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Abstract

These lectures are meant to familiarize the audience with some of the funda-

mental results in the theory of implementation and provide a quick progression

to some open questions in the literature.

�HSS 228-77, Caltech, Pasadena CA 91125, home page: http://www.hss.caltech.edu/ jack-

sonm/Jackson.html, email: jacksonm@hss.caltech.edu. This paper provides a written version of lec-

tures given at the NATO Advanced Study Institute on Game Theory and Resource Allocation: The

Axiomatic Approach, which took place at SUNY Stony Brook in July of 1997. I thank the organizers

and especially William Thomson for organizing the institute and the participants for feedback on the

lectures.
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1 Introduction

There are many economic, social, and political situations where individuals interact

to make decisions that a�ect them collectively. Examples range from voting to elect

representatives or choose a public policy, to trading in a market. Based on their pref-

erences over the possible outcomes of the interaction, individuals may act strategically

in order to in
uence the outcome to their advantage. For instance, in an election a

voter might vote for his or her second ranked candidate if the voter's favorite candidate

has no chance of being elected; or in an auction a buyer may select a bid considering

trade-o�s between the probability of winning the auction and the price to be paid. The

speci�c design of the institution through which individuals interact, for instance the

rules of the election or auction, can have a profound impact on the strategic behavior

of the members of the society and on the outcomes of the process. Implementation

theory is a study of the relationship between the structure of the institution through

which individuals interact and the outcome of that interaction.

Game theory plays a central role in the modeling of the strategic interaction studied

in implementation theory. In many applications of game theory, the game modeling

interaction is taken as given and analyzed to predict the actions of individuals and

the resulting outcome. In implementation theory, instead of taking the game as given,

it is something to be designed. Often, one thinks of the desired outcomes as the

given and analyses whether there exist game forms for which the strategic properties

induce individuals to (always) choose actions that lead to the desired outcomes. An

example of an implementation question is: how can we design an auction to be sure

that the individual who most highly values an object is sure to be the winner of the

auction?1 In this view, implementation theory is a normative branch and game theory

is a positive branch of the same tree, and implementation theory is the design or

reverse engineering process associated with game theory. Of course, this view is a

bit caricatured, but indicates that there is a close relationship between the tools and

understandings developed in implementation theory and game theory.

To get a feeling for the type of questions that are analyzed in implementation theory

let us start by looking at a classic example. Consider a society or committee holding

an election to select one out of a set of candidates. Each member of the society has

a preference ranking over the candidates. The society may have certain aspirations

1For an analysis of this particular problem from a mechanism design point of view, see Dasgupta

and Maskin (1997). I will discuss the relationship and di�erence between mechanism design and

implementation.
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regarding which candidate should be selected as a function of the preferences of the

members of the society. For instance, it may wish to avoid selecting a candidate who

is Pareto dominated by another candidate (i.e., a candidate ranked lower than another

candidate by all members of society). It may also wish to select a Condorcet winner

(a candidate who defeats any other candidate in a pairwise comparison according to

a majority of voters' preferences) if such a candidate exists. If these were the goals of

the society then the implementation question would be, \Does there exist an election

procedure for which for each possible pro�le of preference rankings of the voters, each

equilibrium outcome of the election procedure would be Pareto optimal and Condorcet

consistent?"

In order to answer this question one has to make precise what an election procedure

is and what equilibrium outcomes are. This is the point at which game theoretic tools

are used. The election procedure is modeled as a game form or what is commonly

referred to as a mechanism in the literature. It speci�es a set of possible actions or

messages that each member of society can use, and then the outcome (in this case

the candidate elected) as a function of the actions or messages sent by the members

of society. For instance one could have each member of society submit their ranking

of the candidates. If there are m candidates, then one could award a candidate m

points for each voter whose submitted ranking places them highest, m � 1 points for

each voter's submitted ranking places them second highest, and so on. The elected

candidate is the one who has the most points, with ties broken according to some

pre-speci�ed rule. This is the mechanism corresponding to Borda's (1781) scoring

method. Of course, it may not be in a society member's best interest to report their

true preference ranking. This is where equilibrium concepts from game theory are

used to make predictions concerning strategic behavior. A solution concept such as

Nash equilibrium can be used to predict the preference rankings that will be reported

by voters as a function of the voters' true preference rankings. Depending on the

class of mechanisms that are admitted (e.g., how complicated we allow the message

spaces to be) and which equilibrium concept that is used, we can end up with di�erent

answers concerning the possibility of selecting from the Pareto correspondence and

being Condorcet consistent.2

2The Borda scoring mechanism will not satisfy Condorcet consistency. Moreover, as we shall see in

Example 3 there is no Nash implementable social choice correspondence that selects from the Pareto

correspondence and be Concorcet consistent. See Dutta and Sen (1993) and Jackson, Palfrey, and

Srivastava (1994) to �nd examples of social choice correspondences that satisfy these properties and

are implementable via backwards induction or undominated Nash equilibrium, respectively.
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In the above example a very concrete question was posed. We asked whether

it was possible to design election procedures that possess speci�c properties, or in

the language of the theory, whether it is possible to implement correspondences with

speci�c properties. Also, we focused our attention on a speci�c setting. While this is

one way to proceed in analyzing implementation, it does not directly3 provide a general

understanding of implementation that moves across di�erent problems. Another way

to proceed, is to take a more abstract approach to the implementation problem and

attempt to fully characterize the class of the correspondences that can be implemented.

That is, we can search for properties that precisely identify which correspondences

are implementable and which are not, and also identify implementing mechanisms.

These properties can then be applied to speci�c settings to check whether a given

correspondence can be implemented. Such general characterization results have been

produced with remarkably little in terms of assumptions on the structure of the set of

alternatives or the feasible preferences of individuals. As we shall see, the theory has

alternated between fairly general and abstract theorems that cover a wide variety of

potential applications, and more focused and detailed theorems that apply to particular

settings or correspondences.

In what follows, I concentrate on a speci�c progression in the literature and in doing

so provide a biased view that often re
ects my own perspective on the literature. These

lectures are meant to be an introduction to the theory rather than a survey,4 and so

I do this without apology. At points I provide opinions concerning assumptions and

results, which are quite critical. This is meant to constructively point out limitations

of some of the existing results and suggest potential directions for future research.

In what follows I assume that the reader has an introductory level knowledge of

game theory (and thus has seen notions such as Nash equilibrium) and is also familiar

with some concepts from microeconomics such as preference relations and Walrasian

equilibrium.

3Nevertheless, I will come back to discuss why an approach of cataloging the answers to such

narrower questions may turn out to be a useful approach to developing the theory.
4Surveys of various aspects of the literature may be found in Moulin (1982), Moore (1992), Palfrey

(1992), Palfrey and Srivastava (1993), Allen (1997), and Corchon (1998). While these lectures are

not meant to survey the literature, the Bibliography that I include here is fairly comprehensive. The

exception is that I do not include references to the large literature related to dominant strategy

implementation as Salvador Barber�a (1998) o�ers lectures on strategy-proofness in this same volume.
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2 De�nitions and an Example

Individuals

A �nite group of individuals interact. N denotes both the set of individuals and its

cardinality. Generic individuals are represented as i, j, and k.

Outcomes

The set of outcomes is denoted A, and generic elements are represented as a, b, c,

d.

The set of outcomes may be �nite or in�nite depending on the application. For

example, consider the design of a voting procedure to elect one of a �nite number of

candidates. In that case, N is the set of voters and A is the �nite set of candidates.

As another example, consider the design of a market where individuals interact to

exchange ` di�erent goods. In that case N is the set of economic agents, and A � IRN`
+

represents the �nal allocation of goods (including labor, leisure, consumption goods,

etc.) that are possible given the endowments and production possibilities.

Preferences

Individual i's preferences are represented by a binary relation Ri over A that is

complete and transitive. The notation aRib indicates that i weakly prefers alternative

a to b. The strict preference relation associated with Ri is denoted Pi (where aPib if and

only if it is not the case that bRia). The notation R denotes a pro�le R = (R1; : : : ; RN ),

and (R�i; Ri) denotes the pro�le where the i-th entry of R is replaced with Ri.

The set of admissible pro�les of preferences is the set P. Depending on the applica-

tion, P may impose restrictions on the preferences. For instance, in the context of the

exchange of private goods it may be assumed that preferences are convex, continuous,

and non-decreasing. I will sometimes refer to a pro�le of preferences as being the state

of the environment.

Social Choice Correspondences

A social choice correspondence, F , maps pro�les of preferences into subsets of alter-

natives. For any R 2 P, F (R) � A represents the set of socially desirable alternatives

when preferences are given by R. It will be assumed throughout that F is non-empty.

When F is single-valued it is referred to as a social choice function.

In many applications, F will be a well-known correspondence, such as the Wal-

rasian, Lindahl, or top-cycle correspondence, or will be a social choice correspondence

derived from some normative axioms, such as the correspondence of Pareto optimal,

individually rational, and envy-free allocations in a private good exchange setting.
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Generally, implementation theory seeks to characterize the set of social choice cor-

respondences that are obtainable as equilibrium outcomes when individuals interact

through some game form making strategic use of their knowledge of the preference

pro�le R. There are several perspectives that one can take on this problem. One per-

spective is to begin with a speci�c correspondence and setting, such as the Walrasian

correspondence in a private-goods economic setting, and ask whether that speci�c cor-

respondence can be implemented and if so by what mechanism. A second perspective

is to work more abstractly and characterize the set of correspondences that are imple-

mentable, by identifying conditions that they must satisfy. Both of these (and some

other) perspectives have been taken in the literature, and we shall see examples of

each.

Mechanisms

A mechanism is a pair M;g, where M = M1 � � � � � MN is a cross product of

message spaces and g : M ! A is an outcome function. Thus, for each pro�le of

messages m = (m1; : : : ;mN), g(m) 2 A represents the resulting outcome or allocation.

A mechanism is often also referred to in the literature as a game form. The ter-

minology game form distinguishes it from a game, as the consequence of a pro�le of

messages (or actions) is an outcome rather than a vector of utility payo�s. Once the

preferences of the individuals are speci�ed, then a game form induces a game. Since

in the implementation analysis the preferences of individuals vary from state to state,

this distinction between game forms and games is critical.

Solution Concepts

A solution concept5 speci�es the strategic behavior of individuals faced with a

mechanism (M;g) given a preference pro�le R. Thus, it is a correspondence S that

identi�es a subset ofM for any given (M;g;R) speci�cation. For the question of what a

mechanism implements, the speci�c messages that are predicted by the solution concept

are only of intermediate interest as the corresponding set of outcomes that result is the

important concept. Thus, we pay attention to the outcome correspondence associated

with a solution S represented by OS(M;g;R) = fa 2 A j 9m 2 S(M;g;R) s:t: g(m) =

ag.

For example, for any given (M;g;R) a pure strategy Nash equilibrium is a pro�le

5I use the terminology \solution concept" rather than \equilibrium concept", as some of the con-

cepts employed in the literature (such as single or iterative removal of dominated strategies) do not

make explicit use of \equilibrium" ideas, and can predict vectors of messages that are not stable in

an equilibrium sense.
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m 2 M such that g(m)Rig(m�i;mi) for all i and mi 2 Mi. Denote this set by

NE(M;g;R). The set of associated outcomes is ONE(M;g;R) = fa 2 A j 9m 2

NE(M;g;R) s:t: g(m) = ag.

I de�ne other solutions concepts as they arise and similarly defer de�nitions of

mixed strategies until arise.

Implementation

A social choice correspondence F is implemented by the mechanism (M;g) via the

solution S, if OS(M;g;R) = F (R) for all R 2 P . F is said to be implementable via

the solution S if there exists a mechanism (M;g) which implements it.

The above form of implementation is sometimes referred to as full implementation

as it requires the exact coincidence of the outcomes of a mechanism with the social

choice correspondence.

