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Abstract Composite indices arewidely used in development economics and can often
be highly influential. Yet most remain controversial owing to inter alia the arbitrary
selection of component weights. Several studies have proposed testing the robustness
of rankings generated by composite indices with respect to alternative weights but
have not provided sufficient guidance on the choice of these alternatives. This paper
proposes a holistic yet theoretically novel approach for selecting sets of alternative
weights and assessing comparison robustness that is applicable to linear composite
indices with any finite number of dimensions. Our approach is founded on the main
normative assumption that a consensus has been reached on the minimum and the
maximumallowableweights that should be assigned to the components. This approach
is applied to robustness testing of inter-temporal country improvements generated by
arguably theworld’smost influential composite development index, theUNDPHuman
Development Index.
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1 Introduction

Composite indices might not rule our world, but they are highly influential in it. This
is particularly the case with composite international indices that seek to assess the
achievements of countries by various criteria. As Høyland et al. (2012, pp. 1) observe,
“one can hardly open a newspaper without finding a reference to an international
index;” they also refer to the “tyranny” of the rankings produced by these indices. The
vast majority of composite indices fall into a class of what Ravallion (2011) describes
as ‘mashups’. Ravallion (2011, pp. 1) defines a mashup as a “composite index for
which existing theory and practice provides little or no guidance for its design ...
(with) an unusually large number of moving parts, which the producer is essentially
free to set.” Ravallion (2011, pp. 1) points to a number of pitfalls in the use of these
indices, stressing that “clearer warning signs are needed for users” of them.

A key moving part of most composite indices, which producers are free to set,
is their component weights. Most are set arbitrarily, with the most common practice
being to set equal weights for each component. This choice of weights is due to
an uncertainty about the correct weights arising from a lack of theoretical or other
guidance.1 Uncertainty about the setting of weights has clear implications for the
interpretation of a composite index. Perhaps the most obvious implication is for index
rankings.2 Index rankings are a function inter alia of the weights, and, if there is
uncertainty about the correct weights, it must follow that there is uncertainty over the
veracity of these rankings.

Uncertainty over composite indices’ weights has been acknowledged in a number
of previous studies. These studies have sought to analyze the robustness of ranks
provided by equally weighted composite indices to alternative weights (Cahill 2005;
Cherchye et al. 2008; Foster et al. 2009, 2013; Permanyer 2011; Zheng and Zheng
2015). Each study looked at thewell-knownUNDPHumanDevelopment Index (HDI),
although their analyses are applicable tomost composite indices. They did not propose
replacing equal weights with alternative weighting schemes, instead advocating tests
for the robustness of composite indices rankings to their assigned equal weights so
as to aid interpretation, in broadly the same way that significance tests are used in
statistical analysis.

Our paper contributes to research on the robustness of linear composite index com-
parisons of indices that fall into the Ravallion mashup class. Its fundamental premise
is that in the absence of rigorous scientific guidance on the setting of weights for

1 The setting of equal weights is the normwith composite international indices, including the Ease of Doing
Business Index, Country Policy and Institutional Assessment Index, Environmental Performance Index,
Child Well-being Index, Human Development Index, Economic Resilience Index, Economic Vulnerability
Index, Environmental Sustainability Index, Index of Economic Freedom, Global Peace Index, and the
Physical Quality of Life Index. To justify equal weights, the proponents of the Environmental Sustainability
Index argued “that noobjectivemechanismexists to determine the relative importance of the different aspects
…” (Esty et al. 2005, pp. 66). For a comprehensive list of composite indices, see Bandura (2008).
2 This was one of five aspects of mashup indices that, according to Ravallion (2011), are in need of
more attention. The other four are their conceptual foundations, the tradeoffs they embody [an incisive
discussion on this issue may be found in Decancq and Lugo (2013)], the contextual factors relevant to
country performance, and the sensitivity of the implied rankings to changes in the data.
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the components of composite indices, assigning equal weight to their components is
broadly defensible provided that, in Ravallion’s words, ‘warning signs’ are provided
as to the implications of this for the rankings they yield.

The prime objective of this paper is to address a difficulty encountered by previ-
ous studies: the selection of a set of alternative weighting schemes for assessing rank
robustness. This selection is a requirement of the tests proposed by these studies, yet
none provide sufficient guidance for such selection. We propose a general yet theo-
retically novel approach that allows selecting a set of alternative weighting schemes
as well as assessing relevant comparison robustness. Our approach is founded on the
main normative assumption that a consensus has been reached on the minimum and
the maximum allowable weights that should be assigned to the components. In other
words, there is a consensus on an upper bound and a lower bound on weights, which
then yields a particular set of alternative weighting schemes with respect to which the
robustness of pairwise comparisons should be tested. We consider two variants. One
is where we allow the weight for every dimension to vary independently yet uniformly
between a common upper bound and a common lower bound. The other is where we
allow the weights to vary, but not necessarily uniformly for every dimension.

The approach that we propose is applicable to linear composite indices or their
monotonic transformations with any finite number of dimensions. We show an appli-
cation of our approach to thewell-knownHDI,whose annual publication in theHuman
Development Reports is eagerly awaited and receives enormous attention in themedia,
policy circles, and elsewhere. The HDI is a composite index that combines country
achievements in health, education, and income. We evaluate the prevalence of robust
country-specific inter-temporal HDI comparisons for six successful sub-periods dur-
ing the years 1980–2013. To the best of our knowledge, testing the robustness of
inter-temporal comparisons of the HDI or other composite indices of its general type
has not previously been attempted. This is an important exercise as the HDI is also
used to assess country-specific changes over time.3

The paper is structured as follows. Section 2 introduces the notation and framework.
Section 3outlines the theoretical contribution of our paper in comparison to the existing
literature. Section 4 develops and presents the approach, where the weight on each
dimension is allowed to vary uniformly. Section 6 applies this approach to assess
the inter-temporal robustness of the country HDIs. Section 5 extends the approach
developed in Sect. 4 to certain cases, whereweights are allowed to vary non-uniformly.
Section 7 provides concluding remarks.

2 Notation and framework

We assume that there are a fixed number of D ∈ N \ {1} dimensions or components,
where N is the set of positive integers. Let X ⊆ R

D denote the non-empty set of
performance vectors to be ranked. A performance vector x ∈ X summarises the

3 E.g., the UNDP claimed that “Advances in the HDI have occurred across all regions…all but 3 of the 135
countries have a higher level of human development today than in 1970 …” (United Nations Development
Programme 2010, pp. 27).
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normalised performances in D dimensions. We denote any dimension by subscript d
and theweight assigned to the dimension bywd . Theweight assigned to one dimension
in comparison to any other dimension represents the relative importance of the former
compared to the latter. For example, if all dimensions are equally weighted (i.e.,
wd = 1/D ∀d), then they are considered equally important relative to each other.

Weights assigned to D dimensions are summarized by vector w = (w1, . . . , wD).
We refer to a vector of weights as a weighting scheme. We make two natural assump-
tions about the weights that they (i) are non-negative (i.e., wd ≥ 0 ∀d) and (ii) sum to
one (i.e.,

∑D
d=1 wd = 1). We denote all possible D-dimensional weighting schemes

byW , such that W = {(w1, . . . , wD) | wd ≥ 0 ∀d,
∑D

d=1 wd = 1}.
Using a performance vector x ∈ X and a weighting scheme w ∈ W , a composite

index is defined as C(x;w) = ∑D
d=1 wd xd . For any two performance vectors x, y ∈

X , y has an equal or higher composite index value than x at an initial weighting
scheme w0 ∈ W , whenever C(y;w0) ≥ C(x;w0). This initial comparison between
y and x is stated to be robust with respect to a non-empty set of weighting schemes �

such that w0 ∈ � ⊆ W and is denoted by yC�x , if and only if C(y;w) ≥ C(x;w)

for all w ∈ �.4

We will be using the following additional notation in our paper. We denote a D-
dimensional doubly stochastic matrix, which is a non-negative square matrix with
every row and every column summing to one, by B. The set of all D-dimensional
doubly stochastic matrices is denoted by B. A D-dimensional permutation matrix,
which is also a non-negative square matrix with every row and every column having
only one element equal to one and the rest of the elements equal to zero, is denoted by
P. We denote the factorial of any n ∈ N by n!, such that n! = n × (n − 1) × · · · × 1.
Finally, we denote an n-dimensional vector of ones by 1n = (1, . . . , 1

︸ ︷︷ ︸
n

).

