KB) if (NA,KA) �M (NB,KB) and not
(NB,KB) �M (NA,KA). And (NA,KA) and (NB,KB) are equally orderly if
(NA,KA) �M (NB,KB) and (NB,KB) �M (NA,KA).

We require the orderliness relation M to be reflexive, so that all selected sets
with the same image are equally orderly, complete and transitive. The assumption
of completeness is a strong one, though it is necessary to ensure that orderliness can
have operational value in practice, as it ensures that there are no selections which
are “not comparable”. Relatively simple examples show that it is in principle arbi-
trary to construct such a complete ordering. Consider two selected sets (NA,KA),

(NB,KB) ∈ S , such thatm(NA,KA) = (35, {2, 5, 6, 7, 10, 16, 24, 28}) andm(NB,

KB) = (21, {3, 6, 8, 10, 11}). These can be represented graphically as:

(NA,KA) −→ 01001110010000010000000100010000000,

(NB,KB) −→ 001001010110000000000.
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Selections from ordered sets 683

In (NA,KA), there are some selected elements among the best ranked, but there are
also some below the median. In the second, from a smaller set, no selected element
is below the median, but many are close to it: different observers might well have
different views as to which of the two above selections is more orderly. As we show
in this paper, this arbitrariness is fully resolved if one accepts the simple axioms we
propose.

Even with completeness, without any further restrictions, the orderliness relation
can still be vacuous: for example, the relation M = S×S, where all selected sets
are equally orderly, is transitive, reflexive and complete, and so it can well represent a
person’s opinion of the orderliness of selections. In the rest of the paper, therefore, we
impose some further requirements. As in BBP, they are natural restrictions onM, the
relation between the images inS of the sets (N ,K). BBP (p 904) begin by imposing
the “extension rule”: given x, y ∈ N , then m(N , {x}) �M m(N , {y}) if and only if
x < y. We strengthen the extension rule, requiring that the orderliness comparison be
strict, and that it applies to any set, not just singletons.

Axiom 1 (Swap-Dominance) For all (N ,K) ∈ S and x ∈ N \K and y ∈ K,
(N ,K∪ {x} \ {y}) �M (N ,K) if and only if x < y.

In words, Axiom 1 requires that the swap between an element in the selection and an
element not in the selectionmakes the selected set strictlymore (less) orderly if the rank
of the newly selected element is better (worse) than the rank of the removed element.8

Note thatAxiom1 is incompatiblewith the independence axiom(BBPp905),which, in
our framework, would require that, given selections (N ,KA), (N ,KB) ∈ S and x ∈
N \(KA ∪KB), (N ,KA) �M (N ,KB) implies (N ,KA ∪{x}) �M (N ,KB ∪{x}).
As BPP note, this axiom rules out “certain types of complementarities” (p 906), and
runs therefore contrary to the motivation of the paper, which views selections in their
entirety. In fact, BBP show that independence is a strong requirement in this context,
as it prevents comparison between selections, except in very special cases (BBP, pp
910–922).

The next twoAxiomswe impose are the natural extension of the idea of dominance,
which “requires that adding an element which is better (worse) than all elements in a
given set A [...] leads to a set that is better (worse) than the original set” (BBP, p 905).
In our more complex set-up, we want to compare subsets selected from different sets,
and therefore we state the axioms as binary comparisons between sets with different
number of elements.

Axiom 2 (Better-Dominance) For all (N ,K) ∈ S and x /∈ N such that x < y for
all y ∈ K:

i. (N∪{x},K∪{x}) �M (N ,K); strictly unless (N ,K) ∈ S P .
ii. (N ,K) �M (N∪{x},K); strictly unless (N ,K) ∈ S A.

8 One could make an analogy with the Dalton–Pigou principle (Dalton 1920, p 351); a transfer of a resource
(being selected in our case, or income in Dalton’s) from a worse ranked/richer to a better ranked/poorer
element/person, so long as that transfer does not reverse the ranking of the two, will result in greater
orderliness/equity.
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Suppose a new element is added9 to the set N , and this new element has better
rank than every selected element. Then Axiom 2 requires that, if this new element
is selected, the selection becomes more orderly (Axiom 2.i); if it is not selected, the
selection becomes less orderly (Axiom 2.ii).

Axiom 3 (Worse-Dominance) For all (N ,K) ∈ S and x /∈ N such that y < x for
all y ∈ K:

i. (N∪{x},K) �M (N ,K); strictly unless (N ,K) ∈ S P .
ii. (N ,K) �M (N∪{x},K∪{x}); strictly unless (N ,K) ∈ S A.

Axiom 3 is the converse of Axiom 2 at the other end of the ranking of the setN : if a
new element is added to the setN which is worse ranked than every selected element,
then the selection becomes more (respectively, less) orderly if this new element is not
selected, Axiom 3.i (respectively, is selected, Axiom 3.ii).

To see these axioms “in action”, consider the selected set represented graphically
in (1). Axioms 2 and 3 are illustrated by the following changes in the selected set,
where the new element is boxed.

Axiom New element in set (1) Selected Y/N? New selected set More/less orderly?

2.i Better than every selected Yes 1 011000010001000 More

2.ii Better than every selected No 0 0 11000010001000 Less

3.ii Worse than every selected Yes 01100001000100 1 0 Less

3.i Worse than every selected No 011000010001 0 000 More

In the first and fourth rows the selection becomes more orderly, and in the second
and third less so. In the first two rows the new element can indifferently be in the first
or second position of the ranking; and in the third and fourth row, in any of the bottom
four positions.

The selection (1) is neither perfect nor antiperfect, and so all the comparisons
between it and the selected sets in the above table are strict.

The three axioms are independent: it is possible to define different orderliness
relations such that one Axiom is violated but the other two are satisfied. To see this,
consider an orderliness relation, M̂, which, given a selected set (N ,K) and an element
x /∈ N , requires (N ,K) �M̂ (N ∪ {x},K ∪ {x}) if there exists z ∈ N \K such that
x < z < y for all y ∈ K. In word, in order for a new element to make the selection
more orderly, it must be better than at least one non-selected element in N which is
better than all the selected elements. Clearly M̂ violates Axiom 2, and obeys Axioms
1 and 3. A symmetric argument holds in respect of Axiom 3. Lastly, consider an
orderliness relation, M̃, which, given a selected set (N ,K) and any two elements
x ∈ N \K and y ∈ K, requires (N ,K) �M̃ (N ,K ∪ {x}\{y}) if there exists z ∈ N ,

9 Note that the statement of Axioms 2 and 3 requires that x can be measured against the existing elements
of N . Thus if N is the set of English test cricketers, x is the record of a newly eligible player; if N is the
set of Italian chemistry professors, x is the citation count of a newly appointed one.
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such that x < z < y. That is, in order to make a selection more orderly, a swap must
be between elements which are separated by at least one element in N . M̃ violates
Axiom 1, and obeys Axioms 2 and 3.

