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Abstract
We compare the Egalitarian rule (aka Egalitarian Equivalent) and the Competitive
rule (aka Comeptitive Equilibrium with Equal Incomes) to divide bads (chores). They
are both welfarist: the competitive disutility profile(s) are the critical points of their
Nash product on the set of efficient feasible profiles. The C rule is Envy Free, Maskin
Monotonic, and has better incentives properties than the E rule. But, unlike the E
rule, it can be wildly multivalued, admits no selection continuous in the utility and
endowment parameters, and is harder to compute. Thus in the division of bads, unlike
that of goods, no rule normatively dominates the other.

1 Introduction

User-friendly platforms like SPLIDDIT, Adjusted Winner, or The Fair Division Cal-
culator1 implement theoretical solutions to a variety of fair division problems, among
them the classic distribution of a bundle of divisible private commodities (the “man-
na”). The key simplification is that these platforms ask visitors to report linear
preferences (additive utilities), instead of potentially complex Arrow–Debreu pref-
erences. Say we divide the family heirlooms: each participant on SPLIDDIT must
distribute 1000 points over the different objects, and these “bids” are interpreted as

1 http://www.spliddit.org/; http://www.nyu.edu/projects/adjustedwinner/; http://www.math.hmc.edu/~su/
fairdivision/calc/.
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her fixed marginal rates of substitution. Eliciting complementarities between these
objects is already a complex task with six objects and is virtually impossible with
ten or more. Hence the design choice of deliberately ignoring them. For the same
reason combinatorial auction mechanisms never ask buyers to report a ranking of all
subsets of objects (Bouveret and Lang 2008; de Vries and Vohra 2003; Cramton et al.
2006). The proof of the pudding is in the eating: visitors use these sites in the tens
of thousands, fully aware of the interpretation of their bids (Goldman and Procaccia
2014).

Unsurprisingly, the two sites above implement the two division rules at the heart
of the theoretical discussions in the last four decades: the Competitive Equilibrium
with Equal Incomes, for short Competitive rule, or simply C rule, and the Egalitarian
Equivalent, for short Egalitarian rule, or E rule (Varian 1974; Pazner and Schmeidler
1978). The latter finds an efficient allocation where everyone is indifferent between
his share and a common fraction of the entire manna. The former identifies prices
and a common budget constraint at which the competitive demands are feasible, and
implements these demands.

Here we critically compare the performance of these two rules in the additive
domain and for fair division problems involving bads (non disposable items generating
disutility). Think of distributing job shifts among substitutable workers (house chores,
teaching loads, babysitting), cities sharing noxious facilities, managers allocating cuts
in the company’s workforce between their respective units, and so on.

In the much better understood problem of dividing goods (disposable, desirable
commodities) both rules, Competitive and Egalitarian, are single-valued (utilitywise),
easy to compute, and vary continuously in themarginal utility and endowment parame-
ters. This is easy to check for the E rule, and for the C rule it follows from the celebrated
Eisenberg–Gale theorem (Eisenberg and Gale 1959; Shafer and Sonnenschein 1993):
the competitive allocations alsomaximize theNash product of utilities over all feasible
allocations. In particular both rules are welfarist: the feasible set of utility profiles is
all we need to identify the profiles that each rule selects. And the C rule is the more
appealing of the two because it alone picks an Envy Free allocation, and meetsMaskin
Monotonicity (MM), which in the additive domain has a very intuitive formulation,
see below.

When we divide bads the normative comparison of the two rules yields much
more nuanced conclusions. Both rules are still welfarist but the C rule selects, among
efficient and feasible disutility profiles, all critical points of their Nash product: in turn
a problem may have many different competitive utility profiles, even exponentially
many in the smallest of the number of bads and of agents (Sect. 5.4). There is no
easy way to deal with this embarrassing multiplicity, in particular any selection of the
Competitive correspondence is discontinuous in the parameters, marginal utilities and
endowments, of the economy; in fact any selection of the much larger correspondence
of efficient and envy-free allocations is discontinuous as well (Sect. 6).

Thus classic monotonicity properties like Resource Monotonicity (when there is
more of a bad to share, everyone is weakly worse off) and Population Monotonicity
(when one more agent shares the bundle of bads, everyone is weakly better off) cannot
be satisfied for any selection of the C rule, except in a local sense.
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Dividing bads under additive utilities 397

Finally, computing the competitive allocations of bads is not a convex optimization
problem as in the case of goods, and with more than two agents we do not know of any
efficient algorithms to discover them all, or just a reasonable single-valued selection.

By contrast the E rule to divide bads is the mirror image of the rule for goods, and
shares the same properties: it is single-valued and remains continuous in the utility
and endowment parameters, and population monotonic.

If the paramount concerns are simplicity of the definition and computation of the
rule, and continuity in the parameters of the problem, the Egalitarian rule is called for.
But the competitive rule retains its appeal because it is envy-free andmeets the property
we call Independence of Lost Bids (ILB). If at (one of) the chosen allocation(s) z agent
i does not consume bad a, it (z) remains chosen when we increase the (marginal)
disutility of i for a by an arbitrary amount: the division rule does not take into account
how strongly i dislikes a if she does not eat any. This property is precisely Maskin
monotonicity in our model.
ContentsAfter the literature review in Sect. 2, the model is defined in Sect. 3, and our
two division rules in Sect. 4. Section 5 discusses the multiplicity issue of the C rule,
and gives precise bounds for simple problems with two agents or two bads. Section 6
is devoted to our main impossibility result: there is no continuous selection of the
envy free and efficient correspondence. We also note that resource monotonicity is
out of reach when we divide bads. Section 7 reformulates the MM axiom as ILB, and
explains its role in characterizing the C rule.

2 Related literature

1. In the companion paper Bogomolnaia et al. (2017) we consider the more general
problem of dividing a “mixed manna” containing both goods and bads, as when we
dissolve a partnership with both valuable assets and liabilities. Our first observation is
that the E rule is no longer well defined, because there may be no efficient allocation
where everybody is indifferent to consuming a common fraction of the entire manna
(or of any common benchmark bundle). So the C rule wins our contest by default.

Our main message is that mixed manna problems are of two types. If goods over-
whelm bads2 the C rule behaves just like in an all goods problem: it maximizes the
product of utilities, yields a unique utility profile, is resource monotonic and con-
tinuous. But if instead bads overwhelm goods, we are back to the potentially messy
situation of an all bads problems with a host of different competitive divisions corre-
sponding to the critical points of the product of disutilities on the Pareto frontier.

Here we give precise bounds for the maximal number of competitive allocations
(Theorem 1, Sect. 5), and for the number of connected components of the set of
efficient and envy Free allocations (Proposition 2). This is the key to the non existence
of a continuous selection of the C rule (Theorem 2, Sect. 6).
2. Our work complements recent research in algorithmic mechanism design on the fair
division of goods, recognizing the practical convenience of additive utilities and the
conceptual advantages of the C rule. For instance Megiddo and Vazirani (2007) show

2 In the sense that some feasible division of the manna gives everyone a positive utility.
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that the competitive utility profile depends continuously upon the rates of substitution
and the total endowment; Jain and Vazirani (2010) and Lee (2015) find that it can
be computed in time polynomial in the dimension n + m of the problem (m is the
number of goods). The C rule can be extended to cake-cutting problems, which allow
for continuum of goods, and is still resource monotonic in this more general setup,
see Segal-Halevi and Sziklai (2015).