3 Set of reasonable alternative weighting schemes

How should a reasonable set of alternative weighting schemes be defined for testing
the veracity of composite index comparisons? This issue has been well recognized in
the academic literature, with a number of corresponding tests having been proposed
and applied, but none provide sufficient guidance for selecting a reasonable set of
alternative weighting schemes.

Cherchye et al. (2008), for instance, propose a test for the robustness of pair-wise
comparisons to simultaneous changes in the index’s weights, component variables’
normalization, and aggregation methods, obtaining conditions that kept the compar-
ison under the original weighting scheme preserved. The variation in weight of each
dimension for testing robustness in their framework is determined by the quantiles of
the raw data figures. Although the robustness tests are conducted for different quan-
tiles, no guidance is provided on how a particular quantile should be selected.

4 This concept is analogous to the concept of poverty orderings over a range of poverty lines or inequality
comparisons using Lorenz orderings. Relevant discussions are provided in Atkinson (1970, 1987), Foster
and Shorrocks (1988a, b), Zheng (1999, 2000).
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Foster et al. (2009, 2013) propose an epsilon-contamination model to devise an
approach for choosing a set of alternative weighting schemes to be used in assessing
composite index comparison robustness. In this approach, one is assumed to have only
partial confidence that the initial weighting scheme is correct and any other weighting
schemes could be feasible alternatives. The level of confidence one places on the initial
weight determines the size and the shape of the set of alternative weighting schemes.
The approach determines only a particular shape of alternative weighting schemes
that are merely homothetic contractions of the entire set of weighting schemes W .
Furthermore, it can be practically difficulty to determine the level of confidence one
places on the initial weighting scheme. Permanyer (2011) also envisages the need for
robustness testing by considering a set of alternative weighting schemes around the
initial weighting scheme and as an example applies the Foster et al. (2009, 2013)
approach.

A normative framework for determining an alternative set of weighting schemes
requires a process of strong justifications. Zheng and Zheng (2015) sought to avoid this
requirement. Using a fuzzy set theoretical framework, they avoided starting with any
initial weighting scheme by considering all possible weighting schemes to be potential
alternatives while proposing a robustness measure for gauging the strength of pairwise
comparisons. It should however be noted that all possible weighting schemes include
those that assign the entire weight to one dimension and zero weight to the remaining
dimensions. In these cases, the entire ranking is determined by any one dimension.
Allowing such possibilities (entire weight to one dimension and zero weight to the
remaining) however goes against the spirit ofmultidimensionality,which should reflect
strictly positive contributions of multiple dimensions to the final index score. There is
strong justification, therefore, for not considering these extreme weighting schemes
as meaningful alternatives. There can also be arguments against assigning excessively
high or low weight to any dimension by any alternative weighting scheme.

In our paper, we provide a novel, flexible and holistic approach for determining
a set of feasible alternative component weighting schemes. Our primary assumption
is that the process of choosing a set of reasonable alternative weighting schemes is
subject to a general consensus that the weight on any dimension should not be allowed
to be higher than a particular value (maximum weight or upper bound) and should
not be allowed to be lower than a particular value (minimum weight or lower bound).
We refer to this new approach of choosing a set of alternative weights for testing
robustness as max–min bound approach. We develop two variants of this approach:
One is referred to as theuniform max–min bound approach and the other is referred to as
the non-uniform max–min bound approach. The motivation for the uniform max–min
bound approach is the most frequent practice of equally weighting every dimension
with the argument that there is no a priori reason or justification for doing otherwise.
Similarly, one may argue that there is no a priori reason for allowing weights on
different dimensions to vary to different extents. On the other hand, in some cases if
there exists strong justifications for allowing weights to vary in different extents, then
that should motivate the non-uniform max–min bound approach. In the next section,
we formally introduce the uniform max–min bound approach; whereas in Sect. 5, we
present certain cases of the non-uniform max–min bound approach.
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4 The uniform max–min bound approach

We first show how one may determine a set of alternative weighting schemes � for
checking the robustness of pairwise comparisons when there is neither any a priori
reason for treating different dimensions with different importance nor any a priori rea-
son for allowing weights to vary in different extents. In this case, the initial weighting
scheme w0 assigns equal weight to all dimensions. The approach yields a contin-
uum of feasible alternative weighting schemes with respect to which the robustness
of pairwise comparisons should be evaluated. We next formally present the approach.

Suppose there is a consensus that the weight on any dimension should not be
lower than α ∈ [0, 1/D) and the weight on any dimension should not be higher than
β ∈ (1/D, 1]. Then, � = {w1, . . . , wd | α ≤ wd ≤ β ∀d and

∑D
d=1 wd = 1}. Note

that the restrictions α < 1/D and β > 1/D prevent � to be singleton. It turns out that
� ∈ W is bounded and is a convex hull of a finite number of weighting schemes. Once
these finite number of weighting schemes are obtained, then one may need to compare
a pair of composite index values at these weighting schemes in order to conclude
robustness of an underlying pair-wise comparison with respect to all weights in �.
What are these finite number of weighting schemes then? We answer this question
resorting to the majorization theory of measurement.

Definition 1 Any weighting scheme w′ ∈ W is not more unequal than any other
weighting scheme w ∈ W if and only if w′ = wB for any B ∈ B (Marshall and Olkin
1979, pp. 22).

A D-dimensional doubly stochastic matrix B ∈ B is the convex hull of a maximum
possible D! permutation matrices. Technically, B = ∑D!

m=1 ωmPm , where Pm is the
mth D-dimensional permutation matrix and ωm is a weight attached to Pm such that
ωm ≥ 0 and

∑D!
m=1 ωm = 1. It follows that the relation between w′ and w in Defi-

nition 1 can be expressed as w′ = wB = w
∑D!

m=1 ωmPm = ∑D!
m=1 ωmwPm , where

wPm is the mth permutation of the weighting scheme w, which leads to the following
definition.

Observation 1 Any weighting scheme w′ ∈ W that is not more unequal than any
w ∈ W by Definition 1 is an element in the convex hull of D! permutations of
weighting scheme w.

This concept can be used to identify the finite number of weighting schemes that create
the convex hull of �. In order to do so, we must identify the most unequal weighting
scheme in�. Starting from a particular weighting scheme, themost unequal weighting
scheme can be obtained by a finite number of regressive transfers—a concept that is
frequently used in the inequality measurement literature.

Definition 2 For any w,w′ ∈ W , weighting scheme w is obtained from a more
equal weighting scheme w′ by a regressive transfer if w′

l ≤ w′
h , wl = w′

l − ε and
wh = w′

h + ε for any ε > 0 and wd = w′
d ∀d �= h, l.