One can also reasonably argue for a weaker form of implementation where one

only requires that OS(M;g;R) be a non-empty subset of F (R) for every R.6 This

takes the point of view that any outcome in F (R) is socially desirable and so any

selection is �ne. Note, however, that F is weakly implementable if and only if some

sub-correspondence of F is implementable. The literature has thus proceeded in charac-

terizing what is implementable, which then provides an indirect answer to the question

of weak implementability.7

One key aspect of implementation (and weak implementation) is the requirement

that all equilibrium outcomes lie in the given social choice correspondence. This is

di�erent from designing a mechanism that has one desired outcome as an equilibrium

outcome, as there may also be undesired equilibrium outcomes that are not accounted

for. This points to the important distinction between the \implementation" literature

and the \mechanism design" literature as being one of worrying about multiple equilib-

ria. The mechanism design literature focuses on incentive compatibility issues, asking

whether a given outcome can be induced as an equilibrium of some mechanism and

generally ignores whether there are other equilibria. In situations where this leads to a

negative result (e.g., Myerson and Satterthwaite (1983)) showing that certain outcomes

cannot be sustained as the equilibrium of any mechanism this approach is �ne. How-

ever, in situations where it leads to positive results so that one identi�es a mechanism

6See Thomson (1996) for an argument supporting full implementation over weak.
7This may not be an entirely satisfactory approach, as there may be conditions for weak imple-

mentability that are easier to verify than checking whether some sub-correspondence satis�es the

conditions for implementability.
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and one of its equilibrium as satisfying some desired criteria, then one should be very

careful in interpreting the result. Can we be sure that the given equilibrium will be

played and not some other equilibrium of the mechanism?8 Are there other mecha-

nisms that are better from the perspective of maintaining the desired equilibrium, but

not having other undesired ones? This point is well illustrated in an example of Dem-

ski and Sappington (1984)9, where the \optimal" mechanism to a principal-multiple

agent problem has a second equilibrium which makes all the agents better o� and the

principal worse o�.10

The multiple equilibrium issue is why the implementation problem is still non-

trivial in environments with complete information, where each individual knows the

other individuals' preferences. As an example, suppose that we consider trying to

implement the Walrasian correspondence in a classical Edgeworth setting. If we only

want to make sure that Walrasian outcomes are Nash equilibrium outcomes, and do not

care about what other equilibrium outcomes may arise, there is a simple mechanism

that works. Individuals simultaneously announce a full vector of feasible allocations. If

they all announce the same vector of allocations then that is the outcome, and otherwise

the outcome is that they each keep their endowment. Clearly everyone announcing the

same Walrasian allocation is a Nash equilibrium of this mechanism. Unfortunately,

there are many other equilibria of this mechanism which are not Walrasian allocations.

The question implementation question is there exists a mechanism whose entire set

of Nash equilibrium outcomes coincides with the set of Walrasian allocations for each

preference pro�le.

On the Timing and Information Structure

Much of the implementation literature uses an idiom that refers to a social planner,

who is benevolent and selects the mechanism to implement a social choice correspon-

dence with a society's best interest at heart. A question that then naturally comes

to mind when thinking about the implementation problem is why doesn't the social

planner adjust the mechanism once the preference pro�le is realized.11 Alternatively,

8If so, why was this not built into the solutoin concept to begin with?
9For further examples and a pointed discussion of this issue, see Palfrey and Srivastava (1993).
10A defense that is often o�ered for focusing a single equilibrium is that society can direct its

members to play the desired equilibrium and then they should have no reason to deviate. This

argument loses some power when there are alternative equilibria that are preferred by some (or even

all) of the members of society, especially if there is any possibility for the members to directly or

indirectly coordinate on an equilibrium.
11See Baliga, Corchon and Sj�ostr�om (1997) for the possibility of having the planner be a player who
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why do the individuals in society have complete information concerning each others'

preferences (or at least enough information to arrive at an equilibrium) and the social

planner not? An answer is that mechanisms represent institutions (or in some cases

even constitutions), that are meant to be long-lived. These may be costly to adjust, or

it even may be better to commit to �xing the institutions not to adjust to the speci�cs

of each realized setting. The rules for a securities market are �xed and then traders

arrive with their desired trades, and similarly the rules for an election are (usually)

set before preferences of the voters are realized. Thus, mechanisms can be thought of

as representing institutions, and the implementation problem is to characterize insti-

tutions in terms of the correspondence of outcomes they produce as a function of the

realized state of individual preferences.

Finally, while incomplete information environments, where for instance individu-

als know their own preferences and hold beliefs over the preferences of others, are

arguably more realistic than complete information environments, it has proven use-

ful to attack the problem one piece at a time. Understanding implementation in the

complete information setting has helped signi�cantly in developing characterizations

of implementation in Bayesian settings.

An Example:

Hurwicz laid much of the foundation of the implementation problem, and presented

a simple example that is a very good one for a �rst analysis of some of the issues.

Example 1. (Hurwicz (1972))

Consider a two person, two good exchange economy, that lies in the Edgeworth

box. Individual 1 has an endowment e1 = (0; 1) and individual 2 has an endowment

e2 = (1; 0). Let xi` denote individual i's allocation of the `-th good. So here our space

of feasible allocations is A = f(x1; x2) 2 IR4
+ j x11 + x21 = x12 + x22 = 1g.

Consider two states of the world. In the �rst state (R1; R2), the preference relation

Ri of each individual is represented by a Cobb-Douglas utility function ui(x) = xi1x
i
2.

In the second state, (R
1
; R2), the preferences of agent 1, R

1
, are represented by the

utility function u1(x) = x12 �
1

1+x1
1

.

Suppose that we are interested in implementing the Walrasian correspondence.

The unique Walrasian equilibrium allocation at R1; R2 is x1 = x2 = (1=2; 1=2), and at

R
1
; R2 is x1 = (1=2; 7=9) and x2 = (1=2; 2=9).

has preferences and can a�ect the outcome function as part of equilibrium play.
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Clearly, in either state agent 1 prefers to have the allocation associated with (R
1
; R2)

to that associated with (R1; R2).12 This is seen in Figure 1.

[Insert Figure 1 here]

There are a few important conclusions to draw from this example. The �rst is that

a direct mechanism, or the classic one associated with a \Walrasian auctioneer" who

asks individuals to report their demand functions, will not implement the Walrasian

correspondence. Individual 1 is better o� acting as if he had preferences R
1
instead

of R1 when the state is actually (R1; R2). This also implies that any sort of incen-

tive compatibility condition will be violated by the Walrasian correspondence (or any

selection from it) when agents' preferences are private information.

Hurwicz points out another consequence of this line of reasoning. A mechanism that

implements13 the Walrasian correspondence must make use of information of agent 2

concerning the preferences of agent 1, as agent 1 can otherwise pretend to be of type

R
1
. Thus, Hurwicz argues that no \privacy preserving" mechanism can implement the

Walrasian correspondence, where privacy preserving is an appropriate formalization of

the idea that the mechanism only incorporates knowledge of an individual about their

own preferences.

Let us now explore a related question in the context of the same problem in order

to get a better feeling for the implementation problem. We know that a mechanism

that implements the Walrasian correspondence in this example must make some use of

individual 2's knowledge of individual 1's preferences. So we might ask, is that enough?

Is there a simple mechanism that Nash implements the Walrasian correspondence in

this two state example?

The following is the direct mechanism associated with simply asking each individual

to announce their preferences. The �rst entry in each row is individual 1's allocation

and the second is individual 2's allocation.

Table 1

12Hurwicz actually makes a stronger point. Every allocation that is Pareto e�cient and individually

rational for both individuals at R
1

; R2, is preferred under R1 (and R
1

) to the Walrasian equilibrium

allocation at R1; R2.
13I am being vague about the solution concept at the moment, but the statement is true for most

solutions concepts.
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Individual 2

R2

Individual 1 R1 x1 =(1
2
; 1
2
), x2 = (1

2
; 1
2
)

R
1

x1 =(1
2
; 7
9
), x2 =(1

2
; 2
9
)

Clearly, there is a unique strictly dominant strategy equilibrium in either state for

individual 1 to say R
1
, and so such a direct mechanism cannot Nash implement the

Walrasian correspondence. This is just an illustration of Hurwicz's point.

Let us now expand individual 2's strategies to include two possible announcements

\Left" and \Right". We will design the mechanism so that it is a strictly dominant

strategy for individual 1 to say R1 when the state isR1, and R
1
when it isR

1
. Moreover,

this can be done so that it is a strict best response for individual 2 to say \Left" if

individual 1 is playing R1, and to say \Right" if individual 1 is saying R
1
.

Table 2

Individual 2

Left Right

Individual 1 R1 x1 =(1
2
; 1
2
), x2 =(1

2
; 1
2
) x1 =(11

18
; 2
3
), x2 =( 7

18
; 1
3
)

R
1

x1 =(0; 1), x2 =(1; 0) x1 =(1
2
; 7
9
), x2 =(1

2
; 2
9
)

For the mechanism in Table 2, the unique Nash equilibrium in state (R1; R2) is

(R1;Left) which results in the Walrasian allocation for that state, and similarly for

the state (R
1
; R2) the unique Nash equilibrium is (R

1
;Right). This mechanism thus

implements the Walrasian correspondence (for this simple two state environment) in

Nash equilibrium. The mechanism also implements the desired correspondence in the

iterative elimination of strictly dominated strategies, and most other solution concepts.

As is consistent with Hurwicz's privacy preserving point, it was necessary for us to

have individual 2 play a role even though only 1's preferences vary. One thing to note

about the above mechanism, is that individual 2 does not simply \report" what she

knows about individual 1. Individual 2 would have an incentive to say that it was state

R1, even if it was state R
1
. Thus, the agents' incentives in this regard are opposed.

Instead, allowing individual 2 to have a non-trivial message space allows us to create

a richer mechanism; and in particular to exploit switches in individual 1's preferences

11



between the two states. For instance, the \R
1
, Left" entry is one that individual 1

prefers to R1, Left" in state R
1
but not in state R1. Thus, the o�-diagonal entries are

critical to the working of the mechanism and were not chosen by chance. This begins

to hint at an important necessary condition for implementation that I discuss next.

The contrast between the workings of the two mechanisms above points out the

importance of considering a large class of mechanisms for the implementation problem,

and most notably to include mechanisms that do more than simply ask individuals to

report their preferences. Although the mechanism in Table 2 can be regarded as a

direct mechanism if one thinks of asking each individual to report the state, the entries

in the o�-diagonals are still critical to successful implementation. Moreover, there are

problems where implementation can only be achieved by mechanisms that are more

complicated. In order to develop a deeper understanding of this, let us now analyze

Nash implementation.

3 Nash Implementation

The seminal work on Nash implementation by Maskin (1977), not only provides us with

an understanding of what is implementable in Nash equilibrium, but it also provides

a blueprint for the techniques and approach that underlie many of the general charac-

terization results in the literature. Thus, it is useful to study Nash implementation in

some detail.

Monotonicity Two Ways

Maskin identi�ed an intuitive necessary condition for Nash implementation that

he called monotonicity.14 This condition may be expressed in two di�erent ways. It

is a trivial exercise to see that the statements are equivalent. Nevertheless, I present

each of them separately as these expressions correspond to di�erent expressions in the

implementation problem, and it is useful to emphasize each of these points of view.

Suppose that a social choice correspondence F is Nash implementable. What can

we deduce about F ? Its implementability implies that there exists an implementing

mechanism (M;g). So consider a preference pro�le R and an alternative a 2 F (R).

Since F is Nash implementable there exists a pro�le of actions m 2 M such that m

is a Nash equilibrium at R and g(m) = a. Next, suppose that there exists another

preference pro�le R such that a =2 F (R). The fact that (M;g) Nash implements F

14This condition previously appeared in the social choice literature under the name strong positive

association (e.g., see Muller and Satterthwaite (1977)). The name monotonicity, however, stuck.
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then implies that m cannot be a Nash equilibrium at R. Thus, there must exist an

agent i and a deviation mi that i prefers to mi at Ri. That is, there must exist i and

mi such that g(m�i;mi)P ig(m). Since m was a Nash equilibrium at R, it must be that

g(m)Rig(m�i;mi). Letting b = g(m�i;mi), we have reasoned that F must satisfy the

following condition.

A social choice correspondence F is monotonic if for any R 2 P, R 2 P, and

a 2 F (R) such that a =2 F (R), there exists i and b such that aRib and bP ia.

This condition is represented in the following �gure.

