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MANIPULABILITY OF CONSULAR ELECTION RULES

EGOR IANOVSKI AND MARK C. WILSON

ABSTRACT. The Gibbard-Satterthwaite theorem is a cornerstone of social choice theory, stating
that an onto social choice function cannot be both strategy-proof and non-dictatorial if the
number of alternatives is at least three. The Duggan-Schwartz theorem proves an analogue in
the case of set-valued elections: if the function is onto with respect to singletons, and can be
manipulated by neither an optimist nor a pessimist, it must have a weak dictator. However,
the assumption that the function is onto with respect to singletons makes the Duggan-Schwartz
theorem inapplicable to elections which necessarily select a committee with multiple members.
In this paper we make a start on this problem by considering elections which elect a committee
of size two (such as the consulship of ancient Rome). We establish that if such a consular
election rule cannot be expressed as the union of two disjoint social choice functions, then
strategy-proofness implies the existence of a dictator. Although we suspect that a similar result
holds for larger sized committees, there appear to be many obstacles to proving it, which we
discuss in detail.

1. INTRODUCTION

From that time on Caesar managed all the affairs of state alone and after his own pleasure; so
that sundry witty fellows, pretending by way of jest to sign and seal testamentary documents,
wrote “Done in the consulship of Julius and Caesar.”

— Suetonius, Lives of the Caesars. Chapter XX.

Dummett and Farquharson [1961] conjectured what later became the Gibbard-Satterthwaite
theorem [Gibbard, 1973, Satterthwaite, 1975], one form of which is: if a social choice function
has at least 3 viable alternatives and is strategy-proof, then it is dictatorial. This result, though
fundamental, is not applicable in many common situations, because symmetric voting rules must
have ties. Gibbard [1977] extended the result to the case where ties are broken randomly, showing
that such a rule is strategy-proof only if it is a mixture of rules that can only be affected by one
voter, and rules that limit the outcome to two alternatives. While Gibbard did not mention it
as such, this paper represents one of the first attempts at studying strategy-proof social choice
correspondences, which output a set of alternatives, as opposed to a social choice function which
outputs only one.

The fundamental difficulty in studying the manipulability of social choice correspondences
is that, in a certain sense, the problem is ill-defined. To manipulate a social choice function, a
voter submits an insincere preference ordering to obtain an outcome that is better than he would
have obtained had he voted sincerely. To verify that the outcome is better, we can compare it
against the voter’s sincere ballot. In the case of a social choice correspondence the voter submits
a preference order over alternatives, but the function produces a set of alternatives. We are not
given enough information to deduce how the voter will assess the outcome, as there is no unique
way to extend an order over a set to an order over the power set. Indeed, the subject of set
ranking has been studied in detail (see Barbera et al. [2004] for a survey).
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A common approach taken by the early papers on strategy-proof social choice correspondences
(e.g. Barbera [1977]; Kelly [1977]; Pattanaik and Dutta [1978]) is to assume some properties
on what an extension from an ordering of alternatives to an ordering of sets must satisfy, and
show that it implies some notion of dictatoriality, although to achieve these results the authors
had to make further assumptions about the domains and behaviour of their functions. For
example, under the positive response assumption of Barbera [1977] if a set X is elected at a
profile P, and P’ is obtained by a single voter bumping some x € X up their ballot,  becomes
the unique winner under P’; this condition is satisfied by, for example, Borda’s rule, but is not
satisfied by many other natural rules. The Duggan-Schwartz theorem [Duggan and Schwartz,
1992] stood out from these results because of how little it had to assume — that the correspondence
be onto with respect to singletons — to achieve their result. That said, the Duggan-Schwartz
theorem is difficult to compare with the previous work, because there is a subtle difference
in the frameworks used. Duggan and Schwartz do not consider an extension of a preference
order, but of a notion of manipulability. The two are not interchangeable as there are certain
properties we expect from an order — at the very least, transitivity, desirably, completeness, and
ideally, anti-symmetry — whereas just about any binary relation can serve for manipulability.
In particular, the optimistic/pessimistic manipulation of Duggan-Schwartz does not induce a
transitive preference order, as it is possible for a voter to optimistically prefer X to Y and
pessimistically prefer Y to X (see Section 2 and 4 for more details). For a more thorough overview

of the history of strategy-proofness, the reader is recommended to see Barbera [2010].
In this paper we concentrate on social choice correspondences that must always output a set
of fixed size k, which we call committee selection rules [Skowron et al., 2016]. In this setup,

the assumptions of the abovementioned papers are unnatural or vacuous — for example, being
onto with respect to singletons can never happen. Thus a different approach is needed. This is
not the first paper on strategy-proof committee selection rules. Ozyurt and Sanver [2008] and
Reffgen [2011] are the most relevant to the enquiry pursued here. The general approach of those
two papers is the same: demonstrate that a certain extension of a preference order from A to
fixed-size committees over A results in what Aswal et al. [2003] define as a linked domain, and
appeal to a theorem of Aswal et al. [2003] that states that a unanimous social choice function on a
linked domain is dictatorial. Ozyurt and Sanver [2008] demonstrate that all reasonable extensions,
roughly speaking extensions which have a clear first and second choice, result in linked domains,
and Reffgen [2011] deals with extensions that satisfy the axiom used by Kelly [1977]. Neither
paper implies our result, but our general approach is the same — construct a linked domain and
invoke Aswal et al. [2003].

To obtain our result we use a lexicographic extension of preferences over alternatives to
preferences over sets: a voter compares X and Y by first comparing his favourite elements in
X and Y, then the second favourite, and so on. While this is not equivalent to the Duggan-
Schwartz conditions, in the case of a rule that elects a pair of alternatives it is strictly narrower —
every lexicographic manipulation is either an optimistic or a pessimistic manipulation. Thus an
impossibility result for lexicographic manipulations implies, a fortiori, an impossibility result for
pessimistic/optimistic manipulation. Ozyurt and Sanver [2009] and Campbell and Kelly [2002]
also work in the framework of lexicographic manipulation and their results imply a weakened
version of our main theorem — an impossibility result for manipulating an onto selection rule, but
do not imply our more general result.

1.1. Our contribution. We work in the manipulation framework of Duggan-Schwartz: set-
valued functions that cannot be manipulated by an optimist and cannot be manipulated by a
pessimist. In particular, we are interested in committee selection rules that select a committee
of size two. Since the Duggan-Schwartz assumption that a correspondence is onto with respect
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to singletons is meaningless here, we replace it with the assumption that it is possible for every
alternative to be on some winning committee. This does not imply that all possible committees lie
in the range of the function, as we demonstrate in Fact 5.1. This, in turn, forces us to consider a
new notion of dictatorship (Definition 5.17). Roughly speaking, a dictator is a voter who gets his
“best” outcome no matter what, but the difficulty is in showing that this notion is well-defined.

We start with the observation that such rules can be defined in two categories: those that
can be reduced to the union of two disjoint social choice functions (reducible rules) and those
that cannot (irreducible). It turns out that irreducible rules can have a non-trivial structure to
their range, which we characterise by modelling the range as a graph. This interpretation may be
useful in the future, as it establishes an interesting connection between strategy-proofness and a
structural property of graphs (Proposition 5.14).

Our main result (Corollary 6.12) shows that for irreducible rules, strategy-proofness for
optimists and pessimists implies that some voter always gets his favourite viable committee
elected.

For reducible rules, we observe that the Gibbard-Satterthwaite theorem dictates that if the
number of viable alternatives is at least five then the function will have a “partial” dictator on
part of the domain, but it may not have an overall dictator — these rules are non-dictatorial, but
in a very trivial sense. In the special case where one of the component social choice functions
has a domain of size one, i.e. it always elects the same alternative, some voter always gets his
favourite committee elected if the number of viable alternatives is at least four.