Papers (Babaioff et al. 2017 and Budish 2011) propose extensions of the Compet-
itive rule to indivisible goods; Budish and Cantillon (2010) applies such an extension
to allocate seats in over-demanded courses.
3. Four decades earlier, the microeconomic literature on the fair division of private
goods insisted on working in the much larger domain of Arrow–Debreu preferences,
where the relation between the Nash product of utilities and the Competitive rule is
lost, and provided several axiomatic characterizations of the latter. The most popular
result appears first in Hurwicz (1979) and Gevers (1986), and is refined by Thomson
(1987) and Nagahisa (1991): any efficient and Pareto indifferent rule meeting Maskin
Monotonicitymust contain theCompetitive rule. A closer look at these seminal results,
in particular the most recent one (Nagahisa 1991), reveals that they do not apply to
the additive domain (Sect. 7). We fill this gap by, first, rewriting MM as the Inde-
pendence of Lost Bids axiom then characterizing the C rule on the additive domain
(Proposition 4).

3 Division problems and division rules

The finite set of agents is N with generic element i , and |N | = n ≥ 2. The finite
set of divisible bads is A with generic element a and |A| = m ≥ 2. Without loss of
generality, we assume there is one unit of each bad.

Agent i’s allocation (or share) is zi ∈ [0, 1]A; the profile z = (zi )i∈N is a feasible
allocation if

∑
N zi = eA, where eA is the vector in R

A+ with all coordinates equal to
1. The set of feasible allocations is �(N , A).

Each agent is endowed with linear preferences over [0, 1]A, represented by a disu-
tility function ui ∈ R

A+. Only the underlying preferences matter: for any λ > 0, ui and
λui carry the same information. This restriction is formally included in Definition 1
below.

Given an allocation z we write agent i’s corresponding disutility as Ui = ui · zi =∑
A uiazia .
The problem is trivial if the utility profileU = 0 is feasible, as it is then the uniquely

efficient profile. This happens if and only if each bad is harmless to at least one agent
(∀a∃i : uia = 0): we rule such problems out in the definitions below. Similarly if a
bad a gives uia = 0 for all i , it is harmless and can be ignored.

Definition 1 A division problem is a triple Q = (N , A, u) where u ∈ R
N×A+ is such

that the N × A matrix [uia] has no null row, no null column, and there is at least one
column with no null entry.
We write �(Q) for the set of feasible disutility profiles, and �e f f (Q) for its subset
of efficient disutility profiles. i. e., the South West frontier of �(Q).
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Dividing bads under additive utilities 399

The structure of efficient allocations in the linear domain, which is described by the
following two lemmas, is key to several of our results. Given z ∈ �(N , A) we define
the N × A-bipartite consumption graph �(z) = {(i, a)|zia > 0}.
Lemma 1 Fix a problemQ = (N , A, u). If U ∈ �e f f (Q) there is some z ∈ �(N , A)

achieving U such that �(z) is a forest (an acyclic graph).

This implies that any efficient disutility profile can be represented by an allocation,
where almost all zia are zeros. Indeed, a forest with n+m vertices contains at most n+
m−1 edges and thus the allocation z with acyclic graph�(z) has at least (n−1)(m−1)
zero entries. This observation has important consequences for the manipulability of
division rules, which we discuss in Sect. 7.

Proof Pick some z representing U ∈ �e f f (Q) and assume there is a K -cycle C in
�(z): zkak , zkak−1 > 0 for k = 1, . . . , K , where a0 = aK . It is enough to check that
there is another allocation z′ representing U with �(z′) having fewer edges: then we
repeatedly eliminate edges until the consumption graph has no cycles.

If ukak = 0 for some k, then we define z′ by giving ak to agent k in full. This does
not change the vector of disutilities (indeed, by efficiency no agent with uiak > 0
consumed ak at z).

Assume that ukak > 0 for all k. Consider a product π(C) = ∏K
k=1

ukak−1
ukak

. If π(C) >

1 we can pick arbitrarily small positive numbers εk such that ukak−1εk−1 > ukak εk for
k = 1, . . . , K . Then the corresponding transfer to each agent k of εk units of a bad ak
against εk−1 units of a bad ak−1 is a Pareto improvement, contradiction. Therefore,
π(C) ≤ 1 but the opposite strict inequality is similarly ruled out so we conclude
π(C) = 1.

Now ifwe perform a transfer as abovewith ukak−1εk−1 = ukak εk the utility profileU
is unchanged. Define z′ by choosing the numbers εk as large as possible for feasibility,
this will bring at least one entry z′kak or z

′
kak−1

along the cycle C to zero, so �(z′) has
fewer edges.

The last statement follows at once from the fact that a forest with n + m vertices
contains at most n + m − 1 edges. �	
Lemma 2 Fixing N , A, on an open dense subset U∗(N , A) of matrices u ∈ R

N×A+ ,
every efficient disutility profile U ∈ �e f f (N , A, u) is achieved by a single allocation
z.

Proof Define U∗(N , A) to be a subset of R
N×A++ such that for any cycle C in the

complete bipartite graph N × A we have π(C) �= 1 (the condition from the proof of
Lemma 1 fails). It is clearly an open dense subset of R

N×A+ .
We pick a problemQ with u ∈ R

N×A+ , fixU ∈ �e f f (Q) and assume there are two
different z, z′ ∈ �(N , A) such that u · z = u · z′ = U . Pick a pair 1, a1 such that
z1a1 > z′1a1 . Because a1 is eaten in full there is some agent 2 such that z2a1 < z′2a1
and because u2 · z2 = u2 · z′2 there is some bad a2 such that z2a2 > z′2a2 . Continuing
in this fashion we build a sequence 1, a1, 2, a2, 3, a3, . . ., such that {zkak−1 < z′kak−1

and zkak > z′kak } for all k ≥ 2. The number of vertices is finite and so we must reach
the same vertex twice. Denote the corresponding cycle by C.
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400 A. Bogomolnaia et al.

Note that the allocation z′′ = (z+z′)
2 also represents U . By the construction �(z′′)

contains the cycle C and hence the argument from the proof of Lemma 1 implies
πC = 1. Thus u is not in U∗(N , A), as was to be proved. �	

We use two equivalent definitions of a division rule, one in terms of disutility
profiles, the other, of feasible allocations. As this will cause no confusion, we use the
“division rule” terminology in both cases. Notation: when we rescale each ui as λi ui
the new profile is written λ ∗ u.

