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1 Introduction

Consider multiple R&D groups competing for a monetary prize. The prize is given to the

winner of an R&D race, and a group’s winning probability increases with the group’s aggregate

effort and decreases with other groups’ aggregate efforts. The prize is distributed among the

winning group members according to the group’s prize-sharing rule. Group members decide

how much effort to make based on the prize-sharing rule, while a group leader is a manager

who only chooses a prize-sharing rule. The group leader maximizes the winning probability

of the group, since he/she has a better chance of promotion after winning the race. Group

members are homogenous, and each member’s effort level is unobservable (moral hazard) or

not contractable by the group leader in designing a prize-sharing rule. This is a stylized group

contest model that has been studied in the literature.

Assuming perfectly substitutable individual efforts in each group, Nitzan and Ueda (2014)

point out that sharing a winning prize equally among homogeneous group members (an egalitar-

ian rule) does not necessarily maximize the winning probability for the group, even if members’

effort cost function is increasing and convex. This is partly because each group member re-

ceives a small share of the prize under the egalitarian rule, and partly because of the free-riding

incentive. Giving the entire prize to a single member of the group (a monopolization rule)

may be better for the winning probability, since it eliminates these two disadvantages, even

though it increases the marginal effort cost. Specifically, they find that the monopolization

rule maximizes the group’s winning probability if (i) the members’ marginal effort cost is pos-

itive and bounded below,1 or (ii) the members’ marginal effort cost function starts from zero

and increases but is concave.2 Moreover, Nitzan and Ueda (2014) find that their condition (ii)

1This is called PNC (potential non-contributor condition) in Nitzan and Ueda (2014). In addition, this result

needs a mild technical condition called RC (regularity condition) for the cost function around zero effort.
2They also show that the egalitarian sharing rule maximizes the winning probability if the marginal cost

starts from zero and is convex (their anti-Olson theorem).
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is identical to that where a group’s winning probability goes down as the population of the

group goes up. This so-called “group size paradox” was first suggested by Olson (1965), and

Esteban and Ray (2001) identify the conditions necessary for it to occur.3 Epstein and Mealem

(2009) consider a group-specific public-good prize model with heterogeneous valuations among

members, but they also come up with a closely related observation.

This paper introduces effort complementarity in group contests to analyze how a sharing

rule affects the winning probability of the group as well as the welfare of the group members. To

do this, we use a CES effort aggregator function, following Kolmar and Rommeswinkel (2013),

where we parameterize the level of complementarity in a simple manner. Complementarity

in effort aggregation reduces free-riding incentives, which may make the egalitarian rule more

effective. Indeed, we obtain a variation of condition (ii) from Nitzan and Ueda (2014), but the

monopolization rule may maximize the winning probability with effort complementarity even

if the members’ marginal cost function is convex. We will identify the exact condition for this

(Propositions 1 and 2). Choi, Chowdhury, and Kim (2016) and Cheikbossian and Fayat (2018)

also show related results using CES effort aggregator functions.4

More significantly, in the presence of effort complementarity, we show that there may be a

conflict of interest between a group leader—who wishes to maximize the winning probability

of the group—and the group members—who care about their own payoffs. That is, we show

that there is a situation where the egalitarian rule Pareto-dominates the monopolization rule

for all group members, while the monopolization rule dominates the egalitarian rule from the

3Esteban and Ray (2001) clarify that Olson’s (1965) results do not depend on whether the prize is public or

private. They explain that after fixing the equal allocation of the private good among all members in a group,

whether its winning probability increases or not depends on the elasticity of the marginal effort cost when the

population increases.
4Choi et al. (2016) analyze a two-group contest when the prize is allocated by an intra-group contest between

the group members with asymmetric powers. Cheikbossian and Fayat (2018) analyze a contest between two

groups by introducing a rivalry parameter of an impure public good prize.
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standpoint of the group’s winning probability. This happens when (i) there exists moderate

effort complementarity and (ii) the marginal effort cost is moderately concave. This result

cannot be obtained without effort complementarity.

The remainder of the paper is organized as follows. Section 2 presents our model. In Section

3, we show that the results in Esteban and Ray (2001) and Nitzan and Ueda (2014) still extend

in the presence of effort complementarity. Section 4 shows our main result that a group leader

and his/her group members may have a conflict of interest with effort complementarity. Section

5 explains how our results for Nash equilibrium in the intragroup game can be extended to an

equilibrium analysis in a group contest game, and proves the existence and uniqueness of the

equilibrium. Section 6 concludes by discussing the importance of effort complementarity and

commenting on a model in Epstein and Mealem (2009), the details of which are given in

Appendix B. All proofs are collected in Appendix A.