Axioms 2 and 3 dictate the relative orderliness of two selected sets where the
ranked sets, N and N∪ {x}, differ in size by 1. The dominance axioms, labelled by
BBP (p 905) the Gärdenfors principle (1976), impose an ordering on selections from
a given ranked set, therefore they apply to sets of the same size. We derive them in our
framework as immediate consequences of Axioms 2 and 3 in the following corollary.

Corollary 1 i. For all (N ,K) ∈ S and x ∈ N \K such that x < y for all y ∈ K,
(N ,K∪{x}) �M (N ,K); strictly unless (N ,K) ∈ S A.

ii. for all (N ,K) ∈ S and x ∈ K such that x < y for all y ∈ K\ {x}, (N ,K) �M

(N ,K\ {x}); strictly unless (N ,K) ∈ S P .
iii. For all (N ,K) ∈ S and x ∈ K such that y < x for all y ∈ K\ {x},

(N ,K\ {x}) �M (N ,K); strictly unless (N ,K) ∈ S P .
iv. for all (N ,K) ∈ S and x ∈ N \K such that y < x for all y ∈ K, (N ,K) �M

(N ,K∪ {x}); strictly unless (N ,K) ∈ S A.

Proof Weonly establish thefirst claim, as the proof of the remainder is essentially iden-
tical. Consider a selected set (N ,K), and an x ∈ N \K such that x < y for all y ∈ K.
Note that this implies that (N ,K) /∈ S P . Take z /∈ N , such that z < y for all y ∈ K,
and x Rz (that is z is better than every selected element, but worse than x). By Axiom
2.ii, (N ,K) �M (N ∪ {z} ,K). Next note that, by Axiom 3.i, (N ∪ {z} ,K) �M

(N ∪ {z} \ {x} ,K). Finally, notice that m (N ∪ {z} \ {x} ,K) = m (N ∪ {x} ,K),
since an excluded element better than all selected elements is replaced by another,
and so (N ,K) �M (N ∪ {x} ,K). ��

Intuitively, if a non-selected element that is better ranked than every selected element
were instead selected, the selection would become more orderly (Corollary 1.i), and if
the best element in the selectionwere removed, the selectionwould become less orderly
(Corollary 1.ii). Conversely, consider an element in N which is worse ranked than
every selected element: if it is removed from the selection, then the selection becomes
more orderly (Corollary 1.iii); if it is added to the selection, then the selection becomes
less orderly (Corollary 1.iv).

While Corollary 1 is an obvious consequence of Axioms 2 and 3, the next result
is less immediate, and shows that, although Axioms 1–3 may seem weak, they do
have some bite, as can be inferred from one of their implications on the comparison
of “extreme” selections from different sized sets.

Proposition 1 i. Let (Np1 ,Kp1), (Np2 ,Kp2) ∈ S P . Then (Np1 ,Kp1) ∼M

(Np2 ,Kp2).
ii. Similarly, let (Na1,Ka1), (Na2 ,Ka2) ∈ S A. Then (Na1,Ka1) ∼M (Na2 ,Ka2).
iii. Let (N ,K) ∈ S \S P\S A; let (Np,Kp) ∈ S P; let (Na,Ka) ∈ S A. Then

(Np,Kp) �M (N ,K) and (N ,K) �M (Na,Ka).

Proof Let us begin with (i). Consider a perfect selection of Kp elements from a set
(Np,Kp), with (Np,Kp) ∈ S P . Clearly the best ranked Kp elements are in Kp,
the rest in Np\Kp. Now add to the set and to the selection an element z1 such that
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z1 < x for all x ∈ Kp. By Axiom 2.i, (Np,∪{z1},Kp∪{z1}) �M (Np,Kp). Next
return to the selection (Np,Kp), and add, again to the set and to the selection, an
element z2 such that x < z2 for all x ∈ Kp, and z2 < y for all y ∈ Np\Kp (that
is z2 is worse ranked than every selected element, but better ranked than every non-
selected element). By Axiom 3.ii, (Np,Kp) �M (Np,∪{z2},Kp∪{z2}). But now
notice that both new selections select only the best ranked Kp + 1 elements: hence,
m(Np,∪{z1},Kp∪{z1}) = m(Np,∪{z2},Kp∪{z2}) . By transitivity, these both equal
m(Np,Kp). The process can be repeated to show that all perfect selections are
equally orderly. The proof of (ii) is identical. Consider (iii) next. Take a selection
(N ,K) with (N ,K) ∈ S \S P\S A. Let N and K be the number of elements in N
and K. Now let x1 ∈ K be the best ranked selected element such that there is a non-
selected element y ∈ N \K such that y < x1. Because the selection is not perfect,
it is possible to find such a x1. Next let y1 ∈ N \K be the best ranked non-selected
element such that there a selected element x ∈ K such that y1 < x . Again, because
the selection is not antiperfect, it is possible to find such a y1. Now by Axiom 1,
(N ,K∪{x1}\{y1}) �M (N ,K). If the selection (N ,K∪{x1}\{y1}) is perfect, then
we are done. If not, we can repeat, until a perfect selection in reached. This happens
in at most min{K , N − K } steps, and establishes that (Np,Kp) �M (N ,K). The
demonstration that (N ,K) �M (Na,Ka) is identical. ��

In words, Proposition 1 says that all perfect selections are equally orderly, and
similarly, that all antiperfect selections are equally orderly. The third statement
asserts that every perfect selection is strictly more orderly than every non-perfect
selection, and every antiperfect selection is strictly less orderly than every non-
antiperfect selection. This is entirely reasonable when the selection is from the same
set. Thus, selecting the best ten from a set of one hundred elements is clearly more
orderly than selecting the best nine and the eleventh. However, as we want to extend
the range of selected sets to be compared, it is possible to think of extreme situations
when the size of the sets and of the selections is different, and when the argument
that a perfect selection is more orderly is less clear-cut. Consider, for example, the
following case: is selecting the better of the two elements of a set unquestionably
more orderly than selecting the best 25 and the 27-th ranked out of a set with 10,000
elements? Proposition 1 answers unambiguously yes, but someone might argue in
favour of the opposite, on the grounds that the former is more likely than the latter to
have been determined by other criteria, which by chance happen to coincide with the
rank, whereas the selection of the first 25 and the 27-th elements out of a very large
set would almost surely be seen as the consequence of a determinate intention to use
the rank as the criterion for selection, with the 26-th element being excluded due to
some other criterion.