Let us denote the most unequal weighting scheme in � by w̄ and so the mth permuta-
tion of the weighting scheme is w̄Pm . Following Observation 1 and Definition 2, then
� should be the convex hull of D!weighting schemes {w̄Pm}D!

m=1. In practice however
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the number of distinct permutations of w̄ may be equal or less than D!. For exam-
ple, when the most unequal weighting scheme has weights of 0.5, 0.3, and 0.2, then
there are six (3!) unique permutations: (0.5, 0.3, 0.2), (0.5, 0.2, 0.3), (0.3, 0.5, 0.2),
(0.3, 0.2, 0.5), (0.2, 0.5, 0.3), and (0.2, 0.3, 0.5). When the most unequal weighting
scheme has weights of 0.5, 0.25, and 0.25, then there are only three unique permu-
tations: (0.5, 0.25, 0.25), (0.25, 0.5, 0.25), and (0.25, 0.25, 0.5). For any arbitrary
number of dimensions D, let us denote the number of unique permutations by D̄,
such that D ≤ D̄ ≤ D!. Then � is a convex hull of D̄ distinct weighting schemes
v1, v2, . . . , vD̄ , such that vm �= vm′ for anym �= m′. The following theoremdetermines
the value of D̄ as well as the corresponding vertices.

Theorem 1 For any D ∈ N\{1} and for any α ∈ [0, 1/D), β ∈ (1/D, 1],
β̃ = min{β, 1 − (D − 1)α} and α̃ = max{α, 1 − (D − 1)β}, the polytope
� = {w1, w2, . . . , wD | α ≤ wd ≤ β ∀d and

∑D
d=1 wd = 1} is a convex hull

of D̄ distinct vertices v1, v2, . . . , vD̄ , such that

(a) D̄ = D!/[(D − d)! × d!] whenever dα̃ + (D − d)β̃ = 1 for some d ∈
{1, 2, . . . , D −1}. The D̄ vertices are unique permutations of the D-dimensional
vector (α̃1d , β̃1D−d).

(b) D̄ = D!/[(D − d − 1)! × d!] whenever dα̃ + (D − d)β̃ > 1 and (d + 1)α̃ +
(D − d − 1)β̃ < 1 for some d ∈ {1, 2, . . . , D − 2}. The D̄ vertices are unique
permutations of the D-dimensional vector (α̃1d , γ, β̃1D−d−1), where γ = 1 −
dα̃ − (D − d − 1)β̃.

Proof Wealready know that� = {w1, . . . , wd |α ≤ wd ≤ β ∀d and
∑D

d=1 wd = 1},
α ∈ [0, 1/D) and β ∈ (1/D, 1]. Note that the constraints wd ≥ α and wd ≤ β may
not always be binding due to the additional constraint

∑D
d=1 wd = 1. Whenever β

is set to be larger than 1 − (D − 1)α or α is set to be lower than 1 − (D − 1)β),
this additional constraint may be violated. Given the joint restriction on α and β, the
maximum feasible upper bound on each weight is β̃ = min{β, 1− (D − 1)α} and the
minimum feasible lower bound on each weight is α̃ = max{α, 1 − (D − 1)β} for all
d = 1, . . . , D.

Given that α̃ ∈ [0, 1/D) and β̃ ∈ (1/D, 1], clearly w0 ∈ �, which is the least
unequal weighting scheme. Starting from the D-dimensional equal weight vector w0,
the most unequal weighting scheme w̄ ∈ � can be obtained by a finite number of
regressive transfers among elementweights followingDefinition 2, until themaximum
possible number of elements reach either α̃’s or β̃’s. Note thus that there must be at
least one α̃ and at least one β̃ in w̄. In addition, the weights within w̄ should satisfy
the constraint

∑D
d=1 wd = 1.

Given that
∑D

d=1 wd < 1 whenever wd = α̃ for all d and
∑D

d=1 wd > 1 whenever
wd = β̃ for all d, there exists an a ∈ (0, 1) such that:

a
D∑

d=1

α̃ + (1 − a)

D∑

d=1

β̃ = 1 	⇒ aDα̃ + (D − aD)β̃ = 1.

Depending on whether aD is an integer value or not, we may have the following two
cases.
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(a) Suppose, aD = d for some d ∈ {1, 2, . . . , D − 1}. In this case, the values of α̃

and β̃ are such that dα̃ + (D − d)β̃ = 1, which clearly satisfies the constraint∑D
d=1 wd = 1. Thus, the most unequal weighting vector w̄ consists of d number

of α̃’s and (D − d) number of β̃’s, i.e., w̄ = (α̃1d , β̃1D−d). Given that β̃ is
repeated (D − d) times and α̃ is repeated d number of times, the number of
unique permutations is D̄ = D!/[(D − d)! × d!)].

(b) Suppose, aD �= d for all d ∈ {1, 2, . . . , D − 1}. Instead aD = d + ε for some
d ∈ {1, . . . , D − 2} and for some ε ∈ (0, 1). Note that we set the restriction on
d here as d ≥ 1 and d ≤ D − 2 because there must be at least one α̃ and at least
one β̃ in w̄. We then have:

(d + ε)α̃ + (D − d − ε)β̃ = 1 	⇒ dα̃ + (D − d)β̃ + ε(α̃ − β̃) = 1.

Since, α̃ − β̃ < 0 and ε ∈ (0, 1), it must be the case that dα̃ + (D − d)β̃ > 1
and (d + 1)α̃ + (D − d − 1)β̃ < 1 for some d ∈ {1, 2, . . . , D − 2}. In other
words, if we assign weight β̃ to D −d dimensions and weight α̃ to d dimensions,
then

∑D
d=1 w̄d > 1; whereas, if we assign weight β̃ to one less dimension (i.e.,

D−d −1 dimensions) and assign weight α̃ to an additional dimension (i.e., d +1
dimensions), then

∑D
d=1 w̄d < 1. Both cases violate the restriction

∑D
d=1 wd =

1. Hence, there must be some γ ∈ (α̃, β̃) such that dα̃ + (D − d − 1)β̃ + γ = 1
for d ∈ {1, 2, . . . , D−2}. Thus, w̄ must have (D−d −1) elements that are equal
to β̃, d elements that are equal to α̃, and the remaining element is equal to γ , i.e.,
w̄ = (α̃1d , γ, β̃1D−d−1). As β̃ is repeated (D −d −1) times and α̃ is repeated d
times, the number of unique permutations of w̄ is D̄ = D!/((D − d − 1)! × d!).

This completes our proof. ��
Theorem 1 is quite powerful in the sense that it determines the number of dis-
tinct permutations of the most unequal weights in � for any arbitrary number of
D dimensions once a consensus on the values of α and/or β is reached. The minimum
number of unique permutations is obtained when the most unequal weighting scheme
is such that all (D − 1) dimensions receive the same weight while the remaining
dimension receives a different weight. In this case, the number of unique permuta-
tions is [D!/(D − 1)!] = D. It follows from Theorem 1 that this case occurs when
dα + (D − d)β = 1 and either d = 1 or d = (D − 1) for any α ∈ [0, 1/D).