[Insert Figure 2 here]

In Figure 2, the set of allocations is in IR2
+ for individual i. The monotonicity

condition states that if a 2 F (R) but a =2 F (R), then there exists some i for whom

either the indi�erence curves through a corresponding to Ri and Ri cross (Figure 2.1)15

or the upper contour set of Ri through a is a superset of the upper contour set of Ri

through a (�gure 2.2).

We have reasoned the following result.

Theorem 1 [Maskin (1998)] If a social choice correspondence F is Nash implementable,

then F is monotonic.

To get some practice understanding monotonicity, the reader can return to the

implementing mechanism in Example 1 (Table 2) and verify that player 1 and the

o�-diagonal entries satisfy the monotonicity conditions that are necessary for imple-

mentation.

To develop a fuller understanding of monotonicity, let us examine the condition

from a di�erent, but formally equivalent perspective.

Consider a preference pro�le R and alternative a 2 F (R). Suppose that bR is such

that for each i if aRib, then a bRib. This says that a's standing in i's preference ranking

has improved (or at least not fallen) from R to bR, so that a is still preferred under bRi to

each b it was preferred to under Ri. From Nash implementability we know that there

15Although in the �gure, the indi�erence curves cross at a, they can cross at any point and may

cross more than once. As noted in Maskin (1998), the Spence-Mirrlees single-crossing condition is

stronger than monotonicity. For a study of the relationship between monotonicity and single crossing

properties see Arya, Glover, and Rajan (1998).
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exists m which is a Nash equilibrium at R. This implies that g(m)Rig(m�i;cmi) for any

i and potential cmi. Given that aRi(s)b implies a bRib, it must be that g(m) bRig(m�i;cmi)

for any i and potential cmi. Thus, m is also a Nash equilibrium at bR and so a 2 F ( bR).
This leads to the following statement of monotonicity.

A social choice correspondence F is monotonic if for any R, a 2 F (R), and bR, such
that for each i and b aRib implies a bRib, a 2 F ( bR).

Thus, monotonicity requires that if a 2 F (R) and for each i the upper contour set

of bRi through a is a subset of the upper contour set of Ri through a, then a 2 F ( bR).
This condition is represented in the following �gure.

[Insert Figure 3 here]

One statement of monotonicity follows the reasoning that if an alternative is to

be implemented at one pro�le but not another, then it must have fallen in someone's

rankings in order to break the Nash equilibrium via some deviation. The other state-

ment of monotonicity follows the reasoning that if an alternative is implemented at one

pro�le and rises in each individual's rankings at another preference pro�le, then pro�le

of actions leading to the alternative which form a Nash equilibrium at the �rst pro�le

must still be a Nash equilibrium pro�le at the second pro�le. These conditions are

obviously equivalent as one is simply the contra-positive of the other. Nevertheless, it

is still useful to consider both statements. The �rst emphasizes that there must exist

some preference reversal if an equilibrium at one pro�le is to be broken at another. This

suggests natural relationships with various preference crossing properties. The second

emphasizes that if the standing of an equilibrium alternative improves it must remain

an equilibrium outcome, which is often a useful way of checking whether monotonicity

is satis�ed and provides useful bridges to understanding the connection to conditions

such as strategy-proofness.

Su�cient Conditions for Nash Implementation

Monotonicity alone is not a su�cient condition for Nash implementation, but it is

su�cient together with an auxiliary condition called no-veto power when there are at

least three individuals.

A social choice correspondence F satis�es no veto power if whenever i, R, and a

are such that aRjb for all j 6= i and all b 2 A, then a 2 F (R).

No veto power is a condition that is quite weak in some contexts, such as environ-

ments with some private goods when there are at least three (non-satiated) individuals.

In such a context, each individual would prefer to have more of the private good and so
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there is never a single alternative that is most preferred by more than one individual.

However, the condition is more restrictive with 2 individuals, or in contexts such as

voting environments where there is no private good.

Theorem 2 [Maskin (1998)] If N � 3 a social choice correspondence F satis�es

monotonicity and no veto power, then it is Nash implementable.

It is instructive to sketch a proof of this theorem,16 as it provides insight into the

approach used to many of the su�ciency theorems in the literature.

Generally, it is easy to design a mechanism that has the desired outcomes as Nash

equilibria. It is more di�cult to rule out undesired outcomes. To see this, consider

the following trivial mechanism: if at least N � 1 individuals name the same alter-

native then that is the outcome, otherwise some arbitrary b is the outcome. Notice

that a unanimous announcement of any a is a Nash equilibrium for any preference

pro�le. However, every alternative is an equilibrium outcome for such a mechanism

regardless of the preference pro�le. This points to the importance of the multiple equi-

librium problem. One way to view the mechanism below is to start with such a trivial

mechanism and then modify it using monotonicity to rule out undesired equilibria.

Consider a social choice correspondence F which satis�es monotonicity and no veto

power and assume that N � 3. Consider the following mechanism.

Mi = P �A� IN where IN is the set of nonnegative integers.

De�ne g as follows:

(1) If m1 = m2 = � � � = mN = (R; a; n) and a 2 F (R), then g(m) = a.

(2) If there exists i such that mj = (R; a; n) for all j 6= i, where a 2 F (R), and

mi = (�; b; �) where b 6= a, then g(m) = b if aRib and g(m) = a if bPia,

(3) For any other m label mi = (�; ai; ni) and let i� be the lowest indexed i such that

ni � nj for all j 6= i, and then g(m) = ai�.

Let us verify that this mechanism Nash implements the desired F . Let R be the

true preference pro�le.

16Although the theorem was �rst stated in Maskin (1998) (and the manuscript dates to 1977), the

�rst proof was by Williams (1986). William's proof required some additional assumptions on the

setting, and the �rst complete proof of the theorem as stated is in Saijo (1988). The proof given here

is adapted from Repullo (1987) and Moore and Repullo (1990).
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First, let us check that for any a 2 F (R) it is a Nash equilibrium for all agents to

announce mi = (R; a; 0). A unilateral deviation by any i results in an m�i;mi that

falls either in (1) or (2), and then can only result in a b such that aRib. Thus, no i can

gain by deviating and so m is an equilibrium.

Next, let us check that every Nash equilibrium results in some a 2 F (R). If m is a

Nash equilibrium that falls into (3), then it must be that g(m) is the most preferred

outcome of all agents, since otherwise some agent i could deviate and announce an

integer higher than the other agents and select any outcome ai. Thus, by no veto

power it must be that g(m) 2 F (R). If m is a Nash equilibrium that falls into (2),

then any agent j 6= i (where i is as de�ned in (2)) could unilaterally deviate and choose

an action such that g would be determined by (3) and j = i� (simply by announcing

an integer higher than any other agent and any desired aj). Thus, for such an m to

be an equilibrium, it must be that g(m) is most preferred by all agents j 6= i, and

again no veto power ensures that g(m) 2 F (R). Finally, consider the case where

m is a Nash equilibrium and g is determined by (1). If the preference pro�le R is

announced truthfully, then the outcome must be in F (R). So consider the case where

m1 = m2 = � � � = mN = ( eR; a; n) and a 2 F ( eR) where eR 6= R. Any individual i

could deviate to obtain any b such that a eRib (by simply announcing (�; b; �) which puts

m�i;fmi under (2)). Thus, it must be that if a eRib then aRib. Thus, by monotonicity

a 2 F (R).

This basic structure of this mechanism underlies the construction of mechanisms

in many of the constructive proofs for other solution concepts too. The basic idea is

that there is a possibility for complete agreement which falls under (1). This allows

outcomes in F (R) to be sustained as equilibrium outcomes. As it is possible for the

individuals all to announce the same (R; a; n) even when the state is R and a =2 F (R),

part (2) of the de�nition of g allows monotonicity to work so that some i can deviate

and announce (R; b; n) and obtain b. Part (3) then allows any individual other than i

to obtain any outcome they like, which rules out equilibria that fall under (2), unless

b is most preferred by all j 6= i in which case by no veto power, b 2 F (R).

As discussed previously, no veto power is not a necessary condition and can be

restrictive. So it is worthwhile to identify a set of conditions that is both necessary

and su�cient for Nash implementation. Such conditions have been obtained by Moore

and Repullo (1990). Although these conditions are more complicated, they do provide

additional insight and I refer the reader to the Moore and Repullo (1990) paper for
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more detail.17

Theorem 2 requires that N � 3. The case of N = 2 is of obvious importance

as there are many bilateral interactions that one would like the theory to handle.

Interestingly, there are non-trivial di�erences between the case of N = 2 and N �

3. To get a rough idea of the additional considerations that appear for the case of

N = 2, notice that the mechanism used to prove Theorem 2 makes use of the fact

that when N � 1 agents announce the same thing, then one can identify an i who is

demanding a di�erent alternative as in (2) of the de�nition of g. With 2 agents this

is not possible and an additional necessary condition appears. Characterizations for

the case of N = 2 appear in Dutta and Sen (1991b) and Moore and Repullo (1990).

While the full characterization is complex, an intuitive su�cient condition called the

\non-empty lower intersection condition" appears in Dutta and Sen (1991b), and I

refer the interested reader there for details.

The Restrictiveness of Monotonicity

To better understand what is Nash implementable, let us now explore whether some

well-known social choice correspondences satisfy monotonicity.

Let us begin with the classical exchange environment referred to in Hurwicz (1972)

and consider whether the Walrasian correspondence satis�es monotonicity. In Example

1 monotonicity was satis�ed. However, that was a very restrictive setting and in fact

monotonicity is not satis�ed by the Walrasian correspondence on the full classic domain

of preferences. This was shown in the context of the following example by Hurwicz,

Maskin, and Postlewaite (1995).

Example 2. (Hurwicz, Maskin, and Postlewaite (1995))

Consider a two person, two good Edgeworth economy.18 There are two states

(R1; R2) and (R
1
; R2), with the preferences as pictured in Figure 4 below. The alloca-

tion a is a Walrasian equilibrium at R1; R2, but not at R
1
; R2.

[Insert Figure 4 here]

The di�culties that appear in the �gure above have to do with the boundary of

the Edgeworth box. Thus in order to satisfy monotonicity, we need to �nd b such

that aR1b and bP
1
a. The allocation b necessary to satisfy this requires an amount of

17See Danilov (1989) and Yamato (1992) for an elegant full characterization in some speci�c settings

and Sj�ostr�om (1991) for an algorithm for verifying the necessary and su�cient conditions.
18Although the �gure is simply for 2 individuals, it is easily adapted for 3 or more individuals.
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good 2 for player 1 that exceeds the total amount of good 2 available in the economy.

The problem is that the crossing of preferences required by monotonicity takes place

outside of the Edgeworth box, and outside of the set of allocations that are feasible for

a mechanism to provide.

The way around this problem suggested by Hurwicz, Maskin and Postlewaite (1995)

is to modify the Walrasian correspondence to include a as an equilibrium at R
1
; R2.

This new correspondence, called the \constrained Walrasian correspondence" satis�es

monotonicity and is Nash implementable when there are 3 or more individuals.

To be precise let A = fx 2 RN`
+ j

P
i x

i
k �

P
i e

i
k 8kg. Say that x is a constrained

Walrasian equilibrium allocation if there exists p 2 IR`
+
such that p �xi � p � ei for each

i and xRiy for all y 2 A such that p � yi � p � ei.

The constraint in the de�nition is in the requirement that y 2 A. In the usual

de�nition of a demand correspondence, one requires that a demanded point be weakly

preferred to all other points in the budget set. In this constrained de�nition, it is

only required that a demanded point be weakly preferred to the points in the budget

set that are also feasible given the resources in the economy. Thus, a1 is not in the

demand correspondence of player 1 at R
1
, but it is in the constrained demand cor-

respondence. So, the allocation a is a constrained Walrasian equilibrium at R
1
; R2,

and so the di�culty with monotonicity is overcome. Hurwicz, Maskin, and Postlewaite

(1995) show that the constrained Walrasian correspondence is monotonic on a classical

domain of preferences, and it is contained in any upper-hemicontinuous social choice

correspondence that is Pareto e�cient, individually rational, and monotonic.

Next, let us examine monotonicity in a voting context.

Example 3.

Let A be a �nite set of candidates, and consider the following preference pro�le.

R1 = a; b; c, R2 = c; a; b, and R3 = b; c; a.

Also consider R
3
= c; b; a.