3 An index of “orderliness”

Definition 3 An index of orderliness is a function M : S −→ [−1, 1] such that,
given any two selected sets (NA,KA) , (NB,KB) ∈ S , (NA,KA) �M (NB,KB) if
and only if M (m (NA,KA)) � M (m (NB,KB)).
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Note that we require the index to takes values ranging from −1 to 1, in the cases of
an antiperfect and a perfect selection, respectively. Of course, a different normal-
isation would allow us to choose any two end points. However, in analogy with the
measures of correlation, having 1 indicating perfect orderliness, and −1 its antithe-
sis, where the selection perversely chooses the worst elements, does seem the natural
choice. In analogy with the theory of consumers’ preferences, existence of the index
of orderliness is ensured by the additional requirement that the orderliness relation is
continuous. The formal proof is identical with the proof of the existence of a utility
function; as with consumer theory, a lexicographic relation illustrates well the need of
continuity to represent orderliness through an index. Consider the following way of
comparing the orderliness of any two selected sets: take first the best ranked element
in each: if only one selection includes it, then that selection is strictly more orderly
than the other. Otherwise, look next at the second best ranked element, and again, if it
is included only in one selection, this is the more orderly one. Again, if they are both
or neither selected, go to the next ranked element and so on. If one selection “runs
out of elements” before the other, then it is less orderly. In analogy with consumer
preferences, this relation is reflexive, complete and transitive, but it is not continuous,
and so it cannot be represented by an index of orderliness.10

To ensure existence of a orderliness index representing a relationM, therefore we
require that the orderliness relation be continuous.11

Uniqueness, on the other hand, is not ensured by the three axioms proposed: it
is possible to find pairs of relations both satisfying the three axioms, which rank
differently the orderliness of given selected sets, and therefore are represented by
indices of orderliness which attach differently ordered values to given selected sets.
To see this, consider the following two indices.

M (m (N ,K)) = N + 1 − 2
K

∑
x∈K ρN (x)

N − K
, (2)

and

M1(m (N ,K)) =
2K 2+1

3 + N (N − K + 1) − 2
K

∑
x∈K ρN (x)2

(N + 1) (N − K )
. (3)

10 The relation given in the text can be formalised as follows.
Given any two selected sets (NA,KA) , (NB ,KB ) ∈ S , take x1 ∈ NA with ρ (x1) = 1 and y1 ∈ NB
with ρ (y1) = 1. If x1 ∈ KA and y1 /∈ KB then (NA,KA) �M (NB ,KB ), and vice versa if x1 /∈ KA
and y1 ∈ KB then (NB ,KB ) �M (NA,KA). Otherwise, that is if either (x1 ∈ KA and y1 ∈ KB )
or (x1 /∈ KA and y1 /∈ KB ), then take x2 ∈ NA with ρ (x2) = 2 and y2 ∈ NB with ρ (y2) = 2. If
x2 ∈ KA and y2 /∈ KB then (NA,KA) �M (NB ,KB ), and vice versa if x2 /∈ KA and y2 ∈ KB then
(NB ,KB ) �M (NA,KA).
For i � 2: if (xi ∈ KA and yi ∈ KB ) or if (xi /∈ KA and yi /∈ KB ), then: if KA = i and KB = i , then
(NB ,KB ) ∼M (NA,KA); if KA > i and KB = i , then (NA,KA) �M (NB ,KB ), and vice versa if
KA = i and KB > i , then (NB ,KB ) �M (NA,KA); if KA > i and KB > i , then take xi+1 ∈ NA
with ρ(xi+1) = i + 1 and yi+1 ∈ NB with ρ(yi+1) = i + 1. If xi+1 ∈ KA and yi+1 /∈ KB then
(NA,KA) �M (NB ,KB ), and vice versa if xi+1 /∈ KA and yi+1 ∈ KB then (NB ,KB ) �M (NA,KA).
11 That is, the inverse imageM of any open subset ofS is itself open. Given a set s ⊆ S, its inverse image
is the set M−1 (s) = {s ∈ S|∃s1 ∈ s : sMs1}. Because the cardinality of the set S is the same as that of
the set of real numbers (Lucas 1990, pp 134–135), open sets in S are those that are put in correspondence
with open intervals in R by a surjection.
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For future reference, it is convenient to denote the sum of the ranks of the selected
elements as:

r =
∑
x∈K

ρN (x) . (4)

Using (4), the expression in (2) can then be written as

M(m (N ,K)) = r N ,K + rK − 2r

r N ,K − rK
,

where rK and r N ,K are the sum of the ranks when the best and the worst K elements
are selected, respectively, and therefore they are given by: rK = ∑K

j=1 j , and r N ,K =∑N
j=N−K+1 j . Similarly for M1(m (N ,K)): it can be written as

M1(m (N ,K)) = r N ,K
1 + r1,K − 2

∑
x∈K ρN (x)2

r N ,K
1 − r1,K

,

where r1,K and r N ,K
1 are the sum of the squares of the ranks when the best and the

worst K elements are selected, r1,K = ∑K
j=1 j2, and r N ,K

1 = ∑N
j=N−K+1 j2.

Proposition 2 A relation represented by the index M(m (N ,K)) satisfies Axioms 1–3.

Proof Suppose a relation M on S × S is given, which can be represented by the
index (2), M(m (N ,K)). We begin by showing that M satisfies Axioms 2 and 3. In
each of these axioms, a new element z is added to the set N . Therefore N increases
by 1. What happens to K and to the total rank r depends on which part of which
Axiom is considered. In Axiom 2.i the new element z is in the selection, and so K also
increases by 1, and as z is better than every selected element, the total rank increases
by ρN (z) + K : each of the K previously selected elements increases by 1, and the
new element’s rank ρ (z) is added to the total. The value of M therefore changes from

N + 1 − 2
K r

N − K
(5)

to

N + 2 − 2
K+1 (r + ρN (z) + K )

N − K
.

The difference is
2 r
K − 2ρN (z) − K + 1

(N − K ) (K + 1)
, (6)

which is increasing in r , and equals 2
(N−K )(K+1) > 0 when r takes its lowest possible

value given ρN (z),
∑ρN (z)+K

j=ρN (z)+1 j . Thus it is positive for every feasible value of r .
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If the new element is not selected, Axiom 2.ii, then K does not change, but the total
rank of the selected elements increases by K , since the rank of every selected element
increases by 1, and so the value of the index changes from (5) to

N − 2
K r

N + 1 − K
.

The difference with (5) is − 2N−K+1− 2
K r

(N+1−K )(N−K )
which is increasing in r , and since it is 0

at the maximum value of r , r N ,K = K (2N−K+1)
2 , it is strictly negative for any other

value of r , establishing the result.
Next consider Axiom 3. There is a new element in N which is worse than all the

elements selected. In Axiom 3.i, the new element is not selected, and so neither K nor
r change. In this case, the index (2) becomes

N + 2 − 2
K r

N + 1 − K
.