2. PRELIMINARIES

We use Si(X) to denote the set of all k-element subsets of a set X. When we are talking
about a preference order P;, we use the standard infix notation: >; for the non-strict order, >;
for the strict counterpart, and = ~; y for indifference.

Definition 2.1. Let V be a finite set of voters, A a finite set of alternatives.

A profile P consists of a linear order over A (also known as a preference order or a ballot), P;,
for every voter i. The set of all profiles of voters V over alternatives A is denoted P(V, A). We
use P_; to refer to the ballots of all voters except 7. Hence, P = P;P_; and P/P_; is obtained
from profile P by replacing P; with P;.

A social choice function maps a profile to a single alternative, F : P(V,A) — A. A social
choice correspondence produces a nonempty set of alternatives, F' : P(V,A) — 2\{@F}. A
k-committee selection rule produces a set of alternatives of size k, F' : P(V,A) — Si(4). A
2-committee selection rule is called a consular election rule.

Definition 2.2. Let & # W < A. We use best(P;, W) to denote the best alternative in W
according to P;, worst(P;, W) the worst.

We extend >, into three relations over 24\{ & }:

(1) X =9V iff best(P;, X) >; best(P;,Y).
(2) X =P Y iff worst(P;, X) >; worst(P;,Y).
(3) X =PSYiff X O Y or X »P Y.

A social choice function is strategy-proof if for all P/, whenever F(P,P_;) = a and F(P/P_;) =
b, a >; b. A committee selection rule is strategy-proof for optimists (SPO) if for all P/, whenever
F(P,P_;) =W and F(P/P_;) = W', W =9 W'. A committee selection rule is strategy-proof for
pessimists (SPP) if for all P/, whenever F(P,P_;) = W and F(P/P_;) = W', W >F W".

Duggan and Schwartz define viability to be the notion that for every a € A, there exists a P
such that F(P) = {a}. This is reasonable in the context of a social choice correspondence — an
election rule that allows a certain candidate to be tied for victory, but never to win outright, seems
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rather strange. In the case of k-committee selection rules it is a vacuous concept. We use a weaker
notion of viability where every alternative has the chance to appear on some winning committee,
but we make no assumptions on whom the alternative might have to share the privilege with.

Definition 2.3. A committee selection rule satisfies weak viability if for every a € A, there exists
P such that a € F(P).

A committee rule is unanimous if whenever best(P;, A) = a for all 4, necessarily a € F(P) (if
all the voters agree on the best alternative, it is on the committee).

A committee rule satisfies veto if whenever worst(P;, A) = a for all 4, necessarily a ¢ F(P) (if
the voters agree on the worst alternative, it is not on the committee).

The notion of a dictator in the case of a social choice function is straightforward — every voter
has a unique first choice alternative, so if that voter is a dictator it stands to reason that the first
choice will be elected. In the literature on social choice correspondences this notion is typically
extended by defining a dictator to be a voter who always gets an outcome that is maximal in the
extension of his preferences to sets.

However, Duggan-Schwartz manipulability does not extend to a preference order over 24\{ ¢ }.
To see this, consider a voter with preferences a >; b >; ¢ >; d >; e >; f, and observe that
{a,e} <P% {c,d} because {a,e} <F {c,d}, and {c,d} <P5 {b, f} because {c,d} <9 b, f, but
it is not the case that {a,e} <P5 {b, f}.

There are, however, two natural notions of dictatorship we can define without appealing to
preferences over sets.

Definition 2.4. A social choice function F' is dictatorial if there is some ¢ € V' such that F(P)
is always the first choice of i. Given a committee selection rule F', a weak dictator is some ¢ € V
such that the first choice of i is always in F(P). Given a k-committee selection rule F, a strong
dictator is some ¢ € V such that F'(P) consists of the top k choices of i.

Note that there is a duality at play here. A weak dictator is precisely a voter who gets a
maximal outcome under > and a strong dictator gets a maximal (in fact, the maximum) outcome
under >!. This suggests a natural definition of a dictator in the Duggan-Schwartz case: a voter
that gets an outcome that is maximal under both preference orders. However, as at this point
we have no guarantee that such a notion is well-defined (a priori, there is no reason to assume
that there is an element in the range of an election that is maximal under both orders), we shall
postpone introducing it until Definition 5.17.

3. MONOTONICITY

It is common to obtain impossibility results in social choice by showing that the concept in
question implies some sort of monotonicity on ballots. This typically takes the form that swapping
two alternatives in some ballot either does not change the outcome of an election, or changes it in
a very predictable way. Our approach is no different. We will show that in elections which satisfy
SPP and SPO, moving an alternative up or down a ballot affects only whether that alternative
features on the winning committee or not.

3.1. Auxiliary results.

Definition 3.1. P’ is the profile obtained from P by swapping s in P; with the alternative
directly above it, and PZ-TS := (P™1%), is the resulting order for voter i.

We start with a simple observation: if we swap a candidate upward, it may become the most
preferred but will not change the least preferred element. Note that best(PiTS, W) = s can only
occur if s is the second-most preferred element of .
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Lemma 3.2. Let W < A. Lett := best(P;, W) = t, b := worst(P;, W), and suppose s # t,b.
Then best(P]*, W) = t or s, and worst(P]*,W) = b. Likewise, let t := best(P]*, W), b :=
worst(P*, W) = b,s # t,b. Then best(P;, W) =t and worst(P;, W) = b or s.

If there are at least two elements in the chosen committee and F is strategy-proof, then
swapping a third element upward in one preference order leads to a small list of possibilities.

Lemma 3.3. Let F be a committee selection rule satisfying SPO and SPP, F(P) = W,
best(P;, W) = t, worst(P;, W) = b, t # b.
Let s # t,b, F(P"'%) = W’. The following are true:
(1) best(P!*, W') =t or s.
(2) worst(P}*, W') = b or s.

Proof. Let a := best(PiTS,W’) and suppose a # t,a # s. Suppose a >; t. By Lemma 3.2,
best(P;, W') = a, and hence voter i has an optimistic manipulation from P to P*'*. Now suppose
a <; t. By Lemma 3.2, best(PiTs, W) = sort. Ifitis t, voter ¢ has an optimistic manipulation
from P to P. If it is s then, seeing how ¢ € W, it must be the case that s >ZTS t >lTS a, and we
have an optimistic manipulation again. This yields (i).

For (ii), let a := worst(P®, W’), a # b, s. Suppose a >; b. By Lemma 3.2, worst(P;, W’) = a
or s. If it is a, voter ¢ has a pessimistic manipulation from P to P!, If it is s, then we consider
two further cases. If s >; b, we have a pessimistic manipulation from P to P!, If s <; b, observe
the following;:

(1) se W', else it could not be the worst element of W’ under P;.

(2) s <; b<; a. In other words, s is at least two positions below a in P;.

(3) worst(P*, W') = a.
This gives us a contradiction — s moved up one position from P; to PZ.TS so, given 2, s <
Given 1, that s € W', this contradicts 3. In sum, if s <; b then Worst(PfS, W) # a.

Suppose a <; b. By Lemma 3.2, Worst(PiTS, W) = b. Voter i has a pessimistic manipulation
from P to P. |

1

s
;. @

Given a strategy-proof rule, swapping a voter’s most preferred element of the chosen committee
member upward in that voter’s order preserves that voter’s most and least preferred members of
the committee.

Lemma 3.4. Let F be a committee selection rule satisfying SPO and SPP, F(P) = W,
best(P;, W) = s, worst(P;, W) = b.
Let F(PY%) = W'. The following are true:
(1) best(P*, W') = s.
(2) worst(P*, W') = b.

Proof. Let best(PiTs, W') = a, a # s. Suppose a >; s. By Lemma 3.2, best(P;, W) = a. Voter i
has an optimistic manipulation from P to P*'*. Suppose a <; s. By Lemma 3.2, best(PiTS, W)=s
or s, that is best(PiTs, W) = s . Voter i has an optimistic manipulation from P! to P.