Let F (R) = fa; b; cg and F (R�3; R
3
) = fcg. F agrees exactly with the choice of

most scoring rules (e.g., Borda), and most any rule that is anonymous and neutral (e.g.,

the top cycle correspondence, uncovered correspondence, Copeland rule, Simpson rule,

etc.), as well as plurality rule. Unfortunately, F is not monotonic since the standing of

a has not changed at all in anyone's preference ranking and yet a is in F (R), but not

in F (R�3; R
3
).

This means there are no well-known voting correspondences that are Nash im-
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plementable! This suggests that sequential rationality or other solution concepts are

needed for the implementation of voting correspondences.

To see the restrictiveness of monotonicity in the voting context from another per-

spective, note that the Muller-Satterthwaite (1977) theorem states that in a voting

context19 if N � 3 then any social choice function that is monotonic is necessarily

dictatorial.

As we have seen, although monotonicity can be satis�ed, it is in general a strong

condition. Many interesting and desirable social choice correspondences are not Nash

implementable. In view of this, various alternatives to Nash implementation have been

investigated in detail. One possibility is to use alternative equilibriumconcepts, an idea

we will turn to later. Generally, using stronger equilibrium concepts (i.e., more re�ned

ones) allows for more things to be implemented. Usually the more di�cult challenge

in implementation comes from ruling out undesired equilibrium outcomes, rather than

ensuring that desired outcomes are equilibrium outcomes. Stronger solution concepts

aid in ruling out undesired equilibria. The second possibility that has been explored is

to place additional structure on the set of alternatives and then to require some sort

of approximate, or what has become known as virtual implementation. I discuss this

next.

4 Virtual Implementation

Virtual implementation works under the assumption that if one cannot exactly imple-

ment a desired correspondence, then one should be willing to implement a correspon-

dence that is arbitrarily close to the desired one. In order to de�ne what is meant by

\close", we need additional structure on the set of alternatives. The way in which this

has been done in the virtual implementation literature is to let A be the set lotteries

over the some primitive set of alternatives. Then we can say that we are implement-

ing something \close" to a desired alternative if we end up with a lottery that places

su�ciently high probability on the desired alternative.

If we cannot Nash implement a correspondence we can ask whether there is a corre-

spondence su�ciently close to it, in the lottery sense, that can be Nash implemented.

More pragmatically, if a correspondence is not monotonic, is there a correspondence

close to it that is monotonic? There is no reason to expect that the answer to this

19A is a �nite set and P includes all strict preference orderings on A.
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question should be yes. However, the work on virtual implementation has coupled this

approximation question together with additional conditions. The answer turns out

to be yes if one restricts attention to certain types of correspondences called \ordi-

nal" ones, or if one restricts attention to situations where individuals' preferences have

von Neumann-Morgenstern representations. Both of these additional conditions place

signi�cant structure on the problem as we shall see and discuss below.

Following with the literature on virtual implementation, let us assume in this section

that there is some underlying set of alternatives A0 that is �nite, and that the set

alternatives A is the set of lotteries on A0. More formally, let K denote the number of

alternatives in A0. Then A = fx 2 [0; 1]Ks:t:
P

k xk = 1g:

This structure on the set of alternatives allows us to de�ne distance among two

elements of A through Euclidean distance. This induces a notion of closeness of social

choice correspondences:

Two social choice correspondences F and H are �-close if for every R 2 P there

exists a bijection � : F (R)! H(R) such that ja� � (a)j < � for each a 2 F (R).

So, two correspondences are �-close if for each preference pro�le there is a one-to-

one mapping so that each lottery in one correspondence is within � of its corresponding

lottery in the other correspondence. While this may seem like an innocuous de�nition,

it may be that two lotteries that are � close to each other are not even roughly equivalent

to a society that cares about ex-post realizations. This is a discussion that we will

return to after seeing how this de�nition is used.

A social choice correspondence F is virtually implementable if there exists a social

choice correspondence G that is �-close to F and is Nash implementable.20

We can now de�ne the ordinality condition mentioned above.

Given a preference relationRi on A, based on the comparison on pure outcomes (i.e.,

lotteries that provide probability 1 to some alternative), there is an induced preference

relation on the set of underlying alternatives A0. For any Ri, denote this preference

relation by Ri
p. In what follows, assume that Ri

p is a strict ordering.21

Let us say that F is ordinal22 if F (R) = F (R) whenever Ri
p = R

i

p for all i.

A preference relation Ri is monotone if there exists an ordering of A0, a1; : : : ; aK

20One can de�ne other notions of virtual implementationby substituting some other solution concept

in the place of Nash equilibrium.
21This simpli�es the exposition. One can weaken this somewhat, as should be clear in what follows,

although one cannot allow for complete indi�erence. Details can be found in Abreu and Sen (1991).
22Ordinal is a bit of a misnomer, as information contained in how preferences vary on A rather than

just on A0 is not cardinal information in the usual sense of a speci�c cardinal utility representation.
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under Ri
p such that

(i) a1P i
pa2 � � �P

i
paK, and

(ii) for any x 2 A and y 2 A such that
P

k�M xk �
P

k�M yk for any M � K and

x 6= y then xRiy.

Thus, Ri is monotone (not to be confused with monotonic) if a lottery that puts

more weight on more preferred alternatives is preferred to one that puts comparatively

less weight on more preferred alternatives.

Now we are ready to state a result that contains the main insight of the virtual

implementation literature.

Theorem 3 (Matsushima (1988), Abreu and Sen (1991))

� Any ordinal social choice correspondence de�ned on a domain of monotone pref-

erences is �-close to a social choice correspondence that satis�es monotonicity.

� Any social choice correspondence de�ned on a domain of von Neumann-Morgenstern

preferences23 is �-close to a social choice correspondence that satis�es monotonic-

ity.

Let me outline a proof for each of these results, as the ideas are fairly straightfor-

ward. A formal proof, although notationally heavy, can be easily 
eshed out by the

reader.

First, let bc be the lottery that places equal weight 1

K
on every alternative in A0. We

construct G as follows. For any a 2 A consider the lottery (1� �)a+ �bc. Transforming

any lottery to this corresponding lottery we are sure to have an \interior" lottery, or

one that puts weight on each alternative. This mapping de�nes a G that is �-close to F .

The proof is completed by showing that given either of the restrictions, such an interior

G 24 is necessarily monotonic. Consider any R, and R, and (1 � �)a+ �bc 2 G(R) such

that (1��)a+ �bc =2 G(R). First let us treat the case where F is ordinal and preferences

are monotone. Since G(R) 6= G(R), it follows from the ordinality of F that we can

23Here the social choice correspondence is de�ned on the domain of preferences and not on the

domain of utility functions. If one wants to use the set of von Neumann-Morgenstern utility functions

as the domain, then the social choice correspondence must be constant across utility functions that

are a�ne transformations of each other.
24The reader can check that the following argument is easily adaptable to show that any interior

social choice correspondence is monotonic on these domains.
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�nd i such that Rp
i 6= R

i

p. So there are alternatives d 2 A0 and d 2 A0 such that

dP i
pd and dP

i

pd. From the de�nition of bc, the lottery b = (1 � �)a + �bc + 1

2K
d � 1

2K
d

25 is well-de�ned and in fact interior. Since preferences are monotone, it follows that

(1 � �)a+ �bc P i b and b P
i
(1� �) + �bc. Thus, G is monotonic.

For the case where preferences satisfy the von Neumann-Morgenstern axioms, the

proof is quite similar. Note that if G(R) 6= G(R), then there is some i for whom

Ri 6= Ri. Then, given the linearity of von Neumann-Morgenstern preferences, we can

�nd lotteries e 2 A and e 2 A such that ePie and ePie. This is pictured in the following

�gure for the case where A0 consists of three alternatives.

[insert Figure 5 here]

Letting b = (1� �)a+ �bc+ 1

2K
e� 1

2K
e again ful�lls the requirements to ensure that G

is monotonic.

In this setting, given that every social choice correspondence satisfying suitable

conditions is close to one that is monotonic, is any such social choice correspondence

virtually implementable? The answer is yes when N � 3.26 One can easily modify the

environment so that no veto power is always satis�ed. Simply take A to be the set

of all lotteries on A0, but omitting each pure lottery (that places weight one on some

alternative). Then no veto power is satis�ed trivially, as there is no best lottery for

any individual since with monotone preferences their favorite lottery is a pure lottery.

The above theorem then leads to the following corollary.

Corollary 1 (Matsushima (1988), Abreu and Sen (1991)) Let N � 3. Any ordinal

social choice correspondence de�ned on a domain of monotone preferences is virtu-

ally implementable. Any social choice correspondence de�ned on a domain of von

Neumann-Morgenstern monotone preferences is virtually implementable.

While virtual implementation provides for a remarkable conclusion, it comes at the

expense of strong assumptions.

First, in considering virtual implementation, one is implicitly assuming that so-

ciety is willing to settle for implementing something that is �-close to the desired

25Here d and d represent the lotteries given weight one to d and d. These convex combinations can

be made directly as A is a Euclidean simplex.
26For the case of N = 2 one needs to add a non-empty lower intersection condition which corresponds

to the extra condition needed for two-person Nash implementation. Details appear in Abreu and Sen

(1991).
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social choice correspondence . This raises the question of the ex-post rationality of

virtual implementation.27 Virtual implementation requires that we play with small

probabilities on lotteries that may have nothing to do with the desired social choice

correspondence, but can be used to distinguish preferences (the d's and e's in the above

proof). In particular, with small probabilities these may turn out to be the outcome of

the mechanism. In order for the virtual implementation arguments to be valid, agents

must take these small probabilities seriously and base decisions on them, with full ex-

pectations that these outcomes will be enforced if they happen to be selected by the

lottery. It is perfectly possible that an outcome which is bad for all agents is randomly

selected, and the arguments underlying virtual implementation require that the agents

cannot change this outcome (for example, by renegotiating to some other outcome).

Second, the assumptions of ordinality or of von Neumann-Morgenstern preferences

are strong ones and critical to the arguments. Von Neumann-Morgenstern preferences

are assumed in many economics models because of their nice linearity with respect to

probabilities, which allows for a very tractable analysis. However, we should always

be cautious in interpreting results that rely critically on that linearity, rather than

just using it for tractability. In other words, if our results are robust to variations

in the set of preferences then working with von Neumann-Morgenstern preferences for

tractability's sake is �ne. However, if the results depend in a special way on a restriction

to the domain of von Neumann-Morgenstern preferences, then we should be cautious in

applying the results. Arguably, virtual implementation relies critically on the linearity

(or ordinality28) of preferences because it implies that the crossing conditions needed

for monotonicity will be satis�ed at all interior points! Once one allows for slight

amounts of non-linearity in preferences over lotteries, then the crossing conditions are

not automatically satis�ed, and monotonicity once again becomes restrictive.

27Many mechanisms for implementation can be criticized for the same reason. This applies to the

mechanisms for subgame perfect and undominated Nash implementation presented in Section 6, and

is something I discuss in more detail in Section 7.
28Ordinality coupled with the monotone preference condition plays a similar role to the linearity.

If F (R) 6= F (R), then some agent's preferences must di�er over at least two underlying alternatives

in A0. Then at any interior lottery there must be a crossing of this agent's indi�erence curves, as

substituting a slight amount of one of these two underlying alternatives for the other will be ranked

in opposite ways by the two preferences.
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5 Re�nements

Another avenue in the theory is implementation under various re�nements of Nash

equilibrium.29 As we saw in the Nash implementation theorems, it is easy to ensure

that a given desired outcome is an equilibrium outcome while it is di�cult to rule

out undesired equilibria. This is where the necessity of the monotonicity condition

arises and what limits our ability to implement. Looking at re�nements helps in ruling

out undesired equilibria and leads to more permissive results. However, with such

additional power will come some cautions about how the re�nements are exploited.

Let us begin with a discussion of implementation in undominated Nash equilibrium,

as was �rst explored by Palfrey and Srivastava (1991). This is a simple and natural

re�nement of Nash equilibrium, that adds to Nash equilibrium the requirement that

no individual play a weakly dominated strategy.30 This solution concept is also useful

for illustrating the power of implementation via a re�nement of Nash implementation,

and some of the cautions that go along with it.