The difference with its previous value, (5), is− K+1− 2
K r

(N+1−K )(N−K )
, which is increasing in

r . Since it is 0 at the minimum value of r , which is rK = K (K+1)
2 , it is strictly positive

for any other value of r , and so the index increases in this case. Finally Axiom 3.ii: the
new element, worse than all those already selected, is itself selected. Thus K increases
by 1 and r by ρN (z), and so index (2) becomes

N + 2 − 2
K+1 (r + ρN (z))

N − K
,

and the difference with (5) is
K+1−ρN (z)+ 2

K r
(N−K )(K+1) , increasing in r and taking, for given

ρN (z), its maximum value, 0, at r = ∑ρN (z)−1
j=ρN (z)−K j = K

(
ρN (z) − 1+K

2

)
.

Consider finally Axiom 1, which is straightforward: the swap between an element
in the selection and an element not in the selection changes neither K nor N . It only
changes r , and so clearly the index M increases if r decreases, that is if a better ranked
element takes the place of a worse ranked one in the selection. This establishes that
the index (2) satisfies all the Axioms and completes the proof. ��

Table 1 summarises the proof of Lemma 2, by presenting a schematic description of
the effects of adding a new element to a selected set, and of the effects which Axioms
2 and 3 require on the value of the index: in all cases, N increases by 1, and K , r , and
M (N ,K) are the original values of the size of the selection, of the sum of the ranks,
and of the index of orderliness.

The analogous of Proposition 2 for the index (3) holds, but its proof is essentially
identical to the above proof and is omitted.

Proposition 3 A relation represented by the index M1(m (N ,K)) satisfies Axioms
1–3.
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Table 1 Summary of the proof of Proposition 2

∀y ∈ K, z /∈ N , zRy ∀y ∈ K, z /∈ N , yRz

Axiom 2.i: z ∈ K. Axiom 3.ii: z ∈ K.

r increases by ρN (z) + K , r increases by ρN (z),

K increases by 1. K increases by 1.

The orderliness is higher: The orderliness is lower:

N+2− 2
K+1 (r+ρN (z)+K )

N−K > M (N ,K)
N+2− 2

K+1 (r+ρN (z))
N−K < M (N ,K)

Axiom 2.ii: z /∈ K. Axiom 3.i: z /∈ K.

r increases by K , r does not change,

K does not change. K does not change.

The orderliness is lower: The orderliness is higher:

N− 2
K r

N+1−K < M (N ,K)
N+2− 2

K r
N+1−K > M (N ,K)

Now consider the following two selected sets, (NA,KA) and (NB,KB) such that
m (NA,KA) = (11, {2, 3, 5, 8, 9}) and m (NB,KB) = (11, {1, 2, 3, 8, 11}). Graphi-
cally, these differ only in the selection of the elements in the boxes:

(NA,KA) −→ 0 110 1 001 1 0 0 ,

(NB,KB) −→ 1 110 0 001 0 0 1 .

We have M(m (NA,KA)) < M(m (NB,KB)) and M1(m (NA,KA)) > M1
(m (NB,KB)): if the relation of orderliness is represented by index (2), then the second
is more orderly, and vice versa, if orderliness is described by a relation represented by
index (3) then the first is more orderly. Thus both indices M and M1 satisfy Axioms
1–3, and yet they give a different answer to the question of the relative orderliness of
the two sets: Axioms 1–3 are not characterising.

The restriction required to ensure characterisation is remarkably simple, as the rest
of the paper shows. We replace Axiom 1 with the following.

Axiom 4 (Mirror invariance) For all (N ,K) ∈ S and x /∈ N ,
(N ∪ {x} ,K ∪

{x} )
�M (N ,K) if and only if (N ,N \K) �M (N ∪ {x} ,N \K).

In words, suppose that a new element is added to the set N , and that this makes
the new selected set more orderly. Then it must be the case that the “mirror image”
of the new selected set, that is the selection from the same set which includes all
the elements which are not selected in the original selection, and excludes all those
which were included, is less orderly than the mirror image of the original selected
set. Axiom 4 is stated for the case when the new element is selected, but it of course
implies the opposite case:

(N ∪ {x} ,K)
�M (N ,K) if and only if (N ,N \K) �M

(N ∪ {x} ,N \K ∪ {x}). Axiom 4 is illustrated below, using the representation of a
selected set given above:
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(N ,K) −→ 001001010110000000000,

(N ,N \K) −→ 110110101001111111111,

(N∪ {x} ,K∪ {x}) −→ 0010 1 01010110000000000,

(N∪ {x} ,N \K) −→ 1101 0 10101001111111111.

If the first selected set is more orderly than the third, which differ from the first
as it has a new element, ranked 5, which is selected, then it must be the case that the
second is less orderly than the fourth, which is the mirror image of the third, and vice
versa.

We can now establish the main result of the paper.

Theorem 1 A reflexive transitive, complete and continuous orderliness relation M
satisfies Axioms 2–4 if and only if it can be represented by a monotonic transformation
of the index of orderliness M(m(N ,K)), given in (2).

The “if” part of this result follows immediately from Proposition 2: to see this
simply note that Axiom 4 implies Axiom 1. To establish the “only if” part, suppose
that there is an orderliness relation which satisfies Axiom 4, which is represented by
an index M which is not a function of the sum of the ranks of the selected elements.
In particular take a set (N ,K) and a new element x /∈ N , and let the index attached to
the set (N ,K) have value M0. This can be mapped into the index of orderliness (2),
so that

M (m (N ,K)) = N + 1 − 2
K r

N − K
, (7)

The “only if” part is based on the following Lemma, which also has independent
interest.

Lemma 1 An index of orderliness represents a relation M satisfying Axiom 4 if and
only if it is a decreasing function of the sum of the ranks of the selected elements.

Proof Consider a set (N ,K). We show, first, that the index (7), which is decreasing
in the sum of the ranks of the selected elements, does indeed satisfy Axiom 4, and,
second, that an index which satisfies Axiom 4 must be decreasing in the sum of the
ranks of the selected elements.

Starting from the set (N ,K) , suppose that we add a new element x , which takes
rank ρN (x), and with kx selected elements in the “initial” set (N ,K)with better rank
than x . The sumof the ranks of the selected elements in the new set (N ∪ {x} ,K ∪ {x})
is (r + ρN (x) + (K − kx )), and hence the index of orderliness of this new set is given
by:

M (m (N ∪ {x} ,K ∪ {x})) = N + 2 − 2
K+1 (r + ρN (x) + K − kx )

N − K
. (8)

Suppose that this new element x makes the selection more orderly, and so the expres-
sion on the RHS of (8) must exceed the corresponding expression in (7):

N + 2 − 2
K+1 (r + ρ (x) + K − kx )

N − K
>

N + 1 − 2
K r

N − K
.
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Re-arranging, we can see that the above inequality holds, and therefore that the index
of orderliness increases when the new element x is added to the selected set and
selected, if and only if

r

K
− ρN (x) + kx >

K − 1

2
. (9)

Now, forAxiom4 to hold, we require that themirror image of the new set is less orderly
than the mirror image (N ,N \K) of the “initial” set, since the set (N∪ {x} ,K∪ {x})
is more orderly than the “initial” set (N ,K).