There are three cases where the number of unique permutations of the most unequal
weighting scheme is only D. The first case is when weights are allowed to vary to
the fullest extent. In this extreme case, β = 1 and α = 0. The most unequal weight
w̄ ∈ � is obtained when all (D − 1) dimensions are assigned a weight of zero and the
remaining dimension is assigned a weight of one. The second case is when one only
chooses the value of α ∈ (0, 1/D). Implicitly, in this case, β = 1. The most unequal
weighting scheme w̄ ∈ � is obtained when all (D − 1) dimensions are assigned
weight α and the remaining dimension is assigned weight β̃ = 1 − (D − 1)α < β.
The third case is when one chooses only β ∈ (1/D, 1/(D − 1)]. Implicitly, in this
case, α = 0. The most unequal weighting scheme w̄ ∈ � is obtained when all (D −1)
dimensions are assigned weight β and the remaining dimension is assigned weight
α̃ = [1 − β(D − 1)] > α.
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(a) (b) (c)

Fig. 1 Examples of sets of alternative weights �

Examples

Let us provide certain examples involving three dimensions (D = 3).
First, suppose α = 1/6 and β = 1/2. In this case, α̃ = max{α, 1 − (D − 1)β} =

max{1/6, 0} = α and β̃ = min{β, 1 − (D − 1)α} = min{1/2, 2/3} = β. It can be
easily checked that there does not exist any d ∈ N such that dα̃ + (D − d)β̃ = 1.
This example, thus, corresponds to case b. in Theorem 1. At the respective w̄, one
dimension is assigned β̃ = 1/2, the second dimension is assigned α̃ = 1/6 and
the remaining dimension is assigned γ = 1/3. The number of unique permutations
of w̄ is D̄ = D!/([D − d − 1]!d!) for d = 1. Thus, D̄ = 6 and the six distinct
permutations are: v1 = (1/2, 1/3, 1/6), v2 = (1/2, 1/6, 1/3), v3 = (1/3, 1/6, 1/2),
v4 = (1/6, 1/3, 1/2), v5 = (1/6, 1/2, 1/3), and v6 = (1/3, 1/2, 1/6). We denote
their convex hull by �1. The shape of �1 is depicted in panel (a) of Fig. 1. To check if
y�1x , we simply need to compare y and x at these six weighting schemes: v1, . . . , v6.

Second, suppose α = 1/6 and no additional restriction is assumed on β and so
implicitly β = 1. We denote the corresponding set of weighting schemes as �2 =
{w1, . . . , wD | 1/6 ≤ wd ≤ 1 ∀d,

∑D
d=1 wd = 1}. In this case, α̃ = max{α, 1 −

(D − 1)β} = max{1/6,−1} = 1/6 and β̃ = min{β, 1− (D − 1)α} = min{1, 2/3} =
2/3. Clearly, dα̃ + (D − d)β̃ = 1 for d = 2. This example corresponds to case
a. in Theorem 1. There are only D̄ = 3!/(1! × 2!) = 3 distinct permutations. The
corresponding w̄ in this case assigns α̃ = 1/6 to two dimensions and assigns β̃ = 2/3
to the remaining dimension. We present the shape of �2 in Panel (b), where �2 is a
convex hull of v1 = (2/3, 1/6, 1/6), v2 = (1/6, 2/3, 1/6), and v3 = (1/6, 1/6, 2/3).
Note that setting just a lower bound onweights yields the same set of weights proposed
by Foster et al. (2009) for a particular level of confidence with respect to the initially
chosen equal weight through the epsilon-contamination model.

Third, suppose β = 0.4 and there is no additional restriction on α and so
implicitly α = 0. We denote the corresponding set of weighting schemes by
�3 = {w1, . . . , wD | 0 ≤ wd ≤ 0.4 ∀d and

∑D
d=1 wd = 1}. In this case,

α̃ = max{α, 1 − (D − 1)β} = max{0, 0.2} = 0.2 and β̃ = min{β, 1 − (D − 1)α} =
min{0.4, 1} = 0.4. The w̄ in this case assigns 0.4 to any two dimensions and assigns
0.2 to the remaining dimension. The number of unique permutations is D̄ = 3 and�3
is a convex hull of v1 = (0.4, 0.4, 0.2), v2 = (0.4, 0.2, 0.4), and v3 = (0.2, 0.4, 0.4).
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The shape of �3 is depicted in panel (c) of Fig. 1. To assess robustness, we need to
compare composite index scores at these three vertices.

5 The non-uniform max–min bound approach

The uniform max–min bound approach in Sect. 4 may be justified when there is no
strong reason for allowing weights to vary to different extents. However, there may be
caseswhen this is not true. For example,while designingMexico’s officialmultidimen-
sional poverty measure, half of the total weight is assigned to the monetary dimension,
while the rest of the weights were distributed to the rest of the non-monetary indicators
(Foster 2007). Mexican government may have a strong reason behind assigning the
particular weight to the monetary dimension, but may not be fully confident about
how the rest of the weight should be distributed across the non-monetary dimensions.
Although Mexico’s poverty measurement methodology was not based on a composite
index, yet these types of situations may arise in practice for composite indices. In this
section, we extend the Uniform Max–Min Bound approach developed in Sect. 4 to
three non-uniform cases.

Case I

Let us consider the situations where weights are fixed for some dimensions, but robust-
ness needs to be checked for the rest of the dimensions under the condition that the
weights on these dimensions are allowed to vary uniformly. Suppose, without loss of
generality, that robustness needs to be checked for the first D′ ≥ 2 of the D dimen-
sions, while the weights for the remaining D − D′ ≥ 1 dimension(s) are fixed. The
total weight assigned to the first D′ dimensions is λ ∈ (0, 1); whereas the fixedweights
assigned to the remaining dimensions are wd = ŵd ∀d = D′ + 1, . . . , D and they
sum up to 1 − λ.

The maximum possible weight that may be assigned to any of the first D′
dimensions is β ∈ (1/D′, λ]; whereas, the minimum possible weight that may be
assigned is α ∈ [0, 1/D′). The set of alternative weights in this case is: �′ =
{w1, . . . , wD |α ≤ wd ≤ β ∀d = 1, . . . , D′;∑D′

d=1 wd = λ;wd = ŵd ∈ (0, 1)∀d =
D′ + 1, . . . , D;∑D

d=D′+1 ŵd = 1 − λ}. This case is a clear extension of the uniform
max–min bound approach but applied to only D′ dimensions.

Case II

Let us now consider the situation where the maximum possible weight should not
be larger than β ≤ 1 and the minimum possible weight should not be smaller than
α ≥ 0, but all dimensions are ordered according to their importance. Without loss of
generality, we assume that w1 ≤ w2 ≤ · · · ≤ wD . The set of alternative weights for
checking robustness in this case is: �∗ = {w1, . . . , wD | α ≤ w1 ≤ · · · ≤ wD ≤
β,

∑D
d=1 wd = 1}. Note that �∗ is a subset of the set of alternative weights � defined

in Sect. 4 and is a convex hull of D̄∗ weighting schemes as presented in Proposition 1.
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Note that unlike in case of Theorem 1, permutation of the most unequal weighting
scheme may not be possible because of the constraint w1 ≤ w2 ≤ · · · ≤ wD .

Proposition 1 For any D ∈ N\{1} and for any α ∈ [0, 1/D), β ∈ (1/D, 1],
β̃ = min{β, 1 − (D − 1)α} and α̃ = max{α, 1 − (D − 1)β}, the polytope
�∗ = {w1, w2, . . . , wD | α ≤ w1 ≤ · · · ≤ wD ≤ β ∀d and

∑D
d=1 wd = 1} is

a convex hull of D̄∗ distinct vertices v1, v2, . . . , vD̄∗ , such that:

(a) D̄∗ = D, whenever dα̃ + (D − d)β̃ = 1 for some d ∈ {1, 2, . . . , D − 1}. One
vertex is ( 1

D 1D). The δth vertex of the remaining D−1 vertices is (α̃δ1d , β̃δ1D−d),

where α̃δ = max{α̃, [1 − (D − d)β̃]/d} and β̃δ = min{β̃, (1 − dα̃)/(D − d)}
for all δ = 1, . . . , D − 1 and for d = δ.

(b) D̄∗ = D + 1, whenever dα̃ + (D − d)β̃ > 1 and (d + 1)α̃ + (D − d − 1)β̃ < 1
for some d ∈ {1, 2, . . . , D − 2}. One vertex is (α̃1d , γ, β̃1D−d−1), where γ =
1−dα̃−(D −d −1)β̃. Another vertex is ( 1

D 1D). The δth vertex of the remaining

D − 1 vertices is (α̃δ1d , β̃δ1D−d), where α̃δ = max{α̃, [1 − (D − d)β̃]/d} and
β̃δ = min{β̃, (1 − dα̃)/(D − d)} for all δ = 1, . . . , D − 1 and for d = δ.