Given a mechanism (M;g), an individual i, and a preference relation for i, Ri, a

message mi 2Mi is weakly dominated by mi 2Mi at Ri if g(mi;m�i)Rig(mi;m�i) for

all m�i 2 M�i and g(mi;m�i)Pig(mi;m�i) for some m�i 2 M�i. A message mi 2 Mi

is undominated at Ri if there is no other message which weakly dominates it. Let

UD(M;g;R) = fm j mi is undominated at Ri 8ig:

A pro�le of messages m 2M is an undominated Nash equilibrium of (M;g) at R 2 P if

m 2 NE(M;g;R)\UD(M;g;R). So let UNE(M;g;R) = NE(M;g;R)\UD(M;g;R).

The de�nition of undominated Nash implementation is then that F (R) = OUNE(M;g;R)

for all R 2 P.

In order to keep the discussion of undominated Nash implementation relatively

uncluttered, let us impose the following assumption on the domain of preferences. A

29When I use the word re�nements, I use it literally to mean a solution concept which always se-

lects a subset of Nash equilibria, such as undominated Nash equilibrium, subgame perfect equilibrium,

coalition-proof Nash equilibrium, strong equilibrium, and trembling hand perfect equilibrium. Imple-

mentation in other solution concepts that are not re�nements of Nash equilibrium, such as protective

equilibrium or iterative elimination of weakly dominated strategies also appear in the literature (e.g.,

Barbera and Dutta (1982) and Abreu and Matsushima (1994)), but are not discussed here.
30Such equilibria are a superset of trembling hand perfect equilibria (except for N = 2 where they

coincide, see van Damme (1987)), and thus have nice existence properties, but also have the advantage

being easier to de�ne and work with in such abstract environments as arise in the implementation

literature.
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slightly weaker value distinction condition appears in Palfrey and Srivastava (1991),

and the reader is referred there for details. This condition allows us to provide a uni�ed

exposition of a number of results.

Strict Value Distinction The domain P satis�es strict value distinction if for every

R 2 P and R 2 P with R 6= R:

(I) For all i, there exists a 2 A and b 2 A such that aPib,

(II) For all i, if R 6= Ri there exists a 2 A and b 2 A such that aPib and bP ia.

(I) simply rules out complete indi�erence, and (II) says that if an individual's

preferences change, then they change in a non-trivial way so that some alternatives

switch ranking (rather than just becoming indi�erent). This preference restriction is

satis�ed on a domain of strict preferences (linear orders), but is also satis�ed in settings

where preferences are upper-semi continuous and locally non-satiated31 and so applies

to almost any setting of interest.

Theorem 4 (Palfrey and Srivastava (1991)) If N � 3 and strict value distinction is

satis�ed, then any social choice correspondence that satis�es no veto power is imple-

mentable in undominated Nash equilibrium.

The contrast of this theorem with Theorem 2 is dramatic, as any social choice

correspondence in economic settings as well as most voting rules are admitted. The

re�nement to undominated Nash equilibrium has thus made a big di�erence in which

social choice correspondences are implementable, completely eliminating the necessity

of monotonicity. The main intuition is that any switch in preferences (one is guaranteed

to exist by value distinction) can be used to change the set of strategies that are

undominated from one state to another. The central di�culty in Nash implementation

that is handled by the monotonicity condition is that there can be an alternative a

that one wants to be a Nash equilibrium outcome in one state but not in another state.

So one needs a preference reversal between a and some other alternative b that can be

obtained through a deviation. When one considers undominated Nash implementation,

one instead needs a to be supported as an undominated Nash equilibrium outcome

in one state R but not in another R. Let m be an undominated Nash equilibrium

message pro�le at R of some mechanism. In order to rule m out as an undominated

Nash equilibrium at R, it must be that either m is no longer a Nash equilibrium or

31See Jackson (1992) for a proof.
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some mi is weakly dominated at R
i
(while it was undominated at Ri). One can assure

that mi is weakly dominated at R
i
and not at Ri, simply by taking advantage of any

di�erence in the preferences between Ri and R
i
. Of course, one has to be careful in

working out the details so that such di�erences are accounted for in each state while

still producing the desired undominated Nash equilibria in each state, which results in

a complex mechanism.

The idea that domination arguments can take advantage of relatively slight di�er-

ences in preferences,32 can be pushed further. In fact an even more permissive theorem

holds with a weaker solution concept. We can drop no veto power, weaken the solution

concept to undominated strategies, and include the case of N = 2.

Theorem 5 (Jackson (1992)) If strict value distinction is satis�ed, then any social

choice correspondence is implementable in undominated strategies.

The proof of each of these theorems involves mechanisms that are quite intricate.

The underlying principles are similar to that of the mechanism used to prove Theorem

2: if there is agreement in the announcements then the outcome is implemented (as in

(1) in the mechanism proving Theorem 2), there is a possibility for some individuals to

deviate and allow for some \test" pair of alternatives which serve the role of changing

which strategies are weakly dominated, and there is some use of an integer game (as in

(3)) to rule out certain undesired con�gurations of strategies. However, the mechanisms

are more complex in terms of how and when the test pairs apply in order to take

advantage of weak dominance arguments. Rather than exhaust the reader with the

details of the mechanisms, I present a simple example that illustrates an implementing

mechanism for Theorem 5 in a speci�c case. The example is also useful for another

purpose: it points out a serious caveat that we should have regarding implementing

mechanisms.

Example 4. (Jackson (1992))

Let N = 2 and A = fa; bg. R1 = R2 is such that aPib, and R1 is such that bP 1a.

Consider F (R1; R2) = fbg and F (R1; R2) = fag. This is a peculiar social choice

correspondence as it goes exactly against the preferences of the agents. But it is then

convincing33 that if we can implement this social choice correspondence then we can

implement any social choice correspondence . The following mechanism does the trick.

32You may notice some analogies to way in which slight di�erences in preferences over lotteries are

expoited by virtual implementation. The same criticisms regarding the ex-post rationality of enforcing

the outcomes can be made, and I discuss this in more detail below.
33The hard-to-convince reader is referred to Jackson (1992) for the proof of Theorem 5.
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m2 fm2 cm2

m1 b a a a a � � � a a a a a � � �

b a a a a � � � b b b b b � � �

b b a a a � � � b b b b b � � �

b b b a a � � � b b b b b � � �
...

...
...

...
...

...
...

...
...

...

m1 a b b b b : : : b b b b b : : :

a a a a a : : : a b b b b : : :

a a a a a : : : a a b b b : : :

a a a a a : : : a a a b b : : :
...

...
...

...
...

...
...

...
...

...

In this table, the � � � and
... indicate a countable continuation of the series of entries

and corresponding strategies.34 Let us check that the mechanism implements the stated

social choice correspondence . First,m2 is undominated for 2 since it is the only strategy

that results in a against m1. Second, any strategy in the right half of the mechanism

for individual 2 is dominated by individual 2's strategy fm2. Next, fm2 is dominated

by cm2. Next, cm2 is dominated by the strategy immediately to its right; and so forth.

This leaves m2 as the only undominated strategy for individual 2. A similar analysis

for player 1 leads to a unique undominated strategy of m1 at R1, and of m1 at R
1
.

Thus, the mechanism implements the stated F .

The elimination of dominated strategies is a questionable practice in the above

mechanism. For instance, in the sequence fm2, cm2, : : :, each strategy is eliminated

by the next, but there is no undominated or `best' strategy in that string. We end

up predicting that individual 2 will not play any of these strategies, but will play

m2 instead, even though it does worse in some situations than any of the eliminated

strategies. 35

34Each individual here has a message set that is divided into two sets that are both countably

in�nite. So for instance, m2 gets b against every message in 1's �rst set and a against every message

in 1's second set.
35As an aside, the use of the integer game in the mechanism used for Nash implementation (i.e.,

proving Theorem 2) may have bothered you. As no domination arguments were used there, the issues

are slightly di�erent than that in Example 4. However, the integer game used in proving Theorem

2 had a similar feature in that it could produce situations where agents have no best response (i.e.,
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As shown in Jackson (1992) this is not simply a problem when dealing with im-

plementation in undominated strategies, but also holds for undominated Nash imple-

mentation. This example can be modi�ed to have three individuals and implement

essentially the same social choice function in undominated Nash equilibrium, via a

mechanism with similar di�culties. Moreover, in each of the examples the same is true

of every implementing mechanism.

To address the questionable removal of dominated strategies in Example 4, we can

rule out the use of such mechanisms by requiring that the implementing mechanism be

bounded. This requires that when a strategy is dominated, it be dominated by some

undominated strategy.36

Bounded Mechanisms

A mechanism (M;g) is bounded relative to P if for every i and R 2 P , whenever

mi 2 Mi is dominated at Ri, then it is dominated by some message mi 2 Mi that is

undominated at Ri.

This de�nition makes reference to the preference domain, and so boundedness is

a condition relative to an environment. A �nite mechanism is bounded regardless

of the environment due to the transitivity of the domination relation. However, an

in�nite mechanism's boundedness property may depend on the domain of preferences

in question.

If we require implementation via a bounded mechanism, then Theorem 5 no longer

holds and necessary conditions arise.

F is strategy-resistant if for all i, R 2 P and Ri such that (Ri; R�i) 2 P and for

each b 2 F (Ri; R�i), there exists a 2 F (R) (possibly a = b) such that aRib.

This condition has a 
avor of strategy-proofness, but as de�ned for correspondences.

If we think of i at R, considering a manipulation by acting in accordance with Ri, we

�nd that for whatever outcome i may hope for b 2 F (Ri; R�i), there is some outcome

a 2 F (R) which is at least as good as b. This condition is very strong: it reduces to

strategy-proofness when F is a function.

The following theorem illustrates the impact of requiring boundedness in imple-

mentation via undominated strategies.

if they have beliefs that have positive probability that some other individual will use any integer). I

will return to discuss this issue after discussing the domination issues.
36An alternative approach,would be to modify the concept of domination so weakly dominated

strategies are eliminated only if they are dominated by some undominated strategy. (Timothy Van

Zandt suggested this alternative approach in a discussion of Jackson (1992).) As is easily seen from

the proof of Theorem 6, the same restrictions on implementation ensue with either approach.
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Theorem 6 (Jackson (1992)) If a social choice correspondence is implementable in

undominated strategies via a bounded mechanism, then it is strategy-resistant.

The proof of this theorem is quite easy. Let F be implemented in undominated

strategies via the bounded mechanism (M;g). Consider i, R 2 P and Ri such that

(Ri; R�i) 2 P and consider any b 2 F (Ri; R�i). Since F is implemented, there exists

m 2 UD(M;g;Ri; R�i) such that g(m) = b. Either b 2 F (R), in which case let

a = b, or it must be that mi is dominated by some fmi that is undominated at Ri. Let

a = g(fmi;m�i). Since (fmi;m�i) is undominated at R, it follows that a 2 F (R), and

from the de�nition of domination, it follows that that aRib.

Thus, we end up with a stark contrast between what is implementable in undomi-

nated strategies when we can use any mechanism and when we can only use bounded

mechanisms. This suggests it is very important to understand the restrictions imposed

by considering only mechanisms for which a given solution concept is appropriate.

Boundedness ends up restricting the class of social choice correspondences that are

implementable in undominated Nash equilibrium as well. That is studied in Jack-

son, Palfrey, and Srivastava (1994). It turns out to introduce a necessary condition

(the chained condition) that is weaker than monotonicity and strategy-resistance, but

nonetheless rules out some well-known correspondences. The reader is referred to that

paper for details.

While boundedness is a condition that is natural to require when we examine elimi-

nation of dominated strategies, or solution concepts like undominated Nash equilibrium

or iterative elimination of weakly dominated strategies, it is not an obvious condition

to require when considering Nash equilibrium, or subgame perfect equilibrium, where

the elimination of dominated strategies is never an issue. However, there are condi-

tions that one might like to impose on mechanisms so that such solution concepts are

reasonable.

Mixed Strategies

The de�nition of Nash equilibrium that we worked with in proving Theorem 2,

does not consider mixed strategies. Even giving a proper de�nition of mixed strategy

equilibrium requires additional structure as preferences have to be de�ned over lotteries

on alternatives, and since message spaces may be uncountably in�nite one has to take

care. Without tackling these technical issues, let us consider an example that shows

that worrying about the possibility of mixed-strategy equilibria makes a di�erence.
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What we can show is that if one Nash implements a social choice correspondence by

a �nite mechanism, then there may still exist mixed strategy Nash equilibria that result

in outcomes outside of the social choice correspondence and which may be preferable

from the individuals' perspectives.