Let WOI"St(PiTS, W') = a, a # b. Suppose a >; b. By Lemma 3.2, worst(P;, W) = a or s. If
it is s, observe that if s # b, s >; b, giving voter i a pessimistic manipulation from P; to P1s.
It follows that in this case s = b, which satisfies the lemma statement. If it is a, voter i has a
pessimistic manipulation from P to P*'s.

Suppose a <; b. By Lemma 3.2, Worst(P;S, W) =b. Voter i has a pessimistic manipulation
from P to P. ]
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Note that the preceding lemmata applied to all committee selection rules. The following
applies only to consular election rules. It says that for a strategy-proof rule, swapping a voter’s
worst element of the elected committee upward in that voter’s order does not change the elected
committee.

Lemma 3.5. Let F be a consular election rule satisfying SPO and SPP, F(P) = W, best(P;, W) =
t, worst(P;, W) = s.
Let F(PY%) = W'. It follows that:
(1) best(P*, W) =t or s.
(2) worst(P!*, W') = s ort.

Proof. Let best(PiTs7 W') =a, a #t,s. Suppose a >; t. By Lemma 3.2, best(P;, W') = a. Voter
i has an optimistic manipulation from P to P!,
Suppose a <; t. By Lemma 3.2, best(PiTS, W) =t or s. If it is ¢, voter ¢ has an optimistic

S

manipulation from P to P. If it is s, we consider two cases. If it is the case that s >." a, voter

i has an optimistic manipulation from P'* to P. If it is the case that s <1TS a, note that the
assumption that best(PiTs, W) = s implies that s >ZTS t. This is a contradiction as a <ZTS t.

Let WOI"St(PZ-TS, W') = a, a # s,t. Suppose a >; s. By Lemma 3.2, worst(P;, W’) = a or s. If it
is a, voter i has an optimistic manipulation from P to P!, If it is s, then as |[W’'| = 2 it follows
that W’ = {s,a}. As worst(P]*,W’) = a, best(P]*, W’) = s. Now observe that a >; s, s >° a,
implies that t is at least two positions above s in P;. This means that ¢ >ZT ® s, and voter i has an
optimistic manipulation from P*'* to P.

Suppose a <; s. By Lemma 3.2, worst(PiTs,W) = s, which gives voter i a pessimistic
manipulation from P*'° to P. O

3.2. Key monotonicity lemmata. We now show that for a strategy-proof consular election
rule, swapping an alternative s upward in some voter’s order usually does not change the elected
committee, and the only possible change is that s overtakes some committee member and replaces
it.
Lemma 3.6 (Upwards monotonicity). Let F be a consular election rule satisfying SPP and SPO.
Let F(P) = {a,b}. Let P! be the ballot obtained from P; by moving s up some number of
positions.
If s=a ors=b:
F(P/P_;) = F(P).
If s # a,b, either:
(1) F(P/P_) = F(P).
(2) F(P{P_;) ={s,b}.
Furthermore, 2 happens only if s overtakes a from P; to Pj.

Proof. Let s = a or b. If best(P;,{a,b}) = s, then by applying Lemma 3.4 repeatedly, we see
that no matter how many times we bump s up one position, the winning committee remains
unchanged. If worst(P;, {a,b}) = s, then we can apply Lemma 3.5 repeatedly to show that as
long as s remains the least favourite element in the set, the winning committee remains unchanged.
Once s becomes the favourite element in the set, we can apply Lemma 3.4.

Now suppose s is distinct from a and b. By applying Lemma 3.3, we can see that each time
we move s up one position, either the two elements in the set remain unchanged, or one of them
is replaced by s. In the former case, we get 1 from the lemma statement. In the latter, we get 2.
It remains to show that the latter case can only happen if s overtakes the element it supplants
from P; to P/.
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Suppose, for contradiction, that this is not the case. That is, F(P) = {a,b}, F(P/P_;) = {s,b}
and either a >; s and a >} s, or s >; a and s >/ a.

First let a >; s and a > s. Suppose worst(P/,{a,b}) = a. By transitivity, worst(P/,{s,b}) =
s. As a > s, this gives ¢ a pessimistic manipulation from P/ to P;. Now suppose best(P/,{a,b}) =
a. It follows that a >} best(P/, {s,b}). This gives ¢ an optimistic manipulation from P/ to P;.

Now, let s >; a and s > a. Suppose best(P;,{a,b}) = a. By transitivity, best(P;, {s,0}) = s.
As a >; s, this gives ¢ an optimistic manipulation from P; to P/. Now suppose worst(P;,{a,b}) =
a. It follows that worst(P;, {s,b}) >; a. This gives 7 a pessimistic manipulation from P; to P;.

As such, SPP and SPO prevents the possibility of s entering the winning committee without
overtaking the element it replaces. As such, 2 can only happen if the overtaking takes place. O

Corollary 3.7. Let I be a weakly viable consular election rule satisfying SPP and SPO. Then
F' is unantmous.

Proof. Let a € A. By weak viability there is some profile P with a € F(P. By Lemma 3.6, if we
swap a to the top of all voters’ preference orders, the elected committee does not change. O

Similarly, if we move s downward in some voter’s order, s may be replaced on the committee
by an alternative that overtook it, and otherwise there is no change to the committee.

Lemma 3.8 (Downwards monotonicity). Let F be a consular election rule satisfying SPP and
SPO.
Let F(P) = {a,b}. Let P! be the ballot obtained from P; by moving s down some number of
positions.
If s # a,b:
F(P/P_;) = F(P).
If s=a ors=b (WLOG, a), either:
(1) F(PLP_;) = F(P).
(2) F(P/P_;) ={c,b},c#s.
Furthermore, 2 happens only if s drops below ¢ from P; to P).

Proof. If s # a, b, then observe that if s moves down the ballot from P; to P/, then it moves up
the ballot from P/ to P;. By upwards monotonicity, either F/(P) = F(P/P_;) or s € F(P). As
s¢{a,b}, it follows that F(P) = F(P/P_;).

If s = a, we consider four possibilities for F(P;P_;):

e F(P,P_;) ={s,b} (committee unchanged).

o F(P,P_;) ={b,c} (b+# s is unchanged).

o F(P,P_;) ={s,c} (sis unchanged).

o F(P,P_;) ={c,d} (both elements on committee changed).

In case 1, we start at P;P_; and move s up the ballot. By upwards monotonicity, we find that
F(P) = F(P,P_;).

In case 2, we start at P;P_; and move s up the ballot. By upwards monotonicity, if s € F(P)
then it can only enter after it overtakes the element it replaces. As F(P) = {s,b}, it follows that
s enters after it overtakes ¢, and as a consequence F(P;P_;) = {b,c} only if s drops below ¢ as
we move from P; to P/.

In case 3, by upwards monotonicity F'(P) = {s,c}. As such, case 3 cannot occur.

In case 4, by upwards monotonicity F(P) is one of {¢,d}, {s,c} or {s,d}. As it is none of
these, case 4 cannot occur. O
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4. STRATEGY-PROOFNESS AND REDUCIBLE ELECTIONS

4.1. Two classic impossibilities. We first state the classic result in the area, for committees
of size 1.

Theorem 4.1 (Gibbard [1973]; Satterthwaite [1975]). Let F' be an onto, strategy-proof social
choice function with |A| = 3. Then F is dictatorial.

Duggan and Schwarz proved an analogue of this for variable sized committees. In fact they
give two rather different-looking versions in Duggan and Schwartz [1992, 2000]. Taylor [2002]
gave a more readable presentation which has been widely described as the “Duggan-Schwartz
Theorem”, and we use this version.

Theorem 4.2. Let F' be a committee selection rule that satisfies SPP, SPO and is onto with
respect to singletons. That is, for every a € A there exists a P such that F(P) = {a}. Then for
|A| = 3, F has a weak dictator.