We therefore proceed to calculate the index of orderliness for the mirror image
of the “initial” set (N ,K), that is for the selected set (N ,N \K). In this set, there
are N elements of which (N − K ) are selected. The sum of the selected elements of
(N ,N \K) is given by N (N+1)

2 − r , and so we have:

M (m (N ,N \K)) =
N + 1 − 2

N−K

(
N (N+1)

2 − r
)

K
. (10)

The mirror image of the “new” set (N∪ {x} ,K∪ {x}), is the set (N ∪ {x} ,N \K). In
this set there are N − ρN (x) + 1 elements with rank worse than x , of which (K − k)
are not selected. Therefore N − ρN (x) + 1 − (K − kx ) are selected, increasing the
sum of the ranks of the selected elements by this amount. Thus:

M (m (N ∪ {x} ,N \K))

=
N + 2 − 2

N−K

((
N (N+1)

2 − r
)

+ N − ρN (x) + 1 − (K − kx )
)

K + 1
. (11)

Axiom 4 requires that the RHS of (10) exceeds the RHS of (11). Simple algebraic
re-arrangement shows that this is the case if and only if condition (9) holds. We have
therefore shown that an orderliness relationship that is represented by the index (7)
satisfies Axiom 4.

Next we show that if an orderliness relationship satisfies Axiom 4, then it must
be decreasing in the sum of the ranks of the selected elements. And thus there is a
monotonic transformation such that it equals index (7).

We proceed from a selected set (N ,K), to which we add a new element x /∈ N ,
which is selected, and then remove a selected element of N , y ∈ K. Thus we start
from set (N ,K) and arrive at a “final” set (N ∪ {x} \ {y} ,K ∪ {x} \ {y}), which has
the same N and the same K . Suppose that this makes the new set more orderly.
We show that the change in the sum of the ranks of the selected elements from the
“initial” set and the “final” set has the opposite sign of the corresponding change
in their mirror images. Recall that, since this orderliness relation satisfies Axiom 4,
then the mirror image of the “new” set is more orderly than the mirror image of the
original set (N ,N \K), and so the index is monotonic in the sum of the ranks of the
selected elements. Moreover, because it must take values −1 and 1 at antiperfect
and perfect selections respectively, then it must be monotonically decreasing, and
this proves the Lemma.
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So to establish the above argument, we compute the sum of the ranks of the
selected elements in these four sets, namely the “initial” set (N ,K), the “final” set
(N ∪ {x} \ {y} ,K ∪ {x} \ {y}), and their respective mirror images, (N ∪ {x} ,N \K)

and (N ∪ {x} \ {y} ,N \K). Begin with a selected set (N ,K) , and let r be the sum
of the ranks of the selected elements. Add x , and the sum of the selected ranks of
the selected elements of this set, (N ∪ {x} ,K ∪ {x}), is r + ρN (x) + (K − kx ),
where, as above, kx is the number of selected elements in the “initial” set (N ,K)

with better rank than x . Now remove from this set the element y, which has rank
ρN∪{x} (y) in the set (N ∪ {x} ,K ∪ {x}). The sum of the rank in the set thus obtained,
(N ∪ {x} \ {y} ,K ∪ {x} \ {y}), is

(r + ρN (x) + (K − kx )) − ρN∪{x}(y) − (K + 1 − ky), (12)

where ky is the number of selected elements in the “intermediate” set
(N ∪ {x}

,K ∪ {x} )
with better rank than y.

Now consider the mirror images. For the initial set (N ,N \K), this is (N+1)N
2 − r .

The sum of the ranks of the selected elements in the mirror image of the intermediate
set (N ∪ {x} ,N \K) is, as shown above, (N+1)N

2 −r+(N − K − (ρN (x) − 1 − kx ))
(the initial number of selected elements, minus the number of those which are better
than x : there are (ρN (x) − 1) elements of rank lower than x and kx are selected).
Finally, remove y from the mirror image of the intermediate set, to obtain the mirror
image of the final set. The sum of the ranks of the selected elements of this set is

(
(N + 1) N

2
− r + (N − K − (ρN (x) − 1 − kx ))

)

−(N − K − ρN∪{x} (y) + ky). (13)

The first brackets contain the sum of the ranks of the selected elements in the inter-
mediate set. This is changed by the removal of y: we must subtract 1 for each of those
elements that were in the “intermediate” set (N ∪ {x},K ∪ {x}), had worse rank than
y, and were not selected: N − K were not selected, and ky were better than y. So
ρN∪{x} (y) − ky were not selected and are better than y.

To establish the Lemma we need to show that if the sum of ranks (12) is lower than
r (the sum of the ranks in the “initial” set (N ,K)), then the sum of the ranks of (13)
is higher than (N+1)N

2 − r , the sum of the ranks in the mirror image of the “initial” set
(N ,N \K). That is if

(
r + ρN (x) + (K − kx )

) − ρN∪{x} (y) − (
K + 1 − ky

)
< r , (14)

then (
(N + 1) N

2
− r + (N − K − (ρN (x) − 1 − kx ))

)

− (N − K − ρN∪{x} (y) + ky) >
(N + 1) N

2
− r . (15)

As required, (14) and (15) are equivalent, and the proof is complete. ��
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This Lemma implies that a change that decreases the sumof the ranks of the selected
elements makes the set more orderly would make the mirror image of the selected set
less orderly, as required by Axiom 4.

We can now prove the main theorem, by showing that every index of orderliness
representing a relation M satisfying Axioms 2 and 3 which is a decreasing function
of the sum of the ranks of the selected elements is a strictly monotonic transformation
of M(m (N ,K)).

Proof of Theorem 1 Given the ordinal property of the rankingdeterminedby the index,
any strictly decreasing functionof the sumof ranks canbemapped through amonotonic
transformation into a decreasing linear function of the sum of ranks. That is, any index
of orderliness which is a function of the sum of the ranks, r , can be transformed into
one that is written as

M(m (N ,K)) = aK ,N − bK ,Nr.

Moreover Proposition 1 constrains all perfect selections have the same value, and all
antiperfect selections also to have the same value: these values can be normalised
to 1 and −1 respectively . This implies that for every N > 1 and every K < N , the
following must hold

aK ,N − bK ,N
K (K + 1)

2
= 1, (16)

aK ,N − bK ,N
K (2N − K + 1)

2
= −1. (17)

The first condition requires all perfect selections to give value 1 to the index and the
second all antiperfect selections to give value −1. Solving the above in aK ,N and
bK ,N , we get:

aK ,N = N + 1

N − K
, (18)

bK ,N = 2

K (N − K )
. (19)

Next, we proceed by induction on N . When N = 2, its lowest possible value, there
are two possible selections from the set {1, 2}, K = {1} which has sum of ranks r = 1
and K = {2} which has sum of ranks r = 2. The former is perfect, and so we must
have a1,2 − b1,2 = 1, and the latter is antiperfect, and so a1,2 − 2b1,2 = −1, (18)
and (19) satisfy these constraints. In addition, (18) and (19) must also satisfy Axioms
2 and 3.

