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Abstract
We describe a process to compose and decompose choice behavior, called resolu-
tion. In the forward direction, resolutions amalgamate simple choices to create a 
complex one. In the backward direction, resolutions detect when and how a primi-
tive choice can be deconstructed into smaller choices. A choice is resolvable if it 
is the resolution of smaller choices. Rationalizability, rationalizability by a preor-
der, and path independence are all preserved (backward and forward) by resolutions, 
whereas rationalizability by a weak order (equivalently, WARP) is not. We charac-
terize resolvable choices, and show that resolvability generalizes WARP.

1  Introduction

The theory of revealed preferences pioneered by Samuelson (1938) postulates that 
preferences can be derived from choices: an agent’s choice behavior is observed, 
and her preference structure is revealed from it. In this paper we present a theory 
of choice resolutions, which is inspired by the same principle of revealing a hidden 
attitude, but aims at inferring a different type of knowledge. In fact, the outcome of 
our analysis consists of an acquired information about a possible ‘decomposability’ 
of the selection process into simpler—typically more understandable—choices.

In real life, the process of choice naturally goes through several steps. Recent 
theories of bounded rationality provide different modelizations of this phenomenon: 
see, for instance, the approaches based on choice from menus—as in Dekel et  al. 
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(2001), Gul and Pesendorfer (2001)—, sequential rationalization—as in Apesteguía 
and Ballester (2013), Au and Kawai (2011), García-Sanz and Alcantud (2015), Man-
zini and Mariotti (2007, (2012), Masatlioglu and Nakajima (2013), Tyson (2013)—, 
and simultaneous multi-rationalization—as in Cherepanov et al. (2013), Kalai et al. 
(2002). In a similar, but somehow orthogonal, way, choice resolutions aim at captur-
ing the possibility to understand a possibly complicated choice behavior by decon-
structing it in simpler choices at different stages.

Although the main use of choice resolutions is for deconstruction purposes—that 
is, going ‘backward’, starting from an observed choice behavior—, this technique 
can be also employed in the ‘forward’ direction, that is, to construct a choice out 
of simpler ones. However, in this paper we shall mostly concentrate on the ‘back-
ward’ interpretation of resolutions, especially because of its relationship to theories 
of bounded rationality.

1.1 � Resolutions

Our main goal is essentially descriptive, namely to obtain an accurate breakdown of 
a choice process into simultaneous/sequential stages. To eventually accomplish this 
ambitious task, here we deal with the simplest version of a decomposition proce-
dure, called ‘one-point resolution’. Nevertheless, we wish to clarify from the outset 
that this limitation is only apparent: in fact, a complete decomposition of a choice 
in elementary steps can always be obtained by a sequence of one-point resolutions.

The idea of a one-point resolution is to deconstruct/reconstruct a primitive choice 
behavior using the following ingredients: (1) two disjoint choices, the ‘base’ and the 
‘fiber’, defined on smaller ground sets; (2) a selected item in the base set, which is 
‘blown-up’ into the fiber choice; and (3) an assumption of independence of the base 
and the fiber. More formally, we identify a base choice space1(X, cX) and a special 
item x ∈ X , and then resolve x into a fiber choice space (Y , cY ) , thus obtaining a 
larger choice space

Here the set Z is formed by substituting the item x by the set Y, whereas the choice 
cZ is a meaningful amalgamation of the choices cX and cY . The pair (Z, cZ) is called 
the one-point resolution of (X, cX) at x into (Y , cY ) . Figure 1 gives an intuitive repre-
sentation of such a process: the dotted lines suggest the idea of taking a magnifying 
glass, and looking at the item x in (X, cX) as being itself a menu with its own choice 
structure (Y , cY ).

Example 1  (Carte Blanche) The CEO of a corporation gives full authority to the 
Vice-President (VP) of the Research and Development (R&D) Department within 

1  A choice space is a pair (X, cX) , where X is a nonempty set, and cX ∶ �X → �X is a map defined on a 
nonempty family �X of nonempty subsets of X with the property that c(A) ⊆ A for any A ∈ �X . In this 
paper, we shall only address the case �X ∶= 2X⧵{�} , that is, the choice domain is the collection of all 
nonempty subsets of X.
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an allotted budget: the goal is to develop new techniques to acquire market quotas, 
currently owned by competitors. Thus, all choices on the projects/investments of the 
R&D Department are made by its VP. In this model, the choices made by the CEO 
are encoded by (X, cX) , the item x is represented by the investments concerning the 
R&D Department, and x is resolved into the choices effectively made by the R&D 
Department, encoded by (Y , cY ).

The operation of one-point resolution naturally extends in two directions: 

	 (i)	 vertically, by ‘sequentially’ repeating the decomposition process any (possibly 
infinite) number of times for distinct base and fiber spaces;

	 (ii)	 horizontally, by ‘simultaneously’ resolving several (possibly all) items of the 
base space into fiber spaces.

The combination of vertical/horizontal resolutions yields a resolution tree, whose 
branches exhibit all delegations of independent tasks of an observed choice 
behavior.2

Applications of resolutions are possible in several scenarios, e.g., corporate struc-
tures, investment portfolios, hiring process with limited budget. For instance, con-
sider again the case of a corporation, whose complex organization induces the CEO 
to partially delegate decision authority to VPs of departments (which, in turn, have 
their own hierarchical structure). Then detecting the existence of fully autonomous 
units in the corporation by just looking at its choice behavior on projects may have 
a high strategic impact in the decision-making process of its competitors. In this 
context, the next example suggests how resolutions may apply in an ‘unfair’ market 
competition.

Example 2  (Divide et Impera, alias Decompose and Bribe) Assume a corporation 
A wants to (re)gain competitiveness over another corporation B. To accomplish this 
goal at any cost, the CEO of A assembles a team of analysts. By carefully studying 
the investments of B, this team establishes that the decisions of the R&D Depart-
ment of B are fully independent of the CEO of B. (For instance, imagine a situation 
in which all technical choices related to research are too novel and complicated to be 
judged by the CEO.) As a consequence, the CEO of A contacts the VP of the R&D 
Department of B, and bribes him to make research and development of B go to a 
dead end.

In a different direction, resolutions are useful for obtaining a compact representa-
tion of a choice behavior in terms of simpler choices. The next example illustrates 
this point.

2  Needless to say, the possibility to have a stochastic dependence of the fibers from the base would make 
our model more realistic and powerful. However, dropping the assumption of independence requires a 
more sophisticated approach, so here we restrict our analysis to the simple case of independent choices.
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Example 3  (Gemma’s choice) On Sundays, Gemma and her family have lunch at the 
same restaurant. Gemma only likes a few dishes, namely pizza (p), chips (c), sea 
bass (s), and tuna (t). She chooses as follows (selected items are underlined):

Thus, for instance, pcst says that Gemma selects sea bass and chips even if pizza 
and tuna are also available in addition to them. The core of Gemma’s prefer-
ences is explained by a linear sequence of strict preferences over menus, namely 
{c, s} ≻ {c, t} ≻ {p} ≻ {s} ≻ {t} , and everything else follows from it. Despite the 
simplicity of this choice, one-point resolutions do possess explanatory power also in 
this case. To illustrate the utility of the resolution model, let f (fish) be a ‘new’ item, 
and proceed as follows:

•	 (X, cX) is the base choice, where X = {p, c, f } , and cX is given by pcf  , pc , pf  , cf ;
•	 f is the base point in X;
•	 (Y , cY ) is the fiber choice, where Y = {s, t} , and cY is given by st.

Then the choice (1) can be ‘decomposed’ as follows:3

In other words, Gemma’s behavior has two representations, namely (1) and (2): the 
first is ‘direct’, and explicitly describes her tastes on each available menu; the second 
is ‘indirect’, and uses two simpler selections to describe her tastes. It is apparent that 
(2) is a more compact—and, possibly, more effective—description than (1).

1.2 � Three questions

A first task of this paper is to examine the ‘rationality’ features of the resolution 
model. Recall that a choice is rationalizable whenever there is a binary relation such 
that the choice behavior is obtained by the maximization of this relation. Thus, it is 
natural to ask whether resolutions preserve (back and forth) the axioms of choice 
consistency that are related to rationalization, such as Samuelson’s (1938) WARP 
(Weak Axiom of Revealed Preference), Chernoff’s (1954) property (�) , and Sen’s 
(1971) property (�) , that is,

(1)pcst , pcs , pct , pst , cst , pc , ps , pt , cs , ct , st .

(2)

Fig. 1   A one-point resolution 

3  See Example 8 in Sect. 4.2 for all technical details.
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Question 1: If an axiom of consistency holds for both the base choice and the 
fiber choice, does it also hold for the resolved choice (forward preservation)? 
What about the converse (backward preservation)?

We show that the answer to the above question is positive—both forward and back-
ward—for most of these properties. In particular, a resolved choice is rationalizable 
if and only if the base choice and the fiber choice are both rationalizable. However, 
one-point resolutions do not typically preserve (forward) the rationality features 
encoded by WARP. In other words, it usually happens that even if the base choice 
and the fiber choice are both rationalizable by a total preorder (reflexive, transitive, 
and complete), the transitivity of the revealed preference is lost in passing to the 
resolved choice.

From an algorithmic point of view, resolutions may provide an alternative way to 
test the rationalizability of a choice. This is linked to the resolvability of a choice, 
that is, the possibility to understand a given choice as the resolution of two simpler 
choices. In fact, instead of testing directly that the original choice satisfies the two 
consistency properties (�) and (�)—which, as it is well-known, characterize rational-
izability—, one may first test whether a choice is resolvable, and only then whether 
properties (�) and (�) hold for these simpler choices. Since the above procedure 
relies on an algorithm to test the resolvability of a choice, we also ask

Question 2: Can we effectively detect whether a choice can be explained as the 
resolution of two simpler choices?

In this paper, we provide a constructive answer to this question, characterizing 
resolvable choices by the existence of a shrinkable menu: this is a subset of the 
ground set such that an external observer cannot discern its choice structure from 
outside the menu itself.

For descriptive purposes, in this paper we provide a taxonomy of resolutions for 
small ground sets, determining (up to isomorphisms) all choices on a three-element 
set that are resolvable. It turns out that these choices are also rationalizable. This 
enlightening fact suggests that the two notions of choice rationalizability and choice 
resolvability may be linked to each other. Thus, we raise a last query:

Question 3: Is there any relationship between rationalizability and resolvability?

Question  3 may look redundant. Indeed, on the one hand, rationalizability is a 
‘global’ property, which reveals an underlying preference structure (in fact, the max-
imization of a binary relation explains choice behavior). On the other hand, resolv-
ability is a ‘local’ property, which reveals the possibility to deconstruct the primitive 
choice behavior at a point (in fact, a magnifying glass is applied to an item of the 
base space). Maybe contrary to expectations, there is a striking connection: in fact, 
resolvability generalizes WARP.
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1.3 � Relation with literature

From a methodological point of view, the technical features of our model link it to 
the literature in mathematics. In fact, the analysis developed in this paper is inspired 
by that of a topological resolution, originally introduced by Fedorc̆uk, V. V. (1968), 
and then extensively studied by Watson (1992). This elegant mathematical notion 
has proven to be very useful in the field of set-theoretic topology, providing a com-
mon background for many seemingly different topological spaces.

From a similar point of view, our model is also reminiscent of a well-known 
technique in graph theory: see the pioneering paper of Gallai (1967), as well as the 
follow-up literature on modular decompositions of graphs and more general struc-
tures. Graph decomposition has proven relevant also in economics: see, e.g., Mou-
lin (1986) for a model of voting that employs these types of tools. Furthermore, 
the notion of composition of binary relations, as given in Bang-Jensen and Gutin 
(2001, p. 8), is a particular case of choice resolutions.

From a different point of view, since we aim at detecting some facts underlying 
a choice behavior, the topic of this paper is linked to the literature on revealed pref-
erences and bounded rationality. We shall mention several references of this kind 
along the way. Here we only recall some classical papers on the rationalizability of 
a choice, namely Samuelson (1938), Chernoff (1954), Arrow (1959), Sen (1971), 
and Plott (1973): their results will be fundamental in showing that most features of 
rationality are fully preserved by resolutions.

1.4 � Organization of the paper

Section 2 defines one-point resolutions and shows its full generality for decomposi-
tion purposes (Theorem 1). Section 3 answers Question 1, showing that rationaliz-
ability, rationalizability by a preorder, path independence, and rationalizability by 
two sequential criteria are preserved back and forth by resolutions (Theorems 2, 3, 
and  4); however, rationalizability by a total preorder is only preserved in special 
cases (Theorem 5). Section 4 answers Question 2, giving a descriptive characteriza-
tion of resolutions by means of the notion of shrinkable menu (Theorem 6); it also 
shows that shrinkability is a generalization of the notion of ‘indiscernibility’ (Theo-
rem 7). Section 5 partially answers Question 3, showing that any nontrivial choice 
satisfying WARP is resolvable (Theorem 8). Section 6 suggests future directions of 
research. All proofs are in the Appendix.

2 � Resolutions

In this section we introduce our model, prove its generality, give some examples, 
and describe possible interpretations. To start, we provide basic terminology.