Definition 2 (i) A division rule F associates to every problemQ = (N , A, u) a set of
disutility profiles F(Q) ⊂ �(Q). Moreover F(N , A, λ∗u) = λ∗ F(N , A, u) for any
rescaling λ with λi > 0 for all i . (ii) A division rule f associates to every problem
Q = (N , A, u) a subset f (Q) of �(N , A) such that for any z, z′ ∈ �(N , A) :

{z ∈ f (Q) and ui · zi = ui · z′i for all i ∈ N } 
⇒ z′ ∈ f (Q) (1)

Moreover f (N , A, λ ∗ u) = f (Q) for any rescaling λ where λi > 0 for all i .

The one-to-one mapping from F to f is clear. Definition 2 makes no distinction
between two allocations with identical welfare consequences, a property often called
Pareto-Indifference.

We speak of a single-valued division rule if F(Q) is a singleton for allQ, otherwise
the rule ismulti-valued . Single-valued rules are much more appealing, as they eschew
the further negotiation required to converge on a single division.

4 Two division rules

The definition of the Egalitarian rule goes back to Pazner and Schmeidler (1978), who
introduced it as a welfarist alternative to the competitive approach. In our context we
first normalize disutilities so that eating the entire pile of items gives a disutility of 1 to
each participant, then find an efficient disutility profile where normalized disutilities
are equal.

We call a problem Q in Definition 1 normalized if ui · eA = 1 for all i . Because
division rules are invariant to rescaling, it is enough to define such a rule F on the
subdomain of normalized division problems: if Q = (N , A, u) is not normalized we
simply set F(Q) = λ ∗ F(N , A, ũ) where ũi = 1

λi
ui and λi = ui · eA for all i .

Definition 3 Fix a normalized problemQ = (N , A, u). The Egalitarian division rule
for bads Feg picks the efficient disutility profileUeg such thatUeg

i = Ueg
j for all i, j .

Interestingly the definition of the Egalitarian rule is simpler when we divide bads
rather than goods.Whenwe divide goods and utilities are additive, if thematrix uia has
zero entries an efficient normalized utility profile such thatUeg

i = Ueg
j for all i, j may

fail to exist, so that egalitarian allocations of goods are more complicated to describe:
they maximize the leximin ordering of utility profiles over feasible allocations.

We check that Definition 3 makes sense. Set θ = min�(Q) maxi Ui and pick U in
�(Q) achieving θ . Note that θ is positive. Suppose U 1 < θ : then for any i ≥ 2 such
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Dividing bads under additive utilities 401

that ui · zi = θ we take a small amount of some a such that uia > 0 and zia > 0, and
give it to agent 1. If these amounts are small enough, we get an allocation z′ where
ui · z′i < θ for all i , including 1, contradicting the definition of θ . ThusUi = θ for all
i . Now check that U is efficient by a similar argument: if there is some z ∈ �(N , A)

such that ui · zi ≤ θ for all i and u1 · z1 < θ , we can transfer some bads from any
agent i such that ui · zi = θ to agent 1, and contradict again the definition of θ .

Definition 4 Fix a problem Q = (N , A, u) . We call the allocation z ∈ �(N , A) a
competitive allocation of bads if there is a price p ∈ R

A+ such that
∑

A pa = n and

zi ∈ arg min
yi∈RA+

{ui · yi |p · yi ≥ 1} for all i (2)

and for all a ∈ A
pa = 0 if uia = 0 for some i ∈ N (3)

We write the competitive rule as f c, Fc: it selects all competitive allocations or
disutility profiles. Existence of such allocations both for goods and for bads is well
known, as explained in the companion paper (Bogomolnaia et al. 2017).

Definition 4 is standard (see e.g.Mas-Colell 1992;Bogomolnaia et al. 2017): instead
of utility-maximization agents minimize their disutilities and the sign in the budget
constraint is reversed. The additional property (3) rules out inefficient solutions of
system (2). For example assume two bads, two agents and the following matrix of
marginal disutilities:

a b
u1 2 1
u2 0 1

There are three solutions of (2)

a b
z1 1/4 1
z2 3/4 0
p 4/3 2/3

;
a b

z1 0 1/2
z2 1 1/2
p 0 2

;
a b

z1 0 1
z2 1 0
p 1 1

The left one is inefficient, and (3) additionally rules out the right one (though it is
efficient).3

Critical to most of our results are two additional characterizations of competitive
allocations, to which we now turn. The first one is a simple and intuitive system of
inequalities.

Lemma 3 Fix a problem Q = (N , A, u). Then U ∈ Fc(Q) if and only if U � 0 and
U = (ui · zi )i∈N for some z ∈ �(N , A) such that for all i ∈ N

for all a ∈ A: zia > 0 
⇒
{
uia
Ui

≤ u ja

U j
for all j ∈ N

}

(4)

3 The definitions of C allocations in Mas-Colell (1992) and Bogomolnaia et al. (2017) require each allo-
cation zi to be most expensive among agent i’s competitive demands. This is impossible if pa > 0 while
uia = 0, therefore in all bads problems our property (3) captures exactly the same restriction.
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Proof FixQ,U , z meeting (4) andU � 0 and check that z is a competitive allocation.
Define A0 = {a ∈ A|uia = 0 for some i ∈ N } and set pa = 0 for those bads. By (4)
the bads in A0 can only be eaten by agentswho don’tmind them: zia > 0 
⇒ uia = 0.
We set pa = uia

Ui
for all i who eat some a. This implies p · zi = 1 for all i . For all

a such that zia = 0 we have uia
Ui

≥ pa : therefore zi is agent i’s Walrasian demand at
price p, and z is a competitive allocation.

Conversely we fix a competitive allocation z with competitive price p. Inequality
U � 0 holds because agent i must buy some bad a with pa > 0, and by (3) uia > 0.
For a bad a with zero price (4) holds because by (2) such a bad can be consumed only
by agents i with uia = 0. Denote by A∗ the set of bads a with pa > 0. Since zi is i’s
demand at price p, bads from A∗ consumed by i minimize the ratio uia

pa
over A∗; denote

this minimal value by πi . We have:
∑

a∈A∗ uiazia = πi (
∑

a∈A∗ pazia) 
⇒ πi = Ui .
So uia

Ui
= pa whenever i consumes a and uib

Ui
≥ pb if i does not eat any b; this yields (4)

for bads from A∗. Note that this argument also implies that for a given competitive
allocation z the competitive price p is unique. �	

The next result is a geometric representation of competitive allocations. Recall the
well known result by Eisenberg andGale (1959) about the division of goods. TheCom-
petitive utility profile is the unique maximizer of the Nash productN (U ) = 	i∈NUi

in �(Q). This geometric characterization extends for bads in a non-trivial way. Given
Qwe callU a critical point of theNash product in�(Q) ifU ∈ �(Q),U � 0, and the
hyperplane supporting the upper contour ofN atU supports �(Q) as well. Such crit-
ical points include the strictly positive local maxima, local minima, and saddle-points
of N in �(Q).

Proposition 1 Fix a problem Q = (N , A, u). The Competitive disutility profiles are
exactly all the critical points of the Nash product N in �e f f (Q).

A more general version of this result is proven in Bogomolnaia et al. (2017), to
which we refer the reader. Proposition 1 can also be proved directly by observing that
the first-order conditions of criticality are equivalent to inequalities (4).