Proof We are given that �∗ = {w1, . . . , wD | α ≤ w1 ≤ · · · ≤ wD ≤
β and

∑D
d=1 wd = 1}, which is a subset of � = {w1, . . . , wD | α ≤ wd ≤

β ∀d and
∑D

d=1 wd = 1}.We are already aware fromTheorem1 that the feasible upper
and lower bounds for� are β̃ = min{β, 1−(D−1)α} and α̃ = max{α, 1−(D−d)β},
respectively, which also apply to its subset �∗. So, �∗ = {w1, . . . , wD | α̃ ≤ w1 ≤
· · · ≤ wD ≤ β̃ and

∑D
d=1 wd = 1}.

We also know from Theorem 1 that � is a convex hull of unique permutations
of the weighting scheme (α̃1d , β̃1D−d), whenever dα̃ + (D − d)β̃ = 1 for some
d ∈ {1, 2, . . . , D − 1}; whereas, � is a convex hull of unique permutations of the
weighting scheme (α̃1d , γ, β̃1D−d−1) where γ = 1 − dα̃ − (D − d − 1)β̃ and
γ ∈ (α̃, β̃), whenever dα̃ + (D − d)β̃ > 1 and (d + 1)α̃ + (D − d − 1)β̃ < 1 for
some d ∈ {1, 2, . . . , D − 2}. Among all permutations, only ū = (α̃1d , β̃1D−d) in
the first case and ū′ = (α̃1d , γ, β̃1D−d−1) in the second case satisfy the restriction:
w1 ≤ · · · ≤ wD . Thus, each of ū and ū′ form a vertex of �∗ in the respective case.
Any other permutation of ū and ū′ violates the restriction and so cannot form a vertex
of �∗.

The D weights are bounded both from above and from below as: α̃ ≤ w1 ≤ w2,
wd−1 ≤ wd ≤ wd+1 for all d = 2, . . . , D − 1, and wD−1 ≤ wD ≤ β̃. These restric-
tions lead to the following D binding constraints, which should form D additional
vertices or extreme points v∗

1 , . . . , v
∗
D for �∗:

v∗
1 :α̃ ≤ w1 < w2 = · · · = wD ≤ β̃

v∗
2 :α̃ ≤ w1 = w2 < w3 = · · · = wD ≤ β̃

...

v∗
D−1 :α̃ ≤ w1 = · · · = wD−1 < wD ≤ β̃

v∗
D :α̃ ≤ w1 = · · · = wD ≤ β̃.
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For the rest of the proof, we shall refer to any of these D vertices by subscript δ.
Any of the D elements within a vertex will continue to be denoted by subscript
d. The constraints for the vertices v∗

1 , . . . , v
∗
D are however not always binding in

practice either from above by β̃ or from below by α̃ due to the additional constraint∑D
d=1 wd = 1. Let us denote the maximum feasible upper bound and the minimum

feasible lower bound for v∗
δ by α̃δ and β̃δ for some δ ∈ {1, 2, . . . , D − 1}. For any v∗

δ ,
α̃δ = α̃ but β̃δ < β̃ whenever dα̃ + (D − d)β̃ > 1 for d = δ, and β̃δ = β̃ but α̃δ > α̃

whenever dα̃ + (D − d)β̃ < 1 for d = δ. Thus, α̃δ = max{α̃, [1− (D − d)β̃]/d} and
β̃δ = min{β̃, (1 − dα̃)/(D − d)}, such that:

dα̃δ + (D − d)β̃δ = 1 (1)

for every δ ∈ {1, . . . , D−1} and for d = δ. The δth vertex of�∗ is (α̃δ1d , β̃δ1D−d) for
δ ∈ {1, 2, . . . , D −1}. For v∗

D , all the D elements are equal to 1/D, i.e., v∗
D = ( 1

D 1D).
We next show that v∗

1 , . . . , v
∗
D are indeed extreme points. If v∗

δ for some δ ∈
{1, . . . , D} is not an extreme point, then there must exist somew′, w′′ ∈ �∗ such that,
for some a ∈ (0, 1):

aw′ + (1 − a)w′′ = v∗
δ . (2)

We shall show that if w′ ∈ �∗, then w′′ /∈ �∗. First, suppose, w′ ∈ �∗ and w′ �= v∗
δ

for some δ ∈ {1, 2, . . . , D − 1}, such that either w′
d > α̃δ or w′

d < β̃δ for some
d ∈ {1, 2, . . . , D}. Clearly, by Eq. (2), it must be the case that either w′′

d < α̃δ or
w′′

d > β̃δ , violating the constraint on �∗. So, w′′ /∈ �∗. Second, suppose w′ ∈ �∗
and w′ �= v∗

δ for some δ ∈ {1, 2, . . . , D}, such that the dth element and the (d + 1)th
element in v∗

δ are equal but w′
d < w′

d+1. It then must be the case that w′′
d > w′′

d+1 by
Eq. (2), which also violates the constraint on �∗. Thus, again, w′′ /∈ �∗. The second
part includes the case for v∗

D .
We finally show that D̄ may take the value of D (in part a. of the proposition) or

D + 1 (in part b. of the proposition). First, suppose, dα̃ + (D − d)β̃ = 1 for some
d ∈ {1, 2, . . . , D − 1}. Then ū form a vertex of �∗ as discussed earlier. However, the
elements in ū satisfy Eq. (1), which leads to α̃ = α̃δ and β̃ = β̃δ and so ū = v∗

δ for
some δ ∈ {1, . . . , D − 1}. Hence, �∗ in this case consists of D vertices: v∗

1 , . . . , v
∗
D .

Second, suppose dα̃ + (D − d)β̃ > 1 and (d + 1)α̃ + (D − d − 1)β̃ < 1 for some
d ∈ {1, 2, . . . , D − 2}. We have already discussed that ū′ forms a vertex of �∗. Now,
ū′ is an additional vertex besides v∗

1 , . . . , v
∗
D since ū′ �= v∗

δ for all δ ∈ {1, . . . , D}.
Therefore, �∗ in this case consists of (D + 1) vertices: v∗

1 , . . . , v
∗
D, ū′. ��

Examples

We present three examples in Fig. 2 based on each of our earlier illustrations in Sect. 4.
First, recall the example with α = 1/6 and β = 1/2 and additionally w1 ≤ w2 ≤

w3. In this case, α̃ = α = 1/6 and β̃ = β = 1/2, but there does not exist any d ∈ N

such that dα̃+(D−d)β̃ = 1. This example thus corresponds to part b. of Proposition 1
and so D̄ = D + 1 = 4. The feasible upper bound and the feasible lower bound for
the first two vertices are obtained as follows:

123



Composite indices, alternative weights... 669

(a) (b) (c)

Fig. 2 Examples of sets of alternative weights �∗

• v∗
1 : α̃1 = max

{

α̃,
1 − (3 − 1) × β̃]

1

}

= 1

6
and β̃1 = min

{

β̃,
1 − 1 × α̃

3 − 1

}

=
5

12
.

• v∗
2 : α̃2 = max

{

α̃,
1 − (3 − 2) × β̃]

2

}

= 1

4
and β̃2 = min

{

β̃,
1 − 2 × α̃

3 − 2

}

= 1

2
.