Example 5. (Jackson (1992))

Let N = 2 and A = fa; b; c; dg. Preferences are described by aP 1bP 1cI1d (where

I1 indicates indi�erence), aP 2bP 2cP 2d and bP
2
aP

2
cI

2
d.

Consider F such that F (R1; R2) = fag and F (R1; R2) = fdg. F is Nash imple-

mented by the following mechanism.

m2 cm2 fm2

m1 d c c

cm1 d a b

fm1 d b a

Note however, that at (R1; R
2
) for most de�nitions of preferences over lotteries,

there also exists a mixed strategy equilibrium that results in a and b with positive

probability. This is true for every �nite implementing mechanism.

Claim 1. Suppose that players' preferences over lotteries on A are continuous, convex,

and monotone. Any mechanism with a �nite number of strategies for each player has a

Nash equilibrium in mixed strategies at R1; R
2
resulting in outcomes a or b with positive

probability, and which strictly Pareto dominates the outcome d.

The proof of the claim is simple. Suppose that a mechanism (M;g) Nash implements

F . Consider cM i � M i such that cmi 2 cM i implies that there exists cm�i such that

g(cm) 2 fa; bg. Thus, cM i is found by eliminating strategies that can only ever lead

to c or d. Since F is implemented, there must be some strategy pro�le cm such that

g(cm) = a, and so cM is non-empty. Given the assumptions on preferences and the

�niteness of the mechanism, there exists a Nash equilibrium in mixed strategies to

(cM;g) at R1; R
2
. Given the de�nition of cM and the fact that preferences on lotteries

are monotone, it follows that this equilibriummust put positive probability on at least

one of the outcomes a and b, as these are reachable by some strategy of 1 given any

(mixed) strategy of 2, and are preferred by 1 to c and d over which 1 is indi�erent.

Note that cm is then also a Nash equilibrium of (M;g) at R1; R
2
since strategies in

M i n cM i only lead to c or d and cannot provide improving deviations. This establishes

the claim.
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The above claim shows that the standard de�nition of Nash implementation that

only considers pure strategies can be a problematic one. Let me make two remarks

about the above example.

First, the social choice correspondence that is being implemented is a bit strange

in that we are trying to implement d when it is a least preferred outcome for both

of the individuals. However, this might be quite natural in the context of a problem

such as a principal/multiple-agent problem, where the two individuals above represent

the agents and the principal designs the mechanism and prefers that the agents take

actions leading to outcome a in the �rst state and d in the second state.

Second, the �niteness of the mechanism is critical to the result. If we allowed for

in�nite mechanisms, then we could ensure that there are no mixed strategy equilibria,

by employing an integer game.37 Maskin (1999) shows that one can design a mechanism

for Nash implementation that has no mixed strategy equilibria (see the appendix of his

article); but his mechanism involves an integer game and thus an in�nite message space.

This example shows that there are correspondences in �nite settings that are Nash

implementable when one only considers pure strategies, but not Nash implementable

(except by in�nite mechanisms) when one allows for mixed strategies.

For this example, it is natural to require �nite mechanisms as the setting is com-

pletely �nite. However, many settings of interest are naturally in�nite and so requiring

implementation in �nite mechanisms might not always make sense. So one might ask

what the correct restriction on mechanisms is for Nash implementation if one accounts

for mixed strategies. What is bothersome about integer games is that although there

is no Nash equilibrium to them, players could very well try to announce higher integers

than others in the hopes that they will get their most-preferred alternative. We have

no prediction for how a player will act if he or she believed that the other players would

be announcing integers. A player's best response correspondence is not well-de�ned

when that player faces a mixed strategy of the others that places weight on an in�-

nite set of integers. So, one way to rule this out is to look only at mechanisms for

which best response correspondences are well-de�ned. Jackson, Palfrey, and Srivastava

(1994) suggest such a requirement, calling it the \best response property." The best

response property is satis�ed by any �nite mechanism and also by many in�nite mech-

37We saw such a construction in the mechanism used to prove Theorem 2. Under (3), the outcome

was that announced by the agent who named the highest integer. Clearly as long as there is some

disagreement over most preferred outcomes, then there is no equilibrium in (pure or) mixed strategies

to the integer game.
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anisms. Nevertheless, it is a strong condition and rules out some mechanisms that are

well-behaved in the way that they either admit or rule out mixed strategy equilibria.

The same point regarding mixed strategies in this example that was made in Claim

1 above, can be made with regards to subgame perfect implementation.38

Claim 2. Suppose that players' preferences over lotteries on A are continuous, convex,

and monotone. Any extensive form mechanism39 that has a �nite number of terminal

nodes and that implements F , has a subgame perfect equilibrium in mixed strategies

at R1; R
2
which results in outcomes a or b with positive probability and which strictly

Pareto dominates the outcome d.

The proof of Claim 2 is similar to that of Claim 1. We �rst need to trim the tree

to obtain a game form like (cM;g) in the previous proof. In the extensive form this is a

bit trickier, but the �niteness allows us to do this inductively. Start with information

sets that only precede terminal nodes, and eliminate actions that only lead to c or d

at those information sets. If all actions are eliminated, the replace the information

set with terminal nodes that lead to d. Next, proceed to information sets that lead

to either terminal nodes or information sets considered in the �rst step, and perform

the same trimming. Proceed inductively until the root is reached. Find a subgame

perfect equilibrium of the remaining extensive form. It must lead to a or b with positive

probability. Then construct a subgame perfect equilibrium of the original game form

leading to the same outcomes, by picking any action at information sets that were

completely eliminated in the trimming procedure. This then establishes the claim.

The di�culties with mixed strategies pointed out in the claims above, can be at-

tacked from di�erent directions. One approach to handling this problem is to examine

virtual implementation to see if the di�culties can be avoided there. Abreu and Mat-

sushima (1992a) have analyzed virtual implementation via the iterative elimination of

strictly dominated strategies. Since the set of Nash equilibria (pure or mixed) has

support in the set of strategies that survives the iterative elimination of strictly domi-

nated strategies, if one obtains a unique pro�le of actions via the iterative elimination

38Moore and Repullo (1988) provide a mechanism for subgame perfect implementation that has no

mixed strategy equilibria. However their mechanism also employs an integer game and fails the best

response property.
39The de�nition of extensive form mechanism is the same as that of an extensive form game, except

that there is an outcome associated with each terminal node rather than a payo�. As the de�nition

is standard, available in most any game theory text, and notationally cumbersome, I omit it here.
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of strictly dominated strategies, then there must be a unique Nash equilibrium (even

considering mixed strategies). Abreu and Matsushima show that with three or more

individuals, any social choice function is virtually implementable in iteratively un-

dominated strategies by a �nite mechanism. Their construction of an implementing

mechanism is very clever and quite intuitive. I refer the reader to their paper for de-

tails. While they obtain a powerful result handling mixed strategies, it comes at the

expense of the strength of the assumptions in the virtual implementation setting (as

discussed above).40

6 Speci�c Environments

Another approach to accounting for mixed strategies, and also to providing implemen-

tation by mechanisms that are bounded/and or simple and natural in other ways, is to

examine implementation in speci�c environments. Part of the reason that the mech-

anisms used in the su�ciency theorems are so abstract and complicated is that they

implement a given social choice correspondence without using any detailed information

about the speci�c restrictions on preferences that may be satis�ed in an environment.

If we take advantage of knowledge about the structure of the environment, the imple-

mentation problem can be simpli�ed.

One important class of environments to be considered is that of economic environ-

ments where there is a private good. In such environments there is a disagreement

between agents' preferences that avoids problems associated with unanimity - each

agent prefers to have more of the private good. Also, there is some possibility of im-

posing \�nes" or punishments that are agent speci�c. Let us examine two results on

implementation in such settings that employ simple and intuitive mechanisms that are

bounded and handle mixed strategies. The �rst such result applies to undominated

Nash implementation and environments that are called separable.

Separable Environments

(1) there exists w 2 A such that aP iw for all i, R 2 P, and a 2 F (R),

(2) for any a 2 A, J � N , and R 2 P, there exists aJ such that aJI iw for any i 2 J

and aJI ia for i =2 J ,

40Glazer and Rosenthal (1992) criticize the Abreu and Matsushima mechanisms on complexity

grounds and Abreu and Matsushima (1992c) o�er a reply.
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(3) Ri 6= R
i
implies that there exist a and b such that aP ibP iw and bP

i
aP

i
w.

(1) is a requirement that there is an outcome that each agent considers to be

worse than any alternative in the range of the social choice correspondence . (This

means that the de�nition of a separable environment is relative to a given social choice

correspondence .) For instance, in an exchange economy this would be satis�ed by

setting w to be the 0 allocation, provided the social choice correspondence leaves each

agent with some minimal consumption in every state. (2) is the requirement that

captures the separable nature of the environment. It states that it is possible to

reduce the allocations of some set of individuals J while not a�ecting the remaining

individuals. This is satis�ed in exchange economies that satisfy free disposal, as well

as other settings such as those with public goods and/or externalities provided there

is at least one disposable private good that agents value su�ciently. (3) is a version

of strict value distinction again, with the additional requirement that the test pair of

alternatives (a and b) be preferred to the bad outcome. Again, it is satis�ed in many

economic settings.

Theorem 7 (Jackson, Palfrey, and Srivastava (1994), Sj�ostr�om (1994)41) If the en-

vironment is separable relative to a social choice function F , then F is implementable

in undominated Nash equilibrium by a bounded mechanism that has no mixed strategy

equilibria.

Theorem 7 is proven using the following mechanism.

Each individual i announces either a pair of preference relations mi = (Ri; Ri+1)

(interpreted as being an announcement i and i + 1's preferences respectively, letting

N + 1 = 1), or a pair of alternatives mi = (a; b). There are three cases to consider.

(I) All individuals announce pairs of preferences. In this case, let J be the set of i

such thatmi
2 = mi+1

1 . This is the set of iwhose announcement about i+1 matched

what i+ 1 announced about him or herself. The outcome is then [F (m2)]J . 42

(II) Some i announces mi = (Ri; Ri+1) and all other j 6= i announce mj = (a; b)

such that aRiw and bRiw (with all j 6= i announcing the same (a; b)). Then

g(m) = aN�i if aRib and g(m) = bN�i otherwise.

41The de�nition of separable environments is from Jackson, Palfrey, and Srivastava (1994). Although

Sj�ostr�om's (1994) setting is slightly di�erent, the intuition behind his mechanism is identical.
42So this is the outcome where individuals in J get F evaluated at the R corresponding to that in

the second entry of each agent's message (what they announced about their neighbor), and individuals

outside of J get an outcome equivalent to the bad outcome w.

34



(III) For any other con�guration of messages g(m) = w.

Since an individual's announcement about his or her preferences can only a�ect his

or her allocation in (II), it is clear that the only undominated announcement of prefer-

ences is to announce one's own preference truthfully. Also, since by announcing a pair

of alternatives one always obtains an alternative equivalent to w, any announcement of

a pair of alternatives is dominated by a truthful announcement of preferences. Finally,

given that all individuals should be announcing pairs of preferences, and announcing

their own truthfully, it then follows from (I) that each individual should announce

their neighbor's preference truthfully. This is the unique undominated Nash equilib-

rium. The mechanism is bounded because the dominated actions were dominated by

undominated actions.

Thus, in this separable class of environments we can obtain a strong implementation

result with a relatively simple bounded mechanism. Before discussing some of the

shortcomings of the mechanism above, let me discuss a closely related setting and

mechanism for implementation in subgame perfect equilibrium.

A special case of separable environments is that of quasi-linear preferences. That

setting allows for a simple, clean, and intuitive implementation in subgame perfect

equilibrium.

Let us say that an environment has quasi-linear preferences that are representable

by bounded utility functions if there exists A0 such that

(1) A = f(a; t1; : : : ; tN) 2 A0 � IRN j
P

i t
i � 0g, and

(2) each Ri is represented by a utility function ui : A0 ! [0; 1] such that (a; t1; : : : ; tN )

Ri (b; t
1
; : : : ; t

N
) if and only if ui(a) + ti � ui(b) + t

i
.