In what follows, X is a nonempty set of alternatives, and �X = 2X⧵{�} is 
the family of all nonempty subsets of X. A choice correspondence on X is a map 
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c ∶ �X → �X such that c(A) ⊆ A for all A ∈ �X ; we call X the ground set, �X the 
choice domain, A ∈ �X a menu, and elements of a menu items. For every menu 
A ∈ �X , c(A) is the choice set of A, and comprises all items of A that are deemed 
‘selectable’ by the economic agent. If c(A) is a singleton for any menu A, then 
we call c a choice function, and identify it with the underlying map c ∶ �X → X 
(defined in the obvious way). To simplify terminology, we often refer to a choice 
correspondence as a choice. The pair (X, c) is a choice space.

Given a choice space (X, c), a menu A ∈ �X is improper if it is either a single-
ton or the whole ground set X; it is proper otherwise. Obviously all singletons are 
fixed points of c, that is, c({x}) = {x} for each x ∈ X ; thus, it suffices to define c for 
menus with at least two items. Whenever dealing with finite menus, we shall sim-
plify notation by underlining all selected items: thus, for instance, a b d e f  stands for 
c({a, b, d, e, f }) = {a, b, e}.

The following notion of homomorphism between choice spaces plays a relevant 
role in our analysis, because most structural results given in this paper are stated ‘up 
to isomorphisms’.

Definition 1  A homomorphism from a choice space (X, cX) to a choice space (Y , cY ) 
is a structure preserving map � ∶ X → Y  , that is, �(cX(A)) = cY (�(A)) for each 
A ∈ �X.4 If � is a bijection, then it is an isomorphism; in this case, we say that 
(X, cX) and (Y , cY ) are isomorphic, and denote this fact by (X, cX) ≅ (Y , cY ).

Substructures of choice spaces are defined in the expected way:

Definition 2  Given a choice space (X,  c) and a nonempty set X′ ⊆ X , we 
define the subchoice (correspondence) c↾X′ on X′ by c↾X� (A) ∶= c(A) for each 
A ∈ �X� = 2X

�

⧵{�} . The pair 
(
X′, c↾X′

)
 is called a choice subspace of (X, c), denoted 

by (X�, c↾X� ) ⊑ (X, c).

2.1 � One‑point resolutions

The core notion of this paper is that of one-point resolution.

Definition 3  Let (X, cX) and (Y , cY ) be disjoint choice spaces, i.e., X ∩ Y = �.5 Select 
x ∈ X , and set Z ∶= (X⧵{x}) ∪ Y  . The projection is the map � ∶ Z → X defined by

Then, the one-point resolution of (X, cX) at x into (Y , cY ) , denoted by

�(z) ∶=

{
z if z ∈ X⧵{x}

x if z ∈ Y .

4  As customary, we use the same notation for a map � ∶ X → Y  and the (set-)map � ∶ �X → �Y induced 
by � , defined by A ↦ �(A) = {�(a) ∶ a ∈ A} for all A ∈ �X.
5  Disjointness of X and Y is a natural condition, which stems from the fact that the two choice spaces 
involved in a resolution must be mutually independent.
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is the choice space (Z, cZ) , where cZ ∶ �Z → �Z is the choice correspondence 
defined by

Then (X, cX) and (Y , cY ) are, respectively, the base (choice space) and the fiber 
(choice space), whereas the distinguished item x ∈ X is the base point. The one-
point resolution  is said to be nontrivial if both X and Y contain at 
least two items, and trivial otherwise.

Notice that Definition 3 is sound, since the choice correspondence cZ is well-
defined. Indeed, if A ∈ �Z is such that x ∈ cX(�(A)) , then, in particular, x ∈ �(A) ; 
it follows that A ∩ Y  is nonempty, cY (A ∩ Y) makes sense, and cZ(A) is nonempty.

Remark 1  Trivial one-point resolutions are uninformative. Indeed, if X = {x} , then 
Z = Y  , and so (Z, cZ) and (Y , cY ) are exactly the same. On the other hand, if Y = {y} , 
then Z = (X⧵{x}) ∪ {y} , and (Z, cZ) and (X, cX) are isomorphic.

For the sake of illustration, the next example describes a basic instance of 
resolution.

Example 4  (An elementary resolution) Let (X, cX) and (Y , cY ) be the choice spaces

We determine  . Clearly, Z = {b, c, d} . Next, 
we show that cZ is given by bcd , bc , bd , cd . Since the projection 
� ∶ {b, c, d} → {a, b} is such that �(b) = b and �(c) = �(d) = a , we get 
cX(�({b, c, d})) = cX(�({b, c})) = cX(�({b, d})) = cX(�({c, d})) = {a} , and so the 
first line of definition (3) yields

Hereafter, we shall be using a suggestive notation to identify one-point resolutions, 
e.g., in the case described above

There are several possible interpretations of the notion of one-point resolution. 
Here is one in terms of a ‘delegation of tasks’, for two different settings.

(3)cZ(A) ∶=

{(
cX(�(A))⧵{x}

)
∪ cY (A ∩ Y) if x ∈ cX(�(A))

cX(�(A)) otherwise.

(X, cX) = {a, b} with ab and (Y , cY ) = {c, d} with cd.

cZ({b, c, d}) =
(
cX(�({b, c, d}))⧵{a}

)
∪ cY ({b, c, d} ∩ {c, d}) = � ∪ cY ({c, d}) = {c} ,

cZ({b, c}) =
(
cX(�({b, c}))⧵{a}

)
∪ cY ({b, c} ∩ {c, d}) = � ∪ cY ({c}) = {c} ,

cZ({b, d}) =
(
cX(�({b, d}))⧵{a}

)
∪ cY ({b, d} ∩ {c, d}) = � ∪ cY ({d}) = {d} ,

cZ({c, d}) =
(
cX(�({c, d}))⧵{a}

)
∪ cY ({c, d} ∩ {c, d}) = � ∪ cY ({c, d}) = {c} .
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(Corporate structures) A company with a CEO and a single VP (of, say, the 
marketing department) makes choices over projects. The CEO decides: first, 
whether these decisions involve the marketing department or not; second, if mar-
keting is involved, only then asking the VP to suggest choices; and, third, select-
ing one or more projects to undertake.

(Investment portfolios) An agent makes investments, possibly relying on a stock 
broker. The investor decides: first, whether to invest in stocks or not; second, if 
she decides to invest in stocks, only then asking the stock broker for recommen-
dations; and, third, choosing one or more particular stocks to purchase.

Definition (3) is compact, and allows one to define special types of one-point resolu-
tions on the basis of suitable properties of the projection (e.g., in a topological set-
ting, requiring that the projection is continuous, or a quotient map, or closed, etc.).

The next result provides two alternative ways of looking at one-point resolutions. 
The first reformulation gives a taxonomy of cases based on the fact that the menu is 
either ‘pure’ (i.e., it is a subset of either X or Y) or ‘mixed’ (i.e., it intersects both X 
and Y). The second reformulation totally avoids using the projection, thus giving a 
more transparent—but unfortunately less agile—reading of the notion of one-point 
resolution.

Lemma 1  Let  be a one-point resolution. For any A ∈ �Z,

Lemma 1 decomposes the definition of one-point resolution into mutually exclu-
sive cases. In (4), for a pure menu, both the base and the fiber are used to make the 
selection: see the first two lines of (4). Otherwise, for a mixed menu, look at whether 
the base point is chosen or not in the projection of the menu on X, and finally make 
the selection: see the last two lines of (4).

Formulation (5) yields a more direct interpretation. The agent partitions Z into 
X⧵{x} and Y, where x is some ‘imaginary’ alternative, and then she chooses from 
A ∈ �Z as follows. If A and Y are disjoint (line 1), she only uses cX . If A and Y inter-
sect (lines 2 and 3), then she distinguishes whether the imaginary alternative x is (i) 
not choosable from A ∩ X ∪ {x} , or (ii) choosable from it: in case (i), she uses cX ; in 
case (ii), she uses both cX and cY . In other words, the imaginary alternative x cap-
tures the general attractiveness of the alternatives in Y, and, whenever x is not desira-
ble enough compared to alternatives in A ∩ X , the agent ignores all alternatives in Y.

(4)

cZ(A)=

⎧
⎪⎨⎪⎩

cX(A) if A ⊆ X

cY (A) if A ⊆ Y

cX(𝜋(A)) if A ∩ X ≠ �,A ∩ Y ≠ �, andx ∉ cX(𝜋(A))�
cX(𝜋(A)) ∪ cY (A ∩ Y)

�
⧵{x}if A ∩ X ≠ �,A ∩ Y ≠ �, andx ∈ cX(𝜋(A))

(5)

=

⎧
⎪⎨⎪⎩

cX(A) if A ∩ Y = �

cX(A ∩ X ∪ {x}) if A ∩ Y ≠ � andx ∉ cX(A ∩ X ∪ {x})�
cX(A ∩ X ∪ {x}) ∪ cY (A ∩ Y)

�
⧵{x}if A ∩ Y ≠ � andx ∈ cX(A ∩ X ∪ {x}).
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Using substructures (see Definition 2), we can identify copies of the base and the 
fiber inside a one-point resolution:

Lemma 2  Let  be a one-point resolution. We have:

(i) cZ↾Y = cY;
(ii) cZ↾X⧵{x} = cX↾X⧵{x};
(iii) for each y ∈ Y , cZ↾X⧵{x}∪{y} ≅ cX (via the projection �).

The following immediate consequence of Lemma 2 will be useful in Sect. 3: in 
fact, it will allow us to conclude that if a one-point resolution satisfies some proper-
ties of choice consistency, then so do both the base and the fiber.

Corollary 1  The base and the fiber of a one-point resolution are isomorphic to sub-
spaces of the one-point resolution.

2.2 � Resolvable choices

Not all choices can be seen as one-point resolutions of simpler choices. For instance, 
consider the following simple modification of Example 3.

Example 5  (Gemma’s extended choice) Suppose Gemma’s preferred restaurant also 
serves salmon (m). Gemma likes salmon, but she prefers having it paired up with 
fish dishes (never with chips). In fact, her best choice is ‘tuna & salmon’. Accord-
ingly, Gemma displays the following additional selections from the menus that 
include salmon:

In the Appendix, we shall show that this choice cannot be seen as a nontrivial 
resolution.

In fact, the above choice is ‘irresolvable’ in the following sense:

Definition 4  A choice space (Z, c) is resolvable if it is isomorphic to a nontrivial 
one-point resolution; otherwise, it is irresolvable. In what follows, we shall some-
times abuse notation, and call the choice c resolvable whenever the choice space 
(Z, c) is resolvable.

Resolvable choices can be arbitrarily complicated. On the other hand, the situa-
tion is quite simple on small ground sets, as the next example shows.

pcstm, pcsm, pctm, pstm, cstm, pcm, psm, ptm, pcm, stm, tcm, scm, pm, cm, sm, tm.
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Example 6  (Resolvability on small sets) On a 2-element set X = {a, b} , there are 
exactly two non-isomorphic choices, namely ab and ab , and both are irresolvable. 
On a 3-element set X = {b, c, d} , there are exactly five pairwise non-isomorphic 
resolvable choices, namely

There are no other resolvable choices on X, since both the base and the fiber must be 
nontrivial. The one-point resolution (i) was explained in Example 4; the construc-
tion of other four resolved space is similar. In Sect. 5, we shall see that these five 
resolvable choices are also ‘rationalizable’, and there is one other choice on a 3-ele-
ment set that is rationalizable but irresolvable.

For a ground set of size larger than three, finding whether a choice is resolvable 
or irresolvable can be more challenging.6

2.3 � Horizontal resolutions

We conclude this preliminary part of the paper by showing that the notion of one-
point resolution is a special case of the following general (‘horizontal’) notion of 
resolution.7

Definition 5  Let (X, cX) be a base choice space, and {(Yx, cYx )}x∈X a family of fiber 
choice spaces. Suppose all fiber sets Yx are pairwise disjoint, and they are also dis-
joint from the base set X. Set Z ∶=

⋃
x∈X Yx , and define the projection � ∶ Z → X by 

�(z) ∶= x for all x ∈ X and z ∈ Yx . Let cZ ∶ �Z → �Z be the choice on Z defined by

for any A in �Z . Notice that cZ is a well-defined choice, since � ≠ cZ(A) ⊆ A for 
all nonempty A ⊆ Z . The choice space (Z, cZ) is called the horizontal resolution of 
(X, cX) into 

(
Yx, cYx

)
x∈X

 , and is denoted by .

cZ(A) ∶=
⋃

x∈ cX (�(A))

cx(A ∩ Yx)

6  The descriptive characterization of resolvable choices given in this paper (Theorem 6 in Sect. 4), which 
is based on the notion of ‘shrinkable menu’, can be used for this, along with an effective algorithm for 
detecting shrinkability. Here by ‘effective’ we mean an algorithm whose complexity is polynomial in the 
majority of cases. Such an algorithm may employ the technique used in the proof of Example 5, given in 
the Appendix.
7  A similar notion of horizontal resolution is introduced by Cantone et al. (2019) for some combinatorial 
structures, called ‘convex geometries’ by Edelman and Jamison (1985).
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It turns out that one-point resolutions and horizontal resolutions essentially have 
the same power in producing new choice spaces from given ones:

Theorem 1 

	 (i)	 A one-point resolution of a base choice space (X, cX) is isomorphic to a hori-
zontal resolution of (X, cX).