2 The Model

We consider a contest in which m ≥ 2 groups compete for a prize, focusing on a representa-

tive group i = 1, 2, ...,m. The population of group i is denoted by ni ≥ 1. Group members

choose their effort levels eij, j = 1, 2, . . . , ni, which contribute to their group’s winning prob-

ability, simultaneously and non-cooperatively. Group members’ efforts are aggregated by the

CES function of Xi = (
∑ni

j=1 e
r
ij)

1
r , where r ∈ (0, 1] indicates the degree of the effort comple-

mentarity.5 This CES aggregator function becomes a linear function (perfect substitutes—no

complementarity) when r = 1 and a Cobb-Douglas function when r = 0 in the limit (each

member’s effort is essential in the sense that if a member makes no effort then the aggregate

5Kolmar and Rommeswinkel (2013) are the first in the literature to introduce group members’ effort comple-

mentarity in group contests by using a CES production function. They call this CES function a group impact

function.
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effort is also zero).

The winning probability of group i is described as a contest success function Pi =
Xi

Xi+X−i
,6

whereX−i =
∑

k ̸=iXk is the other groups’ aggregated effort levels. The prize comprises divisible

private goods that are shared among members of the winning group, and the value of the prize

is normalized to 1. We denote the share of member j in group i by aij ∈ [0, 1] and group

i’s (prize) sharing rule by ai = (ai1, . . . , aini
) with

∑ni

j=1 aij = 1. The group leader cannot

observe each member’s effort or an aggregated group effort.7 We assume that group i’s prize-

sharing rule is chosen by the group leader before each member decides his/her effort level. The

effort cost function is common to all members with a constant elasticity β ≥ 1; i.e., member

j’s effort cost in group i is described by 1
β
eβij. We assume that at least either r ≤ 1 or β ≥ 1

is a strict inequality. The expected payoff for member j in group i is Uij = Piaij − 1
β
eβij. We

assume that all of the above is common knowledge among all players.

Each member in a group decides his/her effort level to maximize his/her expected payoff.

We assume that group i members regard the other groups’ aggregate effort X−i as given and

consider a Nash equilibrium of group i’s effort contribution game as their best response to the

other groups’ aggregate effort X−i.
8 Then, the first-order condition of any member j in group

i is

∂Uij

∂eij
=

(
∑ni

j=1 e
r
ij)

1
r
−1er−1

ij X−i

((
∑ni

j=1 e
r
ij)

1
r +X−i)2

aij − eβ−1
ij = 0.

This can be rewritten as

Pi(1− Pi)
erij
Xr

i

aij − eβij = 0. (1)

With these first-order conditions (1), we can investigate how the sharing rule ai affects the

members’ equilibrium effort levels (ei1, ..., eini
) in an effort contribution game in group i.

6We employ the Tullock-form contest success function (Tullock 1980).
7Nitzan and Ueda (2011) assume that individual effort levels are observable by the group leader and analyze

the case of the convex combination between the egalitarian rule and a relative-effort sharing rule, which allocates

the winning prize proportionally to their effort levels.
8Baik (2008) calls this Nash equilibrium a group-i-specific equilibrium.
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From (1), we have erij =
(

Pi(1−Pi)
Xr

i

) r
β−r

a
r

β−r

ij . Summing up all erij in group i, we have

Xr
i =

(
Pi(1− Pi)

Xr
i

) r
β−r

ni∑
j=1

a
r

β−r

ij .

We first raise this expression to the power of 1
r
, then multiply both sides by X

r
β−r

i , and finally

raise to the power of β − r. Following this, the aggregate effort Xi at a Nash equilibrium in

group i can be implicitly described as

Xβ
i = Pi(1− Pi)Ai, (2)

where Ai =
(∑ni

j=1 a
r

β−r

ij

)β−r
r

can be viewed as group i’s productivity, which affects its winning

probability positively.

3 Sharing rules that maximize winning probability

Our first question is which sharing rule would maximize the winning probability of group i

in Nash equilibrium given X−i. Thanks to our functional specifications of the cost and effort

aggregator functions, we can clearly relate Xi to prize-sharing rules, despite the added effort

complementarity in the model.

Lemma 1. In Nash equilibrium in group i, the equilibrium winning probability of group i

increases in Ai. That is, group i’s winning probability is maximized by a sharing rule (aij)
ni
j=1

that maximizes Ai.