We aim to extend this last result to the case of consular election rules, replacing being onto for
singletons with weak viability. This work will not be as straightforward as expected, and will
take until Section 6 to complete. We first deal with some annoying trivialities.

4.2. The case of Marius. One might, in light of the Duggan—Schwartz theorem, assume that
the Gibbard-Satterthwaite theorem can be extended directly extended to committee selection
rules: with |A| > 3, a weakly viable committee selection rule satisfying SPP and SPO has a
dictator of some sort. However, it is not difficult to construct a counterexample.

Definition 4.3. A committee selection rule is Marian if there exists an a € A such that a € F(P)
for all P. Such an a is called a Marius.!

Fact 4.4. For |A| = 3, there exist Marian consular election rules satisfying SPO, SPP and weak
viability without a weak dictator.

Proof. Majority vote on the second consul with lexicographic tie-breaking. O

Of course, what is going on here is that even though three alternatives are present, only two
sets are in the range of the function. If we increase the number of alternatives to four, and hence
the size of the range to three, we recover a form of dictatoriality.

Proposition 4.5. If |A| = 4, every Marian consular election rule that satisfies SPO, SPP and
weak viability has a weak dictator.

Proof. Let m be Marius. Consider the social choice function F’ : P(V, A\{m }) — A\{m } such
that F'(P) = a where a € F(P*),a # m. P* is obtained from P by ranking m last in every
ballot. Once we establish the following we can invoke the Gibbard-Sattherwaite theorem:

(1) [A\{m}| = 3.

(2) F' is onto.

(3) F' is strategy-proof.
1 follows from |A| > 4 and 2 follows from weak viability.

For 3, assume there is a P € P(N, A\{m }) such that there is some P; for which F'(P) = a <;

F'(P,P_;) = b. Extend P to P* by ranking m last in every ballot. It follows that F'(P*) = {a,m }
and F((P;P_;)*) = {b,m}, giving voter ¢ an optimistic manipulation. O

1Gaius Marius held the consulship of Rome an unprecedented seven times. If you are electing a pair of consuls
and one of the candidates is Marius, you are in fact electing a single consul.
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The reader will note that the above proof only used the SPP assumption. It could likewise be
rewritten to only use SPO. This should not be surprising as Marian election rules are, essentially,
social choice functions in disguise, and manipulating a singleton by an optimist or a pessimist is
the same thing.

We have earlier shown that strategy-proof consular election rules are unanimous. With the
further assumption that they are non-Marian, we can show that they satisfy veto.

Fact 4.6. Let F' be a non-Marian, weakly viable consular election rule satisfying SPP and SPO.
Then F satisfies veto.

Proof. Let P be any profile where a loses. Such a profile must exist because F' is non-Marian.
Once a is moved to the bottom of every ballot it still loses by monotonicity. |

4.3. The general case. Marian election rules are a special case of a more general class of
elections.

Definition 4.7. A k-committee selection rule F' is said to be reducible if there exists an integer
j and a partition of A into two sets, A = B w C, such that F(P) = G(P|B) v H(P|C) for
a j-committee selection rule G : P(V,B) — S;(B) and a (k — j)-committee selection rule
H:PV,C)— Sp—;(C).

Note that in many cases this is an entirely natural way to select a committee — we might
want a committee formed of a fixed number of men and women, plebeians and patricians, Lords
Temporal and Lords Spiritual. However, from a formal point of view these are not very interesting;
a reducible k-committee selection rule is not, in some sense, a “true” k-committee selection rule,
and it does not add anything to the theory. Reducible rules also complicate any attempt to
gracefully extend the Duggan-Schwartz theorem.

Fact 4.8. There exist non-Marian consular election rules with |A| = 4 that satisfy SPP, SPO
and weak viability and do not have a weak dictator.

Proof. Divide A into two halves and have majority voting on each. |

It is true that for |A| = 5 every reducible, strategy-proof and viable consular election rule has
a “partial” dictator, as the Gibbard-Satterthwaite theorem ensures that one of the two social
choice functions must be dictatorial. However, it will not have a weak dictator over the entire
domain unless the same voter is the dictator of both social choice functions. Thus, in a very
boring sense, the Duggan-Schwartz theorem fails. We can have committee selection rules that are
both strategy-proof and non-dictatorial.

It is worth noting that a reducible consular election rule is strategy-proof in the Duggan-
Schwartz sense precisely when the component functions are strategy-proof in the classical sense.

Proposition 4.9. Let F' be a consular election rule that is reducible to social choice functions G
and H. Then F satisfies SPP and SPO if and only if G and H are strategy-proof.

Proof. Let Bw C = A, F(P) = G(P|B) u H(P|C).

Suppose F' satisfies SPP and SPO, and let voter ¢ have a profitable deviation from @; to @} in
G. That is, G(Q;Q—;) = a, G(Q;Q—;) = b and b >; a. Let P be any profile whatsoever over A
for which P|B = Q. Observe that F(P) = {a,z }, for some z € C. Modify P into R by moving
all the alternatives in B to the top of the ballots, without changing the order within B and C.
Applying Lemma 3.6 we see that F(R) = F(P) — a remains a winning alternative because no
alternative overtakes it, so the only way the winning committee can change is if some y € B
replaces z, but F'(R) = {a,y} is impossible because one element of F(R) must come from B and
one from C, and a already comes from B.
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Now consider what happens when voter i deviates from R; to R} with the property that
R}|B = @' and R}|C = R;|C. Since R}|B = @', G must elect b, and R;}|C = R;|C implies H still
elects x. Thus F(R;R_;) = {b,x}. If b >; x, this is an optimistic manipulation, and if x >; b,
this is a pessimistic manipulation, neither of which can take place.

For the other direction, suppose G and H are strategy-proof. The only possible functions these
could be are dictatorship, imposed rule, and majority voting between two alternatives. It is easy
to see that a disjoint union of any of these cannot be manipulated by either an optimist or a
pessimist,. O

5. THE RANGE OF AN ELECTION

Our quest for an impossibility result has had a rocky start. Marian elections only obtain a
weak dictator with at least four alternatives, and reducible elections in general need at least five
alternatives for an even weaker notion of a partial dictator.

In response to this, we can argue that so far we have only considered a somewhat degenerate
class of committee selection rules — sure, we can obtain a consular election rule by gluing two
social choice functions together, and in some cases it may even be natural to do so, but the
behaviour of such an election is determined entirely by the behaviour of its components, and
studying it sheds no light on the mathematics of selecting a committee in general. What we
would like to do is to understand elections that are not reducible.

Intuitively, reducible rules occur because their range does not cover sufficiently many possible
committees. It is clear that, for |A| = 3, an onto rule is irreducible. It would have been nice had
this been the end of the story — perhaps the combination of strategy-proofness, viability and
irreducibility are sufficiently strong conditions to force every committee to be viable?

We start with a counterexample.

Fact 5.1. There exist irreducible consular election rules satisfying SPP, SPO and weak viability
that are not onto.

Proof. Let A= {a,b,c,d}, |V|=1. Have F behave as follows:

(1) If the voter’s first two choices are {a,b},{a,c},{b,c} or {b,d}, the voter gets his first
two choices.
(2) If the voter’s first two choices are {a,d}, he gets his first and third choice.

For intuition, suppose {b,c} are apples, { a,d} oranges, and the voter is asked to pick a pair
that contains at least one apple.

The rule F' clearly satisfies weak viability. To see that it is strategy-proof, observe that the
only potentially manipulable profiles involve the voter ranking a first and d second, or d first and
a second — in every other case the voter already gets his top two choices elected.

Without loss of generality, suppose the voter’s preference order is a >1 d >1 b >1 ¢. The
current election outcome is { a, b }. The voter cannot manipulate optimistically, because he already
gets his top choice elected. The only member of So(A) that is pessimistically preferred to { a,b} is
{a,d}, and that is not in the range of the election, so the voter cannot manipulate pessimistically
either. O

Corollary 5.2. There exist irreducible consular election rules satisfying SPP, SPO and weak
viability that do not have a strong dictator.