A consequence of Definition 3 and Proposition 1 is that both rules Feg, Fc are
“welfarist”, in the sense that the utility profiles they choose are entirely determined
by the set of feasible utilities.

The geometry behind the competitive and Egalitarian rules is illustrated by Fig. 1,
which depicts the Competitive and Egalitarian disutility profiles for a division problem
Q with two agents and two bads and the following marginal disutility matrix.

a b
u1 10 6
u2 5 1
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Dividing bads under additive utilities 403

Fig. 1 The grey polytope is the set of�(Q). The blue circle and the blue square depict Fc(Q) and Feg(Q),
respectively; the gray point corresponds to the equal split. The hyperbolas are the level curves ofN (color
figure online)

The egalitarian and competitive divisions (both unique in this example) are:

zeg =
a b

z1 24/35 0
z2 11/35 1

; zc =
a b

z1 3/5 0
z2 2/5 1
p 5/3 1/3

At Fc(Q) the level curve ofN (U ) touches �e f f (Q) (the South-West boundary of
�(Q)) from inside, see Fig. 1. This means that Uc is a critical point of N but not a
global extremum.

5 Multiple competitive divisions

In the above example in Sect. 4 the competitive rule is single valued. The simplest
illustration of the unpalatable multiplicity issue has two agents and two bads:

a b
u1 1 2
u2 3 1

zc1 =
a b

z1 1 1/4
z2 0 3/4
p 2/3 4/3

zc2 =
a b

z1 1 0
z2 0 1
p 1 1

zc3 =
a b

z1 2/3 0
z2 1/3 1
p 3/2 1/2
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404 A. Bogomolnaia et al.

Fig. 2 Multiple competitive disutility profiles for bads (blue dots) (color figure online)

See Fig. 2. Note that at zc1 agent 1 gets only his Fair Share utility level, while agent 2
grabs all the surplus above equal split; at zc3 agents 1 and 2 exchange roles.

Our first main result evaluates the extent of the multiplicity issue.

Theorem 1 For any problem Q with bads:

(i) The set Fc(Q) of competitive utility profiles is finite.
(ii) For general n = |N |,m = |A|, |Fc(Q)| can be as high as 2min{n,m} − 1.
(iii) For n = 2 t he upper bound on |Fc(Q)| is 2m − 1.
(iv) For m = 2 the upper bound on |Fc(Q)| is 2n − 1.

Theorem 1 has important consequences for practical implementation of the Com-
petitive rule. If we divide goods, the outcome of f c can be computed in a reasonable
time: there is an algorithm Vazirani (2007) polynomial in the size of the problem
n + m. Item (ii) leaves no hope for existence of such an algorithm for computing
all competitive allocations of bads since the number of such allocations itself can be
exponential.

Can we compute all the outcomes of Fc in polynomial time if one of the parameters
n or m is fixed? For n or m equal to 2 the answer is positive: items (iii) and (iv) show
that for 2×m or n × 2 problems |Fc(Q)| is bounded by a linear function of the size,
and the proof provides a polynomial algorithm. For general n and m we leave this
important question open. Another open question is the existence of an algorithm for
computing some particular single-valued selection of Fc in polynomial time, when
both n and m are large.
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Dividing bads under additive utilities 405

A by-product of our proofs is that |Fc(Q)| is odd on an open dense subset of the
problems where n = 2 and/or m = 2: see the last paragraph of Sects. 5.3.1 and 5.4
respectively. A very plausible conjecture is that this is true as well for any n,m.

Another widely open problem is to find restrictions on themarginal disutilitymatrix
ensuring that Fc is single-valued. And if disutilities are generated by a simple random
process, how likely is it that Fc is multi-valued?

5.1 Proof of Theorem 1

Overview Item (i) is an easy corollary of Lemma 1 and the characterization of Fc(Q)

in Lemma 3. The proof also implies a simple exponential upper bound on |Fc(Q)|.
Item (ii) is proved by an example. The longer proofs of statements (iii) and (iv) rely
on the fact that for n = 2 a problem is entirely described by the sequence of ratios u1a

u2a
,

and for m = 2 by the sequence of ratios uia
uib

. This allows a closed form description of
all competitive allocations.

5.1.1 Statement (i)

Fix Q and recall from Lemmas 1 and 3 that each U ∈ Fc(Q) is strictly positive
and achieved by some z ∈ f c(Q) such that �(z) is a forest. There are finitely many
(bipartite) forests in N × A therefore it is enough to check that to each forest �

corresponds at most one U in Fc(Q). The number of bipartite forests on n + m
vertices is bounded by 2(n+m) log2(nm)4 and we get a simple exponential upper bound
on the number of distinct Competitive allocations.

Consider a tree T in � with vertices N0, A0. If agents i, j ∈ N0 are both linked to
a ∈ A0, system (4) implies that Ui ,Uj are proportional to uia, u ja . Repeating this
observation along the paths of T we see that the profile (Ui )i∈N0 is determined up to
a multiplicative constant. Now in total the agents in N0 consume exactly A0 so by
efficiency we cannot have two distinct (Ui )i∈N0 meeting (4).5

5.2 Statement (ii)

Consider the following example with n agents and n−1 bads. The first (n−1) agents
are single-minded, each over a different bad. The last agent n is flexible, he dislikes
all bads equally

4 Because we know that there are at least m and at most n + m − 1 edges in the graph and there are nm
options to trace each edge.
5 Note that the finiteness result holds even if we drop requirement (3) in Definition 4 but still insist that
a competitive allocation must be efficient. If A0 is the set of bads a such that uia = 0 for some i , then
some items in A0 can have a positive price, and be eaten by agents who do not mind them, eat only in A0,
and enjoy a disutility of zero; while the other bads in A0 have zero price, are also eaten by agents who do
not mind them but those agents eat also some real bads in A�A0. For each such partition of A0 there are
finitely many competitive disutility profiles.
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bad a1 a2 · · · an−1
u1 1 3 3 3
u2 3 1 3 3
· · · 3 3 1 3
un−1 3 3 3 1
un 1 1 1 1

(5)

The symmetric allocation, where each single-minded agent receives n−1
n units of

his bad while the flexible agent n eats 1
n -th of each bad is competitive at the uniform

price n
n−1 for each bad: the flexible agent n gets no benefit above his equal split share.

However there are many more competitive divisions, all with different utility profiles,
and breaking at least partially the above symmetry.

Recall that for any S ⊆ A the vector eS ∈ R
A has eSa = 1 if a ∈ S and zero

otherwise. Fix a non-empty subset T of {1, 2, . . . , n−1} and check that the allocation

zi = |T |
|T | + 1

eai for i ∈ T ; z j = ea j for j ∈ {1, 2 . . . n−1}\T ; zn = 1

|T | + 1
e{ai , i∈T }

(6)
is competitive for the prices pai = |T |+1

|T | for i ∈ T and pa j = 1 for j ∈ {1, 2, . . . , n−
1} \ T . In particular agent n’s disutility varies from 1

2 to n−1
n . We could have chosen

any other subset T . Thus there are at least 2n−1 − 1 different competitive allocations
and i i) is proven for m = n − 1.