	 (ii)	 A horizontal resolution of a finite base choice space (X, cX) into (Yx, cYx )x∈X is 
isomorphic to a finite sequence of one-point resolutions at each of the points 
of X, in any order.

	 (iii)	 A horizontal resolution of an infinite base choice space (X, cX) into (Yx, cYx )x∈X 
is isomorphic to an inverse limit of one-point resolutions at the points of X.

The proof of part (i) of Theorem  1 is immediate. Indeed, given a one-
point resolution  , take the family (Yx, cYx )x∈X , where 
Yx ∶= Y  and cYx ∶= cY if x = x0 , and Yx ∶= {x} otherwise. It is easy to check that 

.
On the contrary, the proof of parts (ii) and (iii) are rather long, although not con-

ceptually difficult. The proof of (ii) is given in the Appendix. The proof of (iii) is 
more technical, and is available upon request.

Terminology. In view of Theorem 1, in this paper we only study one-point reso-
lutions. Furthermore, we shall use the more agile term ‘resolution’ in place of ‘one-
point resolution’.

3 � Consistency of resolutions

We answer Question 1 from the Introduction, by showing that most of the properties 
of consistency considered in the literature are inherited (back and forth) by a resolu-
tion. We also prove that, on the contrary, WARP fails to be preserved in the forward 
direction, except in special cases, which we characterize.

3.1 � Rationalizable choices and axioms of choice consistency

Here we present the basics of the theory of revealed preferences pioneered by Samu-
elson (1938), and successively developed (in chronological order) by Houthakker 
(1950), Chernoff (1954), Arrow (1959), Richter (1966), Sen (1971), and Herzberger 
(1973), among several others. See also the monograph by Chambers and Echenique 
(2016) for a recent perspective on revealed preference theory.

A weak preference on a nonempty set X of alternatives is a reflexive relation ≿ 
on X, where x ≿ y means that x is ‘weakly preferred to’ y. A weak preference ≿ is 
the disjoint union of two derived relations: (1) the strict preference ≻ , defined by 
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x ≻ y if x ≿ y and ¬(y ≿ x) ; and (2) the indifference ∼ , defined by x ∼ y if x ≿ y 
and y ≿ x . A weak preference ≿ on X is complete (or total) if x ≿ y or y ≿ x holds 
for all distinct x, y ∈ X . Further, ≿ is quasi-transitive if its strict preference ≻ is 
transitive,8 and acyclic if there are no n ≥ 3 elements x1, x2,… , xn ∈ X such that 
x1 ≻ x2 ≻ … ≻ xn ≻ x1 . Obviously, transitivity implies quasi-transitivity, and the 
latter property implies acyclicity. A weak preference is a preorder if it is transitive, 
a quasi-preorder if it is quasi-transitive, and a linear order if it is an antisymmetric 
total preorder.9

Given ≿ on X, the set of maximal elements of a nonempty set A ⊆ X is

Notice that if ≿ is complete, then the set of maximal elements of A can be equiva-
lently written as max(A,≿) = {a ∈ A ∶ a ≿ b for all b ∈ A} . Observe also that, for 
any finite acyclic relation ≿ on X, we have max(A,≿) ≠ � for all nonempty A ⊆ X.

The rationality of a selection process is typically encoded by the possibility to 
justify it by maximizing a binary relation—see Samuelson (1938), Arrow (1959), 
and Sen (1971):

Definition 6  A choice c ∶ �X → �X is rationalizable if there is a weak preference ≿ 
on X such that c(A) = max(A,≿) for all A ∈ �X . In particular, c is:

•	 transitively rationalizable if it is rationalizable by a total preorder;
•	 quasi-transitively rationalizable if it is rationalizable by a preorder.

Clearly, a binary relation that rationalizes a (rationalizable) choice is acyclic. 
Further, for any rationalizable choice c, there are many weak preferences on X that 
induce c. Indeed, what matters for the process of rationalization is only the asym-
metric part of the rationalizing preference, whereas the derived indifference plays 
no role for this purpose.10 Thus, a choice c is rationalizable if and only if there is a 
unique asymmetric relation that generates c by maximizing over menus.

It is well-known that the rationalizability of a choice is connected to the satisfac-
tion of suitable axioms of choice consistency, which are formulas codifying rules of 
coherent behavior of an economic agent. Among the several properties of this kind 
that are considered in the literature, the following are relevant to our analysis:

◊ Axiom (�) (standard contraction consistency): for any A,B ∈ �X and x ∈ A , if 
A ⊆ B and x ∈ c(B) , then x ∈ c(A).

max(A,≿) = max(A,≻) ∶= {a ∈ A ∶ b ≻ a for no b ∈ A}.

8  Recall that a (binary) relation R on X is transitive if x R y R z implies x R z for all x, y, z ∈ X.
9  Recall that a relation R on X is antisymmetric if (x R y) ∧ (y R x) implies x = y for all x, y ∈ X.
10  However, indifference becomes relevant to identify indecisive behavior: see Eliaz and Ok (2006) for 
the notion of a regular preorder, and Giarlotta and Watson (2017) for some notions of revealed similar-
ity.
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◊ Axiom (�) (standard expansion consistency): for any {Ai ∶ i ∈ I} ⊆ 𝛺X and 
x ∈

⋂
i∈I Ai , if x ∈ c(Ai) for all i ∈ I , then x ∈ c

�⋃
i∈I Ai

�
.

◊ Axiom (�) (symmetric expansion consistency): for any A,B ∈ �X and x, y ∈ A , 
if A ⊆ B , x, y ∈ c(A) , and y ∈ c(B) , then x ∈ c(B).

◊ Axiom (�) (standard replacement consistency): for any A ∈ �X , y ∈ A , and 
x ∈ X⧵A , if y ∈ c(A) and y ∉ c(A ∪ {x}) , then x ∈ c(A ∪ {x}).

◊ WARP (Weak Axiom of Revealed Preference): for any A ∈ �X and x ∈ A , if 
there are y ∈ c(A) and B ∈ �X such that y ∈ B and x ∈ c(B) , then x ∈ c(A).

◊ WARNI (Weak Axiom of Revealed Non-Inferiority): for any A ∈ �X and x ∈ A , 
if for each y ∈ c(A) there is B ∈ �X with x ∈ c(B) and y ∈ B , then x ∈ c(A).

Axiom (�) is studied by Chernoff (1954), whereas axioms (�) and (�) are due to Sen 
(1971). Axiom (�) is very recent (Cantone et al. 2016). WARP is introduced in Sam-
uelson (1938), and WARNI is the weakening of WARP due to Eliaz and Ok (2006).

The interpretation of these properties is natural. Chernoff’s axiom (�) says that if 
an item is selected from a menu B, then it is still selected from any submenu A ⊆ B 
containing it. Sen’s axiom (�) states that if an item is selected from all menus in a 
family F  , then it is also selected from the menu obtained as the union of the ele-
ments of F  . Sen’s axiom (�) says that if two items are selected from a menu A, 
then they are simultaneously either selected or rejected in any larger menu B. Axiom 
(�) states that if an item y is selected from a menu A but not from the larger menu 
A ∪ {x} , then the added item x is selected from A ∪ {x} . WARP summarizes fea-
tures of contraction and expansion consistency in a single axiom: it says that an item 
x is selected from a menu A whenever there is an item y selected from A with the 
property that x is chosen from some other menu B containing both x and y. WARNI 
is a weaker version of WARP.

The next result collects some known relations between the rationalizability of a 
choice correspondence and all axioms of choice consistency introduced so far.11 On 
this point, see Arrow (1959), Sen (1971), and Cantone et al. (2016).12

Theorem  (Rationalization by Axioms) For any choice c, we have:

(i) c is rationalizable ⟺ (�) and (�) hold.
(ii) c is transitively rationalizable ⟺ WARP holds ⟺ (�) and (�) hold.
(iii) c is quasi-transitively rationalizable ⟺ WARNI holds ⟺ (�), (�), and (�) 
hold.

11  Some of the stated results hold for choices defined on more general domains. However, in the general 
case, WARNI is stronger than quasi-transitive rationalizability, whereas the joint satisfaction of axioms 
(�) , (�) , and (�) is equivalent to the latter property: see Cantone et al. (2016).
12  In particular, Cantone et al. (2016) provide a taxonomy of rationalizable choices, which are classified 
according to the transitive degree of the rationalizing preference. These ‘degrees of transitivity’, called 
(m, n)-Ferrers properties (Giarlotta and Watson 2014, 2018), give rise to new axioms (�m,n) of choice 
consistency, which are variations of standard replacement (�).
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3.2 � Backward preservation of axioms of choice consistency

The process to show that a property P is preserved by resolutions consists of two 
steps:

(Backward Preservation) if  satisfies P , then (X, cX) and (Y , cY ) 
satisfy P;
(Forward Preservation) if (X, cX) and (Y , cY ) satisfy P , then  sat-
isfies P.

Backward preservation is easy to prove, because it follows from a general result 
about the preservation of suitable formulas by passing to subspaces. Indeed, upon 
calling a property P of choice spaces hereditary whenever its satisfaction by any 
choice space (X, c) implies its satisfaction by any subspace of (X, c), Corollary 1 
readily yields

Lemma 3  If a resolution satisfies a hereditary property, then so do its base and its 
fiber.

Observe that every property P of choice correspondences that can be expressed 
in a ‘purely universally quantified’ manner by a formula ΦP is hereditary, provided 
that the domain is closed with respect to the operatations involved in ΦP.13 This is 
the case for all basic axioms of consistency examined in this paper.14 Thus Lemma 3 
readily yields their backward preservation. On the contrary, forward preservation is 
harder to prove (and fails in some cases).

3.3 � Preservation of rationalizability and quasi‑transitivity

The operation of resolution preserves the basic model of rational choice. To wit, 
here we show that properties (�) , (�) , and (�) are preserved back and forth by resolu-
tions. Since properties (�) , (�) , and (�) are hereditary, backward preservation follows 
from Lemma  3. On the other hand, a proof by cases yields forward preservation. 
Summing up, we have:

Theorem 2  A resolution satisfies property (�) (respectively, (�) , (�) ) if and only its 
base and its fiber satisfy (�) (respectively, (�) , (�)).

13  By a ‘purely universally quantified formula’ we mean any formula of the following form

in which F1,… ,Fm range over collections of menus, X1,… ,Xn range over menus, x1,… , xk range over 
items, and � is a quantifier-free formula that involves the standard set operations and constants.

(∀F1)… (∀Fm)(∀X1)… (∀Xn)(∀x1)… (∀xk)�

14  Notice that the formulation of WARP we have chosen is not purely universally quantified. However, 
there are many equivalent formulations of WARP, and some of them are of the claimed type.
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From Theorem 2 and Theorem ‘Rationalization by Axioms’, it readily follows

Corollary 2  A resolution is rationalizable if and only if both its base and its fiber are 
rationalizable. A resolution is quasi-transitively rationalizable if and only if both its 
base and its fiber are quasi-transitively rationalizable.

Corollary 2 can be suggestively rephrased as ‘rationality factors through resolu-
tions’. For instance, in a corporate structure setting, if the CEO makes a rational-
izable selection and delegates all marketing choices to a VP whose selections are 
rationalizable, then the overall selection is still rationalizable.

3.4 � Preservation of path independence

Resolutions also preserve (back and forth) some additional axioms of choice con-
sistency. Here we show that the following well-known property, usually attributed to 
Plott (1973), belongs to this category of axioms:

◊ PI (Path Independence): for any A,B ∈ �X , c(A ∪ B) = c(c(A) ∪ c(B)).

As Plott (1973) puts it, path independence stems for the fact that a dynamic process 
of selection often proceeds in a ‘divide and conquer’ manner: options are split up 
into smaller sets, a choice is made over each of these sets, the selected items are 
collected, and then a choice is made from them. Path independence means that the 
final outcome is independent of the way the alternatives are initially divided up for 
consideration.15

For finite choices, PI can be decomposed into (�) and (�) : see, e.g., Aizerman and 
Malishevski (1981) and Moulin (1985). However, this decomposition does not hold 
in the infinite case, since there are choices satisfying (�) and (�) for which PI fails.16 
Thus, to show that PI is preserved by resolutions, we need a direct argument, which 
yields

Theorem 3  A resolution is path independent if and only if both its base and its fiber 
are path independent.