It turns out, then, that the range of a strategy-proof election can be a non-trivial affair, and
we need to understand this range if we are to have any hope of determining how these elections
behave.
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The key observation in this section is that the range of a consular election rule can be visualised
as a graph, with the alternatives playing the role of vertices and an edge existing between a and
b if and only if {a,b} is a committee in the range of the funcion.

Definition 5.3. The range graph of a consular election rule F'; G(F'), is a graph with vertex set
A and edge set Range(F').

Fact 5.4. Let F be a consular election rule. Then F is weakly viable if and only if G(F) has no
isolated vertices, and F is onto if and only if G(F) is a complete graph.

Reducible elections are easily interpreted in this setting.

Fact 5.5. If F is reducible then G(F) is bipartite. If G(F') is bipartite and F satisfies SPP and
SPO, then F' is reducible.

Proof. The first is obvious — A can be partitioned into B and C such that social choice functions
G and H select elements from B and C respectively. As such, there can be no edge within B or
within C.

For the second part, let B and C, Bw C' = A, partition A into the two halves of G(F'). Define
G : P|B — B to be the following social choice function:

G(P) = F(P°)|B,
where PC is obtained from P by appending the elements from C' in lexicographic order at the
end of every ballot in P. That is, G completes a profile over B into a profile over A by adding

C at the end of the ballots, computes F', and returns the element of B chosen by F. Define
H : P|C — C analogously. We claim that :

F(P) ={G(P|B), H(P|C) }.
Suppose, for contradiction, that there exists a P such that F'(P) # { G(P|B), H(P|C) }. Without
loss of generality, let G be the culprit. That is, F(P) = {x € B,y € C}, z # G(P|B). Modify
P by moving the elements in C' until they are at the bottom of every ballot, in lexicographical

order. By monotonocity, this should only change y. However, now we have a profile that must
force F to agree with G. ]

Corollary 5.6. Let F' satisfy SPP and SPO. Then F is reducible if and only if G(F) is bipartite.

Example 5.7. In general (without strategy-proofness) F' can be irreducible and G(F') bipartite.
Consider F with A = {a,b,c,d} and one voter, defined as follows:

(1) If the voter prefers ¢ to d, then a is on the committee. Else, b is on the committee.

(2) If the voter prefers a to b, then c is on the committee. Else, d is on the committee.
The possible committees are {a,c},{a,d},{b,c} and {b,d}. Assuch, G(F) is bipartite. However,
F is irreducible — the decision on whether to include a on the committee is contingent on the
relative ranking of ¢ and d, so there can be no G : P(V,{a,b}) — {a,b} that makes the decision.

Fact 5.8. Let F' be a weakly viable reducible consular election rule satisfying SPP and SPO. Then
G(F) is a complete bipartite graph.

Proof. Let A = B w C, the two halves of a bipartite graph. Suppose for contradiction that there
exist ¢ € B,y € C such that z and y are not isolated, but (x,y) ¢ G(F). Let F(P) = {z,z}.
Move y to the top of each ballot. By unanimity, y must be a winner. By reducibility, it must
replace z. O

Corollary 5.9. Let F be a weakly viable reducible consular election rule satisfying SPP and SPO.
Then F is a Marian election if and only if G(F) is acyclic.
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Proof. Irreducible elections are non-bipartite, hence they contain an odd cycle. The only complete
bipartite graph that is acyclic is a tree of depth 1. O

Now that we know what the range of a reducible election looks like, we of course know exactly
what the strategy-proof irreducible elections are: simply those F' for which G(F') has an odd cycle.
This does not give us a lot to work with, so we must look further. The proof above relied on
the fact that strategy-proof elections are unanimous, which allows us to prove that certain edges
in the range graph must exist by considering the profiles where all voters rank some alternative
first. Rather than using strategy-proofness in an ad-hoc way through this section, we can use it
to prove a much stronger property about the range graphs of strategy-proof elections.

Definition 5.10. We say a graph G satisfies edge-connectivity if, whenever {a,b} and {¢,d}
are non-incident edges, we have:

(1) {a,c}or {a,d} is an edge.

(2) {b,c} or {b,d} is an edge.
Note that the relation is symmetric. Namely, if {a,b} and {¢,d} are non-incident edges, then so
are {¢,d} and {a,b}. Thus, edge connectivity also implies that:

(1) {a,c} or {b,c} is an edge.

(2) {a,d} or {b,d} is an edge.

It is easier to visualise what this property entails by observing that a graph is edge-connected

if and only if it does not contain any of the following as induced subgraphs:

1—2 1—2 1—2

e

3—4 3—4 3—4

Example 5.11. The Lex Licinia Sextia was a series of laws passed in 367 BC to address the
disproportionate dominance patricians enjoyed in the Roman state. Under the new laws at
least one of the two consuls of the Roman republic was required to be plebeian. Thus the valid
configurations of the consulship were: a patrician and a plebeian, or two plebs (Jupiter forbid).
The range graph of this election would thus consist of a clique X of plebeians, and a totally
disconnected set Y of patricians with the property that: for z € X and y € Y, {x,y} is an
edge. This graph satisfies edge-connectivity. Other families of edge-connected graphs include the
complete and complete bipartite graphs. In Fig. 1 we illustrate all the edge-connected graphs of
orders 4, 5 and 6 that are neither complete nor bipartite. This includes the plebeian/patrician
family as well as others.

Edge-connectivity is not merely a consequence of strategy-proofness, it is the closest we can
get to a characterisation of the property if we focus on the range of an election alone. Crucial to
this is the fact that if the range of an election is edge-connected, then any given voter will be able
to identify a unique “best” committee: a pair which is neither pessimistically nor optimistically
dominated by any other pair in the range.

Definition 5.12. Consider an X < S3(A), and a voter i. Voter #’s favourite committee in X, if
it exists, is an element that is maximal under > and >¢ over X.

Proposition 5.13. Suppose G(F') is edge-connected. Then each voter has a unique favourite
committee in G(F).

Proof. Let G be an edge-connected graph with at least one edge. Consider a voter ¢ with
preferences P;, and the induced optimistic and pessimistic orders Zio and >F.

Let {a,b} be a maximal element under >9. Without loss of generality, suppose a >; b. We
will show that one of the following is true:
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Figure 1. All edge-connected graphs of orders 4, 5 and 6 that are neither
complete nor bipartite.

(1) {a,b} is maximal under >!, or
(2) There exists a {a,c} such that {a,c} >F {a,b} and {a,c} is maximal under >9.

Since the graph in question is finite, repeatedly applying 2 will eventually yield us 1 — the existence
of an element maximal in both orders.

Suppose {a,b} is not maximal under >!. There must exist some X > {a,b}. If X is of the
form { a,c}, we are done. Suppose X = {¢,d}, for ¢,d distinct from a. Observe that this implies
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that ¢,d >; b. We have assumed that {a,b} and {¢,d} are both edges. By edge-connectivity,
either {a,c} or {a,d} is an edge, and both of these pessimistically dominate {a,b}.

This establishes that there exists a {a,b} that is maximal in both the pessimistic and the
optimistic order. To see that it is unique, observe simply that an edge maximal optimistically
must include a, else {a,b} would dominate, and likewise an edge maximal pessimistically must
include b. 0

Edge-connectedness is strongly connected to strategy-proofness for consular election rules.

Proposition 5.14. If F satisfies SPP and SPO then G(F) satisfies edge-connectivity. Conversely
if G is a graph with at least one edge that satisfies edge-connectivity, then there exists an F
satisfying SPP and SPO such that G(F) = G.

Proof. To show that strategy-proofness implies edge-connectivity, take an F' satisfying SPP and
SPO and let F(P) = {a,b}. Let {¢,d} be in the range of F. Move ¢ to the top of P. By
unanimity and upwards monotonicity, F'(P) = {a,c} or {b,c}. Repeat for d.