Thus, �∗
1 is a convex hull of v∗

1 = (1/6, 5/12, 5/12), v∗
2 = (1/4, 1/4, 1/2), v∗

3 =
(1/3, 1/3, 1/3), and v∗

4 = ū′ = (1/6, 1/3, 1/2) as shown in panel (a) of Fig. 2.
Second, recall the example with α = 1/6 and β = 1 and additionally, w1 ≤ w2 ≤

w3. Recall further, in this case, that α̃ = α = 1/6 but β̃ = 2/3 < β. This example
corresponds to part a. of Proposition 1 since 2α̃ + β̃ = 1 and thus D̄ = D = 3.
The feasible upper bound and the feasible lower bound for the first two vertices are
obtained as follows:

• v∗
1 : α̃1 = max

{

α̃,
1 − (3 − 1) × β̃]

1

}

= 1

6
and β̃1 = min

{

β̃,
1 − 1 × α̃

3 − 1

}

=
5

12
.

• v∗
2 : α̃2 = max

{

α̃,
1 − (3 − 2) × β̃]

2

}

= 1

6
and β̃2 = min

{

β̃,
1 − 2 × α̃

3 − 2

}

= 2

3
.

Thus, �∗
2 is a convex hull of three vertices v∗

1 = (1/6, 5/12, 5/12), v∗
2 =

(1/6, 1/6, 2/3), and v∗
3 = (1/3, 1/3, 1/3) as depicted in panel (b) of Fig. 2.

Third, recall the example with β = 0.4 and α = 0, with the additional restriction
w1 ≤ w2 ≤ w3. In this case, α̃ = 0.2 > α and β̃ = β = 0.4. This example also
corresponds to part a. of Proposition 1 since α̃ + 2β̃ = 1 and so D̄ = D = 3. The
feasible upper bound and the feasible lower bound for the first two vertices are obtained
as follows:

• v∗
1 : α̃1 = max

{

α̃,
1 − (3 − 1) × β̃]

1

}

= 0.2 and β̃1 = min

{

β̃,
1 − 1 × α̃

3 − 1

}

=
0.4.

• v∗
2 : α̃2 = max

{

α̃,
1 − (3 − 2) × β̃]

2

}

= 0.3 and β̃2 = min

{

β̃,
1 − 2 × α̃

3 − 2

}

=
0.4.
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Thus, �∗
3 is the convex hull of v∗

1 = (0.2, 0.4, 0.4), v∗
2 = (0.3, 0.3, 0.4), and v∗

3 =
(1/3, 1/3, 1/3) as presented in panel (c) of Fig. 2.

Case III

Finally, there may be a general situation where weights in different dimensions may
be allowed to vary to different extents, such that αd ∈ [0, 1) and βd ∈ (0, 1] for all
d = 1, . . . , D. Therefore, �∗∗ = {w1, . . . , wD | αd ≤ wd ≤ βd ∀d,

∑D
d=1 wd = 1}

is the set ofweighting schemes,which is a convex hull of the hyper planeswd ≥ αd and
wd ≤ βd for all d = 1, . . . , D, consisting of D̄∗∗ vertices, such that D ≤ D̄∗∗ ≤ D!.
The value of D̄∗∗ depends on the complex relationship between the 2D parametric
bounds: α1, . . . , αD and β1, . . . , βD . In order to show how the value of D̄∗∗ is affected
by the selection of bounds, we present an illustration involving three dimensions.

An illustration with three dimensions

In this case, D = 3 and the bounded weights are: w1 ∈ [α1, β1], w2 ∈ [α2, β2] and
w3 ∈ [α3, β3]. The set of alternative weights �∗∗ is bounded by the six hyperplanes
wd ≥ αd and wd ≤ βd for d = 1, 2, 3. Thus, �∗∗ is a convex hull of a maximum of
3! = 6 vertices or extreme points, but due to the additional restriction

∑D
d=1 wd = 1,

as earlier, these restrictions are not necessarily binding. It is possible, for example,
that α1 + β2 + β3 < 1 or, say, α1 + α2 + β3 > 1. Let us denote the minimum feasible
weight and themaximum feasible weight that may be assigned to the dth dimension by
α̃d = max{αd , 1−∑

d ′ �=d βd ′ } and β̃d = min{βd , 1−∑
d ′ �=d αd ′ } for d, d ′ ∈ {1, 2, 3}.

For example, α̃1 = max{α1, 1 − β2 − β3} and β̃1 = min{β1, 1 − α2 − α3}.
Each of the six vertices may be obtained by assigning the maximum feasible weight

to one dimension, by assigning the minimum feasible weight to a second dimension,
and then by assigning the rest of the weight to the remaining third dimension. Let
us denote by ūdδ , for d, δ ∈ 1, 2, 3 and d �= δ, the vertex where the dth element
is equal to β̃d , the δth element is equal to α̃δ and the remaining element is equal to
γdδ = 1 − β̃d − α̃δ . Thus, the six vertices are:

ū12 = (β̃1, α̃2, γ12); ū21 = (α̃1, β̃2, γ21); ū13 = (β̃1, γ13, α̃3);
ū31 = (α̃1, γ31, β̃3); ū23 = (γ23, β̃2, α̃3); ū32 = (γ32, α̃2, β̃3).

We now show how different values of the bounds may determine the number of unique
vertices D̄∗∗ of�∗∗. Suppose, the upper and lower bounds ofw1 andw2 are α1 = 0.1,
β1 = 0.4, α2 = 0.25, and β2 = 0.45, respectively. We also suppose that the lower
bound of w3 is α3 = 0.3, but we choose different values of the upper bound of w3 to
demonstrate how it affects the value of D̄∗∗.

First, suppose β3 = 0.5. Then, α̃1 = 0.1, α̃2 = 0.25, α̃3 = 0.3, β̃1 = 0.4,
β̃2 = 0.45, and β̃3 = 0.5. Thus, γ12 = 0.35, γ21 = 0.45, γ13 = 0.3, γ31 = 0.4,
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(a) (b) (c)

Fig. 3 Examples of sets of alternative weights �∗∗

γ23 = 0.25 and γ32 = 0.25. Using these values, we obtain:

ū12 = (0.40, 0.25, 0.35); ū21 = (0.10, 0.45, 0.45); ū13 = (0.40, 0.30, 0.30);
ū31 = (0.10, 0.40, 0.50); ū23 = (0.25, 0.45, 0.30); ū32 = (0.25, 0.25, 0.50).

Note that all six vertices are different from each other in this case and so �∗∗
1 is a

convex hull of six vertices: v∗∗
1 = ū12, v∗∗

2 = ū13, v∗∗
3 = ū23, v∗∗

4 = ū21, v∗∗
5 = ū31

and v∗∗
6 = ū32 as depicted in panel (a) of Fig. 3. Thus, D̄∗∗

1 = 6.
Second, suppose instead that β3 = 0.7. In this case, α̃1 = 0.1, α̃2 = 0.25, α̃3 = 0.3,

β̃1 = 0.4, β̃2 = 0.45, and β̃3 = 0.65. Thus, γ12 = 0.35, γ21 = 0.45, γ13 = 0.3,
γ31 = 0.25, γ23 = 0.25 and γ32 = 0.1. Using these values, we obtain:

ū12 = (0.40, 0.25, 0.35); ū21 = (0.10, 0.45, 0.45); ū13 = (0.40, 0.30, 0.30);
ū31 = (0.10, 0.25, 0.65); ū23 = (0.25, 0.45, 0.30); ū32 = (0.10, 0.25, 0.65).

Note that there are only five unique vertices and so�∗∗
2 is a convex hull of five vertices:

v∗∗
1 = ū12, v∗∗

2 = ū13, v∗∗
3 = ū23, v∗∗

4 = ū21, and v∗∗
5 = ū31 = ū32 as depicted in

panel (b) of Fig. 3. Thus, D̄∗∗
2 = 5.