To adapt the construction above for n− 1 > m we add enough n− 1−m copies of
agent n. For the case n − 1 < m we split the bad an−1 into m − n + 2 identical pieces
(the vector disutilities for each piece is 1/(m − n + 2) of the initial vector). We omit
the details.

5.3 Statement (iii) and the structure of competitive allocations for n = 2

We fix Q =({1, 2}, A, u). We label the bads by k ∈ {1, . . . ,m} so that the ratios u1k
u2k

increase weakly in k, with the convention 1
0 = ∞.

5.3.1 The sequence of ratios increases strictly

We first prove (iii) under this assumption. Efficiency implies that if agent 1 eats some
k and 2 some k′, then k ≤ k′ . Hence all the efficient allocations z are of the following
form

bad 1 2 · · · k − 1 k k + 1 · · · m
z1 1 1 1 1 x 0 0 0
z2 0 0 0 0 1 − x 1 1 1

We call such an allocation a k-split. For x ∈ (0, 1) the k- split is strict; if x = 1 we
call this allocation the k/k + 1-cut. Disutility profiles of k/k + 1-cuts are peak points
of �e f f (Q); k-splits correspond to 1-dimensional faces of �e f f (Q).

Lemma 4 Denote
∑k

1 u1
 by U1(k) and
∑m

k u2
 by U2(k).
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(i) Then the k/k + 1 cut is in f c(Q) if and only if

u1k
u2k

≤ U1(k)

U2(k + 1)
≤ u1(k+1)

u2(k+1)
(7)

(ii) A strict k-split is competitive for some x ∈ (0, 1) iff

∣
∣
∣
∣
U1(k − 1)

u1k
− U2(k + 1)

u2k

∣
∣
∣
∣ < 1 (8)

For a fixed k there is at most one such x.

Statement (iii) of Theorem 1 follows from Lemma 4: | f c(Q)| is at most 2m − 1,
because the maximal number of k/k + 1-cuts and k-split allocations is respectively
m − 1 and m.

Lemma 4 can be deduced from the geometric characterization of competitive allo-
cations in Proposition 1. We will prove it directly.

Proof By Lemma 3, the k/k + 1-cut is competitive iff the system (4) holds. Since the
sequence u1k

u2k
is increasing, (4) reduces to two inequalities: u1k

U1(k)
≤ u2k

U2(k+1) for the

demand of agent 1 and u2(k+1)
U2(k+1) ≤ u1(k+1)

U1(k)
for agent 2. Combining them we get (7).

Consider a strict k-split allocation, where agent 1 gets a fraction x ∈ (0, 1) of a
bad k. Again, by the increasing property, the system (4) reduces to just one equality,
which comes from the fact that k belongs to the demand of both agents: u1k

U1
= u2k

U2
, i.

e,

u1k
U1(k − 1) + xu1k

= u2k
U2(k + 1) + (1 − x)u2k

.

Thus there is a competitive k-split iff this equation has the solution x ∈ (0, 1). This
condition is equivalent to (8). �	

Finally we give an example where this bound is achieved.With the notation (x)+ =
max{x, 0} we set:

u1k = 2(k−2)+ for 1 ≤ k ≤ m − 1; u1m = 2m−2 + 1

u21 = 2m−2 + 1; u2k = 2(m−1−k)+ for 2 ≤ k ≤ m

Check first U1(k − 1) = u1k and U2(k + 1) = u2k for 2 ≤ k ≤ m − 1 ; also U2(2) =
U1(m − 1) = 2m−2 < u21 = u1m so (8) holds for all k. Next U1(k)

U2(k+1) = u1(k+1)
u2k

for
2 ≤ k ≤ m − 2, so that (7) is clear for such k. And (7) holds as well for k = 1,m − 1.
This example is clearly robust: small perturbations of the disutility matrix preserve
|Fc(Q)| .

We check now that |Fc(Q)| is odd for almost all u. Recall that Fc(Q) is the set of
critical points of theNash product in�e f f (Q). Excluding the set of disutility profiles u
such that U1(k−1)

u1k
− U2(k+1)

u2k
| = 1 (see (8)), it follows that the k/k+1 cut is competitive

if and only if it is a local minimum of N . On the other hand the disutility profile of
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a k-split allocation is a one-dimensional face of �e f f (Q), and is competitive if and
only if it is a local maximum of N . Then the statement follows from the fact that
if a continuous non-negative function on the interval is zero at the end-points, the
number of its local maxima exceeds the number of its local minima (different than
the end-points) by one: the extrema alternate and the closest to the end-points are the
maxima.

Note that the above argument implies that in a typical problem with two agents, if
|Fc(Q)| = 1 then the competitive allocation is a k/k + 1-split, and if |Fc(Q)| ≥ 2, at
least one k-cut allocation is competitive.

5.3.2 The sequence of ratios is not strictly increasing

If u1k
u2k

= u1(k+1)
u2(k+1)

for some k, then we can clearly merge bads k and k + 1 into a bad k∗

with disutilities uik∗ = uik+ui(k+1) without changing the feasible set�(Q). Since Fc

is completely determined by�(Q) (see Proposition 1), the set of competitive disutility
profile is invariant with respect to such merging. Thus when we successively merge
all the bads sharing the same ratio u1k

u2k
, the number |Fc(Q)| does not change, and we

reach a problem with fewer bads where the ratios u1k
u2k

increase strictly in k , for which
statement (iii) is already proved.

5.4 Statement (iv) and the structure of competitive allocations form = 2

Though the set of efficient allocations for two bads does not have such a simple
one-dimensional structure as in the case of n = 2 just discussed, the set of efficient
envy-free allocations can be easily described. This allows to characterize competitive
allocations for m = 2 in a closed form.

We fixQ =(N , {a, b}, u) and label the agents i ∈ {1, . . . , n} in such a way that the
ratios uia

uib
increase weakly in i .

For 2 ≤ i ≤ n − 1 we call an allocation z an i -split if there are two numbers x, y
such that

z j =
(
1 − x

i − 1
, 0

)

for j ≤ i − 1 ; z j =
(

0,
1 − y

n − i

)

for j ≥ i + 1 (9)

zi = (x, y) with 0 ≤ x ≤ 1

i
, 0 ≤ y ≤ 1

n − i + 1
. (10)

Also, z is a 1-split if z1 = (1, y) and z j = (
0, 1−y

n−1

)
for j ≥ 2; and z is a n-split if

zn = (x, 1) and z j = ( 1−x
n−1 , 0) for j ≤ n − 1.

Lemma 5 If the sequence uia
uib

increases strictly, then any efficient envy-free allocations

z is an i-split for some i . For a weakly-increasing sequence uia
uib

the set of all i -split
allocations contains, utility-wise, all efficient and envy-free allocations.