For the other direction, given an edge-connected G, fix a voter i and let F' be the function
that gives i the unique edge of G that is maximal under both >F and >¢. First, observe that
G(F) = G — given an edge { a,b}, construct a profile P where i ranks a and b first. F(P) = {a,b},
so the range of F is precisely the edges of G. That F satisfies SPP and SPO follows from the fact
that the ¢ is getting his favourite committee — an element maximal under both the pessimistic
and the optimistic order — from which no manipulation is possible. O

Corollary 5.15. Let F' be a consular election rule satisfying SPP and SPO. Then each voter
has a unique favourite committee in G(F).

Corollary 5.16. Let F' be a consular election satisfying weak viability, SPP and SPO. G(F) has
diameter 2.

Proof. Let a and b be arbitrary vertices in G(F). By weak viability, there exist vertices ¢ and
d, not necessarily distinct, for which {a,c} and {b,d} are edges. If ¢ = b or d = a, then the
distance between a and b is one. If ¢ = d, then the distance between a and b is at most two.
Suppose then that ¢ and d are distinct from a, b, and each other. By edge-connectivity, at
least one of {a,b} and {a,d} must be an edge. If it is {a,b}, the distance between a and b is
one. If it is { a,d }, then the distance between a and b is at most two. O

Naturally, this introduces a new notion of dictatorship:

Definition 5.17. A range dictator is a voter such that for every profile, that voter’s favourite
committee is elected.

Under the assumption of weak viability, a range dictator is a stronger notion than a weak
dictator, and collapses to a strong dictator in the case of an onto election.

Edge-connectivity is a very strong property, and it allows us to use the fact that an irreducible
election has an odd cycle to prove a much stronger statement about its structure.

Fact 5.18. If F is irreducible, SPP, SPO and weakly viable then every vertez in G(F') belongs to
a 3-cycle.

Proof. G(F) is not bipartite, so an odd length cycle exists. Suppose the smallest such cycle is
of length 2k + 1, k > 1. Let {a,b},{b,c},{c,d} be edges of this cycle. By Proposition 5.14
either {a,d} or {b,d} is an edge. If it is {a,d}, then we have a 2k — 1 cycle by replacing
{a,b},{b,c},{c,d} with {a,d}. If it is {b,d}, then we have a 3-cycle {b,c},{¢c,d},{b,d}.
Either way, 2k + 1 is not the smallest length of an odd cycle.
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Given that a 3-cycle exists, assume there exists an a that does not belong to a 3-cycle. By
connectivity (diameter 2), we can choose a such that a is adjacent to b, and b, ¢, d is a 3-cycle. Let
F(P) ={c¢,d}. Move a to the top of the ballots. The winner is either {a,c} or {a,d}, giving
the 3-cycle (a, b, ¢) or (a,b,d). a

This leads to the following corollary, which will prove crucial in the proof of Proposition 6.11.

Corollary 5.19. Let F' be an irreducible election satisfying SPP, SPO and weak viability. If a
and b are connected by an edge, they also form a 3-cycle with some c.

Proof. By Fact 5.18, a belongs to some 3-cycle. If this cycle contains b, we are done. Else, let
this cycle be (a, ¢y, cz). By edge connectivity, either {b,¢; } or {b,co } is an edge, so that (b, ¢, a)
or (b, cq,a) is a cycle. O

6. IRREDUCIBLE ELECTIONS AND LINKED DOMAINS

We are finally in a position to state exactly what we are trying to prove: an irreducible consular
election rule that is manipulable by neither an optimist nor a pessimist has a range dictator. We
do not even have to assume that |A| > 3 — the only consular election rule over two alternatives is
both reducible and dictatorial.

While a direct proof of the theorem is possible using the standard techniques of social choice
theory, a shorter and more elegant solution involves following the footsteps of Ozyurt and Sanver
[2008] and Reffgen [2011] by using a theorem of Aswal et al. [2003]. We define an extension from
preferences over A to preferences over S3(A), and apply the result of Aswal et al. [2003] to show
that the resulting social choice function is dictatorial.

Definition 6.1. Let D be a domain of linear orders. Two alternatives, a,b € A, are connected in
D if there exist P, P’ € D such that in P, a is ranked first and b second, while in P’, b is ranked
first, and a second.

Definition 6.2. A domain D is said to be linked if it is possible to order A = {a1,...,a,, } in a
way that:

(1) @y is connected to as.

(2) For i = 3, a; is connected to at least two elements in {ay,...,a;-1 }.

Theorem 6.3 (Aswal et al. [2003]). Let D be a linked domain of preferences over A, |A| = 3,
and F : D™ — A be a unanimous social choice function. Then F is strategy-proof if and only if
F is dictatorial.

The plan is, given an F : P(V, A) — S3(A), to define an extension map « that transforms
a linear order over A into a linear order over Sg(A). We then define the social choice function
F :a(P(V,A)) = S2(A) by F(a(P)) = F(P). If we show that a(P(V, A)) is linked and F is
unanimous, we can invoke Theorem 6.3 to show that F is dictatorial. Since F mirrors the output
of F', this must mean that F is dictatorial as well — provided, of course, that « is defined in a
way voter 4’s first choice in a(F;) corresponds to voter i’s favourite committee in S3(A).

The first issue we face is in extending the preferences. As we have previously argued, Duggan-
Schwartz manipulation, which can be expressed as > U >F does not define a transitive order.?

What we can do instead is to compose the two lexicographically. That is, define >Z by:
X >, or

X =Fvyiff
X>Yand X =Py
2Among other problems. If we take >2-O U >f-3 to represent a voter’s strict preferences, we have to posit that a
voter is able to at once strictly prefer X to Y and Y to X — what is sometimes known as conflicted preferences in
the literature.
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That is, the voter ranks committees by the best element first, and then uses the worst element as
a tie-breaker. This clearly yields a linear order.

Of course, manipulation by >I is not the same thing as manipulation by an optimist or a
pessimist. However, in the case of a consular election rule, lexicographic manipulation is a strictly
narrower notion. As a consequence, a function that satisfies SPP and SPO also satisfies >F-
strategy-proofness. If we thus show that >I-strategy-proofness is enough to ensure dictatoriality,
we will a fortiori show that elections that satisfy SPP and SPO are dictatorial.

Fact 6.4. A consular election rule F is > -strategy-proof only if it satisfies SPP and SPO.

Our next problem is that, in general, F is not going to be unanimous — unanimity would imply
that F is onto, and we have argued that many natural irreducible elections fail that property. To
address this, we will consider the restriction of F to the relevant committees.

Definition 6.5. Let F': P(V, A) — S2(A) be a weakly viable consular election rule satisfying
SPP and SPO, and let F : a(P(V, A)) — S2(A) be the induced social choice function.
Define 7" : (a(P(V, A))|G(F)) — (S2(A)[G(F)) by F'(«(P)|G(F)) = F(a(P)).

At first glance, 7' may appear ill-defined: there may exist a(P) # «(P’) such that a(P)|G(F) =
a(P")|G(F'). However, this is not the case — a(P) is the lexicographic order over pairs defined
by the linear orders in P. As such, no matter how many pairs we remove from a(P) to obtain
a(P)|G(F), there remains a unique way to reconstruct the order.

Example 6.6. The dense notation of the above statement can hide the fact that we are talking
about a very simple operation. Let F' be the function from Fact 5.1 — one voter is asked to pick a
pair from {a, b, c,d}, at least one element of which is from {b,c}.

Consider a voter with preference a >1 d >1 b >1 ¢. The extension « turns his preferences into:

{a,d} >1 {a,b}>1 {a,c} >1 {b,d} >1 {c,d} >1 {b,c}.

The function F is then the function that gives voter 1 his first choice, unless it happens to be
{a,d}, in which case it gives him his second choice. F is not unanimous, as it is not onto, and
unsurprisingly F is not dictatorial.