• When the selection isK = {1}, adding a new element toN can result in a selected
set with any of the following images: {1, 2} (Axiom 2.i or Axiom 3.i), {2} (Axiom
2 .ii), {1} (Axiom 3.i) and {1, 3} (Axiom 3.ii). Of these {1, 2} and {1} are perfect,
and so it must be a2,3 − 3b2,3 = 1 and a1,3 − b1,3 = 1: both of these hold.
Conversely, {2} and {1, 3} are not perfect, and so a1,3 − 2b1,3 ∈ (−1, 1) and
a2,3 − 4b2,3 ∈ (−1, 1) which hold.
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• Similarly, when the selection isK = {2}, the add operation can result in any of the
following new selected sets: {1, 3} (Axiom 2.i) {2, 3} (again Axiom 2.i and also
Axiom 3 .ii), {3} (Axiom 2.ii), {2} (Axiom 3.i). Selection {2, 3} is antiperfect,
and so a2,3 − 5b2,3 must equal −1, and selection is also antiperfect {3}, which
requires a1,3 − 3b1,3 = −1. The remaining selections are not antiperfect, and
this requires: a2,3 − 4b2,3 ∈ (−1, 1), and a1,3 − 2b1,3 ∈ (−1, 1). All these hold
when aK ,N and bK ,N are given by (18) and (19).

This establishes that the coefficients a and b satisfy (16) and (17) and so are given
by (18) and (19) when N = 2, and establishes the first step of the induction process.
For the second step, assume to have shown that the statement holds for N − 1, that is:

aK ,N−1 = N

N − 1 − K
, (20)

bK ,N−1 = 2

K (N − 1 − K )
, (21)

for all K = 1, . . . , N −2. Recall that rK and r N ,K are the lowest and highest possible
values for the sum of ranks r when the set has size N and the selection has size K .
We must have:

aK−1,N−1 − bK−1,N−1rK−1 = aK ,N − bK ,NrK
= aK ,N − bK ,N (rK−1 + K ) , (22)

because if the selection is perfect then including a new element both in N and in
K increases the lowest possible sum of the ranks by K . And similarly for the highest
possible sum of ranks:

aK−1,N−1 − bK−1,N−1r
N−1,K−1 = aK ,N − bK ,Nr

N ,K

= aK ,N − bK ,N (r N−1,K−1 + N ). (23)

By the induction hypothesis, (20)–(21), we have that

aK−1,N−1 = N

N − K
,

bK−1,N−1 = 2

(N − K )(K − 1)
.

Substitute these into the two above equations, (22) and (23):

N

N − K
− 2rK−1

(N − K ) (K − 1)
= aK ,N − bK ,N (rK−1 + K ) ,

N

N − K
− 2r N−1,K−1

(N − K ) (K − 1)
= aK ,N − bK ,N (r N−1,K−1 + N );
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now substitute

rK−1 = (K − 1) ((K − 1) + 1)

2
= K (K − 1)

2
,

r N−1,K−1 = (K − 1) (2 (N − 1) − (K − 1) + 1)

2
= (2N − K ) (K − 1)

2
,

to get:

N

N − K
− K (K − 1)

(N − K ) (K − 1)
= aK ,N − bK ,N

(
K (K − 1)

2
+ K

)
,

N

N − K
− (2N − K ) (K − 1)

(N − K ) (K − 1)
= aK ,N − bK ,N

(
(2N − K ) (K − 1)

2
+ N

)
.

Finally, solve the above in aK ,N and bK ,N , to obtain (18) and (19). This establishes
the Theorem. ��

Obviously any strictly monotonic transformation of the index (2) would represent
a relation satisfying Axioms 2–4. The functional form in (2), which is linear in the
sum of ranks, has the natural property of being 0, in expectation, if the selection is
completely random: to see this, note that the expected rank of K random draws is
K (N+1)

2 . Substitute this in (2), to obtain 0.
Theorem 1 is the main result of the paper: in words, it shows that the index of

orderliness (2) satisfies the dominance Axioms 2 and 3, and the mirror invariance
Axiom 4, and, conversely, that any index which satisfies the dominance Axioms 2 and
3, and the mirror invariance Axiom 4, is a monotonic transformation of the index of
orderliness (2). Only index (2) satisfies all three axioms, and it is the only one (up
to monotonic transformations) to do so: Axioms 2, 3 and 4 together characterise the
index of orderliness (2).

The structure of the proof of Theorem 1 allows to replace the mirror invariance
Axiom with an equivalent one, which gives a different interpretation to the restriction
imposed on the orderliness relation to obtain characterisation.

Axiom 5 (Position Irrelevance) For every (N ,K) ∈ S and for every y1 ∈ N \K and
x1 ∈ K, satisfying ρ (x1) = ρ (y1) + a, and any y2 ∈ N \K∪ {x1} and x2 ∈ K∪ {y1},
satisfying ρ (x2) = ρ (y2)−a, where a is any integer such that ρ (y1)+a, ρ (y2)−a ∈
{1, . . . , N }, then (N ,K) ∼M (N ,K∪ {y1, y2} \ {x1, x2}).

Inwords, Axiom5 considers two subsequent “swaps” between a selected and a non-
selected element. The element newly included in the selection and the one removed
differ in rank by a. The second swap turns the intermediate selection obtained with
the first swap into the final one, by selecting an element not selected and removing
another element from the (intermediate) selection which are −a ranks apart. Thus, for
example, if the first swap selects the (originally non-selected) 12-th ranked element
and de-selects the 19-th ranked; their difference in rank is −7. Suppose the second
swap selects the (originally non-selected) 56-th ranked element and de-selects the
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49-th ranked; their difference in rank is 7.12 Then, by Axiom 5, the initial and the
final selection are equally orderly. In shorter, looser words, the effect of a change in
the selection depends only on the extent of the change, not on whether it affects the
upper or the lower tail of the distribution.13 We note that the relative importance of the
position in the ranking is at the core of the analysis of distance between preferences
in Can (2014). It is straightforward to establish the following.

Corollary 2 A reflexive transitive, complete and continuous orderliness relation M
satisfies Axioms 2, 3, and 5 if and only if it can be represented by a monotonic trans-
formation of the index of orderliness M(m (N ,K)), given in (2).

Proof This is simply a consequence of Lemma 1 togetherwith the obvious observation
that the sum of the ranks is left unchanged by a swap that satisfies Axiom 5. ��

Note that Theorem 1 and Corollary 2 together imply that Axioms 4, mirror invari-
ance, and Axiom 5, position irrelevance, are equivalent: each holds for a relation if
and only if the other does.