Since group members are homogenous and their efforts are unobservable, the following two

sharing rules play important roles among all sharing rules (aij)
ni
j=1: the egalitarian rule that

allocates the prize equally among all group members (aij = 1/ni for all member j), and the

monopolization rule that allocates the entire prize to an arbitrarily chosen group member

(members are homogenous), leaving nothing for the rest (aij = 1 for some member j, and
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ail = 0 for any other member l ̸= j). The next proposition shows that these two rules maximize

the winning probability of group i, depending on r and β.9

Proposition 1. When 2r < β, the egalitarian rule maximizes the winning probability of group

i. When 2r > β, the monopolization rule maximizes the winning probability of group i. When

2r = β, the winning probability of group i is the same under any sharing rules.

We can interpret this result in the context of R&D competition. Some R&D projects

benefit from coordinated efforts (strong effort complementarity: small r), while others do not

(weak effort complementarity: large r). Proposition 1 says that the group leader should choose

the egalitarian rule for projects with strong effort complementarity (2r < β), since treating

everybody equally enhances aggregate effort the most. In contrast, the group leader should use

the monopolization rule by selecting a single member for projects with weak complementarity

(2r > β), since it eliminates all free-riding incentives and maximizes an incentive for effort

by letting the selected member monopolize the prize. If 2r = β, then Ai is the same under

any sharing rules (aij)
ni
j=1. Nitzan and Ueda (2014) report the above result without effort

complementarity (r = 1; Proposition 4 in Nitzan and Ueda 2014).

The probabilities under the egalitarian rule and the monopolization rule are denoted by PiE

and PiM , respectively. Under the egalitarian rule in group i, every member’s effort is the same,

which is denoted by ei in a Nash equilibrium in group i. Then Xi = (
∑ni

j=1 e
r
ij)

1
r = (nie

r
i )

1
r =

n
1
r
i ei. Thus, (1) becomes

eβi = PiE(1− PiE)
1

n2
i

. (3)

Since (2) implies ei = n
− 2

β

i P
1
β

iE(1− PiE)
1
β , when we substitute this into the definition of Pi, we

9In a group contest for multiple (homogenous) indivisible prizes, Crutzen, Flamand, and Sahuguet (2020)

obtain a closely related result. When 2r < β, allocating prizes according to a fair lottery maximizes group

success, while when 2r > β, allocating prizes according to a predetermined (priority) list is better than the fair

lottery allocation rule.
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are able to solve PiE as a function of parameters, in particular, ni and r implicitly:

PiE(ni, r) =
n

1
r
i ei

n
1
r
i ei +X−i

=
n

β−2r
rβ

i PiE(ni, r)
1
β (1− PiE(ni, r))

1
β

n
β−2r
rβ

i PiE(ni, r)
1
β (1− PiE(ni, r))

1
β +X−i

. (4)

Each member’s payoff, denoted by UiE, then becomes

UiE(ni, r) = PiE(ni, r)
1

ni

− 1

β
eβi =

PiE(ni, r)

ni

(
1− 1

β
(1− PiE(ni, r))

1

ni

)
,

using (3).

Under the monopolization rule, on the other hand, the effort level and payoff of the monop-

olizing member are equal to the above expressions of (3) and UiE in the case of ni = 1, since

the other members for whom nothing is allocated to exert no effort. The payoff of the member

exerting effort is denoted by UiM . His/her payoff is

UiM = PiM

(
1− 1− PiM

β

)
.

By setting ni = 1 in (4), the winning probability under the monopolization rule is

PiM =
P

1
β

iM(1− PiM)
1
β

P
1
β

iM(1− PiM)
1
β +X−i

.

Note that PiM and UiM do not depend on r, and that PiE(1, r) = PiM and UiE(1, r) = UiM .

We first prove the following lemma for the winning probability of group i under the egali-

tarian rule.

Lemma 2. We have the following comparative static results:

dPiE

dr
=

log ni

r2
PiE(1− PiE)β

1− 2PiE − β
< 0 (5)

and

dPiE

dni

=
2r − β

rni

PiE(1− PiE)

1− 2PiE − β
. (6)

Regarding the group member population, we have the following result, using (6) in Lemma

2.
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Proposition 2. Under the egalitarian rule, the winning probability of group i is strictly in-

creasing, constant, and strictly decreasing in the number of group members ni if and only if

2r < β, 2r = β, and 2r > β, respectively.

Esteban and Ray (2001) show the condition necessary to improve the winning probability

of a group when its size increases under the egalitarian rule (together with the fixed allocation

between private and public rewards). The sign of one minus the elasticity of marginal effort cost

in Esteban and Ray (2001) corresponds to β ⋛ 2 in our study, since there is no complementarity

among members’ efforts (r = 1) in their case. Epstein and Mealem (2009) provide a nice

summary of the results in their equation (12) and the following discussions (page 364 in Epstein

and Mealem, 2009).10 To sum up these results in tandem with ours, as long as the focus is on

winning probability, both the elasticity of the marginal effort cost and the complementarity

among group members’ efforts are interchangeable.