Proof For a strictly-increasing sequence of ratios, we have, by efficiency: for all j, k
{z ja > 0 and zkb > 0} implies j ≤ k. In particular at most one agent i is eating both

123



Dividing bads under additive utilities 409

bads. Let zi = (x, y). If agents j, k < i do not envy each-other, they are consuming
the same amount of a; the symmetric statement holds for j, k > i and their share of
b; since there is a unit amount of both bads we get (9). Inequalities (10) follow from
the fact that nobody envies i .

Consider an efficient and envy free allocation z when the sequence uia
uib

increases

only weakly, for instance uia
uib

= u(i+1)a
u(i+1)b

. We may have z(i+1)a > 0 and zib > 0,

however we can find z′ delivering the same disutility profile and such that one of
z′(i+1)a and z′ib is zero. Indeed no envy and the fact that ui and ui+1 are parallel gives
ui · zi = ui · zi+1 and ui+1 · zi+1 = ui+1 · zi , from which the claim follows easily. �	

Define now the i/i + 1-cut zi/i+1 for 1 ≤ i ≤ n − 1 by: zi/i+1
j = ( 1

i , 0
)
for j ≤ i ,

and zi/i+1
j = (0, 1

n−i ) for j ≥ i + 1. Note that the cut zi/i+1 is both an i-split and an
i + 1-split. We call an i-split strict if it is not a cut, which happens if and only if both
x, y in (9) are strictly positive.

Lemma 6 The cut zi/i+1 is in f c(Q) iff

uia
uib

≤ i

n − i
≤ u(i+1)a

u(i+1)b
for 1 ≤ i ≤ n − 1 (11)

A strict i -split is competitive for some x and y iff

i − 1

n − i + 1
<

uia
uib

<
i

n − i
(12)

(with the convention 1
0 = ∞). For any i at most one strict i -split allocation is com-

petitive.

Proof If zi/i+1 is competitive, the corresponding price is p = (i, n−i), and the system
(4) reads

u ja
i ≤ u jb

n−i for j ≤ i ,
u jb
n−i ≤ u ja

i for j ≥ i + 1, which boils down to (11).

If a strict i-split allocation z is in f c(Q), the pricemust be p = n
(

uia
uia+uib

,
uib

uia+uib

)

and each agent must be spending exactly 1:

pa
1 − x

i − 1
= pb

1 − y

n − i
= pax + pby = 1

which gives

x = 1

nuia
((n − i + 1)uia − (i − 1)uib) ; y = 1

nuib
(iuib − (n − i)uia) (13)

By (13), we can find x and y if and only if (12) holds. �	
Statement iv) of Theorem 1 immediately follows from this result since the total

number of cuts zi/i+1 is n − 1 and there are at most n competitive (strict) i-split
allocations.
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An example where the bound is achieved uses any sequence uia
uib

meeting (12) for
all i ∈ {1, . . . , n}, as these inequalities imply (11) for all i ∈ {1, . . . , n − 1}.

We check finally that |Fc(Q)| is typically odd. For the utility profiles such that
all the inequalities (11) and (12) are strict, we draw the two sequences uia

uib
and i

n−i
on the real line. Clearly the left-most and the right-most competitive allocations must
be splits: if there is no competitive i-split allocation for 1 ≤ i ≤ i∗ then (12) gives
successively u1a

u1b
> 1

n−1 , then
u2a
u2b

> 2
n−2 , . . . ,

ui∗a
ui∗b > i∗

n−i∗ , hence the i
∗/i∗ + 1-cut

is not competitive. Similarly one checks that between two adjacent competitive split
allocations there is exactly one competitive cut allocation.

6 Impossibility results for single-valued rules

In order to bypass the unpalatable multiplicity issue we would like to identify a nor-
matively appealing single-valued selection from the set of competitive divisions of
bads. For instance if the problem involves only two agents and/or two bads, the set
of efficient and envy-free allocations has a simple line structure (as explained in the
proof of Theorem 1) with, generically, an odd number of competitive allocations, so
we can choose the median allocation.

Alternatively, in problems of any size we can pick among efficient allocations the
one maximizing the product of disutilities: it is competitive and generically unique
(Lemmas 3, 4 in Bogomolnaia et al. 2017).

But any selection of the C rule single-valued everywhere must fail some familiar
normative requirements of regularity or solidarity. Our next two results uncover logical
incompatibilities specific to the efficient and single-valued division of bads.

6.1 Continuity versus envy-freeness

Small inaccuracies in reported preferences should not dramatically affect the outcome
of the rule:
Continuity (CONT) of the single-valued division rule F : For all N , A, the function
u → F(N , A, u) is continuous in R

N×A++ .6

Envy-freeness (EF) of the allocation z ∈ �(N , A) at problem Q:

ui · zi ≤ ui · z j for all i, j ∈ N

As usual the set of efficient and envy-free allocations contains much more than
the competitive ones. It is therefore surprising, and disappointing, that this fairly
permissive test is incompatible with continuity.

Theorem 2 Say we divide at least two bads between at least four agents and fix a
division rule f , F. If F is single-valued and continuous, then f cannot be also efficient
and envy-free.

6 Our negative Theorem 2 is stronger when we only require CONT to hold on R
N×A++ . Of course the rule

Feg is continuous on the entire R
N×A+ .
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Fig. 3 The structure of
i/i + 1-cuts and i-splits for a
general problem with four agents

z1/2

z2/3

z3/4
S1 S2 S3

S4

Any two of the three axioms CONT, EF and efficiency are compatible. A single-
valued selection of f c is efficient and envy-free; by this result it cannot be continuous.
The rule Feg is efficient and continuous, and clearly not envy-free. Finally the rule
dividing equally all bads, irrespective of disutilities,7 is envy-free and continuous.

We prove Theorem 2 as a corollary of Proposition 2 describing the topological
structure of the set A of efficient and envy-free allocations.

Proposition 2 If we divide at least two bads between at least three agents, there are
problems Q where the set A of efficient and envy-free allocations, and the corre-
sponding set of disutility profiles, have � 2n+1

3 � connected components.

6.1.1 Proof of Proposition 2

The case of two bads {a, b} Consider a problem, where the ratios ri = uia
uib

increase

strictly in i ∈ {1, . . . , n}. We write Si for the closed rectangle of i-split allocations
(see Sect. 5.4). The sets Si ∩ Si+1 intersect by the i/i + 1-cut allocation zi/i+1 for
i = 1, . . . , n − 1, and Si ∩ S j = ∅ if |i − j | > 1. We saw that envy-free and efficient
allocations must be in the connected union of rectangles B = ∪n

i=1S
i , see Fig. 3.

Writing EF for the set of envy-free allocations, we describe now the connected
components of A = B ∩ EF . Clearly the set of corresponding disutility profiles has
the same number of connected components.