4 The index M and the Kendall-Tau distance

The study of metrics on orders, initiated by Kendall (1938) has developed a measure
of distance between two rankings of the elements of a given set N , the Kendall-Tau
distance (Kemeny 1959), recently extended to choice functions (Klamler 2008). This
is obtained by counting the number of times the two rankings “switch” two elements
x, y ∈ N . That is, if ρ1 and ρ2 are the two rankings, the distance between them is the
number of pairs (x, y) ∈ N ×N such that ρ1 (x) > ρ2 (x) and ρ1 (y) < ρ2 (y). This
count can then be normalised by the maximum possible number of switches.

This idea has been applied to voting mechanism, whereby a ranking is interpreted
as a vote, and the outcome of an election as the aggregation of the rankings of different
voters.14 We view the Kendall-Tau distance from a different angle: note in the first
place that the index of orderliness (2) applies to a broader range of situations, such
as those where the selections being compared are from different sets. Secondly, the
orderliness index (2) compares selections, rather than rankings, as the Kendall-Tau
distance does. Nevertheless, a selection does rank the elements of a set, albeit in a
very coarse manner: the K selected elements are joint first, and the non-selected ones
are joint (K + 1)-th. Recall that the Kendall-Tau distance is defined when there are
ties, and so we can measure the Kendall-Tau distance between the ranking determined

12 The element swapped in the second swap need not be different from the elements swapped in the first.
13 A simple example may illustrate this idea: in some sports, a team’s success is determined by the perfor-
mance of its best athletes. This is typically the case, for example, in “Grand Tour” cycling, where a team’s
objective is for the team leader to win the race. In rowing (and in team pursuit cycling), on the other hand,
everyone must push at the same rate, and the team’s result is heavily influenced by the performance of its
weakest members. Ranking of selections would, in these sports, violate Axiom 5. Conversely, relays in
track and field (especially the 4 × 400) approximately satisfy Axiom 5.
14 Young (1995) includes an intuitive introduction; among the many more recent examples, Davenport and
Kalagnanam (2004), or Betzler and Dorn (2010); Davenport and Kalagnanam (2004).
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by a selection and a given ranking ρ ofN . In this section we study the relation between
this Kendall-Tau distance and the index of orderliness (2), M(N ,K).

To develop the formal analysis, given a selected set (N ,K), define a mapping
κNK : N −→ {1, . . . , N } as follows:

κNK : x �−→
{
1 if x ∈ K,
K + 1 if x ∈ N \K.

(24)

That is the ordering κNK assigns a better rank to x ∈ N than to y ∈ N if and only
x is selected and y is not. We can label κNK the ordering induced by the selection K.
Since it is an ordering of the set N , we can define the Kendall-Tau distance between
ρ and κNK. To count the number of switches between rankings ρ and κNK, note that
a switch occurs only when the better element is not selected and the worse one is. The
total number of switches is thus measured by:

∣∣κNK (x) − κNK (y)
∣∣

2K

(
1 − ρ (x) − ρ (y)

|ρ (x) − ρ (y)|
κNK (x) − κNK (y) − ε∣∣κNK (x) − κNK (y) − ε

∣∣
)
,

where ε ∈ (0, 1). To see this, note simply that the first term is 1
2 if only one of x and

y is selected, and is 0 otherwise. Consider the second factor: given that κNK (x) �=
κNK (y), its second term is 1 if ρ and κ agree, and−1 if they do not, and so the whole
term is 2 if a switch occurs. The role of ε is to ensure that the denominator is never
0. To sum up, the Kendall distance, between the ranking of a set N and the ranking
induced by the selection K is given by

τ(N ,K) =
∑
x∈N

∑
y∈N \{x}

∣∣κNK (x) − κNK (y)
∣∣

2K
(
1 − ρ(x)−ρ(y)

|ρ(x)−ρ(y)|
κNK(x)−κNK(y)− 1

2∣∣∣κNK(x)−κNK(y)− 1
2

∣∣∣

)
.

Next note that the maximum number of switches is (N − K ) K , which happens in an
antiperfect selection, where the first N − K elements have K switches each, and
therefore the normalised Kendall-Tau distance is

τ̂ (N ,K) = τ(N ,K)

K (N − K )
. (25)

One would want that the shorter the distance between the given ranking in the setN
and the ordering induced by the selectionK, the more orderly the selected set (N ,K).
The next results shows that this is indeed the case: it shows that there is a very simple
link between the normalised Kendall-Tau distance (25) and the index of orderliness
(2).

Proposition 4 M(m (N ,K)) = 1 − 2τ̂ (N ,K).
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Proof We proceed by induction on N , the number of elements of N . It is trivially
true for N = 2. In this case, K = 1: when the better (worse) element is selected
M(m (N ,K)) = 1 and τ̂ (N ,K) = τ(N ,K) = 0 (M(m (N ,K)) = −1 and
τ̂ (N ,K) = τ(N ,K) = 1). Next, suppose to have demonstrated the result for N − 1;
let K be the number of selected elements, so we have

M(m (N ,K)) = 1 − 2τ̂ (N ,K),

and

M(m (N ,K)) = N − 2
K

∑
x∈K ρ (x)

N − 1 − K
= K (N − 1 − K ) − 2τ(N ,K)

K (N − 1 − K )
, (26)

which implies: ∑
x∈K

ρ (x) − τ(N ,K) = 1

2
K (K + 1) . (27)

Now increase the number of elements in the set from N − 1 to N , which is
achieved via the inclusion in N of a new element, z. Its rank in the new set
N ∪ {z} is ρ (z) ∈ {1, . . . , N }, and z is either selected, giving the new selected set
(N ∪ {z} ,K ∪ {z}), or not selected, giving the set (N ∪ {z} ,K). Consider the first
case: the new number of selected elements is K + 1. In this case note that the total
rank of the selected elements increases by ρ (z) + s, where s is the number of ele-
ments in the set {y ∈ K|ρ (y) > ρ (z)}. The new value of τ , is instead equal to the
previous one, τ(N ,K), increased by the number of new switches generated by z: all
the previous switches remain such of course. This is given simply by the number of
elements in the set {y ∈ N \K|ρ (y) < ρ (z)}, which can be obtained by noting that
there are ρ (z)− 1 elements ranked better than z, and that K − s are selected (because
s is the number of selected elements with rank worse than z). Thus the increase in τ

is (ρ (z) − 1 − (K − s)). This gives:

M (m (N ∪ {z} ,K ∪ {z}))

= N + 1 − 2
K+1

∑
x∈K ρ (x) − (ρ (z) + s)

(K + 1) (N − K − 1)

= (K + 1) (N − K − 1) − 2τ(N ,K) − 2 (ρ (z) − 1 − (K − s))

(K + 1) (N − K − 1)
.