The graph G(F') does not include {a,d} as an edge. If we restrict voter 1’s preferences to
G(F), then we get a(P)|G(F):

{a,b} >1 {a,c} >1 {b,d} >1 {c,d} >1 {b,c}.

Now, F’ is simply the function that gives voter 1 his first choice. This function is unanimous and
dictatorial.

That the function in the example above is unanimous is not an accident.

Lemma 6.7. Let F' be a consular election satisfying SPP and SPO. Then voter i’s first choice
in a(P;)|G(F) is his favourite committee.

Proof. Let {a,b} be voter ¢’s first choice in «(P;)|G(F). Recall that the favourite committee is
an element maximal under both =9 and >F. That the {a,b} is maximal under >¢ is obvious —
>L ranks pairs by the best element first. Without loss of generality, let the best element be a.
In Proposition 5.13, we have established that voter ¢ has a unique favourite committee in G(F).
In order to be maximal under z,-o, the favourite committee must contain a. However, it cannot

be some {a,c # b}; if b >; ¢, then the favourite committee is not maximal under >£, and if

¢ >; b then {a,b} is not the first choice in a(F;)|G(F). Thus the favourite committee and the
first choice in a(F;)|G(F) must coincide. O

Lemma 6.8. Let F be a consular election satisfying SPP, SPO. The pair {a,b} is elected
whenever { a,b} is the favourite committee of every voter.
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Proof. By Proposition 5.13, {a,b} is in the range of F. Let P’ be a profile such that F(P’) =
{a,b}. Move a and b to the top of every ballot. By monotonicity, the winning committee is still
{a,b}. Now move the other alternatives, voter by voter, to the positions they occupy in P. By
monotonicity, if the winning committee changes during this process then that must mean some c
overtook, without loss of generality, @ and the winning committee became { b, ¢ }. However, this
must mean that some voter prefers {b,c} to {a,b}, which contradicts { a,b} being the favourite
committee. (|

Corollary 6.9. Let F : P(V,A) — Sa(A) be a weakly viable consular election rule satisfying
SPP and SPO. Then F' : (a(P(V, A)|G(F)) — (S2(A)|G(F)) is unanimous.

We now have a unanimous function. We next consider whether its domain is linked. The
graph interpretation is of use here, as it turns out that connected committees are exactly the
incident edges.

Lemma 6.10. Let F : P(V, A) — S3(A) be a weakly viable consular election rule satisfying SPP
and SPO. Then two committees, X, Y € So(A), X #Y, are connected in a(P(V, A))|G(F) if and
only if the edges X and Y are incident in G(F).

Proof. Let X ={a,b} and Y = {b,c}. Let P be a linear order ranking b > a > ¢ > ... and P’
ranking b > ¢ > a > .... Recall that a(P)|G(F) is the lexicographic order >£. The first element
is clearly {a,b} and the second {b,c}. Likewise for a(P")|G(F), the first element is {b,c} and
the second {a,b}.

Now suppose X = {a,b} and Y = {¢,d}, all a,b, ¢, d distinct. Let P be any preference order
for which the first element in a(P)|G(F) is {a,b}. As a(P)|G(F) is the lexicographic order, either
a or b have to be ranked first. Without loss of generality, let it be a. Obseve that one of the
following must be true:

(1) The second element in «(P)|G(F) is {a,e} for some e.

(2) {a,b} is the only edge in G(F) incident on a.
If the first is true, {¢,d} cannot be ranked second, and hence X and Y cannot be connected.
If the second is true, we violate edge connectivity — { a,b} and {¢,d} are both edges, so either
{a,c} or {a,d} must be an edge. O

Proposition 6.11. Let F: P(V, A) — Sa2(A) be an irreducible, weakly viable consular election
rule satisfying SPP and SPO. Then o(P(V, A))|G(F) is linked.

Proof. Applying Lemma 6.10 to Definition 6.2, we want to show that it is possible to order the
edges X1,..., X, of G(F) in a way that:

(1) X, is incident on Xs.

(2) For i = 3, X, is incident on at least two elements of { X1,...,X;_1 }.
To obtain 1, observe that irreducibility implies |A| = 3, and weak viability implies that no vertex
is isolated. To connect three vertices we need at least two edges, call them {a,b} and {c,d}. If
a, b, c,d are not distinct, the two edges are incident. If a,b,c,d are distinct, edge connectivity
implies either {a,c} or {a,d} is an edge, both of which are incident on {a,b}.

To obtain 2, we will demonstrate that given a set of edges I  G(F') which satisfies the property
that every that every e € I is incident on at least one other member of I (i.e. I has no isolated
edges). we can find a e’ ¢ I such that €’ is incident on at least two members of I. The reader will
note that this means that I U {€’} also satisfies the property that every e € I U { €’} is incident
on at least one other member of T U {¢€’}. As such, starting with a set of two incident edges, it is
possible to continually add edges until the entire graph is shown to satisfy 2.

Let I be such a set. As the graph is connected, there must exist a {x,y } ¢ I such that {z,y}
is incident on I. Without loss of generality, suppose x belongs to an edge in I. If y also belongs
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to an edge in I we are done — { x,y } is incident on {z,v } and {y,w } for some {z,v},{y,w} € I.
Suppose then that y does not belong to an edge in I.

Let {x,w} be an edge in I. Recall that {z,w} is incident on at least one member of I. If
that member is { z,v }, we are done — { z,y } is incident on {z,w } and {z,v }, and we can add it
to I. If that member is { v, w }, we can visualise the situation as follows, taking the vertices at
the top to belong to I.

r—v—uw
Y

By Corollary 5.19, there exists a z such that {z,z} and {y, z } are both edges. If z = v we are
done — {y, v} is incident on two edges in I, so we can add it to the set. If z # v belongs to an
edge in I we are also done, as {x,y } is incident on {z, 2z} and {z,v}. Suppose then that z does
not belong to an edge in I.

r—v —w

N

Yy —=

If no other edges are present, this is a forbidden induced subgraph. We must posit that either
{y,v}or {v,z} is an edge. If it is {y,v }, we can add {y, v}, incident on {z,v} and {v,w}, to
I. Ifitis {v,z}, we can add {v, z }, incident on {z,z} and {z,v }, to I. Either way we increase
the size of I. O

We finally achieve the promised main result.
Corollary 6.12. F': a(P(V, A)) — S2(A) is dictatorial, hence F has a range dictator.

Proof. By Proposition 6.11 the domain is linked, and by Corollary 6.9 the function is unanimous.
We can apply Theorem 6.3. O

As a sanity check, we can verify that Marian elections also have a linked domain, whereas
non-Marian reducible elections do not.

Proposition 6.13. Let F : P(V, A) — S3(A) be a Marian, weakly viable consular election rule
satisfying SPP and SPO. Then a(P(V, A))|G(F) is linked.

Proof. Every edge is incident on each other. O

This gives us Proposition 4.5.

Corollary 6.14. For |A| = 4, a Marian, weakly viable election satisfying SPP and SPO has a
weak/range dictator (the two notions coincide).

Proof. For |A| = 4, the range graph of the election has at least three edges. This means that
a(P(V, A))|G(F) is alinked domain over the set of alternatives Sy (A)|G(F'), with |S2(A)|G(F)| = 3,
so we can invoke Theorem 6.3. 0

Proposition 6.15. Let F: P(V, A) — Ss(A) be a non-Marian, reducible, weakly viable consular
election rule satisfying SPP and SPO. Then a(P(V,A))|G(F) is not linked.
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Proof. Recall that G(F') is a complete bipartite graph that is not acyclic (i.e., not a star graph).
Let X1 = {a,b} and X5 = {a,c} be any two incident edges. Let V; and V5 be the two halves
of G(F), a € V; and b,c € V5. Observe that the only way to expand { X1, X5} consistent with
Definition 6.2 is to add some {a,d} to the set. As G(F) is not a star graph, by doing so we can
never cover the entire graph. O

7. SUMMARY

We have demonstrated that the condition of weak viability allows for the existence of non-trivial
structure in the range of an election, which we have visualised as a property of the resulting range
graphs.