4 Conflict of interest between the group leader and mem-

bers

So far, we have been focusing on group i’s winning probability. Our second question is as

follows. When 2r > β, we have seen that it would be best for the winning probability if the

prize was monopolized by a single member. However, the member needs to exert the entire

group’s effort on his/her own in order to win, since the other members get no benefit and exert

no effort. Considering the relation between the effort complementarity and the elasticity of

the marginal effort cost, it is not clear whether the member who monopolizes the prize prefers

the monopolization rule to the egalitarian rule. If the egalitarian rule is better for him/her

than the monopolization rule at a specific r, then switching from the monopolizing rule to the

10See also the “anti-Olson theorem” in Nitzan and Ueda (2014).
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egalitarian rule may improve every member’s payoff even though it might reduce the group’s

winning probability. In other words, sharing the prize equally with the other members in a

group may Pareto-improve the group’s welfare. We confirm this as follows by focusing on the

case where 2r > β.

Since UiE(1, r) = UiM for all r, if we can show that UiE(ni, r) is monotonically decreasing

in ni for all ni ≥ 1, we will have UiE(ni, r) < UiM for ni ≥ 2. The next lemma shows that this

is indeed the case when r = 1.

Lemma 3. Suppose that r = 1. Then, we have dUiE(ni,1)
dni

< 0 for all ni ≥ 1; i.e., UiE(ni, 1) <

UiM(ni, 1) = UiM for all ni ≥ 2.

The following lemma shows that there is a threshold value of r for the payoffs under the

egalitarian and monopolization rules.

Lemma 4. Suppose that β ≤ 2r, ni ≥ 2, and 1+ 1
ni
> β hold. If group i’s winning probability is

low, in the sense that 1− ni

ni+1
β > PiM , then there is a unique r̂ ∈ (β

2
, 1), such that UiE(ni, r) <

UiM for all r ∈ (r̂, 1], and UiE(ni, r) > UiM for any r ∈ [β
2
, r̂).

This Lemma has an interesting implication. The following proposition shows that there

may be conflict between winning probability maximization and Pareto optimality in group i.

Proposition 3. Suppose that β < 2r, ni ≥ 2, and 1 + 1
ni
> β hold. If group i’s winning

probability is low, in the sense that 1 − ni

ni+1
β > PiM ,11 then there is a unique r̂ ∈ (β

2
, 1), such

that the egalitarian rule Pareto-dominates the monopolization rule for any r ∈ (β
2
, r̂) within

11In Proposition 3, condition 1 − ni

ni+1β > PiM appears to be a condition for an endogenous variable PiM

because PiM is explicitly unsolvable. However, PiM is uniquely led by

PiM =
P

1
β

iM (1− PiM )
1
β

P
1
β

iM (1− PiM )
1
β +X−i

.

This is determined by the exogenous variables β and X−i only. Thus, we can confirm if condition 1− ni

ni+1β >

PiM is satisfied with economic data β, ni, and X−i.
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group i, despite the fact that the monopolization rule achieves a higher winning probability than

the egalitarian rule. In contrast, if 1 − ni

ni+1
β > PiM is not satisfied, then the single member

who monopolizes the prize prefers the monopolization rule to the egalitarian rule.

This Pareto dominance of the egalitarian rule is due to the complementarity among group

members’ efforts. Without the complementarity, this Pareto dominance disappears. In fact, at

r = 1, the Pareto dominance does not hold.

5 Equilibrium in Group Contest

We can apply our analysis to show that our group contest model has an equilibrium. We will

consider a two-stage game as follows. Stage 1: Each group leader who maximizes the winning

probability of his/her group decides its sharing rule simultaneously, and Stage 2: members of

all groups simultaneously choose their effort levels. In this paper, we assume that each groups’

sharing rules are observable and employ subgame perfect equilibrium as our solution concept.12

We can allow for asymmetric groups—different groups can have different βi, ri, and ni. The

key is to show that a Nash equilibrium exists and is unique in Stage 2. We show that each

group’s best response to the aggregation of the other groups’ effort levels X−i is at a Nash

equilibrium. The effort contribution game of any group i in Stage 2 is described as a function

ψi(X−i; ai, βi, ri) → Xi. Using the share-function approach (Esteban and Ray 2001, Ueda 2002,

and Cornes and Hartley 2005),13 we can guarantee the existence and uniqueness of the Nash

equilibrium by each ψi’s continuity and strict monotonicity in X−i.

12Readers may think that it is unrealistic to assume that groups can observe other groups’ sharing rules.