Rearrange to obtain (27) again. Suppose instead z is not selected, and the new set is
(N ∪ {z} ,K). The total rank of the selected elements increases only by s, where again
s is the number of elements in the set {y ∈ K|ρ (y) > ρ (z)}. The new value of τ is
instead equal to the previous one, τ(N ,K), increased by the number of new switches
generated by z, which in this case is s, the number of selected elements with rank
worse than z. Hence we can write
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M (m (N ∪ {z} ,K)) = N + 1 − 2
K

(∑
x∈K ρ (x) − s

)

N − K

= K (N − K ) − 2τ(N ,K) − 2s

K (N − K )
.

which again gives (27) and completes the proof. ��

Thus, in addition to satisfying natural axioms, the index (2) coincides, in the sit-
uations where both can be applied, with an established measure of distance between
rankings. This paper therefore provides a micro-foundation of the Kendall-Tau dis-
tance, which currently lacks one.

The Kendall-Tau distance and the Spearman coefficient of rank correlation give in
general different answers to the question of the comparison between two rankings: this
implies that there at least one of the axioms is violated by the Spearman coefficient of
correlation between the original ranking and the ordering κNK derived in (24). The
Spearman coefficient, originally intended for situations with no ties in either ordering,
has been adapted byTaylor (1964) for the case of ties: the adaptation involves replacing
the ties with “fractional ties” and adjust with one correction factor for each set of tied
values, again, in either of the two orderings. Given the assumption of no ties in the
ordering of the setN , and given that there are only two ranks in (24), and thus exactly
two correction factors will be required, one for K, the other for (N-K) tied elements,
the Spearman coefficient of correlation between the original ranking and the ordering
κNK derived in (24) is given by:

1 −
6
N

∑N
i=1

(
ρi (x) − κNK (x)

)2 + N2−1−3K (N−K )
2

N 2 − 1
. (28)

We now show one example of a violation of one of the Axioms. Consider a selected
set (N ,K) represented by 0101110000000. Applying the above formula, we find that
the Spearman correlation coefficient is 0.3929. Now consider adding a new element
which occupies the seventh place in the new ranking, hence is worse that all of the
selected elements, and is itself selected, so the new selected set can be represented by
010111 1 0000000 (the new element is the one in the box). By Axiom 3.ii, the new
set must be less orderly. However, applying the above formula to the new set gives a
higher value of 0.4154, in violation of Axiom 3.ii. Similar counterexamples can be
found for the other Axioms, except Axiom 1.

Another measure of correlation is the Kappa correlation. This applies to ranking
with very few steps (and coincides with the selection when there are only two cate-
gories). This suggests a direction for future research in this area, namely the extension
of the index of orderliness to situations where the selection is more nuanced than
simply “in” and “out”. An example is a coach selection of the first team and of the
second team for a sport tournament.
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5 Example: orderliness in Italian universities

The orderliness index proposed here finds a natural application in the analysis of
promotions in hierarchical organisations, where, at given intervals, individuals from
the pool of potential candidates are assessed and some are promoted, some are not.
The determinants of promotions may be stated formally or known implicitly: thus
for example, academic promotions may be decided by criteria ranging from scientific
productivity, to teaching performance, fund-rising ability, seniority, or age; the rela-
tive importance of performance along the various criteria may of course vary from
institution to institution and from discipline to discipline.

As explained inChecchi et al. (2014), academic careers in Italy arefirmly channelled
along narrowly defined research fields: every academic is allocated to one and only
one of 371 scientific sectors (SSDs), changing sector is relatively unusual, and the
members of the promotion panels in each scientific sector are chosen exclusively
among academic post holders in that sector.

The dataset assembled by Checchi et al. (2014) allows us to rank all the candidates
for promotion to associate professor in each scientific sector in the period from 1995
to 2011 according to two criteria, their record of publication in international journals15

and their age.
Since withminor exceptions, each panel could select for promotion only candidates

from the lower rank within the same sector, it is a simple matter to calculate the
orderliness of the selections made by the promotion panel in each scientific sector, in
each of the four separate sub-periods which Checchi et al. (2014) suggest to aggregate
calendar years to reflect the pattern of the promotion rounds.

Figure 1 describes the outcome of this process. Each dot corresponds to one of 371
scientific sectors, except the smaller ones, in one 4-year interval. The abscissa of a
dot is the orderliness according to scientific productivity, its ordinate the orderliness
according to age.16 Broad scientific areas are colour coded; we have also singled
out economics and econometrics among the social science sectors. An analysis of
the Italian university sector might use these indices as characteristics of the selection
procedures used in promotion and appointments. A cursory visual analysis suggests
that overall productivity matters more than age, and also that it matters more in STEM
subjects.

6 Concluding remarks

Often an agent chooses a number of options from a larger set, the elements of which
can be ranked in some objective or generally accepted manner. We propose a way

15 Details are again in Checchi et al. (2014): from the Thomson Reuters Web of Knowledge dataset, we
construct for each candidate a score given by a combination of research output and impact: the former
measured by the number of publications, and the latter by the individual h-index.
16 Occasionally, the rankings we constructed in this way display ties. The analysis of this paper applies
to antisymmetric relations on the set N , and thus it excludes ties at the outset. To break the ties in the
construction of the orderliness index displayed in Fig. 1, we have followed a randomisation approach, by
bootstrapping the orderliness index (2) overmany repetitions of the procedure, whenever a scientific sector’s
ranking has ties.
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Fig. 1 Orderliness of scientific sectors by productivity and by age—1995–2011

to assess how close this agent’s selection is to the order of the set. Aside from its
intrinsic interest in the examples given in the introduction, availability of this measure
might address the need reported in the medical literature for an objective evaluation
of clinical services (Iverson 1998; Bickman 2012), or help the study of aspects of
social mobility, such as the importance of a person’s family position in her access to
leadership positions in society.17 In this paper, we require that the comparison between
selections satisfies some natural dominance requirements (Axioms 2 and 3), and the
requirement that themirror image of a change that nears a selection to the rankingmust
push the mirror image of that selection away from the ranking (Axiom 4). These three
simple axioms prove very strong, in that they identify a unique index which provides
an unambiguous comparison of the relative closeness of any selection to the order of
the set from which it is taken. This index has a very simple expression, which depends
only on the sum of the ranks of the selected elements, and the number of elements in
the set and in the selection. The paper ends with a specific example of the potential
applications of our index to the Italian university system.

17 Orderliness is at the basis of the popular book and filmMoneyball (Lewis 2004), which tell the story of
a baseball team with relatively scarce financial resources which was able systematically to outperform its
much wealthier rivals by basing all its selections on the players’ ranks; Hakes and Sauer (2006) confirm
econometrically the book’s intuition. Similarly, “artists and repertoire” talent spotters are being replaced in
the music industry by detailed analyses of big data harvested from social media (Mukerji 2015). Anderson
and Sally (2013) argue that the nature of the sport makes the method less applicable to soccer.
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