Third, suppose β3 = 0.35. In this case, α̃1 = 0.2, α̃2 = 0.25, α̃3 = 0.3, β̃1 = 0.4,
β̃2 = 0.45, and β̃3 = 0.35. Thus, γ12 = 0.35, γ21 = 0.35, γ13 = 0.3, γ31 = 0.45,
γ23 = 0.25 and γ32 = 0.4. Using these values, we obtain:

ū12 = (0.40, 0.25, 0.35); ū21 = (0.20, 0.45, 0.35); ū13 = (0.40, 0.30, 0.30);
ū31 = (0.20, 0.45, 0.35); ū23 = (0.25, 0.45, 0.30); ū32 = (0.40, 0.25, 0.35).

Here, �∗∗
3 is a convex hull of only four vertices: v∗∗

1 = ū12 = ū32, v∗∗
2 = ū13,

v∗∗
3 = ū23, and v∗∗

4 = ū21 = ū31, as shown in panel (c) of Fig. 3. Hence, D̄∗∗
3 = 4.

It is thus evident how the value of D̄∗∗ may be affected by even only one upper
bound. In this general approach, we may neither need to restrict αd ’s above by 1/D
nor need we restrict βd ’s below by the 1/D. What restrictions however do we need to
impose on αd ’s and βd ’s in order to make sure that the set of alternative weights �∗∗
is not empty? Proposition 2 provides an answer to this question.
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Proposition 2 For any D ∈ N\{1} and for αd ∈ [0, 1) and βd ∈ (0, 1] such that
αd ≤ βd ∀d = 1, . . . , D, �∗∗ = {w1, . . . , wD | αd ≤ wd ≤ βd ∀d,

∑D
d=1 wd = 1}

is non-empty if and only if
∑D

d=1 αd ≤ 1 and
∑D

d=1 βd ≥ 1.

Proof The sufficiency part is straightforward. Consider the weighting vector w̃ such
that w̃d = αd ∀d and

∑D
d=1 αd = 1. Clearly, w̃ ∈ �∗∗ and so �∗∗ is non-empty.

Let us now prove the necessity part. Suppose that either (i)
∑D

d=1 αd > 1 or (ii)
∑D

d=1 βd < 1.Consider anyweighting vector ŵ such that ŵd ≥ αd ∀d. Then, certainly
∑D

d=1 ŵd > 1 and so ŵ /∈ �∗∗. Similarly, consider any weighting vector ẇ, such that
ẇd ≤ βd ∀d. In what follows,

∑D
d=1 ẇd < 1 and so ẇ /∈ �∗∗. So, �∗∗ in both cases

is empty. This completes our proof. ��
Proposition 2 requires that the upper and lower bounds on weights should be selected
in such a way that

∑D
d=1 αd ≤ 1 and

∑D
d=1 βd ≥ 1. The set of alternative weights

would be empty, otherwise.

6 An inter-temporal illustration with the Human Development Index

The HDI is a composite index that combines country performances in three dimen-
sions: a long and healthy life, access to knowledge, and a decent material standard of
living. The HDI has been revised many times since 1990, but each of the three dimen-
sions has consistently been equally weighted. This feature has remained controversial
from the moment the HDI was first released.

Between 1994 to 2009, the HDI had been formed by the following aggregation
formula:

HDIA = 1

3

3∑

d=1

xd , (3)

where x1, x2, and x3 are the normalised country performances in the three dimen-
sions, respectively. The use of an equally weighted arithmetic mean assumes perfect
substitutability among normalized performances.5 This assumption has been ques-
tioned since the first release of the HDI and the assumption has been relaxed in the
2010 Human Development Report (United Nations Development Programme 2010)
through formulating the HDI as a geometric mean, as follows:

HDIG =
3∏

d=1

x
1
3
d . (4)

For testing the robustness of the H DIG , we use its linearised logarithmic transforma-
tion:

lnHDIG = 1

3

3∑

d=1

ln xd . (5)

5 Note that the concept of substitutability among dimensions in this context is understood in the Hicks
Value and Capital sense rather than in the Auspitz–Lieben–Edgeworth–Pareto sense (see, Atkinson 2003).
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Debate on HDI weights and comparison robustness

Hopkins (1991) commented that the UNDP essentially invoked Occam’s razor in the
selection of weights, taking the simplest possible alternative that is likely to attract
the least disagreement. Kelley (1991) argued for a higher weight for income on the
grounds that it provides a capacity to choose among many other dimensions of human
development. While concerns over the HDI weights have simmered over time since
the early 1990s, the UNDPs adoption of the geometric mean formulation of the HDI
in 2010 returned attention more firmly to it. Ravallion (2011, pp. 12–13) commented
that the “equality of the weights was, of course, an arbitrary judgment, and it might
have been hoped that the weights would evolve in the light of the subsequent public
debate. But that did not happen. The weights on the three components of the HDI
(health, education, and income) have not changed in 20 years, and it is hard to believe
that the HDI got it right first go.”

Kelley (1991), however, acknowledged that a priori it is difficult to justify any set
of weights and for this reason calls for testing the sensitivity of the HDI to alternative
weights. It is this issue that has motivated various rank robustness studies for the HDI.
Cahill (2005), for example, used a simple approach to conclude thatHDI rankingswere
robust. Using six alternative weighting schemes, Cahill found the six country rankings
to be statistically indistinguishable from the original HDI ranking. Unlike Cahill,
Foster et al. (2009, 2013) and Permanyer (2011) proposed relatively sophisticated
normative frameworks for determining a set of alternative weighting schemes. Like
Cahill, however, Foster et al. (2009) found similar conclusions on HDI robustness:
nearly 70% of cross-sectional pairwise HDI country rankings were robust between
1998 and 2004 regardless of how the three achievements were weighted, whereas
more than 90% of cross-sectional pairwise comparisons during the same period were
robust when the weight on each of the three dimensions was allowed to vary between
1/4 and 1/2. Cherchye et al. (2008) found that nearly 75% of pairwise comparisons
of 2002 HDI scores were reversible to the simultaneous application of alternative
normalizations, aggregation methods, and weights. Zheng and Zheng (2015) found
that seven of the 45 pair-wise comparisons of the top ten HDI countries in the 2014
Human Development Report (United Nations Development Programme 2014) were
fully robust or had a ‘truth value’ of unity.

How robust are inter-temporal changes in the HDI?

We now address how robust the changes in HDI scores for individual countries are
between 1980 and 2013, using the dimensional performances published by the UNDP.
These data are available for all indicators for most years from 1990 but are not updated
annually, despite HDI values being annually published since this year. For this reason,
we select data for every five years in the period 1980 to 2005, plus that for 2013.
This selection provides us with data on all three dimensions for 123 countries.6 We
commence our investigation by using these data to calculate both the geometric for-

6 The data were downloaded from http://hdr.undp.org/en/data in October 2015.
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Table 1 HDI scores and dimension achievements between 1980 and 2013 Source: Author calculations
using UNDP data

HDIA HDIG Health Education Income
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Year Mean SD Mean SD Mean SD Mean SD Mean SD

1980 0.562 0.160 0.544 0.167 0.650 0.160 0.412 0.176 0.623 0.186

1985 0.581 0.160 0.566 0.166 0.679 0.150 0.442 0.175 0.622 0.189

1990 0.597 0.165 0.584 0.171 0.698 0.155 0.468 0.179 0.626 0.194

2000 0.640 0.174 0.632 0.178 0.724 0.169 0.547 0.187 0.651 0.200

2005 0.666 0.171 0.659 0.175 0.746 0.165 0.586 0.182 0.666 0.198

2010 0.691 0.162 0.685 0.166 0.772 0.151 0.619 0.172 0.683 0.192

2013 0.700 0.159 0.694 0.162 0.785 0.145 0.625 0.170 0.692 0.188

SD standard deviation

mulation in Eq. (3) and the arithmetic mean formulation in Eq. (4). We consider both
formulations primarily to understand whether the UNDP’s move to the geometric
mean matters in terms of rank robustness.