Nitzan and Ueda (2011) assume that sharing rules are the private information of each group and use perfect

Bayesian equilibrium with the same beliefs for other groups’ sharing rules at every information set. Since the

model does not involve a real asymmetric information problem, their perfect Bayesian equilibrium coincides

with our subgame perfect equilibrium under complete information.
13We thank Kaoru Ueda for suggesting that we use the share function approach.
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Let X = Xi +X−i. By using Pi =
Xi

X
and reformulating (2), Pi, which is regarded as group

i’s share function, is described as

P 1−βi

i (1− Pi)Ai = Xβi (7)

for all group i = 1, ...,m. By totally differentiating the above, we obtain

AiP
−βi

i (1− βi − (2− βi)Pi)dPi + P 1−βi

i (1− Pi)dAi − βiX
βi−1dX = 0.

Therefore, we have

∂Pi

∂X
=

βiPi(1− Pi)

(1− βi − (2− βi)Pi)X
(8)

by using Ai = Xβi/(P 1−βi

i (1− Pi)) from (7). We have also

∂Pi

∂Ai

=
−Pi(1− Pi)

(1− βi − (2− βi)Pi)Ai

. (9)

Note that the denominators of (8) and (9) are negative if βi ≤ 2 (since βi ≥ 1), and are also

negative if βi > 2 (since Pi ≤ 1). Thus, ∂Pi/∂X < 0 holds for any X and Ai in (8). From

(7), we have limX→0 Pi(X;Ai) = 1, limX→∞ Pi(X;Ai) = 0, and Pi(X;Ai) is continuous. These

facts hold for all i = 1, ...,m.

A vector of sharing rules (A1, ..., Am) is described as A. Let the aggregate share func-

tion f : R++ → R be such that f(X;A) =
∑m

i=1 Pi(X;Ai). From the above facts regarding

Pi(X;Ai), f(X;A) is continuous and strictly decreases with X by limX→0 f(X;A) = m and

limX→∞ f(X;A) = 0. Therefore, there is a unique X∗ at which f(X∗;A) =
∑m

i=1 Pi(X
∗;Ai) =

1, and there is a unique Nash equilibrium for any arbitrary A in Stage 2.

Proposition 4. For any profile of group sharing rules (a1, ..., am) with ai = (ai1, ..., aini
) for

all i = 1, ...,m, there is a unique Nash equilibrium in the effort choice stage.

Since (9) is positive, the Pi(X;Ai) function shifts up everywhere as Ai increases. Then, the

aggregate share function f(X;A) shifts up in turn. Thus, an increase in Ai raises group i’s

probability of winning, together with the total effort level X at Nash equilibrium in Stage 2.

12



This implies that each group leader’s objective is to maximize his/her Ai in Stage 1, which is

the same result as Lemma 1.

Lemma 5. In Stage 1 of the group contest game, the equilibrium winning probability of group

i is increasing in Ai. That is, group i’s winning probability is maximized by a sharing rule

(aij)
ni
j=1 that maximizes Ai.

This lemma leads us to a counterpart of Proposition 1—that is, the results of Proposition

1 are valid in the two-stage group contest game.

Proposition 5. In Stage 1 of the group contest game, each group i’s leader chooses its sharing

rule to maximize the winning probability Pi as follows: (i) use the egalitarian rule if 2ri < βi,

(ii) use the monopolization rule 14 if 2ri > βi, and (iii) use any sharing rule if 2ri = βi.

A corollary of this proposition is that there is an essentially unique subgame perfect equi-

librium in our group contest game, since each group leader’s strategy is solely dependent on

2ri ⋚ βi.

Corollary 1. For all (ri, βi)
m
i=1, groups’ equilibrium winning probabilities (Pi)

m
i=1 are uniquely

determined.

The results of Proposition 5 depend only on the exogenous variables of ri and βi. Thus,

Proposition 5 and Corollary 1 indicate that Proposition 3 is also valid at the subgame perfect

equilibrium in the two-stage group contest game. That is, for some group i, when 2ri > βi

and 1 + 1
ni
> βi under the asymmetric parameters, if 1 − ni

ni+1
βi > PiM holds, then there is

a conflict of interest between the group leader and his/her group members at the subgame

perfect equilibrium. If 1 − ni

ni+1
βi > PiM is violated, then the monopolizing member has an

incentive to work with the group leader, since it is in their common interests to choose the

14When the group leader chooses the monopolization rule at Stage 1, effort complementarity is irrelevant on

the equilibrium path. Effort complementarity is in effect only off the equilibrium path.
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monopolization rule and exclude the rest of the group. In addition, if the parameters are

symmetric, the condition is simply described as the relation among the number of groups, the

group population, and the elasticity of the marginal effort cost. In this case, since PiM becomes

1
m
, the condition is 1− ni

ni+1
β > 1

m
.