15  The original explanation given by Plott (1973) works well for disjoint menus A and B. However, since 
A and B may intersect, the notion of path independence also covers some additional cases.
16  To prove the claim, let c ∶ 2X → 2X be the choice on X ∶= ℕ ∪ {x0} defined by

Notice that c fails to be rationalizable, since (�) does not hold: indeed, 0 ∈ c(ℕ) ∩ c({0, x0}) , however 
0 ∉ c(ℕ ∪ {0, x0}) = c(X) . The reader may easily verify that c satisfies both (�) and (�) , but not PI.

c(A) ∶=

⎧
⎪⎨⎪⎩

{minA} if x0 ∉ A

{min(A ∩ ℕ), x0} if x0 ∈ A and 2 ≤ �A� < ∞

{x0} if x0 ∈ A and
��A� = ∞ or �A� = 1

�
.
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3.5 � Preservation of rationalizability by two sequential criteria

In their model of bounded rationality, Manzini and Mariotti (2007) present an 
approach to explain choice behavior, which employs a finite number of binary pref-
erences (called ‘rationales’) in a fixed order for all available menus. In particular, a 
choice c is 2-sequentially rationalizable if there is an ordered pair (≻1,≻2) of asym-
metric relations on X such that c(A) = max(max(A,≻1),≻2) for all A ∈ �X.17

Manzini and Mariotti (2007) characterize the 2-sequential rationalizability of 
choice functions by the satisfaction of standard expansion (�) and a weaker form of 
WARP, which is stated as follows for choice correspondences:

◊ WWARP (Weak WARP): for any A,B ∈ �X and x, y ∈ A , if A ⊆ B , 
y ∉ c({x, y}) , and x ∈ c(B) , then y ∉ c(A).

The characterization of 2-sequential rationalizability proved by Manzini and Mari-
otti (2007) for choice functions does not hold for choice correspondences, as García-
Sanz and Alcantud (2015) show. However, under a weak property of choice consist-
ency, namely

◊ CWDE (Choosing Without Dominated Elements): for any A ∈ �X and 
x, y ∈ A , if y never chosen in menus containing x and y, then c(A) = c(A⧵{y}),

Manzini and Mariotti’s characterization still holds. In fact, we have:

Lemma 4  (García-Sanz and Alcantud 2015) A choice correspondence satisfying 
CWDE is 2-sequentially rationalizable if and only if properties (�) and WWARP 
hold for it.

Our ideal goal is to show that 2-sequential rationalizability is preserved by reso-
lutions. To that end, we would need a characterization of 2-sequential rationaliz-
ability, which, to the best of our knowledge, is not available yet. Thus, here we only 
prove a partial result:18

Theorem 4  Let  be a resolution such that (Z, cZ) , (X, cX) , and 
(Y , cY ) satisfy CWDE. Then (Z, cZ) is 2-sequentially rationalizable if and only if both 
(X, cX) and (Y , cY ) are 2-sequentially rationalizable.

18  Notice that any attempt to obtain a better result for resolutions on the basis of Lemma 4 fails, because 
CWDE is not hereditary.

17  Manzini and Mariotti (2007) define this notion for a choice function (i.e., single-valued). The exten-
sion to a choice correspondence (i.e., possibly multi-valued) is due to García-Sanz and Alcantud (2015).
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3.6 � Limited preservation of WARP

Since WARP is a hereditary property, Lemma 3 ensures that it is backward preserved 
by resolutions. On the contrary, forward preservation does not hold, in general.

Example 7  Consider the following resolution:  . Both the 
base and the fiber satisfy WARP, whereas the resolved choice does not, because 
property (�) fails: indeed, both items in {b, d} are selected, but b is selected from 
the larger menu {b, c, d} whereas d is not. (Notice that, according to Corollary 2, 
the resolved choice is quasi-transitively rationalizable, since it satisfies properties 
(�) , (�) , and (�).)

Here we characterize all cases in which WARP is preserved forward. As we shall 
see, forward preservation depends on either the features of the base point (which must 
be very special) or those of the fiber choice (which must be trivial).

Definition 7  Given a choice (X,  c), an item x ∈ X is called a repellent point for 
(X, c) if, for all menus A ∈ �X , either c(A) = {x} or x ∉ c(A) holds. Equivalently, x 
is repellent if x ∈ c(A) implies c(A) = {x} for each A ∈ �X.

Notice that, for a choice satisfying WARP, a repellent point must always be either at 
the top or at the bottom of the total preorder that rationalizes the choice. Then, we have:

Theorem 5  The following statements are equivalent for :

(i) (Z, cZ) satisfies axiom (�);
(ii) (X, cX) and (Y , cY ) satisfy axiom (�), and either x is a repellent point of (X, cX) or 
cY is the identity map (or both).

Theorems 2 and 5, along with Theorem ‘Rationalization by Axioms’, readily yield

Corollary 3  A resolution satisfies WARP if and only its base and its fiber satisfy 
WARP, and either the base point is repellent or the choice restricted to the fiber 
choice is the identity. Equivalently, a resolution is transitively rationalizable if and 
only if so are its base and its fiber, and either the base point is repellent or the fiber 
choice is the identity.

4 � Characterizing resolvability

Here we constructively answer Question 2 in the Introduction by identifying special 
menus.
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4.1 � Shrinkable menus

Definition 8  A menu E ∈ �Z in a choice space (Z,  c) is shrinkable if, for any 
A ∈ �Z,

(S1) if A ∩ E ≠ � , then c(A)⧵E = c(A ∪ E)⧵E;
(S2) if c(A) ∩ E ≠ � , then c(A) ∩ E = c(A ∩ E);
(S3) if A ∩ E ≠ � , then c(A ∪ E) ∩ E ≠ � if and only if c(A) ∩ E ≠ �.

Notice that improper menus (i.e., singletons and the whole ground set) are clearly 
shrinkable. The conditions of shrinkability (S1)–(S3) can be interpreted in the 
two settings described in Section 2.1.

(Corporate structures) In a corporation with a CEO and a VP of marketing:

(S1) the non-marketing tasks chosen by the CEO do not depend on which 
marketing tasks are available, as long as at least one is;
(S2) the tasks chosen by the VP do not depend on what non-marketing tasks 
are available;
(S3) whether or not a marketing task is chosen is unaffected by which mar-
keting tasks are available, as long as at least one is.

(Investment porftfolios) In an investment portfolio setting with a trusted stock 
broker:

•	 (S1) the non-stock investments purchased do not depend on which stocks 
are available, as long as at least one is;

•	 (S2) the particular stocks purchased by the investor do not depend on what 
non-stock investments are available;

•	 (S3) whether or not the investor purchases stocks at all is unaffected by 
which good stocks are available, as long as at least one is.

In these two settings, a shrinkable menu reveals (i) an autonomous department 
within the corporation, or (ii) an implicit trusted stock broker on whom the inves-
tor relies.

4.2 � Main result

We aim at characterizing resolvable choices. To start, we describe how a choice 
space with a shrinkable menu canonically induces another choice space.

Definition 9  Let (Z,  c) be a choice space, and Y ∈ �Z a shrinkable menu. Select 
x ∉ Z , set X ∶= (Z⧵Y) ∪ {x} , and let � ∶ Z → X be the projection, defined by 
�(z) ∶= z if z ∈ Z⧵Y  and �(z) ∶= x if z ∈ Y  . Define a choice cX ∶ �X → �X on X by 
setting, for any A ∈ �X,
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We call (X, cX) the base choice space induced by (Z, c) and Y (relative to x).

The idea underlying the definition of induced choice space is the following. 
The input is a primitive choice space (Z,  c), of which we wish to understand 
whether it is resolvable or not. To that end, we enquire about the existence of a 
shrinkable menu Y in (Z, c), which inherits a choice structure c ↾Y from the origi-
nal space. If such a shrinkable menu Y ∈ �Z exists, then we already have two of 
the three choice spaces involved in a resolution: the resolved space (Z, c) and the 
fiber space (Y , c ↾Y ) . We need a canonical way to define the base space (X, cX) and 
the base point x: Definition 9 does the job in a natural way.

Specifically, first we create the ground set X of (X, cX) in the only possible way: 
take any point x outside Z, and join it to the set of all points of Z that do not 
belong to Y. Second, we define the choice correspondence cX by using the primi-
tive choice c and the projection � as follows: for each menu A ∈ 2X that is a sub-
set of Z, we set cX ∶= c ; on the other hand, if A ∈ 2X contains x, then first we 
apply c to the menu A� ∈ 2Z⧵2X obtained from A by substituting x by Y, and suc-
cessively project this choice set onto X.

We are left to prove that this process really yields a decomposition of the prim-
itive choice in all cases in which there is a shrinkable menu. The next result wit-
nesses this fact.

Theorem  6  Let (Z,  c) be a choice, and Y ∈ 2Z a shrinkable menu. If (X, cX) 
is the base choice induced by (Z,  c) and Y (relative to some x ∉ Z ), then 

.

The proof of Theorem 6 is based on the following technical result:

Lemma 5  Let (Z, c) be a choice, and E ∈ 2Z a shrinkable menu. For each A ∈ 2Z 
such that A ∩ E ≠ � , we have:

The proof of Lemma 5 is easy, and is left to the reader. However, it is useful 
to describe how properties (S1)-(S3) are used to determine the choice set c(A) of 
a menu A that intersects a shrinkable menu E. Specifically, properties (S1) and 
(S3) are needed to prove the equality in the second line, that is, c(A) = c(A ∪ E) 
whenever E does not intersect c(A ∪ E) . On the other hand, property (S2) yields 
the first equality, that is, c(A) =

(
c(A ∪ E)⧵E

)
∪ c(A ∩ E) whenever E intersects 

c(A ∪ E).

cX(A) ∶=

{
c(A) if x ∉ A

�
(
c((A⧵{x}) ∪ Y)

)
if x ∈ A .

c(A) =

{(
c(A ∪ E)⧵E

)
∪ c(A ∩ E) if c(A ∪ E) ∩ E ≠ �

c(A ∪ E) if c(A ∪ E) ∩ E = � .
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From Theorem 6, we readily derive a characterization of resolvability:

Corollary 4  A choice is resolvable if and only if there is a shrinkable proper menu.

To efficiently use the characterization in Corollary 4, we need a fast algorithm 
that can detect the existence of a shrinkable menu when given data describing 
choice behavior. We have some partial results in this direction, which are related to 
the proof of Example 5 in the Appendix, where we suggest that the computational 
complexity of detecting resolvability is exponential, but nevertheless provide an 
algorithm that runs in polynomial (cubic) time in most of the practical cases.

We can now complete Example 3 of the Introduction, and formally write Gem-
ma’s choice at her preferred restaurant as a resolution of smaller choices.

Example 8  (Resolvability of Gemma’s choice) Recall from Example  3 the formal 
definition of Gemma’s choice behavior at the restaurant: pcst , pcs , pct , pst , cst , pc , 
ps , pt , cs , ct , st . It is easy to show that the proper menu {s, t} = {sea bass, tuna} , 
in which sea bass is preferred over tuna, is shrinkable. Thus, by Corollary 4, Gem-
ma’s choice is resolvable. Next, we use Theorem 6 to explicitly exhibit a decom-
position of her choice behavior in a base and a fiber. First we compute the base 
choice on {p, c, f } = {pizza, chips, fish} induced by {s, t} , obtaining pcf , pc, pf , cf  . 
This shows that Gemma selects fish and chips if both are available, and selects pizza 
alone over fish or chips if only one of the latter is available. (Notice that Gemma’s 
selection between pizza and fish-and-chips does not depend on whether either sea 
bass or tuna or both are available: this is the independence condition at the basis of 
the decomposition process.) Now Theorem 6 yields an explicit resolution of Gem-
ma’s choice as 

4.3 � Shrinkability and indiscernibility

In this section we briefly discuss a notion that is related to shrinkability, which is 
called indiscernibility.19 In fact, we shall explain why an alternative name for 
‘shrinkable menu’ may be ‘outer indiscernible menu’. To start, we recall the notion 
of an indiscernible menu from Cantone et al. (2019):20

Definition 10  Let (Z, c) be a choice space. A menu E ∈ �Z is indiscernible if the 
following two properties hold for each A ∈ �Z:

19  The indiscernibility of a menu encodes Leibniz’s principle of the ‘identity of indiscernibles’ within 
choice theory. On this principle, see Leibniz (1966).
20  To be precise, the notion of an indiscernible menu is originally defined for a finite choice space, and 
moreover in a different way: see Definition 9 in Section 4.1 of Cantone et al. (2019). The definition given 
here is the characterization of an indiscernible menus proved in Appendix  A of the mentioned paper, 
where instead no finiteness is assumed.
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(I1) if A ∩ E ≠ � , then c(A) = c(A ∪ E) ∩ A;
(I2) if c(A) ∩ E ≠ � , then c(A) ∩ E = A ∩ E.

The indiscernibility of a menu E intuitively says that the choice distinguishes 
neither the external relationships of E with other menus nor the internal structure 
of E. The next result links indiscernibility and shrinkability (hence, by Theorem 6, 
resolvability).

Theorem 7  The following statements are equivalent for a menu E:

(i) E is indiscernible;
(ii) E is shrinkable and c ↾E is the identity id2E.

In particular, a choice space in which there is an indiscernible proper menu is 
resolvable.

The condition c ↾E= id2E essentially says that the menu E is ‘inner indiscernible’. 
Thus, Theorem 7 can be restated as follows: A menu is indiscernible if and only if 
it is outer and inner indiscernible. Below we interpret Theorem 7 in the usual two 
settings.