For reducible elections, we have shown the following:

o If the election is Marian, for |A| > 4 a range dictator exists.

e If the election is non-Marian then a dictator may not exist. However, for |4] > 5 a
“partial dictator” exists, in the sense that some voter can unilaterally decide which element
of B ¢ A is present on the winning committee.

For irreducible elections we have a dictatoriality result:

e For |A| > 4, a range dictator exists.
7.1. Discussion.

7.1.1. Eztending the results. According to Livy, the last king of Rome was overthrown in 509 BC
by a body of citizens led by Lucius Junius Brutus. The first act of Brutus after the expulsion of
the king was to have the people swear an oath to never let a single man govern Rome. It is on
this basis that the Romans justified the duplication of the post of consul and other key positions
in government.

Like most Roman political experiments, this one eventually ended in failure. Two is not a
good number in government. Any disagreement results in an even split, which means that to
avoid political deadlock, elaborate schemes of power sharing need to be devised. One such scheme
used by the Romans involved the consuls commanding the army on alternating days — this led to
the farcical prelude to the Battle of Cannae where Varro ordered the army to advance during his
days of command, and Paullus held it back during his. The purpose of this historical aside is to
suggest that while the case of k = 2 raises many interesting issues, it should nevertheless be seen
as a stepping stone to studying larger committee sizes, rather than an end in itself.

The argument as presented here fails to generalise fairly quickly — Lemma 3.5 already relies on
the fact that the winning committee is of size two. Without Lemma 3.5 there is no monotonicity,
and without monotonicity there is nothing to be said. Admittedly, we did not spend a great
deal of time attempting to generalise these lemmas to arbitrary k, and intuitively we suspect
some version of monotonicity for general committee selection rules should not be too difficult to
establish. The more serious issue arises when dealing with the range of such elections. In the
case of k = 2, we were abetted greatly by the fact that we could visualise the range of an election
as a graph, and use results and intuitions from graph theory to guide us along. To replicate this
approach in the case of k = 3 would require us to either consider a hypergraph, or to index a
range graph by the perspective of a voter, adding an edge between the best and worst alternative
of every committee. It is unclear that either of these approaches will give us the insights we
need, nor is there any a priori reason to believe that in such a context voters would still have
a favourite committee, without which a range dictator is ill-defined. The case of variable size
committees is even worse: now the hypergraph is not even uniform. Moreover, in the case of fixed
k-committees we could potentially side step the issue and study onto rules only; such a result
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would be interesting enough in itself. In the case of variable size committees the onto case is
trivialised by the Duggan-Schwartz theorem, so tackling the range of the election is unavoidable.

The specific technique used in Proposition 6.11 is also particular to the case k = 2 — in this
case the lexicographic order we defined is strictly narrower than Duggan-Schwartz manipulation
and hence a dictatoriality result for the former implies, a fortiori, the latter. This is no longer the
case with k = 3. A voter with preferences a >1 b >1 ¢ >1 d > e has a pessimistic manipulation
from {a,b,e} to {a,c,d} but no lexicographic manipulation; and a lexicographic manipulation
from {a,c,d} to {a,b,d} even though pessimistically he is worse off. However, we suspect this
difficulty to be less serious than the issue of the range.

7.1.2. Committees of arbitrary size. In recent years, social choice correspondences have reappeared
in the literature under a number of names: multi-winner voting rules [Meir et al.; 2008], resolute
social choice correspondences [()xyurl and Sanver, 2008], irresolute voting rules [Moulin et al.,
2016], social dichotomy rules [Duddy et al., 2014]. Mathematically, these are the same concept —
a function that takes a tuple of preference orders over A to a non-empty subset of A. What is
different is the interpretation. In classical social choice theory, alternatives are taken to mean
mutually exclusive states of the world. A social choice correspondence, then, could take the
economic needs of a population to a set of compatible equilibria, or a nation’s political preferences
to a shortlist of presidential candidates, with the assumption that some tie-breaking procedure
will pick one, and only one, of these alternatives at a later date. However, the same mathematical
formalism can be used to study an algorithm which aggregates film rankings to produce a library
for an aeroplane’s entertainment system, or an election that directly picks members of parliament,
in which case the outcome of the function is the final result for society, and not a tie to be resolved
in the future.

In this paper we have dealt with the special case of rules which must output a committee of
fixed size. If we relax this to allow committees of arbitrary size, then all the impossibility results
established for social choice correspondences apply. However, the assumptions underlying these
results may be inappropriate for the given interpretation. In particular, the viability assumptions
of the Duggan-Schwartz theorem, requiring that a correspondence be onto with respect to
singletons, may be unjustifiably strong — there is no a priori reason to privilege singletons over
any other committee size. For example, imagine a situation where certain singletons are allowed
and others are not — in a catering scenario it might be the case that a menu consisting of a
vegetarian option only is acceptable, but meat only is not. Thus there may still be room in the
literature for a new strategy-proofness result applicable to the committee interpretation, with
more natural assumptions.

7.1.3. Manipulation model. The assumptions of the Duggan-Schwartz theorem make the most
sense in the context of a social choice function that generally elects singletons, but occasionally
produces a tie which is broken in a non-deterministic manner. In this setting the requirement
that the function be onto with respect to singletons is a natural analogue of a social choice; the
fact that the value of a committee is assessed only by the individual values of the alternatives
on that committee makes sense because after the tie-breaking mechanism is invoked only one
alternative will be selected; and the optimistic and pessimistic preference orderings used, while
extreme, are nevertheless natural ways to assess the outcome of the tie.

In the case of a committee selection rule sets do not represent ties to be resolved, but the
final outcome of the election process. Given that the committee is intended to govern together,
assessing its value by the value of its individual members is no longer appropriate, as we need
to consider the externalities the members impose on each other — Octavian and Mark Antony
individually were the most respected men in Rome, but governing together their power struggle
tore apart the republic. Finally, assessing a committee by the min and the max introduces
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additional problems in this setting. For instance, under a multiwinner election rule a voter with
min/max preferences will strictly prefer the committee { a } over every other committee in which
a is the best element, but it is not difficult to think of a context where larger committees are
more beneficial by virtue of being large.

Throughout this paper we have replaced the requirement that a social correspondence be
onto singletons with weak viability. Weak viability appears to be the appropriate notion in this
setting; anything weaker would imply that there exists an a that does not feature on any winning
committee, and under the assumptions of strategy-proofness such an a would not affect the
outcome of any election. A stronger notion is unnecessary as weak viability is sufficient to obtain
a dictatoriality result.

The fact that we continue to evaluate committees solely on the basis of the committee’s
members is the greatest weakness of this paper, but this weakness is unavoidable in the setting of
a committee selection rule as established in the literature: the input to our function is a profile of
linear orders over alternatives. We simply have no way to distinguish between a voter that ranks
a first, b second, and feels that a and b would make a great pairing, and a voter that ranks a
first, b second, but would never want to see the two elected together. If we cannot distinguish
between them, we must treat them the same, and thus it is impossible to handle the externalities
committee members impose on each other within the standard framework of committee selection
rules. If we are to study more realistic preferences over committees, we need to move to a setting
where a ballot allows a voter to express such preferences, but that brings us to the familiar
problem of how do we fit an order over 24 into the space of one ballot.

Evaluating a committee by the min and the max, while problematic in the case of general
committee selection rules, turns out to be natural and appropriate in the case of consular election
rules. Voter i’s favourite committee is {a,b} such that for every {¢,d }, any member of {a,b}
is at least as good as any member of {¢,d} and one is strictly better — in other words, Pareto
dominance. If, however, we are to extend the enquiry to larger committees, the Duggan-Schwartz
model of manipulation might need further justification or to be abandoned entirely.
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