6 Concluding remarks

We conclude our paper by commenting on Epstein and Mealem (2009). They use a generalized

Tullock contest by introducing power r ∈ [0, 1]: i.e., Xi =
∑ni

j=1 e
r
ij. This form may look

similar to our CES form, Xi =
(∑ni

j=1 e
r
ij

) 1
r
, and readers may wonder if our Proposition 3 may

hold in their case. It turns out that their generalized Tullock contest cannot generate conflicts

of interest between the group leader and his/her group members—we can confirm that with

their form, the egalitarian rule’s Pareto dominance in Proposition 3 cannot occur. Thus, effort

complementarity is essential in getting our conflict-of-interest result. In contrast, with their

contest success function, our Propositions 1 and 2 hold. We detail the analysis in Appendix B.

Appendix A

Here, we collect all proofs.

Proof of Lemma 1. Recalling Xi = (
∑ni

j=1 e
r
ij)

1
r and given X−i, maximizing the winning

probability of group i means that Xi becomes as large as possible at Nash equilibrium in group

i. If Xi is a strictly increasing function of Ai, we can maximize Xi by maximizing Ai subject

to
∑ni

j=1 aij = 1.

From (2), let ϕ(Xi, Ai) = Xβ
i − Pi(1− Pi)Ai = 0. Recalling that β ≥ 1, 0 < r ≤ 1 and that

Pi is a function of Xi through Pi =
Xi

Xi+X−i
, and by differentiating ϕ with respect to Ai, we get

dXi

dAi

= −ϕAi

ϕXi

=
Pi(1− Pi)

Xβ−1
i (β − 1 + 2Pi)

> 0
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for β > r by using Ai =
Xβ

i

Pi(1−Pi)
from (2). Thus, Xi is a strictly increasing function in Ai for

β > r. ■

Proof of Proposition 1. From Lemma 1, it is enough to maximize Ai. It is also enough to

maximize the contents in parentheses in Ai because
β−r
r
> 0. Note that A

r
β−r

i =
∑ni

j=1 a
r

β−r

ij is

an additively separable function. Since r > 0, our maximization problem boils down to

max

ni∑
j=1

a
r

β−r

ij subject to (i)

ni∑
j=1

aij = 1 and (ii) aij ≥ 0 for all j = 1, ..., ni.

Thus, it is easy to see that r
β−r

⋚ 1 dictates the optimal sharing rule. We obtain three cases:

Case 1: If 2r < β, Ai is maximized when a1 = a2 = . . . = ani
= 1/ni.

Case 2: If 2r = β, Ai is constant for any sharing rule.

Case 3: If 2r > β, Ai is maximized when aij = 1 for a single j, and aiℓ = 0 for all other ℓ.

■

Proof of Lemma 2. Let ∆ ≡ n
−β−2r

rβ

i in relation to ni in (4). Rewriting (4), we have

(1− PiE) (PiE(1− PiE))
1
β = PiEX−i∆. (10)

By totally differentiating the above, we obtain[
− (PiE(1− PiE))

1
β −X−i∆+

1

β
(1− PiE) (PiE(1− PiE))

1
β
−1 (1− 2PiE)

]
dPiE = PiEX−id∆.

After solving (10) for X−i, we substitute it into the above and obtain

1

PiE

(PiE(1− PiE))
1
β

[
−1 +

1

β
(1− 2PiE)

]
dPiE = (1− PiE) (PiE(1− PiE))

1
β
d∆

∆

or

dPiE

d∆
=

PiE (1− PiE)

∆
[
−1 + 1

β
(1− 2PiE)

] .
Since −1 + 1

β
(1− 2PiE) < 0 from β ≥ 1, we have dPiE

d∆
< 0. By differentiating ∆ with respect

to ni and r, we have

d∆

dni

= −β − 2r

rβ
× ∆

ni

15



and

d∆

dr
=

1

r2
(log ni)∆ > 0,

respectively. We obtain the results using the chain rule.■

Proof of Lemma 3. Recall UiE(ni, r) =
PiE(ni,r)

ni

(
1− 1

β
(1− PiE(ni, r))

1
ni

)
≡ Ũ(ni, PiE(ni, r)).