(Corporate structures) If a department is ‘mindless’ (every possible task is 
chosen), then those choices are indistinguishable by the corporation. If certain 
actions always go together, then they can be viewed as the actions of a mindless 
department.

(Investment portfolios) If an investor gives her stock broker carte blanche (all 
available good stocks are chosen), then the investor does not distinguish between 
good stock investments. If an investor always chooses certain stocks together, 
when available, then these stocks can be viewed as chosen by a stock broker with 
carte blanche.

We close this section with a remark that sheds light on the notion of indiscernible 
menu.

Remark 2  Define on a choice space (X, c) a binary relation of revealed indiscernibil-
ity as follows: two items x, y ∈ X are (revealed to be) indiscernible if the menu {x, y} 
is indiscernible. Revealed indiscernibility is an equivalence relation on X, which 
preserves the choice structure and yields a fully informative quotient choice space. 
More precisely, whenever the ground set X is finite, revealed indiscernibility is the 
maximum ‘congruence relation’ on (X, c): see Cantone et al. (2019) for details.21

21  See also Giarlotta and Watson (2017), where revealed indiscernibility is paired up with other symmet-
ric binary relations to generate what is called a ‘necessary and possible indifference’.
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5 � Rationalizability and resolvability

We (partially) answer Question  3 of the Introduction, examining the relation-
ship between rationalizability and resolvability. There is a remarkable intersection 
between these notions, which provides a further motivation for our analysis in the 
spirit of revealed preference theory: all nontrivial choices that are rationalizable by 
a total preorder (i.e., satisfying WARP) are resolvable.22 Figure 2 summarizes the 
main findings of this section.

The simple idea developed in this section is that rationalizability makes resolv-
ability a problem about directed graphs (or, equivalently, binary relations) rather 
than choice. That is, when choice is rationalizable, resolvability can be rewritten as a 
requirement on the “rationalizing” directed graph.

The next example compares rationalizability and resolvability for choices on a 
small ground set.

Example 9  (Rationalizable vs resolvable on a 3-element set) Let X = {b, c, d} . There 
are exactly six pairwise non-isomorphic rationalizable choices on X. Five of them 
are the resolvable choices (i)-(v) described in Example  6. In fact, choices (i)-(iv) 
are rationalizable by a transitive revealed preference, whereas choice (v) satisfies 
properties (�) , (�) and (�) , but not WARP. The sixth rationalizable (but irresolvable) 
choice on a 3-element set is

Notice that this last choice fails to satisfy property (�) : indeed, d is chosen in 
A = {b, d} and not in A ∪ {c} = Z , but c is not selected from Z.

5.1 � Resolvability generalizes WARP

The main result of this section is the following:

Theorem  8  For any choice space with at least three items, WARP implies 
resolvability.

Given the relevance of Theorem 8, below we sketch the argument used to prove 
it. 

1.	 Let (Z, cZ) be a choice space satisfying WARP. By Theorem ‘Rationalization by 
Axioms’ part (ii), the choice correspondence cZ is rationalizable by a total preor-
der ≿Z . Two cases: (a) ≿Z is a linear order; (b) ≿Z is a total preorder that fails to 
be a linear order.

(vi) bcd, bc, bd, cd .

22  As a matter of fact, more is true. Indeed, additional types of rationalizable choices, which are justified 
by special types of preorders, are resolvable as well: see Cantone et al. (2020a).
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2.	 In case (a), there exists distinct z1, z2 ∈ Z that are consecutive with respect to ≻Z 
(i.e., z1 ≻Z z2 holds, and there is no z ∈ Z such that z1 ≻Z z ≻Z z2 ). Then the menu 
{z1, z2} is shrinkable, hence (Z, cZ) is resolvable by Corollary 4.

3.	 In case (b), there exists distinct z1, z2 ∈ Z that are indifferent with respect to ≿Z . 
Then the menu {z1, z2} is indiscernible, hence (Z, cZ) is resolvable by Theorem 7.

The above proof shows some leverage to extend Theorem 8 to other rationalizable 
choices. In fact, at step 3, the resulting menu is indiscernible, which, by Theorem 7, 
is stronger than saying that it is shrinkable. It turns out that Theorem 8 can be gen-
eralized to the case of choices that are rationalizable by a certain type of preorder 
(which encompasses a total preorder as a special case). Since the proof of the latter 
fact requires a long detour into the process of decomposition of preferences, we shall 
deal with this topic in a subsequent paper (Cantone et al. 2020a).

The next example exhibits a minimal instance of the fact that resolvability does 
not imply rationalizability; in particular, the converse of Theorem 8 is false.

Example 10  (Resolvable and non-rationalizable) Resolve any non-rationalizable 
choice on a 3-element set at a point into a 2-element choice space such that its two 
items are indifferent. The resulting choice space is resolvable (by construction) but 
not rationalizable (since otherwise, by Corollary 2, the base choice would be ration-
alizable as well).

5.2 � Quasi‑transitive rationalizability vs resolvability

A natural question is whether Theorem  8 can be extended to all choices that are 
rationalizable by an incomplete preorder. The answer is negative:

Fig. 2   Independence and connection between rationalizability and resolvability. The family of choices 
(on a ground set with at least three items) satisfying WARP is contained in the intersection of the fami-
lies of rationalizable choices and resolvable choices (Theorem 8). A similar inclusion does not hold for 
the family of choices rationalizable by a preorder, i.e., satisfying WARNI (cf.: Examples 11 and 12). Fur-
thermore, the dotted area is nonempty (Example 13)
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Proposition 1  Quasi-transitive rationalizability and resolvability are independent.

To justify Proposition 1, below we exhibit an irresolvable choice that is rational-
izable by a preorder (Example 11), and a resolvable choice that is rationalizable by a 
preference with an intransitive strict part (Example 12).

Example 11  (WARNI and irresolvable) Define a weak preference ≿ on X = {x, y, z, t} 
by letting x ∼ y , x ≻ z , x ≻ t , y ∼ z , y ≻ t , and z ∼ t . It is easy to check that ≿ is 
quasi-transitive and total, but not transitive.23 Let c≿ ∶ 𝛺X → 𝛺X be the choice 
correspondence derived from ≿ , which is defined by c≿(A) ∶= max(A,≿) for all 
A ∈ �X . By construction, the choice space (X, c≿) is quasi-transitively rationaliz-
able, hence WARNI—equivalently, properties (�) , (�) , and (�)—holds by Theorem 
‘Rationalization by Axioms’ part (iii). However, (X, c≿) is irresolvable by Corol-
lary 4, because there is no proper shrinkable menu. (The long but straightforward 
verification of the last fact is left to the reader.)

Example 12  (Resolvable and rationalizable, but not WARNI) Define a weak prefer-
ence ≿ on X = {x, y, z} by letting x ≻ y , x ∼ z , and y ≻ z . It is easy to check that 
≿ is acyclic and total, but not quasi-transitive. Let c≿ ∶ 𝛺X → 𝛺X be the choice 
correspondence derived from ≿ , that is, xy , xz , yz , and xyz . By construction, the 
choice space (X, c≿) is rationalizable but not quasi-transitively rationalizable, hence 
WARNI fails by Theorem ‘Rationalization by Axioms’ part (iii).24 Let (Y , cY ) be the 
choice space on {a, b} defined by ab . The resolution  is a resolvable 
choice space, which is also rationalizable but does not satisfy WARNI.

The following final example shows that the dotted area in Fig. 2 is nonempty.

Example 13  (Resolvable and WARNI, but not WARP) Define a weak preference ≿ 
on X = {x, y, z} by letting x ∼ y , x ≻ z , and y ∼ z . It is easy to check that ≿ is quasi-
transitive and total, but not transitive. Again, let c≿ ∶ 𝛺X → 𝛺X be the choice cor-
respondence derived from ≿ , that is, xy , xz , yz , and xyz . By construction, the choice 
space (X, c≿) is quasi-transitively rationalizable but not transitively rationalizable, 
hence WARNI holds and WARP fails by Theorem ‘Rationalization by Axioms’. 
Furthermore, (X, c≿) is resolvable by Corollary 4, because the proper menu {x, z} is 
shrinkable.

6 � Conclusions and future directions of research

In this paper we have introduced a novel operation for choice spaces, called one-
point resolution. This operation reveals the possibility to decompose a given choice 
behavior in two simpler choice behaviors. One-point resolutions are fully general for 

23  Observe that the derived strict preference ≻ is the N-shaped strict partial order on a 4-element set.
24  In fact, properties (�) and (�) hold, whereas axiom (�) fails: indeed, we have z ∈ c≿({x, z}) and 
z ∉ c≿({x, y, z}) , but y ∉ c≿({x, y, z}).
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deconstruction purposes, because any process of decomposition of a choice behav-
ior can be obtained as a sequential/iterative application of one-point resolutions. 
Resolutions also have a natural interpretation, since they detect a delegation of tasks 
to smaller decisional units.

The main results of this paper are of three types: (1) resolutions preserve most 
axioms of choice consistency, in particular rationality features; (2) resolutions can 
be characterized by the existence of shrinkable proper menus; (3) resolutions are 
connected to rationality whenever the relation of revealed preference is transitive.

Future research on the topic goes in three main directions. First, we are currently 
studying some useful properties (‘hereditariness’, ‘transitivity’, etc.) of resolvable 
spaces and shrinkable menus, which further suggest the naturalness of the operation 
of resolution. These properties may be useful to derive computationally effective 
conditions to detect the shrinkability of menus (Cantone et al. 2020a).

A more complex issue is the ‘essential uniqueness’ of the decomposition of a 
(finite) choice behavior. One can show that every finite choice can be uniquely 
expressed as an iterated resolution of choices, in which points are resolved into 
either preordered choices (i.e., rationalizable by a preorder) or irresolvable choices, 
and points of a preordered choice are never resolved into a preordered choice. Thus, 
a finite choice always reveals a unique corporate hierarchy, in which the reason-
ing by each executive is either ‘maximally rational’ or ‘minimally irrational’, but no 
rational executive reports to another rational executive.

Finally, resolutions are useful in other fields of research, e.g., convex geometries. 
Recall that a convex geometry (Edelman and Jamison 1985) is a pair (X, C) , where 
X is a nonempty finite set, and C is a family of subsets of X that contains the empty 
set, is closed under taking intersections, and is upgradable (i.e., for any A in C⧵{X} , 
there is x in X⧵A such that A ∪ {x} ∈ C ). Koshevoy (1999) explicitly gives a struc-
ture-preserving bijection between convex geometries on X and path independent 
choices on X. Since, by the results of this paper, any resolution of path independent 
choices is path independent, a notion of resolution of convex geometries naturally 
arises: see Cantone et  al. (2020b). Notice that the above analysis turns to be use-
ful in other related fields of research, since the notion of convex geometry is ‘dual’ 
to those of learning spaces (Falmagne and Doignon 2011), antimatroids (Jamison 
1980), and meet-distributive lattices (Edelman 1980).25
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Appendix: Proofs

Section 2 (resolutions)

Proof of Lemma 1:  The first formulation of cZ(A) readily follows from Definition 3 
and Lemma 6 below, whose simple proof is left to the reader. The second formula-
tion of cZ(A) is an immediate consequence of the definition of projection. 	�  ◻

Lemma 6  Let  be a one-point resolution. For each A ∈ �Z , 
�(A) = A if A ∩ Y = � , and �(A) = (A ∩ X) ∪ {x} otherwise. Further, for each 
B ∈ 2X , �−1(B) = B if x ∉ B , and �−1(B) = (B⧵{x}) ∪ Y  otherwise.

Proof of Lemma 2:  Parts (i) and (ii) are reformulations of the first two lines 
of (4) in Lemma  1. To prove (iii), let y ∈ Y  . We shall show that the equality 
�(cZ(A)) = cX(�(A)) holds for each menu A ⊆ (X⧵{x}) ∪ {y} . We consider two 
cases: (1) y ∉ A ; (2) y ∈ A . In case (1), the inclusion A ⊆ X⧵{x} holds and �↾A 
is the identity, hence the claim is true by part (ii). In case (2), assume first that 
x ∈ cX(�(A)) . The first line of (3) in Definition 3 yields

and so the claim holds. On the other hand, if x ∉ cX(�(A)) , then

again by definition. This completes the proof. 	�  ◻

Proof of Example 5:  For convenience, let us recall the definition of Gemma’s extended 
choice on the set Z = {c,m, p, s, t} = {chips, salmon, pizza, sea bass, tuna}:

We claim that this choice is irresolvable. To prove the claim, we use some easy 
results, which substantially simplify computations. Indeed, it can be shown that 
the computational complexity of determining whether a choice is resolvable is 

�(cZ(A)) = �
(
(cX(�(A))⧵{x}) ∪ cY ({y})

)
=
(
cX(�(A))⧵{x}

)
∪ {x} = cX(�(A))

�(cZ(A)) = �
(
cX(�(A))

)
= cX(�(A))

tmcps ,

cspt , smcp , mtcp , mtps , mtcs ,

csp , ctp , pst , cst , msp , mtp , pcm , mts , mtc , csm ,

pc , ps , pt , cs , ct , st , pm , mc , ms , mt .