Table 1 presents the change inmeanHDIs anddimensional performances for the 123
countries between 1980 and 2013. Columns 2 and 4 of the table show that the means
of both HDIs have steadily improved between 1980 and 2013, with the corresponding
standard deviation remaining between 0.160 and 0.178. Performances across years in
each dimension are reported in columns 6, 8, and 10 of Table 1. Mean performances
in all three dimensions have gradually increased, especially in education.

Improvement in dimensional performances and in the overall HDI scores have not,
however, been observed for all countries as it is evident from Table 2. Columns 2–4
of the table report the number of countries whose performances in each dimension
improved between each period. For example, between 1980 and 1985, the health per-
formance improved or did not change in 117 countries, while education and income
performances improved or did not change in 113 and 69 countries, respectively. The
fifth (seventh) column presents the number of countries with improved (deteriorat-
ing) performances simultaneously in all three dimensions, while the sixth (eighth)
column presents the number of countries that did not have deteriorating (improved)
performances simultaneously in all dimensions.

The remaining columns in Table 2 present aggregate results. Columns 9 and 13
present the number of countries in each period for which HDIA and HDIG improved,
respectively. Columns 11 and 15 present the number of countries in each period for
which HDIA and HDIG deteriorated, respectively. HDIs for all countries improved
only between 1980 and 2013, between 2000 and 2010, between 2000 and 2013, and
between 2005 and 2013.

If we compare column 5 with columns 9 and 13, large discrepancies are observed.
Between 1985 and 1990, HDIA improved for 106 countries and HDIG improved for
108 countries, but only for 70 countries was it the case that none of the three dimen-
sions deteriorated. For the rest of the 36–38 odd countries, the HDI improvement was
accompanied by deterioration in at least one dimension, which means any alternative
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weighting scheme might have reversed the direction of improvement. In fact, it was
never the case that all three indicators improved or declined together across years.
We observe from the fourth column that income was the most volatile dimension and
unlike health and education, it did not increase systematically.

The question that arises from the preceding observations is how robust were the
observed improvements and reductions in the HDIs? The answer certainly depends on
how different sub-indices have changed over time as well as on the set of alternative
weighting schemes subject to which we check robustness. For this exercise, we allow
the weights to vary non-uniformly for three dimensions, similar to our illustration
with three dimensions under Case III in Sect. 5. Note that a much simpler exercise
could have been to allow weights to vary uniformly for all three dimensions within a
common upper bound and a common lower bound, as presented in Sect. 4.

We allow the weights for both the health (w1) and the education (w2) dimension
to vary between 0.1 and 0.7; whereas we allow the weight on the income dimension
(w3) to vary between 0.05 and 0.9. Thus, α1 = α2 = 0.1, β1 = β2 = 0.7, α3 = 0.05
and β3 = 0.9. Clearly, α̃1 = 0.10, α̃2 = 0.10, α̃3 = 0.05, β̃1 = 0.7, β̃2 = 0.7, and
β̃3 = 0.8. So, γ12 = 0.20, γ21 = 0.20, γ13 = 0.25, γ31 = 0.10, γ23 = 0.25 and
γ32 = 0.10. Using the values of α̃’s, β̃’s and γ ’s, we obtain: ū12 = (0.70, 0.10, 0.20);
ū21 = (0.10, 0.70, 0.20); ū13 = (0.70, 0.25, 0.05); ū31 = (0.10, 0.10, 0.80); ū23 =
(0.25, 0.70, 0.05); and ū32 = (0.10, 0.10, 0.80). There are five unique vertices (since
ū31 = ū32). The set of alternative weights �∗∗ is a convex hull of five weighting
schemes: (0.70, 0.10, 0.20), (0.70, 0.25, 0.05), (0.10, 0.70, 0.20), (0.25, 0.70, 0.05),
and (0.10, 0.10, 0.80). The shape of �∗∗ should resemble the shape in panel (b) of
Fig. 3.

Columns 10, 12, 14, and 16 of Table 2 present the number of robust changes in
HDIA and HDIG with respect to �1. For example, between 1980 and 1985, only 78
of the 111 HDIA increases and one of the 12 HDIA reductions were robust. Similarly,
82 of the 116 HDIG increases were robust during the same period. The largest number
of robust changes in HDIs were observed between 2000 and 2013: 115 for HDIA and
117 for HDIG . The lowest number of robust changes in HDIs were observed between
1980 and 1985: 79 for HDIA (78 increases and one decrease) and 83 for HDIG (82
increases and one decrease).

We finally present an interesting result by asking how many changes were robust
with respect to �1 across a spell of six periods: 1980–1985, 1985–1990, 1990–2000,
2000–2005, 2005–2010, and 2010–2013. The answer can be found in Table 3. The
first column reports the number of periods ranging between zero and six. Columns 2
and 6 report the number of countries with robust improvements in H DIA and H DIG ,
respectively, for the respective number of periods. We surprisingly find that only 33 of
the 123 countries had robust H DIA improvements and only 36 of the 123 countries
had robust H DIG improvements across all six periods.7 A similar number of H DIA

and H DIG improvements were robust across four or five periods; whereas only three

7 Only 24 countries had had their performance improved simultaneously in all three dimension across all
six periods. This means that if we had allowed the weights to vary to their fullest extents, such that α = 0
and β = 1, then only 24 countries would have registered robust improvement across all six periods.
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countries had robust H DIA improvements for one period and one country had robust
H DIG improvement for one period.

7 Concluding remarks

This paper looked at the robustness of comparisons of composite indices with respect
to a set of alternative weighting schemes. The initial weighting schemes are typically
chosen arbitrarily and as such there is ambiguity over the comparison of index scores,
be they in relation to cross-section rankings or inter-temporal comparisons of index
scores for the units of analysis under consideration.

In the paper, we addressed a difficulty encountered by several previous studies: the
selection of alternativeweighting schemes for assessing the robustness of comparisons.
This selection is a requirement of the tests proposed by these studies, yet none provide
sufficient guidance for such selection. We proposed a general yet theoretically novel
approach for this purpose. This approach is founded on the normative assumption that
a consensus has been reached on the minimum and the maximum allowable weights
that should be assigned to each component. This consensus then yields a particular
set of alternative weights against which the robustness of comparisons is tested. We
considered two variants of this approach. In one, we allowedweights on all dimensions
to vary within common maximum and minimum possible values; in the other, we
relaxed this assumption and the weights were allowed to vary to different extents.

In order to show the applicability of our approach, we evaluated the prevalence of
robust country-specific inter-temporal comparisons of the influential HDI. Testing the
robustness of inter-temporal comparisons of the HDI or other composite indices has
not previously been attempted. The results of this evaluation were striking. It found
that less than one-third of the inter-temporal HDI comparisons were robust across six
sub-periods between 1980 and 2013. This has obvious and serious implications for
the use of the HDI in incisively assessing changes in human development over time.

We end this paper by adding voice to previous calls for greater warning signals to
be attached to the use of composite indices for which there is insufficient guidance,
theoretical or otherwise, in their design. A great risk is that unless greater care and
sophistication are used in the reporting of composite indices, their ability to inform
could be compromised. It is commonplace in reporting the results of econometric
analysis to provide a range of diagnostic and other statistics, including t-ratios, so the
reader can make judgments about the veracity of these results. No equivalent statistics
presently accompany the reporting of composite index scores. It is high time that they
did, and the reporting of comparison robustness information would be a useful starting
point. We further post that robustness approaches should be such that they are intuitive
and practically amenable to adaptations and implementations. Our paper proposed a
normative yet intuitive approach that seeks to fulfil this criterion.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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