We let the reader check that the cut zi/i+1 ∈ EF iff it is competitive, i. e. inequalities
(11) hold, that we rewrite as:

ri ≤ i

n − i
≤ ri+1 (14)

If zi/i+1 ∈ EF then both Si ∩ EF and Si+1 ∩ EF are in the same component ofA as
zi/i+1, because they are convex sets containing zi/i+1. If both zi−1/i and zi/i+1 are in
EF , so is the linear segment [zi−1/i , zi/i+1] between them; then these two cuts as well
as Si ∩ EF are in the same component of A. And if zi/i+1 ∈ EF but zi−1/i /∈ EF ,
then the component of A containing zi/i+1 is disjoint from any component of A in
∪i−1
1 S j (if any), because Si ∩ ∪i−1

1 S j = {zi−1/i }; a symmetrical statement holds if
zi−1/i ∈ EF but zi/i+1 /∈ EF .

Finally if Si ∩ EF �= ∅ while neither zi−1/i nor zi/i+1 is in EF , the convex set
Si ∩EF is a connected component ofA. In this case we speak of an interior component
of A.

Lemma 7 Si contains an interior component if and only if

i − 1

n − i + 1
< ri−1 < ri < ri+1 <

i

n − i
(15)

7 Defined by f (Q) = {z ∈ �(N , A)|ui · zi = 1
n ui · eA for all i}, to meet Pareto indifference.
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where for i = 1 this reduces to the two right-hand inequalities, and for i = n to the
two left-hand ones.

Before proving Lemma 7 at the end of this subsection, we describe a problemwhere
A has the desired number of connected components. We choose the ratios ri such that:

3q

n − 3q
< r3q < r3q+1 < r3q+2 <

3q + 1

n − (3q + 1)
, q = 0, 1, . . . ,

⌊n

3

⌋

(inequalities involving ri for i = 0 or i > n must be ignored). By (14) we have
zi/i+1 ∈ EF for i = 3q − 1, and 1 ≤ q ≤ � n

3 �, and no two of those cuts are adjacent
so they belong to distinct components. Moreover by Lemma 7, Si contains an interior
component of A for i = 3q − 2, and 1 ≤ q ≤ � n+2

3 �, and only those. So the total
number of components of A is � n

3 � + � n+2
3 � = � 2n+1

3 � as desired. We let the reader
check that we cannot reach a larger number of components.
More than two bads Start from a problemQwith two bads constructed at the previous
step and use the same trick as in the proof of statement (iii) of Theorem 1 (Sect. 5.3.2):
cut a bad b into m − 1 equal pieces and call them bads b1, . . . , bm−1. We get a new
division problemQ′ with m bads, which is equivalent toQ. In particular, the number
of connected components of the set A is the same for both problems.

Proof of Lemma 7 Pick z ∈ Si and note first that for 2 ≤ i ≤ n − 1, the envy-freeness
inequalities reduce to just four inequalities: agents i − 1 and i do not envy each other,
and neither do agents i and i + 1 (we omit the straightforward argument). Formally

1

ri+1

(
1

n − i
− n − i + 1

n − i
y

)

≤ x ≤ 1

ri

(
1

n − i
− n − i + 1

n − i
y

)

(16)

ri−1

(
1

i − 1
− i

i − 1
x

)

≤ y ≤ ri

(
1

i − 1
− i

i − 1
x

)

(17)

In the (non negative) space (x, y) define the lines�(λ): y = λ( 1
i−1 − i

i−1 x) and�(μ):

x = μ( 1
n−i − n−i+1

n−i y). When λ varies �(λ) pivots around δ = ( 1i , 0), corresponding

to zi/i+1, and similarly �(μ) pivots around γ = (0, 1
n−i+1 ), corresponding to zi−1/i .

The inequalities (16, 17) say that (x, y) belong to the intersection of two cones: the
cone �∗ of points between �(ri ) and �(ri−1), and the cone �∗ between �( 1

ri
) and

�( 1
ri+1 ) (see Fig. 4). �	

Thus Si has an interior component iff the two cones have non-empty intersection
(this rules out the situation depicted on Fig. 4c), but this intersection does not contain
δ and γ (rules out Fig. 4b). Note that the situation when γ is above �∗ and δ is to
the right from �∗ is impossible as it would imply 1

n−i+1 >
ri
i−1 and 1

i > 1
ri (n−i) , a

contradiction.
We conclude that Si contains an interior component iff γ is below �∗ and δ is to

the left of �∗ (see Fig. 4a), which is exactly the system (15).
We leave to the reader proving (15) in the easier case of i = 1 and i = n.
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δ

γ Δ∗

Γ∗

δ

γ
Δ∗

Γ∗

δ

γ

Δ∗ Γ∗

(A) (B) (C)

Fig. 4 The intersection of the cones corresponds to Si ∩ EF . The leftmost figure a represents the only
scenario, when Si contains the interior component: on b the cone �∗ contains δ, which means that the cut
zi/i+1 is in EF ; on c the cones do not intersect and hence Si ∩ EF = ∅

z1/2
z2/3

z3/4

S2

S3

S4

Q2 :

f(Q2)

z1/2
z2/3

z3/4

S1

S2

S3

S4

Q1 :

f(Q1)

(A) (B)

Fig. 5 a, b The set A for problems Q1 and Q2 is marked by red. For Q1 the rule f selects an allocation
point in the connected component around z2/3. ForQ2 the setA has only one connected component which
is inside S1, so is the outcome of f (color figure online)

6.1.2 Proof of Theorem 2

Assume first n = 4,m = 2. Fix a single-valued, efficient rule f meeting NE. Consider
Q1 where, with the notation in the proof of Proposition 2, we have

r1 < r2 <
1

3
< 1 < 3 < r3 < r4

By Lemma 7 combined with (14) A has three components: one interior to S1 (exclud-
ing the cut z1/2), one around z2/3 intersecting S2 and S3, and one interior to S4

excluding z3/4, see Fig. 5a.
Assume without loss that f selects an allocation in the second or third component

just listed, and consider Q2 where r1, r2 are unchanged but the new ratios r ′
3, r

′
4 are

r1 < r2 <
1

3
< r ′

3 < 1 < r ′
4 < 3

Here, again by (14) and (15), A has a single component interior to S1, the same as
in Q1: none of the cuts zi/i+1 is in A anymore, and there is no component interior to
another Si . When we decrease continuously r3, r4 to r ′

3, r
′
4, the allocation z

1/2 remains
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outside A and the component interior to S1 does not move. Therefore the allocation
selected by f cannot vary continuously in the ratios ri , or in the underlying disutility
matrix u.

We can clearly construct a similar pair of problems to prove the statement when
n ≥ 5 and m = 2. And for the case m ≥ 3 we cut one of the bads into m − 1 pieces
as in the proof of Proposition 2.

6.2 Resoucemonotonicity

This solidarity property has played a major role in the modern fair division literature:
(Moulin and Thomson 1988; Thomson 2010). To introduce it we must extend the
definition of a rule to include problems where we must share ωa units of bad a, and
ω ∈ R

A++. A rule F in Definition 2 has a canonical extension F̃ to such problems:

F̃(N , A, ω, u) = F(N , A, ω · u) where (ω · u)ia = ωauia

It is easy to check that F̃ is invariant to a change of units for measuring any bad a,
and is the only extension of F with this property.