Condition (1) says that allocations can be written as a product space of some

primitive allocations as well as a vector of private transfers. Note that the transfers are

freely disposable since
P

i t
i � 0. Condition (2) states that preferences are representable

by a bounded quasi-linear utility function.

Let us consider social choice functions for which F (R) = (a; 0; : : : ; 0) for every

R 2 P. This is almost without loss of generality, since A0 is arbitrary and if one wishes

to specify transfers that do not sum to 0, for instance specifying the sharing of the cost

of a public good as a function of R, then this can be included in the speci�cation of

A0 and the ti's can be thought of as additional transfers. The only loss of generality
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comes from condition (2) above, which implies that any transfers included in A0 must

be bounded in size. This bound is needed for the implementing mechanism below to

function.

Theorem 8 (Moore and Repullo (1988)) Consider an environment with a �nite num-

ber of states, quasi-linear preferences represented by utility functions that are bounded,

and N = 2. Any social choice function is implementable in subgame perfect equilib-

rium by an extensive game form of perfect information of �nite length that has no

mixed strategy equilibria.

Although the theorem is stated for N = 2, the mechanism below can be extended

to N > 2 (see Moore and Repullo (1988) and Moore (1992) for details).

Theorem 8 is established through the mechanism pictured below. To understand

the mechanismwe note two points. First, the reader can easily check that for any quasi-

linear utility functions on A0, ui and vi that represent di�erent preferences on A, we can

�nd (a; ti) and (b; ti) such that ui(a)+ ti > ui(b)+ t
i while vi(a)+ ti < vi(b)+ t

i. Thus,

in the challenge phase of the mechanism pictured below, if agent i has announced vi

and is challenged by the other agent who counters with vi, then such a pair is invoked.

Second, we can rewrite the social choice function to be a map from pro�les of bounded

utility functions on A0 into allocations. So, the implemented social choice function can

be written to depend directly on the announcements of u1 and u2.

[Insert Figure 6 here.]

The intuition behind the mechanism is straightforward. Suppose that the true

pro�le of preferences corresponds to (u1; u2). If 1 announces a false preference v1

instead of u1, then individual 2 can challenge 1 and say u1. If 1 is challenged then

1 will end up paying a large �ne no matter occurs in the sequel. 1 is then o�ered a

choice between the (a; ti) and (b; ti) that distinguish u1 and v1. 1 will choose honestly,

as this is the end of the tree and 1 pays a �ne regardless of the choice. If 1 chooses

(a; ti) then this indicates that 1 was not truthful in the �rst stage, and so 2 is rewarded

by receiving the �ne that 1 pays. If 1 chooses (b; t
i
) then this indicates that 2 was

not truthful ( either in challenging or in 2's announcement of u1) and then 2 also pays

a �ne. This �ne is su�ciently large (outweighing any implemented allocation) that 2

would like to challenge 1 if 1 lies, and not otherwise. The same reasoning applies to

the other section of the tree and so the unique subgame perfect equilibrium outcome is
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for both individuals to announce utility functions that represent their true preferences

and so the correct outcome is implemented.43

While the results in this section have very optimistic implications, they come at

the expense of strong restrictions. Most importantly, one of the criticisms made of

virtual implementation - that it may not be credible to believe that bad outcomes will

stand - is also particularly important here. In both of the mechanisms above there

is some \bad" outcome (w in the undominated Nash implementation and a �ne large

enough to outweigh all other considerations in the subgame perfect implementation)

and the mechanisms need to commit to these bad outcomes in order to sustain the

implementation. There are papers that address this shortcoming, which I discuss

below.

Finally, while the mechanisms above are relatively simple and intuitive, bounded,

and avoid mixed strategy equilibria; the mechanisms are still cumbersome in the sense

that they require announcements of preferences (or utility functions). Thus, although

they are well-behaved in a theoretical sense they are still far from \natural" in the sense

that they could be easily used in practice. So, although they are useful in delineating

the boundary of what can be implemented, we should want to push further to require

implementation by a mechanism with a simple or natural message space.44 By adding

even more structure to the problem, one can obtain natural mechanisms with simple

action spaces. The tractability of speci�c environments for obtaining intuitive simple

mechanisms for implementation has been taken advantage of in allotment, bargaining,

voting, principle agent, and public goods environments in a series of papers.45 The

implementing mechanisms that are obtained often have auction and voting like features

that make them very simple and natural.

One speci�c environment that has received a great deal of attention in the imple-

43The �niteness of the state space is important in guaranteeing existence of equilibrium, as it ensures

that there exists a well-de�ned best response of the \challenging" agent in the challenging subgames.
44One approach to addressing the complexity of announcements of the mechanism is to examine

the dimensionality of the message spaces and look for mechanisms with minimal sized message spaces

and to establish lower bounds on what is necessary for implementation in various environments. For

explicit discussion of such considerations see the seminal paper of Mount and Reiter (1974), as well as

papers focussing on this issue in implementation such as Reichelstein and Reiter (1988), Saijo (1988),

and Hong and Page (1994).
45See, for example, Glazer and Ma (1989), Jackson and Moulin (1992), Rubinstein and Wolinsky

(1992), Dutta and Sen (1993), Glover (1993), Thomson (1994), Bag (1996, 1997), Jackson and Palfrey

(1998a), and Brusco and Jackson (1999).
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mentation literature is that of the exchange of private goods, and the implementability

of the constrained Walrasian correspondence.46 Within this context one can examine

implementation with respect to certain message spaces. Can the constrained Walrasian

correspondence be implemented by mechanisms that only involve announcements of

prices and quantities or announcements of prices and allocations? These questions and

others are addressed in recent papers by Saijo, Tatamitani and Yamato (1996), Dutta,

Sen and Vohra (1995), and Sj�ostr�om (1995b), which map out exactly what sorts of

message spaces are needed for Nash implementation of the Walrasian correspondence.

7 Other Topics and Open Questions

While the discussion of implementation theory above exposes the reader to some of

the results, techniques, and themes in the literature, there is a substantial portion of

the literature that I have not discussed. In this section I brie
y discuss some of the

issues that are addressed in the rest of the literature as well as some interesting open

problems.

Implementation under Incomplete Information

There is an extensive literature on implementation when individuals hold private in-

formation. Nash implementation has a natural analog in such settings which is referred

to as Bayesian implementation.47 The reasoning behind the necessity of monotonic-

ity for Nash implementation extends to provide an analogous necessary condition for

Bayesian implementation that has been called Bayesian monotonicity in the literature

(e.g., see Postlewaite and Schmeidler (1986), Palfrey and Srivastava (1989a), and Jack-

son (1991)48). The incomplete information setting also introduces a necessary incentive

compatibility condition. As we know from the mechanism design literature, incentive

compatibility conditions can turn out to be quite restrictive, rendering many e�cient

46The large literature on this subject begins with Hurwicz (1972), and includes papers that pro-

vide increasingly well-behaved mechanisms worrying about auxiliary properties of the mechanism like

continuity of the outcome function, individual rationality, and balance out of equilibrium. See for

example, Schmeidler (1980), Hurwicz, Maskin and Postlewaite (1995), Wettstein (1992), Nakamura

(1990), and Hurwicz (1996).
47Bayesian implementation may be seen as a generalization of Nash implementation, as it reduces

to Nash implementation in situations where agents are symmetrically informed.
48How one de�nes the setting and the Bayesian monotonicity condition is important for identifying

a condition which is both necessary and su�cient for implementation. See Jackson (1991) for a

discussion of this point.
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and desirable social choice functions non-implementable.49 While the necessity of an

incentive compatibility and a Bayesian monotonicity condition would be expected50,

the Bayesian setting also introduces new considerations that render the task of �nd-

ing su�cient conditions signi�cantly more complex than in the complete information

setting.51 For instance, one cannot state a direct analog of Theorem 2 in a Bayesian en-

vironment. In particular, a no-veto style condition and Bayesian monotonicity need to

be carefully intertwined respecting the information structure, as discussed in Jackson

(1991).52

While progress has been made in understanding the conditions that characterize

Bayesian implementation, the full implications of the Bayesian monotonicity condition

and the extent to which it may be satis�ed are still less well understood. Palfrey and

Srivastava (1987, 1993) make signi�cant headway in showing that many analyses in

mechanism design and agency theory that use incentive compatibility and invoke the

revelation principle su�er from multiple equilibrium problems and the identi�ed social

choice functions fail to satisfy Bayesian monotonicity condition. They also show that in

environments with transferable utility the conditions for Bayesian implementation are

more easily satis�ed.53 A recent paper by Serrano and Vohra (1999) sheds more light on

the restrictiveness of Bayesian implementation by showing that Bayesian monotonicity

is essentially an ordinal condition, and so implemented social choice correspondences

must be constant across di�erent cardinal representations of underlying ordinal pref-

erences. What is left open is a detailed understanding of what can be implemented in

non-transferable utility settings when we worry not only about incentive compatibility,

but also about full implementation and thus the multiple equilibrium problem and

Bayesian monotonicity.

While Nash implementation has an obvious generalization to environments with

incomplete information,54 subgame perfect implementation does not have a unique

49See Palfrey and Srivastava (1987) and (1993) for a number of examples in the context of Bayesian

implementation.
50A closure condition which links play of di�erent equilibrium strategies across the common knowl-

edge partition is also necessary.
51There are other interesting di�erences that arise in a Bayesian setting: Dutta and Sen (1994)

demonstrate a simple social choice function in a �nite setting that requires a mechanism with in�nite

message spaces for implementation.
52See Dutta and Sen (1991c) for more on the necessary and su�cient conditions for Bayesian

implementation.
53See also Matsushima (1993).
54Other natural extensions of complete information implementation to incomplete information set-
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generalization, but instead several. This is due to the variety of alternative formu-

lations of sequential rationality under incomplete information. In particular, varying

assumptions about how individuals update beliefs o� the equilibrium path results in

alternative solution concepts to be used in implementation. The two incomplete infor-

mation extensive form notions of implementation that have been analyzed are perfect

Bayesian implementation (Brusco (1995, 1997, 1998)) and implementation via sequen-

tial equilibrium (Baliga (1999) and Bergin and Sen (1998)). The interesting new aspect

that arises in these settings is that preference reversals can arise not only because of

di�erences in the primitive underlying preferences, but also from the way in which

information is revealed in equilibrium through the extensive form. This is the focus of

the work of Bergin and Sen (1998). While various conditions for implementation have

been identi�ed, the role of information revelation through an extensive form is not yet

fully understood.55

Ex Post Individual Rationality, Renegotiation, and Credibility

At several points I have mentioned that various forms of implementation rely on

the belief that the outcomes of the mechanism will be enforced, even if they are \bad"

from society's point of view ex-post. This can be problematic, to the extent that

the positive results depend on such outcomes being used by the mechanism and such

beliefs holding.56 If, for example, a mechanism is constructed to assist bargainers in

reaching an e�cient agreement, then it is questionable to assume that highly ine�cient

outcomes will be allowed to stand o� (or on) the equilibrium path.

There are several papers that consider implementation in the face of individual

rationality and/or renegotiation on and o� the equilibrium path. Ma, Moore and

Turnbull (1988) were the �rst to point out the importance of imposing an individual

rationality constraint both in and out of equilibrium. They examined a principal-agent

model where the usual individual rationality constraint (imposed only on the equilib-

rium path) was replaced by an \opt-out," where each player had the ability to decline

the outcome of the mechanism and accept a status-quo outcome instead. Maskin and

Moore (1998) examined a more general implementation problem, and changed the opt-

tings have been analyzed as well, such as implementation in undominated Bayesian equilibrium (Pal-

frey and Srivastava (1989)), virtual Bayesian implementation (Duggan (1997a)), and virtual imple-

mentation in iteratively undominated strategies with incomplete information (Abreu and Matsushima

(1992).
55For instance, see Brusco (1998) for a puzzle on the necessity of multi-stage mechanisms.
56See Hurwicz (1994) for a discussion of some other, related issues related to enforceability in

mechanism design.
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ing out to a possibility of renegotiation. This takes the point of view that instead

of settling for some outside option or status-quo, the individuals involved are likely

to renegotiate to some e�cient outcome. Maskin and Moore considered implementa-

tion where any outcome of a mechanism that suggests a Pareto dominated allocation

is replaced by a Pareto e�cient allocation according to an exogenous renegotiation

function.57 Given any such renegotiation function, Maskin and Moore obtain charac-

terizations of Nash and subgame perfect implementation that have intuitive relation-

ships to the standard characterizations. Although these two papers provide insight

into ex-post individual rationality and renegotiation, much depends on the exogenous

speci�cation of the outside options or renegotiation function.