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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exponential. In practice, however, computations can often be expedited in polyno-
mial time, by quickly eliminating many possible decompositions. This is exactly 
what we shall do in our example, determining the irresolvability of Gemma’s 
extended choice by applying the following simple rules (all of which run in polyno-
mial time):

Lemma 7  Let (Z, cZ) be a choice space, and x, y, z items in Z such that any of the fol-
lowing four cases happens: (1) xz and yz , or (2) xz and yz , or (3) xz and xyz , or (4) 
xy and xyz . For any candidate fiber space (Y , cY ) , if x, y ∈ Y  , then z ∈ Y .

Proof  Let x, y, z ∈ Z be such that any among the four cases 1–4 happens. Toward 
a contradiction, suppose  , x, y ∈ Y  , and z ∈ X . Assume 
that case 1 happens. By the definition of resolution, cZ({x, z}) = {x} implies 
z ∉ cX({z, x0}) = {x0} , whereas cZ({y, z}) = {y, z} implies z ∈ cX({z, x0}) = {z, x0} , 
a contradiction. Case  2 is handled similarly. For case  3, cZ({x, z}) = {z} implies 
cX({z, x0}) = {z} , whereas cZ({x, y, z}) = {x, y} implies cX({z, x0}) = {x0} 
(and cY ({x, y}) = {x, y} ), a contradiction. For case  4, cZ({x, y}) = {x} implies 
cY ({x, y}) = {x} , whereas cZ({x, y, z}) = {y, z} implies cY ({x, y}) = {y} (and 
cX({z, x0}) = {z, x0} ), a contradiction. 	�  ◻

Observe that checking rules (1) and (2) in Lemma  7 takes quadratic time, while 
checking rules (3) and (4) takes cubic time. In practice, a computer could first check 
(1) and (2), and then (3) and (4). Using the four rules in Lemma 7, we can quickly 
conclude that Gemma’s extended choice is irresolvable. Indeed, the possible fiber 
spaces are 25 = (25 − 1) − 5 − 1 . An application of rule (1) rules out 19 of them, 
leaving only the sets {c, t} , {s, t} , {c,m} , {c, s, t} , {c,m, t} , and {c,m, s, t}.26 Then an 
application of rules (3) and (4) eliminates the remaining 6 possible fiber spaces as 
well (computations are left to the reader). 	�  ◻

Proof of Theorem 1(ii):  The following ‘intermediate’ version of the notion of resolu-
tion, which encompasses both one-point and horizontal resolutions, will be needed: 

Definition 11  Let (X, cX) be a choice space, and (Yx, cx)x∈V a family of choice spaces 
indexed by V ⊆ X . Set ZV ∶= (X⧵V) ∪

⋃
x∈V Yx . Define the projection �V ∶ ZV → X 

by

Finally, define a choice correspondence cZV on ZV by setting, for each A ∈ 2ZV,

�V (z) ∶=

{
z if z ∈ X⧵V

x if z ∈ Yx for some x ∈ V .

26  For instance, having Y = {p, s} as fiber set is impossible, since pc and sc imply c ∈ Y  , a contradic-
tion. Similarly, we cannot have Y = {m, p, t} , since ps and ms imply s ∈ Y  , a contradiction. Furthermore, 
Y = {c, p, s, t} is impossible, since pm and sm imply m ∈ Y  , a contradiction. And so on.
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Then  is the partial resolution of (X, cX) into 
(
Yx, cx

)
x∈V

.

The notation for partial resolutions is unambiguous, as the next remark shows.

Remark 3  (i) If V = X , then the partial resolution  is 
just the horizontal resolution .

(ii) If V = {a} , with a ∈ X , then the partial resolution  is the 
one-point resolution .

(iii) Finally, if V = � , then we simply have .

The key step in the proof of Theorem  1(ii) is the most technical result of the 
paper:

Lemma 8  (Decomposition Lemma) Let (X, cX) be a choice space, x a point in X, and 
(Yx, cx)x∈X a family of pairwise disjoint choice spaces disjoint from (X, c). We have:

Proof  Let (Z, cZ) be the horizontal resolution of (X, cX) into (Yx, cx)x∈X , i.e.,

Therefore, Z =
⋃

x∈X Yx , and, for any A ∈ 2Z,

where � ∶ Z → X is the projection of Z over X satisfying z ∈ Y�(z) , for every z ∈ Z . 
Furthermore, for a given distinguished point x of X, let

Hence, setting for x ∈ X

we obtain Z� ∶=
⋃

x∈X Y
�
x
=
⋃

x∈X⧵{x} Yx ∪ {x} . We also have, for any A′ in 2Z′,

where �� ∶ Z�
→ X is the projection satisfying z ∈ Y �

��(z)
 for every z ∈ Z� , and, for 

x ∈ X,

(6)cZV (A) ∶=
⋃

x∈ cX(�V (A))∩V

cx(A ∩ Yx) ∪
(
cX(�V (A))⧵V

)
.

(7)

cZ(A) ∶=
⋃

x∈cX (�(A))

cx(A ∩ Yx) ,

Y �
x
∶=

{
Yx if x ≠ x

{x} if x = x ,

cZ� (A
�) =

⋃
x∈cX (�

�(A�))

c�
x
(A� ∩ Y �

x
) ,
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Finally, let (Z, cZ) be the resolution of (Z�, cZ� ) at x into (Yx, cx) , i.e.,

Thus, for A ∈ 2Z , we have

where � ∶ Z → Z� is the projection of Z over Z′ , defined as follows for each z ∈ Z:

In view of (7) and (8), our task has thus been reduced to proving (Z, cZ) = (Z, cZ) , 
i.e.,

To that end, we need some technical facts, stated by the next two lemmas.

Lemma 9  ��◦� = �.

Proof  Let z ∈ Z =
⋃

x∈X Yx . Then, we have:

which proves the claim. 	�  ◻

To enhance clarity, in what follows we shall make use of conditional expres-
sions (borrowed from the C programming language), namely expressions of type 
[

Cond ? a ∶ b
]

 , defined by

Lemma 10  For A ∈ 2Z , we have:

(a) x ∈ cZ� (�(A)) ⟺ x ∈ cX(�(A));
(b) if x ∈ X⧵{x}, then �(A) ∩ Yx = A ∩ Yx;
(c) cZ� (�(A))⧵{x} =

⋃
x∈cX (�(A)), x≠x

cx(A ∩ Yx).

Proof  Let A ∈ 2Z . For (a), we have:

c�
x
∶=

{
cx if x ≠ x

the choice over {x} if x = x .

(8)

cZ(A) =

{(
cZ� (�(A))⧵{x}

)
∪ cx(A ∩ Yx) if x ∈ cZ� (�(A))

cZ� (�(A)) otherwise,

�(z) ∶=

{
z if z ∉ Yx
x if z ∈ Yx .

(9)cZ = cZ .

��(�(z)) =

{
��(z) if z ∉ Yx
��(x) if z ∈ Yx

=

{
�(z) if z ∉ Yx
x if z ∈ Yx

= �(z) ,

[

Cond ? a ∶ b
]

∶=

{
a if Cond holds

b if Cond does not hold.
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where the last equivalence is justified by the chain of the following implications:

For (b), since �(A) = (A⧵Yx) ∪
[

A ∩ Yx ≠ � ? {x} ∶ �
]

 , for x ∈ X⧵{x} we have:

Finally, concerning (c), we have:

where the last equality follows from (10) and the equality c�
x
(�(A) ∩ Y �

x
) = {x} (pro-

vided that x ∈ cX(�(A)) . Since

it follows that cZ� (�(A))⧵{x} =
⋃

x∈cX (�(A)), x≠x
cx(A ∩ Yx) , which proves (c). 	�  ◻

We are now ready to prove Equation (9).

Lemma 11  cZ = cZ.

Proof  Let A ∈ 2Z . Then we have:

x ∈ cZ� (�(A)) ⟺ x ∈
⋃

x∈cX (�
�(�(A)))

c�
x
(�(A) ∩ Y �

x
)

⟺ x ∈
⋃

x∈cX (�(A))

c�
x
(�(A) ∩ Y �

x
) (by Lemma 9)

⟺ x ∈ cX(�(A)) ∧ x ∈ c�
x
(�(A) ∩ Y �

x
)

⟺ x ∈ cX(�(A)) ∧ x ∈ c�
x
(�(A) ∩ {x})

⟺ x ∈ cX(�(A)) ,

x ∈ cX(�(A)) ⟹ A ∩ Yx ≠ �

⟹ x ∈ �(A)

⟹ x ∈ c�
x
(�(A) ∩ {x}) .

�(A) ∩ Yx =
(
(A⧵Yx) ∪

[

A ∩ Yx ≠ � ? {x} ∶ �
])

∩ Yx

= (A⧵Yx) ∩ Yx

= A ∩ Yx .

cZ� (�(A)) =
⋃

x∈cX (�
�(�(A)))

c�
x
(�(A) ∩ Y �

x
)

=
⋃

x∈cX (�(A))

c�
x
(�(A) ∩ Y �

x
) (by Lemma 9)

=
⋃

x∈cX (�(A)), x≠x

c�
x
(�(A) ∩ Y �

x
) ∪

[

x ∈ cX(�(A)) ? c
�

x
(�(A) ∩ Y �

x
) ∶ �

]

=
⋃

x∈cX (�(A)), x≠x

cx(A ∩ Yx) ∪
[

x ∈ cX(�(A)) ? {x} ∶ �
]

,

x ∉
⋃

x∈cX (𝜋(A)), x≠x

cx(A ∩ Yx) and
[

x ∈ cX(𝜋(A)) ? {x} ∶ �
]

⊆ {x} ,
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and

By Lemma 10(a), x ∈ cZ� (�(A)) ⟺ x ∈ cX(�(A)) . It follows that

In addition, Lemma (10)(c) yields

This proves Lemma 11. 	�  ◻

Now the Decomposition Lemma easily follows from (7), (8), and Lemma 11. 	� ◻
The main consequence of the Decomposition Lemma is what we were after:

Lemma 12  (Permutation Invariance of Resolutions) Let (X, cX) be a finite choice 
space, with X = {x1,… , xk} . Further, let (Yx, cx)x∈X be a family of choice spaces, 
whose ground sets are pairwise disjoint and disjoint from X. Then, we have:

Proof  Let (X, cX) and (Yx, cx)x∈X be as in the hypothesis. We proceed by induction 
on k = |X| . For k = 1 , we plainly have  . For 
the inductive step, let k > 1 . A sequential application of Lemma 8 and the inductive 
hypothesis yields

as required. 	�  ◻

Section 3 (consistency of resolutions)

Proof of Theorem  2:  The forward part of the equivalence follows at once 
from Lemma  3. Next, we show that all reverse implications hold as well. Let 

 be a one-point resolution, and � the projection. Let us recall 
the definition of cZ for each A ∈ �Z:

cZ(A) =
⋃

x∈cX (𝜋̇(A))

cx(A ∩ Yx)

=
⋃

x∈cX (𝜋(A)), x≠x

cx(A ∩ Yx) ∪
[

x ∈ cX(𝜋(A)) ? cx(A ∩ Yx) ∶ �
]

cZ(A) =
(
cZ� (�(A))⧵{x}

)
∪
[

x ∈ cZ� (�(A)) ? cx(A ∩ Yx) ∶ �
]

.

[

x ∈ cX(�(A)) ? cx(A ∩ Yx) ∶ �
]

=
[

x ∈ cZ� (�(A)) ? cx(A ∩ Yx) ∶ �
]

.

cZ� (�(A))⧵{x} =
⋃

x∈cX (�(A)), x≠x

cx(A ∩ Yx) .



745

1 3

Choice resolutions﻿	

Axiom (�) . Suppose (�) holds for both (X, cX) and (Y , cY ) . Let z ∈ Z and 
A,B ∈ �Z be such that z ∈ A ⊆ B and z ∈ cZ(B) . We shall show that z ∈ cZ(A).

����� ∶ Suppose z ∈ X⧵{x} . By (10), the hypothesis z ∈ cZ(B) yields 
z ∈ cX(�(B)) . Since z ∈ A and (�) holds for (X, cX) , we get z ∈ cX(�(A)) , which in 
turn implies z ∈ cZ(A).

����� ∶ Suppose z ∈ Y  . By (10), we have x ∈ cX(�(B)) and z ∈ cY (B ∩ Y) . Since 
z ∈ A and both the base and the fiber satisfy (�) , it follows that x ∈ cX(�(A)) and 
z ∈ cY (A ∩ Y) . Thus, we conclude that z ∈ cZ(A) holds also in this case.

Axiom (�) . Suppose (�) holds for both (X, cX) and (Y , cY ) . Let z ∈ Z 
and {Ai ∶ i ∈ I} ⊆ 𝛺Z be such that z ∈

⋂
i∈I cZ(Ai) . We shall show that 

z ∈ cZ
�⋃

i∈I Ai

�
.

����� ∶ Suppose z ∈ X⧵{x} . For each i ∈ I , z ∈ cZ(Ai) implies z ∈ cX(�(Ai)) . 
Since 

⋃
i∈I �(Ai) = �(

⋃
i∈I Ai) , and (X, cX) satisfies (�) , it follows that 

z ∈ cX
�⋃

i∈I �(Ai)
�
= cX

�
�(
⋃

i∈I Ai)
�
 . Thus, we get z ∈ cZ

�⋃
i∈I Ai

�
 , as wanted.