This implies

∂Ũ

∂PiE

=
1

ni

− 1

βn2
i

(1− 2PiE) =
1

n2
iβ

(niβ + 2PiE − 1). (11)

Thus, by totally differentiating Ũ(ni, PiE(ni, 1)) with respect to ni using (6), we obtain

dUiE(ni, 1)

dni

=
∂Ũ

∂ni

+
∂Ũ

∂PiE

dPiE

dni

=
PiE

n2
i

[
−1 +

2

niβ
(1− PiE)

]
+

(2− β)PiE (1− PiE)

ni (1− 2PiE − β)

[
1

n2
iβ

(niβ + 2PiE − 1)

]
=

PiE

n3
i

[
−ni +

2

β
(1− PiE) + (1− PiE)

2− β

1− 2PiE − β

(
ni +

1

β
(2PiE − 1)

)]
=

PiE

n3
iβ (1− 2PiE − β)

× [−niβ (1− 2PiE − β) + 2 (1− PiE) (1− 2PiE − β) + (1− PiE) (2− β) (βni − (1− 2PiE))] .

Since 1− 2PiE − β < 0, we can focus on the sign of the contents of the brackets:

[ · ] = −niβ (1− 2PiE − β) + niβ (2− β − 2PiE + PiEβ)

+2 (1− 2PiE − β) (1− PiE)− (1− PiE) (2− β) (1− 2PiE)

= β[(ni − 1) + PiE(niβ − 1 + 2PiE)] > 0

for any ni ≥ 1. Thus, we conclude that dUiE

dni
< 0 for any ni ≥ 1. This implies that UiE(ni, 1) <

UiM for any ni ≥ 2 when r = 1. We have completed the proof.■

Proof of Lemma 4. First note that the assumptions ni ≥ 2 and 1 + 1
ni
> β imply 2 > β.

16



Consider the case of r = β
2
. Since PiE(ni,

β
2
) = PiE(1,

β
2
) = PiM by Proposition 1, we have

UiE(ni,
β

2
) =

PiE(ni,
β
2
)

ni

(
1− 1

β
(1− PiE(ni,

β

2
))

1

ni

)
=

PiM

ni

(
1− 1

β
(1− PiM)

1

ni

)
.

By subtracting UiM = PiM

[
1− 1

β
(1− PiM)

]
from UiE(ni,

β
2
), we obtain

UiE(ni,
β

2
)− UiM = PiM

[
−1 +

1

β
(1− PiM) +

1

ni

(
1− 1

β
(1− PiM)

1

ni

)]
= PiM

[
−
(
1− 1

ni

− 1

β

(
1− 1

n2
i

))
− 1

β
PiM

(
1− 1

n2
i

)]
= PiM

(
1− 1

n2
i

)[
− ni

ni + 1
+

1

β
− 1

β
PiM

]
.

Then, the condition of UiE(ni,
β
2
) > UiM is

1− ni

ni + 1
β > PiM . (12)

That is, if (12) is satisfied, UiE(ni,
β
2
) > UiM holds, while UiE(ni, 1) < UiM . Since dPiE

dr
< 0

holds by (5) in Lemma 2 and from (11), ∂Ũ
∂PiE

= 1
n2
i β
(niβ +2PiE − 1) > 0, we have dUiE(PiE(r))

dr
=

∂ŨiE

∂PiE

dPiE

dr
< 0, which is UiE monotonically decreasing in r. Considering the above facts and

given that UiE is continuous in r, there is a unique r̂ ∈ (β
2
, 1), such that UiE(ni, r) < UiM holds

for all r ∈ (r̂, 1] and UiE(ni, r) > UiM holds for all r ∈ [β
2
, r̂). ■

Proof of Lemma 5. First, focus on the Pi(X;Ai) function. Starting from the original Ai

and equilibrium X∗, Ai is increased by ∆Ai > 0. Since ∂Pi

∂Ai
> 0 for all X from (9), the Pi

function shifts up vertically. Let X̃ be such that Pi(X
∗;Ai) = Pi(X̃;Ai +∆Ai) (see Figure 1).

Since ∂Pi

∂X
< 0 from (8), X̃ > X∗ holds, and for any X ∈ (X∗, X̃), we have Pi(X;Ai +∆Ai) >

Pi(X
∗;Ai). Recall that the equilibrium X∗ is described by the aggregate share function

f(X∗;A) =
∑
i′ ̸=i

Pi′(X
∗;Ai′) + Pi(X

∗;Ai) = 1.

Let A−i be a vector that removes Ai from A. By increasing Ai by ∆Ai, the equilibrium aggregate

effort X∗∗ satisfies

f(X∗∗;Ai +∆Ai, A−i) =
∑
i′ ̸=i

Pi′(X
∗∗;Ai′) + Pi(X

∗∗;Ai +∆Ai) = 1.

17



Since
∂Pi′
∂X

< 0 for all i′ = 1, ...,m, we have X∗∗ > X∗ and

f(X̃;Ai +∆Ai, A−i) =
∑
i′ ̸=i

Pi′(X̃;Ai′) + Pi(X̃;Ai +∆Ai)

=
∑
i′ ̸=i

Pi′(X̃;Ai′) + Pi(X
∗;Ai) < 1.