One would like to model the process that occurs when players opt out, rather than

take as given a status quo or renegotiation function. Jackson and Palfrey (1998a) push

in this direction, in the context of a dynamic bargaining and matching model, 58 by

having a player be rematched with a new bargaining partner whenever he or she opts-

out of a prescribed alternative. They show that although such an endogenous individual

rationality constraint is compatible with e�ciency within individual matches, it can

be incompatible with e�ciency from society's point of view accounting for the overall

evolution of the market which requires speci�c exercise of the rematching option. In

other words, it can be impossible to implement the e�cient rule in such a setting.

The above approaches are based on the idea that the individuals themselves are

not bound to the mechanism, but have the ability to opt out of the prescribed outcome

either to some status quo, renegotiated outcome, or replay of the mechanism. There

might be other contexts where such an opt-out can be prevented and the outcome can

be made legally binding. Nevertheless, one still has to worry about whether the planner

(or society at large) will let ine�cient outcomes stand ex-post. Studies which address

such \credibility", or the ability of the mechanism designer or planner to commit to

o�-equilibrium-path outcomes that are known to be undesirable, include Chakravorti,

Corchon, and Wilkie (1992), Baliga, Corchon, and Sj�ostr�om (1995) and Baliga and

Sj�ostr�om (1995). These studies include the planner as a player in the mechanism,59 in

57See Rubinstein and Wolinsky (1992) for a di�erent approach. Their notion of \renegotiation-

proof" implementation requires that the possibility for renegotiation never arise on or o� the equilib-

rium path.
58See Jackson and Palfrey (1998b) for a uni�ed approach to dealing with renegotiation, outside

options, and replay of the mechanism, in more abstract settings, with some applications to exchange

economies.
59Including the planner as a player has an interesting theoretical byproduct: the planner is part of
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which case one can explicitly account for the planner's preferences and behavior with

regards to enforcing an outcome.

In all of the above work there are two forces at work. On the one hand, allowing

for movement away from ex-post undesirable outcomes can be improving just by itself

since truly undesirable outcomes are eliminated automatically. On the other hand,

this limits out of equilibrium threats that (as we saw in the last section) can play a

strong role in selecting which outcomes are implemented. Thus, although allowing for

players or the planner to alter outcomes builds in some minimal individual rationality

or e�ciency, it can come at the expense of selectivity of the mechanism. While the

above cited work makes progress in understanding enforceability and credibility issues,

a complete understanding of these issues requires full modeling (endogeneity) of the

process that occurs when an outcome is opted away from by the players or the planner.

Often this process may be situation speci�c, and so it should be worthwhile to analyze

this issue in a variety of speci�c environments, which is something this branch of the

literature is just beginning to do.

Mixed Strategies

We do not yet have a good understanding of what is Nash or subgame perfect

implementable when one accounts for mixed strategies (by mechanisms satisfying, say

the best response property). I discussed one approach to addressing this problem which

is to analyze speci�c environments where the additional structure can lead to simple

implementing mechanisms that avoid mixed strategy equilibria and other di�culties

altogether. Such an approach has been very successful leading to some of the most

natural mechanisms for implementation to date. So it seems fruitful to simply break

the implementation analysis into many subproblems by analyzing speci�c settings and

developing a catalog of what is implementable setting by setting. However, a case can

still be made for attacking the problem head-on in the general setting. The reason

for complementing the setting-speci�c analyses with a general analysis is that it would

generate insight to the additional necessary (and su�cient) conditions that come with

the consideration of mixed strategies. Given how tailored the analyses are in speci�c

environments, it is not clear that such an understanding will be obtained by piecing

together a catalog of results.

A number of possible head-on approaches suggest themselves, even simply with

respect to Nash implementation. One might ask what can be (exactly) Nash imple-

the equilibrium and can thus rule out undesired equilibria unilaterally.
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mented in �nite environments by a �nite mechanism that has no mixed strategies.60

Alternatively, one could allow for mixed strategies and consider implementing social

choice correspondences that map into lotteries and ask what is implementable then.

Robustness of Mechanisms

In order to push the theory towards applied use, one has to worry about how

sensitive a mechanism is to such obvious things as misspeci�cation of the environment

or `irrational' behavior by the players.

Some work has been done on implementation allowing for variations in the behavior

of the individuals. Some of the �rst work in this direction was on the implementation

of the Walrasian correspondence by mechanisms with a continuous outcome function

(e.g., see Postlewaite and Wettstein (1989)). Requiring continuity of a mechanism

results in an outcome close to the desired one if some players deviate slightly from

equilibrium strategies. More recent attention to robustness with respect to behavior

appears in studies of double implementation (e.g., see Yamato (1993, 1994ab)). Double

implementation requires implementation in more than one solution concept by the same

mechanism. When allowing for combinations such as Nash and strong equilibrium,

potentially unforeseen coalitional deviations are accounted for in implementation. One

can also ask for robustness with regards to behavior that is completely unpredictable

by some of the players. A new paper by Eliaz (1999) examines this sort of problem

asking that a mechanism rely only on a majority of the individuals (not knowing ex-

ante which majority it will be), and using a solution concept that requires behavior of

the players to be immune to arbitrary behavior by some subsets of other players.

While the work described above has examined robustness with regards to certain

aspects of the behavior of players, there is almost no study of mechanisms that are

immune to misspeci�cations of the environment. The only study in this direction

that I am aware o� is by Duggan and Roberts (1998), who study how continuity of

a mechanism can result in robustness with respect to small errors in misspeci�cation,

due to corresponding upper-hemi continuity of equilibrium correspondences.61 This

suggests that an intuitive notion of requiring some continuity of a mechanism in order

to guarantee some minimal robustness is well founded. Short of this, we are lacking

60Again, Abreu and Matsushima (1992a) provide a good deal of insight into this question for

virtual implementation. The reason for considering the exact setting would be to loosen assumptions

on preferences and sensitivity to small probability events under the lotteries.
61This holds provided one worries about mixed strategies, which Duggan and Roberts point to as

another reason for accounting for mixed strategies in implementation.
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even a basic understanding of the exact limitations that are imposed by requiring

implementation by mechanisms that are robust to misspeci�cations of the domain of

preferences, beliefs, allocations, or even the number or role of various individuals in a

society.

Comparisons Across Solution Concepts

As we have developed a deeper understanding of what is implementable in a variety

of contexts and solution concepts, it has become clear that the choice of solution concept

used to model behavior has an important bearing on what is implementable. The

class of social choice correspondences that are implementable in undominated Nash or

subgame perfect equilibrium is signi�cantly larger than the class of Nash implementable

social choice correspondences . What is it about solution concepts (or assumptions on

individual behavior) that accounts for this di�erence? Jackson and Srivastava (1996)

examine this issue in the context of a voting setting with a �nite number of strictly

rankable alternatives. They point to di�erences in consideration of o�-equilibrium

path behavior as the critical factor the a�ects how much is implementable via di�erent

solution concepts. While this works out cleanly in a voting context, it is still unkown

if the same is true more generally or even in other speci�c contexts like exchange

economies.

Tracing the characterizations of implementability back to assumptions concerning

individual behavior should be quite important. As modelers, we often consider a solu-

tion concept as an object of choice; but ultimately it boils down to to understand how

people behave in a given context. If we understand how variations in behavior tie back

to implementability, that we will eventually be well-equipped to make prescriptions in

various contexts. We are still short of such an understanding.

Repeated Implementation

Perhaps one of the most interesting and relevant, and still least studied, questions

in implementation theory is that of implementation in dynamic and repeated contexts.

We know from results on folk theorems, reputation, and learning (as well as various

experimental and applied studies), that behavior in repeated games can di�er in impor-

tant ways from behavior in one-shot games. As most applications of implementation

are repeated ones, ranging from the design of voting procedure to markets, it is very

important that we understand how mechanisms perform when used repeatedly by the

same society. Work by Kalai and Ledyard (1998) is the only that I am aware of that

takes this perspective.62 They draw on intuition from the reputation and learning

62Work on implementation with extensive forms is of course dynamic. In some cases can involve
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literatures to note that if a mechanism designer is more patient than the underlying

population, then the society's characteristics can be teased out and learned over time.

Thus in the long run, a planner can avoid even incentive compatibility requirements in

a Bayesian setting. While this takes an important �rst step towards modeling repeated

implementation, the question of what is generally implementable in repeated contexts

is wide open.

Choice of Mechanisms

The theory of implementation is agnostic on how a social choice correspondence

is selected for implementation or how a society might choose a mechanism. These

are critical questions in understanding the eventual outcome of the process. These

are also di�cult questions to formulate, since at some point one has to make an ad

hoc assumption about the process of choice. Nonetheless one can ask for some sort

of consistency properties in decision making. Koray (1998) (see also Barber�a and

Bevia (1998)), in a voting context, asks for consistency in that a social choice function

chosen by a society should be consistent with the manner in which it is selected.

That is, the selection of a social choice function can be formulated as a social choice

problem, and the social choice function selected should be one that would be selected

by itself. A clever formulation (see Koray (1998)) allows social choice functions to

be both the objects of choice and the methods of choice at the same time. Although

Koray's result is negative (he �nds that only a dictatorial social choice function is

self-consistent), one can think of addressing such issues on restricted domains and

allowing for correspondences rather than functions. There are also alternative methods

of modeling choice of objectives and mechanisms by a society that can be investigated

in speci�c settings.

Another matter relating to the choice of mechanisms, is that an individual's pref-

erences and behavior may depend on the mechanism itself. Glazer and Rubinstein

(1998) present a context where individuals providing messages (\opinions") care ex-

plicitly about how their message ends up comparing to the ultimate social decision,

as they would like to have their recommendation match the social choice. This intro-

duces an added layer of feedback between the mechanism and equilibrium behavior,

that presents interesting and challenging issues for implementation theory. Such issues

di�erent agents allocations being realized at di�erent times for a variety or reasons such as information

revelation (as in Brusco (1997b)), random matching (as in Jackson and Palfrey (1998)), and di�erent

arrival times (as in Brusco and Jackson (1999)). Nonetheless, these analyses are still one-shot in that

individuals cease to interact once an outcome is realized.
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are generally unexplored in the theory, and one can think of any number of examples

beyond the Glazer and Rubinstein context (for instance in principal-agent problems)

where they are important.

Testing Implementing Mechanisms

As the theory continues to generate mechanisms for implementation, we can begin to

evaluate and compare them through testing, simulation, and experiments. For instance

Chen (1997) compares behavior observed in a series of public goods mechanisms. She

attributes di�erences in performance to supermodularity properties of the mechanisms,

which then helps us appreciate another feature that we might consider in designing

mechanisms. One can also test some of the canonical mechanisms directly as done by

Sefton and Yavas (1996). They ran experiments on the Abreu and Matsushima (1992a)

mechanism, and found relatively poor performance, which presents some formidable

hurdles for the theory. These just touch the surface of what can be explored, and one

can check whether various criticisms of unnatural features of mechanisms are supported

by experimental evidence.63 Similarly, simulations can be used to study the same issues,

as in Cabrales (1999). He studies adaptive learning by players in some of the canonical

mechanisms for implementation.64 There is ample room for tests, simulations, and

experiments on mechanisms to add valuable guidance and insight to the theory of

implementation.

63One interesting question is how a mechanism with an integer game would be played. Would

players play equilibrium strategies? Would they end up trying to announce high integers? (I am sure

that Caltech undergraduates could be very creative in announcing high integers.) How would behavior

depend on the social choice correspondence being implemented? Are they more likely to coordinate

on the equilibrium play when there is alignment of preferences?
64The adaptive learning algorithm Cabrales analyzes has features that allow for complete random-

ization over best responses which can kick the process out of an integer game, and thus produce

convergence to equilibrium in Nash mechanisms. Ultimately, one would like a mechanism to perform

well under a variety of processes, and to o�er fast convergence.
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