����� ∶ Suppose z ∈ Y  . The first line of (10) yields x ∈ cX(�(Ai)) 
and z ∈ cY (Ai ∩ Y) for each i ∈ I . Since both the base and the fiber 
satisfy (�) , we get x ∈ cX

�⋃
i∈I(�(Ai))

�
= cX

�
�(
⋃

i∈I Ai)
�
 and 

z ∈ cY
�⋃

i∈I(Ai ∩ Y)
�
= cY

�⋃
i∈I Ai ∩ Y

�
 . Thus, we conclude that 

z ∈ cZ
�⋃

i∈I Ai

�
 holds also in this case.

Axiom (�) . Suppose (�) holds for (X, cX) and (Y , cY ) . Let w, z ∈ Z and A ∈ �Z be 
such that w ∈ cZ(A) and w ∉ cZ(A ∪ {z}) . We shall show that z ∈ cZ(A ∪ {z}).

����� ∶ Suppose w, z ∈ X⧵{x} . The hypothesis yields w ∈ c
X
(�(A))⧵c

X
(�(A)

∪{z}) . Since (�) holds for (X, cX) , we get z ∈ cX(�(A) ∪ {z}) , hence z ∈ cZ(A ∪ {z}) 
by (10), as claimed.

����� ∶ Suppose w, z ∈ Y . Since w ∈ A ∩ Y , we have �(A) = �(A ∪ {z}) = (A ∩ X)

∪{x} . By (10), we obtain x ∈ cX(�(A)) = cX(�(A ∪ {z})) and w ∈ c
Y

(A ∩ Y)⧵c
Y
((A ∪ {z}) ∩ Y) . Since (�) holds for (Y , cY ) , we get z ∈ cY ((A ∪ {z}) ∩ Y) , 

and so (10) yields z ∈ cZ(A ∪ {z}).

����� ∶ Suppose w ∈ X⧵{x} and z ∈ Y . The hypothesis w ∈ cZ(A) implies 
w ∈ cX(�(A)) , whereas the hypothesis w ∉ cZ(A ∪ {z}) implies w ∉ cX(�(A ∪ {z})) . 
In particular, we must have 𝜋(A) ⊊ 𝜋(A ∪ {z}) , which yields A ⊆ X⧵{x} , 
�(A) = A , and �(A ∪ {z}) = �(A) ∪ {x} = A ∪ {x} . Then we can rewrite the pre-
vious conclusions as w ∈ cX(A) and w ∉ cX(A ∪ {x}) . Since (�) holds for (X, cX) , 
we obtain x ∈ cX(A ∪ {x}) = cX(�(A ∪ {z})) . Further, since A ⊆ X , we get 

(10)cZ(A) =

{(
cX(�(A))⧵{x}

)
∪ cY (A ∩ Y) if x ∈ cX(�(A))

cX(�(A)) otherwise.
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(A ∪ {z}) ∩ Y = {z} , and so z ∈ cY ({z}) = cY ((A ∪ {z}) ∩ Y) . The latter fact yields 
that z ∈ cZ(A ∪ {z}) , as claimed.

����� ∶ Suppose w ∈ Y and z ∈ X⧵{x}.
The hypothesis w ∈ cZ(A) implies x ∈ cX(�(A)) and w ∈ cY (A ∩ Y) . Further, 
since cY ((A ∪ {z}) ∩ Y) = cY (A ∩ Y) , the hypothesis w ∉ cZ(A ∪ {z}) implies 
x ∉ cX(�(A ∪ {z})) . Since (�) holds for (X, cX) , it follows that z ∈ cX(�(A ∪ {z}) , 
and so z ∈ cZ(A ∪ {z}) again. 	�  ◻

Proof of Theorem 3:  We need a characterization of path independence, based on

◊ Axiom (�) : for all A,B ∈ �X , if A ⊆ B , then it is not the case that c(B) ⊊ c(A).

Then, we have:

Lemma 13  (Blair 1974) PI is equivalent to (�)& (�).

The necessity in Theorem 3 is an immediate consequence of Lemma 3. To prove suf-
ficiency, let  be a resolution and � the projection. Suppose 
(X, cX) and (Y , cY ) satisfy PI, hence, by Lemma  13, (�) and (�) . Theorem  2 read-
ily yields that (Z, cZ) satisfies (�) . Thus, to complete the proof, it is enough to show 
that axiom (�) holds for (Z, cZ) , too. To that end, we prove that cZ(B) = cZ(A) for all 
A,B ∈ �Z such that A ⊆ B and cZ(B) ⊆ cZ(A) . The definition of cZ readily yields 
cX(𝜋(B))⧵{x} ⊆ cX(𝜋(A))⧵{x} . Observe that, if x ∈ cX(�(B)) , then B ∩ Y ≠ � , hence 
cZ(A) ∩ Y ⊇ cY (B ∩ Y) ≠ � , and so x ∈ cX(�(A)) . It follows that

From A ⊆ B , we get 𝜋(A) ⊆ 𝜋(B) , and so, since (�) holds for (X, cX) , (11) implies

If x ∉ cX(�(A)) , then (12) readily implies cZ(B) = cZ(A) , again by the defi-
nition of cZ . On the other hand, if x ∈ cX(�(A)) , then x ∈ cX(�(B)) , and so 
cY (B ∩ Y) ⊆ cY (A ∩ Y) . Since A ∩ Y ⊆ B ∩ Y  and (�) holds for (Y , cY ) , we get

Now equations (12) and (13) imply cZ(B) = cZ(A) , which completes the proof. 	�  ◻

Proof of Theorem  4:  Since the one-point resolution, the base and the fiber all sat-
isfy CWDE by hypothesis, we can prove the claim by using the characterization of 
2-sequential rationalizability given in Lemma 4.

Necessity is an immediate consequence of Lemmas  3 and  4, because the base 
and the fiber satisfy CWDE by hypothesis, whereas (�) and WWARP are hereditary 
properties.

(11)cX(𝜋(B)) ⊆ cX(𝜋(A)) .

(12)cX(�(B)) = cX(�(A)) .

(13)cY (B ∩ Y) = cY (A ∩ Y) .
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For sufficiency, suppose the base (X, cX) and the fiber (Y , cY ) are 2-sequentially 
rationalizable. Thus, by Lemma  4, properties (�) and WWARP hold for both of 
them. In what follows, we show that (Z, cZ) satisfies these properties as well, hence 
another application of Lemma 4 will yield the claim. Recall the definition of cZ for 
each A ∈ �Z:

Since axiom (�) holds by Theorem  2, it suffices to show that (Z, cZ) satisfies 
WWARP. Thus, let w, z ∈ Z and A,B ∈ �Z be such that w, z ∈ A ⊆ B . Assume that 
cZ({w, z}) = {w} and w ∈ cZ(B) . Below we show that z ∉ cZ(A) in all possible cases.

Case 1: w, z ∈ X⧵{x} . By hypothesis, w = cZ({w, z}) = cX({w, z}) . Since 
w ∈ cZ(B) ∩ X , we also have w ∈ cX(�(B)) . Since w, z ∈ 𝜋(A) ⊆ 𝜋(B) , an appli-
cation of WWARP in the base space (X, cX) readily yields z ∉ cX(�(A)) , whence 
z ∉ cZ(A) by (14), as claimed.

Case 2: w, z ∈ Y  . By an argument similar to that of Case 1, we obtain 
cY ({w, z}) = {w} and w ∈ c(B ∩ Y) . Thus, an application of WWARP in the fiber 
space (Y , cY ) entails z ∉ cY (A ∩ Y) , which implies z ∉ cZ(A) , as required.

Case 3: w ∈ X⧵{x} and z ∈ Y  . The hypothesis cZ({w, z}) = {w} implies 
x ∉ cX(�({w, z})) = cX({w, x}) , hence cX({w, x}) = {w} . Moreover, w ∈ cZ(B) 
yields w ∈ cX(�(B)) . An application of WWARP in (X, cX) gives x ∉ cX(�(A)) , 
whence cZ(A) = cX(�(A)) by definition (14). Since z ∈ Y  , it follows that 
z ∉ cZ(A) , as claimed.

Case 4: w ∈ Y  and z ∈ X⧵{x} . Since cZ({w, z}) = {w} , we get 
x ∈ cX(�({w, z})) = cX({x, z}) . Further, we have z ∉ cX({x, z}) , since otherwise 
we would get cZ({w, z}) = {w, z} , a contradiction. It follows that cX({x, z}) = {x} . 
Moreover, since w ∈ cZ(B) ∩ Y  , we have x ∈ cX(�(B)) . By WWARP in (X, cX) , 
we get z ∉ cX(�(A)) , and so z ∉ cZ(A) again.

This completes the proof of Theorem 4. 	�  ◻

Proof of Theorem 5:  We can assume that  is nontrivial.

(i) ⇒ (ii) . Suppose the one-point resolution  satis-
fies axiom (�) . Since (�) is a hereditary property, Lemma  3 implies that (�) 
holds for both (X, cX) and (Y , cY ) . To complete the proof of this implication, it 
remains to show that either x is a repellent point of (X, cX) or cY is the identity 
map. Toward a contradiction, assume that neither holds. Thus, there exist S ⊆ X 
such that {x} ⊊ cX(S) , and T ⊆ Y  such that cY (T) ⊊ T  . Choose s ∈ cX(S)⧵{x} and 
t ∈ T⧵cY (T) , and set 

(14)cZ(A) =

{(
cX(�(A))⧵{x}

)
∪ cY (A ∩ Y) if x ∈ cX(�(A))

cX(�(A)) otherwise.
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 Notice that A and B intersect both X and Y, and 

 where � is the projection associated with (Z, cZ) . Since 
x ∈ cX(S) = cX(�(A)) = cX(�(B)) , the fourth line of (10) in Lemma 1 yields 

 Then we conclude that A and B are menus in (Z, cZ) such that A ⊆ B , s, t ∈ cZ(A) , 
s ∈ cZ(B) , and t ∉ cZ(B) . However, this contradicts the fact that (�) holds for 
(Z, cZ).

(ii) ⇒ (i) . Assume that (ii) holds. To start, we prove the following property:

Lemma 14  Let  be a one-point resolution. For any menu 
A ∈ 2Z and item z ∈ cZ(A) , we have �(z) ∈ cX(�(A)) , where � is the projection.

Proof  Let A ∈ 2Z and z ∈ cZ(A) . If z ∈ X⧵{x} , then, by (3) in Definition  3, 
�(z) = z ∈ cX(�(A)) . On the other hand, if z ∈ Y  , then, by (3), �(z) = x ∈ cX(�(A)) , 
and, since in this case �(z) = x , we get again �(z) ∈ cX(�(A)) , as claimed. 	�  ◻

Now let A,B ∈ �Z and z0, z1 ∈ Z be such that A ⊆ B , z0, z1 ∈ cZ(A) , and 
z1 ∈ cZ(B) hold. We shall show that z0 ∈ cZ(B) . To begin with, observe that, since 
axiom (�) holds for (X, cX) , and we have �(z0),�(z1) ∈ cX(�(A)) , �(z1) ∈ cX(�(B)) 
(by Lemma 14), and 𝜋(A) ⊆ 𝜋(B) , then we deduce �(z0) ∈ cX(�(B)).

If �(z0) = z0 , then z0 ∈ cX(𝜋(B))⧵{x} ⊆ cZ(B) , so that z0 ∈ cZ(B) , as claimed. On 
the other hand, if �(z0) ≠ z0 , then �(z0) = x and z0 ∈ Y  . Thus, since x ∈ cX(�(B)) , we 
have cZ(B) ∩ Y = cY (B ∩ Y) , thus proving z0 ∈ cZ(B) is equivalent to showing that 
z0 ∈ cY (B ∩ Y) . As z0 ∈ cZ(A) and A ⊆ B , we have z0 ∈ B . Recalling that z0 ∈ Y  , 
it follows z0 ∈ B ∩ Y  . If cY is the identity map, then z0 ∈ cY (B ∩ Y) holds. Other-
wise, cY is not the identity map, hence, by (ii), x must be a repellent point of (X, cX) . 
Since x ∈ cX(�(B)) , we have cZ(B) = (cX(�(B))⧵{x}) ∪ cY (B ∩ Y) = cY (B ∩ Y) . 
Further, z1 ∈ cZ(B) implies z1 ∈ cY (B ∩ Y) . In addition, since z1 ∈ cZ(A) ∩ Y  , then 
z1 ∈ cY (A ∩ Y) . Likewise, since z0 ∈ cZ(A) ∩ Y  , then z0 ∈ cY (A ∩ Y) . Thus, as axiom 
(�) holds for cY and we have A ∩ Y ⊆ B ∩ Y  , z0, z1 ∈ cY (A ∩ Y) , and z1 ∈ cY (B ∩ Y) , 
then z0 ∈ cY (B ∩ Y) . In conclusion, we obtain z0 ∈ cY (B ∩ Y) ⊆ cZ(B) when 
�(z0) ≠ z0 , so that z0 ∈ cZ(B) holds in all cases. This proves that (ii) implies (i), thus 
completing the proof of Theorem 5. 	�  ◻

Section 4 (characterizing resolvability)

Proof of Theorem 6:     Let A ∈ 2Z . We prove c(A) = cZ(A) , where cZ ∶ 2Z → 2Z is the 
map

A = (S⧵{x}) ∪ {t} and B = (S⧵{x}) ∪ T .