By the intermediate value theorem, X∗∗ ∈ (X∗, X̃) holds. We conclude Pi(X
∗∗;Ai + ∆Ai) >

Pi(X
∗;Ai).

This implies that as Ai increases, Pi(X
∗;Ai) increases. That is, maximizing Ai achieves the

maximum winning probability for group i.■

Appendix B

Here, we repeat our analysis by using the Epstein and Mealem’s generalized Tullock contest,

and show that Lemma 1 and Proposition 1 hold. We confirm this first. The expected payoff of

member j in group i is Uij =
∑ni

j=1 e
r
ij∑ni

j=1 e
r
ij+X−i

aij − 1
β
eβij. The first order condition is

∂Uij

∂eij
=

rer−1
ij X−i

(
∑ni

j=1 e
r
ij +X−i)2

aij − eβ−1
ij = 0.

This can be rewritten as

Pi(1− Pi)
rerij∑ni

j=1 e
r
ij

aij − eβij = 0. (13)

We process a procedure similar to the one at the end of Section 2 and get erij =
(

rPi(1−Pi)
Xi

) r
β−r

a
r

β−r

ij

from (13). By summing up each erij, we have
∑ni

j=1 e
r
ij = Xi =

(
rPi(1−Pi)

Xi

) r
β−r

Âi where

Âi =
∑ni

j=1 a
r

β−r

ij . Let ϕ̂(Xi, Âi) = Xi −
(

rPi(1−Pi)
Xi

) r
β−r

Âi = 0. By differentiating ϕ̂ with re-

spect to Âi and noting that Pi is a function of Xi, we have

dXi

dÂi

= −
ϕ̂Âi

ϕ̂Xi

=
(rPi(1− Pi)/Xi)

r
β−r

(β − r + 2rPi)/(β − r)
> 0

for β > r by using Âi = Xi

(
rPi(1−Pi)

Xi

)− r
β−r

. Therefore, since Lemma 1 holds, Proposition 1

also holds in this case. Proposition 2 holds as well. However, Proposition 3 does not hold.
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We check this second. Under the egalitarian rule, since Xi =
∑ni

j=1 e
r
ij = nie

r
i , we have ei =

n
− 2

β

i r
1
βP

1
β

iE(1− PiE)
1
β from (13). Using this, we have

PiE =
nie

r
i

nieri +X−i

=
n

β−2r
β

i r
r
βP

r
β

iE(1− PiE)
r
β

n
β−2r

β

i r
r
βP

r
β

iE(1− PiE)
r
β +X−i

(14)

and

UiE = PiE
1

ni

− 1

β
eβi =

PiE

ni

(
1− 1

β
(1− PiE)

r

ni

)
.

Let ∆̂ ≡ n
−β−2r

β

i in relation to ni in (14). We process the same procedure as in the proof of

Lemma 2. Rewriting (14), we have

r
r
β (1− PiE) (PiE(1− PiE))

r
β = PiEX−i∆̂. (15)

By totally differentiating the above expression and conducting the same operations as the proof

of Lemma 2, we obtain

dPiE

d∆̂
=

PiE (1− PiE)

∆̂
[
−1 + r

β
(1− 2PiE)

] < 0

because of r
β
(1− 2PiE) < 1. Differentiating ∆̂ with respect to ni, we have

d∆̂

dni

= −β − 2r

β
× ∆̂

ni

.

We then obtain dPiE

dni
= 2r−β

ni

PiE(1−PiE)
r(1−2PiE)−β

. The sign of this formula depends only on the sign of

2r − β, as well as (6) from Lemma 2. Therefore, Proposition 2 holds in this case.

By processing the same procedure as the proof of Lemma 4, we obtain

UiE(ni,
β

2
)− UiM = PiM

[
−1 +

1

β
(1− PiM)r +

1

ni

(
1− 1

β
(1− PiM)

r

ni

)]
= PiM

(
1− 1

n2
i

)[
− ni

ni + 1
+
r

β
− r

β
PiM

]
= PiM

(
1− 1

n2
i

)[
− ni

ni + 1
+

1

2
− 1

2
PiM

]
at r = β

2
. For the above expression to be positive, the sign in the brackets needs to be positive.

Thus,

PiM <
1− ni

ni + 1
< 0.
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However, this condition contradicts the definition of the probability. Lemma 4 does not hold.

Therefore, Proposition 3 also fails to hold in the generalized Tullock contest. ■
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Figure 1: Share function Pi(X;Ai) of group i and aggregate share function f(X;A)
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