We now define, for a single-valued rule F :
Resource monotonicity (RM): for any Q =(N , A, ω, u), Q′=(N , A, ω′, u)

ω ≤ ω′ 
⇒ F̃(Q) ≤ F̃(Q′)

Recall also the familiar lower bound on individual welfare corresponding to the
consumption of a 1

n th share of each bad:
Fair share guarantee (FSG): for any Q =(N , A, ω, u), any U ∈ F(Q) and any i ,
we have Ui ≤ 1

n ui · ω.
Both rules, Egalitarian and Competitive, meet FSG. However

Proposition 3 With three or more agents and two or more bads, no efficient single-
valued rule can be resource monotonic and meet Fair Share Guarantee.

Proof The essence of the argument is captured by a two-person, two-bad example
in Subsection 7.2 of Bogomolnaia et al. (2017), that we reproduce for completion.
Suppose the efficient rule F meets RM and FSG and consider the two-agent two-bad
problem

u =
bads a b
u1 1 4
u2 4 1

and ω = (1, 1) (18)

Set U = F(Q). Because (1, 1) is an efficient disutility profile and F is efficient, one
Ui is bounded above by 1, say U1 ≤ 1 . Then consider the problem Q′, where we
decrease ω to ω′ = (1/9, 1). Pick z′ ∈ f̃ (Q′). By FSG, the definition of F̃ , and
feasibility, we have

z′2b ≤ u2 · z′2 ≤ 1

2
u2 · ω′ = 13

18

⇒ z′1b ≥ 5

18

⇒ u1 · z′1 = U ′

1 ≥ 10

9
> U1
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contradicting RM.We omit the straightforward generalization of this argument to any
n ≥ 3,m ≥ 2. �	

For goods an impossibility result similar to Proposition 3 is known for the general
Arrow–Debreu domain of preferences (Moulin andThomson 1988). But in the additive
sub-domain the C rule satisfies RMwhile the E rule does not. This is a strong argument
in support of the former rule, which disappears when we divide bads.

We note finally that the E rule is Population Monotonic (if one new agent shows up
to share the bundle of bads, every old agent is weakly better off), whether we divide
goods or bads (this is clear from Definition 3), whereas the axiom does not apply to
the multivalued C rule (and we conjecture that no single-valued selection of this rule
satisfies it).

7 A remark about Maskinmonotonicity

In the additive domain, the familiar Maskin Monotonicity axiom (Maskin 1999) has
an equivalent, simple formulation. This new property, dubbed Independence of Lost
Bids (ILB) is predicated on the observation that, when disutilities are additive, at an
efficient allocation most of the entries in the consumption matrix z are zero. We call
agent i’s marginal utility uia her “bid” for item a; and we say that i’s bid is “lost” at
problem Q = (N , A, u) if zia = 0. ILB states that changing i’s lost bid uia should
have no effect on the outcome, as long this bid remains lost.

Definition 5 The division rule f is Independent of Lost Bids (ILB) if for any two
problems Q,Q′ on N , A where u, u′ differ only in the entry ia, and such that uia <

u′
ia , we have ∀z ∈ f (Q) : zia = 0 
⇒ z ∈ f (Q′) (19)

Lemma 8 Independent of Lost Bids is equivalent to Maskin monotonicity.

Proof Recall that a rule f satisfies MM if for any two problemsQ = (N , A, u),Q′ =
(N , A, u′) and z ∈ f (Q) we have

{∀i ∈ N ,∀w ∈ R
A+ : ui · zi ≥ ui · w 
⇒ u′

i · zi ≥ u′
i · w} 
⇒ z ∈ f (Q′) (20)

We fix Q, i ∈ N and z ∈ f (Q) and define A0 = {a|zia = 0} and A+ = A�A0. The
implication in the premise of (20) reads

∀w ∈ R
A+ ui · (w − zi ) ≤ 0 
⇒ u′

i · (w − zi ) ≤ 0

The cone with vertex 0 generated by the vectors w − zi when w covers R
A+ is C =

{δ ∈ R
A|δa ≥ 0 for a ∈ A0}. By Farkas Lemma the implication {∀δ ∈ C : ui · δ ≤

0 
⇒ u′
i · δ ≤ 0} means that, up to rescaling u′

i , we have

u′
ia = uia on A+; uia ≤ u′

ia on A0
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Now (20) is precisely (19) if u′
i differs from ui in only one coordinate, and other u j -s

are unchanged, and the converse implication is clear as well. �	

Of course the competitive rule meets ILB because it meets MM, the latter under
much more general preferences. One can also check ILB directly from the charac-
terization of the C rule in Lemma 3. It is also clear that the Egalitarian rule fails
ILB.

Consider the classic result by Nagahisa (1991) using MM to characterize the C
rule: any efficient, individually rational, and Pareto indifferent rule meeting Maskin
monotonicity8 must contain the competitive rule. However this result applies to a
domain of preferences incompatible with additive utilities because indifference curves
cannot touch the axis (Assumption A.3, p. 109).9 So it is useful to notice that on the
additive domain, the same characterization result applies.
Equal treatment of equals (ETE) is the familiar requirement that the rule F should not
discriminate between two agents with identical characteristics. For allQ and i, j ∈ N

ui = u j 
⇒ Ui = Uj for all U ∈ F(Q)

Proposition 4 If bads under additive utilities are divided and a rule f meets efficiency,
independence of lost bids, and at least one of equal treatment of equals and fair share
guaranteed, it contains the competitive rule.

An analog of Proposition 4 with the same proof holds in case of goods.

Proof We already checked that the rule f c meets ILB; also ETE and FSG are clear.
Conversely we fix f meeting EFF, ETE or FSG, and ILB and an arbitrary problem
Q = (N , A, u). In the proof we consider several problems (N , A, v) where v varies
in R

N×A+ , and for simplicity we write f (v) in lieu of f (N , A, v).
We pick z ∈ f c(u) and check that z ∈ f (u) as well. Set Ui = ui · zi and let p be

the competitive price at z. In the proof of Lemma 3 we saw that pa = uia
Ui

for all i

such that zia > 0, and for all j we have pa ≤ u ja
U j

. Moreover p · zi = 1 for all i , and

p · eA = n.
Consider the problem Q∗ = (N , A, w) where wi = p for all i . The equal split

allocation is efficient in Q∗ therefore ETE implies F(w) = eN and so does FSG,
because p · ( 1n e

A) = 1. Now if we set w̃i = Ui p the scale invariance property of F
(Definition 2) gives F(w̃) = U ; moreover z ∈ f (w̃) because w̃i · z = Ui for all i . If
zia > 0 we have uia = Ui pa = w̃ia ; if zia = 0 we have similarly uia ≥ w̃ia . Apply
finally ILB: after raising every lost bid w̃ia to uia , the allocation z is still in f (u), as
desired. �	

8 Condition M on p.110 is equivalent to MM in the domainU used in Nagahisa (1991). See the discussion
after Lemma 4, p. 113.
9 In fact the domain of preference profiles must also contain the unanimous additive preferences (the
subdomain U∗), which makes for a strange mixture of assumptions.
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