�(A) = (A ∩ X) ∪ {x} = S , �(B) = (B ∩ X) ∪ {x} = S , A ∩ Y = {t} , B ∩ Y = T ,

cZ(A) = (cX(S)⧵{x}) ∪ {t} and cZ(B) = (cX(S)⧵{x}) ∪ cY (T) .
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Thus, the function cZ is the choice correspondence of the one-point resolution of 
(X, cX) at x into (Y , c↾Y ) , and � ∶ Z → X is the associated projection.

First, let x ∈ �(A) , i.e., A ∩ Y = � . By the definition of cX (see Defi-
nition  9), we obtain cZ(A) = cX(�(A)) = cX(A) = c(A) , as claimed. 
Next, suppose x ∈ �(A) , hence A ∩ Y ≠ � . From �(A)⧵{x} = A⧵Y  , 
it follows cX(�(A)) = �

(
c((�(A)⧵{x}) ∪ Y)

)
= �(c(A ∪ Y)) and also 

x ∈ cX(�(A)) ⇔ x ∈ �(c(A ∪ Y)) ⇔ c(A ∪ Y) ∩ Y ≠ � . Thus we obtain

where the last equality follows from a direct application of Lemma 5. We conclude 
that the equality cZ(A) = c(A) holds in all cases, and the theorem is fully proved. 	� ◻

Proof of Theorem 7:  Let E be a menu in a choice space (Z, c).

(i) ⇒ (ii) . Assume that E is indiscernible. For each nonempty E′ ⊆ E , property 
(I2) applied for A = E� yields c(E�) = E� . Thus, the subchoice c↾E is the identity. 
To complete the proof, we show that E is shrinkable. Property (S2) readily fol-
lows from property (I2), since c ↾E is the identity. Property (S1) is implied by 
property (I1): indeed, 

 Finally, we show that (S3) is implied by (I1) and (I2). Suppose 
A ∩ E ≠ � . Property (I1) gives us c(A) ∩ E = (c(A ∪ E) ∩ A) ∩ E , hence 
c(A ∪ E) ∩ E = � implies c(A) ∩ E = (c(A ∪ E) ∩ A) ∩ E = � . For the 
reverse implication, suppose c(A ∪ E) ∩ E ≠ � . By applying (I2) to A ∪ E 
(in place of A, since A ∪ E satisfies the hypothesis c(A ∪ E) ∩ E ≠ � ), we get 
c(A ∪ E) ∩ E = (A ∪ E) ∩ E = E . Now condition (I1) and the hypothesis read-
ily yield c(A) ∩ E =

(
c(A ∪ E) ∩ A

)
∩ E = A ∩ E ≠ � , as claimed.

cZ(A) ∶=

{
(cX(�(A))⧵{x}) ∪ c(A ∩ Y) if x ∈ cX(�(A))

cX(�(A)) otherwise.

cZ(A) =

{
(cX(�(A))⧵{x}) ∪ c(A ∩ Y) if x ∈ cX(�(A))

cX(�(A)) if x ∉ cX(�(A))

=

{
(�(c(A ∪ Y))⧵{x}) ∪ c(A ∩ Y) if c(A ∪ Y) ∩ Y ≠ �

�(c(A ∪ Y)) if c(A ∪ Y) ∩ Y = �

=

{
(c(A ∪ Y)⧵Y) ∪ c(A ∩ Y) if c(A ∪ Y) ∩ Y ≠ �

c(A ∪ Y) if c(A ∪ Y) ∩ Y = �

= c(A) ,

A ∩ E ≠ � ⟹ c(A) = c(A ∪ E) ∩ A (by (��))

⟹ c(A)⧵E =
(
c(A ∪ E) ∩ A

)
⧵E ∪

(
c(A ∪ E)⧵(A ∪ E)

)

⟹ c(A)⧵E =
(
c(A ∪ E) ∩ A

)
⧵E ∪

(
c(A ∪ E)⧵A

)
⧵E

⟹ c(A)⧵E =
(
(c(A ∪ E) ∩ A) ∪ (c(A ∪ E) ∩ (Z⧵A))

)
⧵E

⟹ c(A)⧵E = c(A ∪ E)⧵E .
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(ii) ⇒ (i) . Assume that E is shrinkable and c ↾E is the identity (i.e., the equal-
ity c(E�) = E� holds for each nonempty E′ ⊆ E ). Condition (I2) is an immediate 
consequence of (S2), using the fact that c↾E is the identity. To prove condi-
tion (I1), suppose A ∈ �Z is a menu such that A ∩ E ≠ � . We shall prove that 
c(A) = c(A ∪ E) ∩ A . By condition (S1), it suffices to prove 

 If both c(A) ∩ E and c(A ∪ E) ∩ E are empty, then the equality (15) holds trivi-
ally, and we are done. Otherwise, at least one of them is nonempty. Condition 
(S3) yields that both are nonempty, i.e., c(A) ∩ E ≠ � ≠ c(A ∪ E) ∩ E . It follows 
that we can apply condition (S2) to both A and A ∪ E as follows: 

 and so (15) holds.
This completes the proof of the equivalence between (i) and (ii).

Finally, the last statement is an immediate consequence of Corollary 4 (charac-
terization of resolvability) and the fact that indiscernibility implies shrinkability. 	� ◻

Section 5 (rationalizability and resolvability)

Proof of Theorem  8:  Let (Z,  c) be a choice space, with |Z| ≥ 3 , such that WARP 
holds for it. By Theorem ‘Rationalization by Axioms’ part (ii), there is a total preor-
der ≿ on Z such that the equality c(A) = max(A,≿) holds for any A ⊆ Z . We distin-
guish the following two cases:

Case 1: ≿ is a linear order (i.e., the indifference ∼ is the diagonal Δ(Z) of Z);
Case 2: ≿ is a total preorder but not a linear order (i.e., z1 ∼ z2 for some dis-
tinct z1, z2 ∈ Z).

In each of the two cases, we shall show that there is a shrinkable menu, thus prov-
ing the claim.

Case 1. Observe that, since ≻ is a linear order, we have |c(A)| = |max(A,≻)| = 1 
for any menu A ∈ �Z , that is, c is indeed a choice function. To prove the claim, 
we shall need the following general fact about asymmetric binary relations:

(15)c(A) ∩ E = c(A ∪ E) ∩ A ∩ E .

(
c(A ∪ E) ∩ E

)
∩ A = c((A ∪ E) ∩ E) ∩ A (by (𝖲𝟤) applied to A ∪ E)

= (A ∩ E) ∩ A (since c ↾E is the identity)

= c(A ∩ E) (since c ↾E is the identity)

= c(A) ∩ E (by (𝖲𝟤) applied to A)
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Lemma 15  Let ≻X be a nonempty asymmetric relation on X such that max(A,≻X) ≠ � 
for any nonempty A ⊆ X . We have:

(i) there is no strictly increasing infinite sequence (that is, there is no sequence 
(xn)n≥1 of elements in X such that xn+1 ≻X xn for all n ≥ 1);
(ii) there are two consecutive elements (that is, there are x, y ∈ X such that 
x ≻X y and x ≻X z ≻X y for no z ∈ X).

Proof  For (i), assume by contradiction that there is a sequence (xn)n≥1 of ele-
ments in X such that xn+1 ≻X xn for all n ≥ 1 . If there are distinct i, j ≥ n , i + 1 < j , 
such that xi = xj , then we take i and j such that the integer j − i ≥ 2 is minimal. 
Then xj ≻X xj−1 ≻X … ≻X xi = xj is a cycle (of minimum size), and the set 
A = {xi, xi+1,… , xj−1} is such that max(A,≻X) = � , which is impossible. We can 
thus assume without loss of generality that all elements in the sequence (xn)n≥1 are 
pairwise distinct. Then the set A = {xn ∶ n ≥ 1} has no maximal elements with 
respect to ≻X , again a contradiction.

For (ii), take x, y ∈ X such that x ≻X y , which exist since ≻X is nonempty by 
hypothesis. If x and y are consecutive, then we are done. Otherwise, there is x1 ∈ X 
such that x ≻X x1 ≻X y . If x, x1 are consecutive, again we are done. Otherwise, 
there is x2 ∈ X such that x ≻X x2 ≻X x1 . By iterating this argument, either there are 
two consecutive points, or there is a strictly increasing sequence (xn)n≥1 such that 
x ≻X … xn+1 ≻X xn ≻X … ≻X … x1 . Since the latter fact is impossible by part (i), 
there must be two consecutive points. This completes the proof of Lemma 15. 	�  ◻

Since the asymmetric part ≻ of the total preorder ≿ on Z satisfies the hypoth-
esis27 of Lemma 15, by part (ii) there are two consecutive items z1, z2 ∈ Z such 
that z1 ≻ z2 . We claim that the (proper) menu E = {z1, z2} is shrinkable: by 
Corollary 4, this will prove the result in Case 1. To prove the claim, we check 
that (S1)-(S3) hold for E.
For (S1), suppose that A ∈ �Z is such that A ∩ E ≠ � . We prove 
c(A)⧵E = c(A ∪ E)⧵E by showing the two inclusions. For the first inclusion, 
suppose z ∈ c(A)⧵E , i.e., z ∈ max(A,≻) and z ≠ z1, z2 . Since A ∩ {z1, z2} ≠ � , 
z1 ≻ z2 with z1 and z2 consecutive, and ≻ is a complete transitive relation, it fol-
lows that z ≻ z1 and z ≻ z2 . Thus, z ∈ max(A ∪ E)⧵E = c(A ∪ E)⧵E , as claimed. 
The reverse inclusion is immediate. This proves (S1).
For (S2), suppose c(A) ∩ E ≠ � . Since z1 ≻ z2 , we may only have either 
c(A) ∩ E = {z1} (if z1 ∈ A ) or c(A) ∩ E = {z2} (if z2 ∈ A and z1 ∉ A ). In both 
cases, the equality c(A) ∩ E = c(A ∩ E) holds. This proves (S2).
For (S3), suppose A ∩ E ≠ � . First assume c(A ∪ E) ∩ E ≠ � . The hypoth-
esis yields that we may have either (i) c(A ∪ E) ∩ E = {z1} (if z1 ∈ A ), or (ii) 
c(A ∪ E) ∩ E = {z2} (if z2 ∈ A and z1 ∉ A ). Since c(A) ∩ E = max(A,≻) ∩ E = {z1} 
in case (i), and c(A) ∩ E = max(A,≻) ∩ E = {z2} in case (ii), the forward 

27  Notice that ≻ is nonempty, because |Z| ≥ 3 , and ≿ is complete and antisymmetric.
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implication holds. For the reverse implication, assume c(A) ∩ E ≠ � . Again, we 
may have either (i) c(A) ∩ E = {z1} (if z1 ∈ A ), or (ii) c(A) ∩ E = {z2} (if z2 ∈ A 
and z1 ∉ A ). In both cases, we get c(A ∪ E) ∩ E = {z1} , as claimed.

Case 2. In this case, there are two distinct items z1, z2 ∈ Z such that z1 ∼ z2 . We 
claim that the proper menu E = {z1, z2} is indiscernible:28 by Theorem 7, this will 
prove the result in Case 2. To prove the claim, we check that (I1) and (I2) hold for 
E. Observe that, since ≿ is a total preorder, we have, for all z ∈ Z , 

(1)	 z ≻ z1 if and only if z ≻ z2,
(2)	 z1 ≻ z if and only if z2 ≻ z,
(3)	 z ∼ z1 if and only if z ∼ z2.

Finally, we show that (I1)-(I2) hold for E. Let A ∈ �Z . For (I1), suppose 
A ∩ E ≠ � . There are three subcases: (i) A ∩ E = {z1} ; (ii) A ∩ E = {z2} ; 
(iii) A ∩ E = {z1, z2} . In subcase (i), if z1 ∈ c(A) , then properties (1)-(3) 
yield c(A ∪ E) ∩ A =

(
c(A) ∪ {z2}

)
∩ A = c(A) , as claimed. Subcase (ii) can 

be handled similarly to case (i). For case (iii), we have A ∪ E = A , whence 
c(A ∪ E) ∩ A = c(A) ∩ A = c(A) , again as claimed.
For (I2), assume that c(A) ∩ E ≠ � . As for (I1), we deal separately with the 
three possible subcases, namely: (i) c(A) ∩ E = {z1} ; (ii) c(A) ∩ E = {z2} ; 
(iii) c(A) ∩ E = {z1, z2} . In subcase (i), properties (1)-(3) readily yield that 
A ∩ E = {z1} , as claimed. Subcase (ii) is handled similarly, whereas subcase (iii) 
is trivial.

This completes the proof of Theorem 8. 	�  ◻
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